Approaching human language with complex networks
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).
Learning about knowledge: A complex network approach
International Nuclear Information System (INIS)
Fontoura Costa, Luciano da
2006-01-01
An approach to modeling knowledge acquisition in terms of walks along complex networks is described. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks--i.e., networks composed of successive interconnected layers--are related to compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks--i.e., unreachable nodes--the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barabasi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaus of knowledge stagnation in the case of the preferential movement strategy in the presence of conditional edges
Complex network approach to fractional time series
Energy Technology Data Exchange (ETDEWEB)
Manshour, Pouya [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)
2015-10-15
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.
A complex network approach to cloud computing
International Nuclear Information System (INIS)
Travieso, Gonzalo; Ruggiero, Carlos Antônio; Bruno, Odemir Martinez; Costa, Luciano da Fontoura
2016-01-01
Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the clients’ tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlaid by Erdős–Rényi (ER) and Barabási-Albert (BA) topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of the cost of communication between the client and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter, the ER topology provides better performance than the BA for smaller average degrees and opposite behaviour for larger average degrees. With respect to cost, smaller values are found in the BA topology irrespective of the average degree. In addition, we also verified that it is easier to find good servers in ER than in BA networks. Surprisingly, balance and cost are not too much affected by the presence of communities. However, for a well-defined community network, we found that it is important to assign each server to a different community so as to achieve better performance. (paper: interdisciplinary statistical mechanics )
Approach of Complex Networks for the Determination of Brain Death
Institute of Scientific and Technical Information of China (English)
SUN Wei-Gang; CAO Jian-Ting; WANG Ru-Bin
2011-01-01
In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our Sndings might provide valuable insights on the determination of brain death.%@@ In clinical practice, brain death is the irreversible end of all brain activity.Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination.Brain functional networks constructed by correlation analysis axe derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated.Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state.Our findings might provide valuable insights on the determination of brain death.
Approach of Complex Networks for the Determination of Brain Death
International Nuclear Information System (INIS)
Sun Wei-Gang; Cao Jian-Ting; Wang Ru-Bin
2011-01-01
In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death. (cross-disciplinary physics and related areas of science and technology)
An Algebraic Approach to Inference in Complex Networked Structures
2015-07-09
44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
A Complex Network Approach to Distributional Semantic Models.
Directory of Open Access Journals (Sweden)
Akira Utsumi
Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.
Evsukoff, Alexandre; González, Marta
2013-01-01
In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...
Complexity, Networking, & Effects-Based Approaches to Operations
2006-06-01
from the recognition of the impossibility of trying to dissect this inherent complexity, e.g. the futility of understand- ing Shakespeare’s Hamlet by...may be essential to a particular task at hand. While we may not all be Shakespeares —or Churchills or Pat- tons for that matter—we have all been
A complex systems approach to planning, optimization and decision making for energy networks
International Nuclear Information System (INIS)
Beck, Jessica; Kempener, Ruud; Cohen, Brett; Petrie, Jim
2008-01-01
This paper explores a new approach to planning and optimization of energy networks, using a mix of global optimization and agent-based modeling tools. This approach takes account of techno-economic, environmental and social criteria, and engages explicitly with inherent network complexity in terms of the autonomous decision-making capability of individual agents within the network, who may choose not to act as economic rationalists. This is an important consideration from the standpoint of meeting sustainable development goals. The approach attempts to set targets for energy planning, by determining preferred network development pathways through multi-objective optimization. The viability of such plans is then explored through agent-based models. The combined approach is demonstrated for a case study of regional electricity generation in South Africa, with biomass as feedstock
Modeling Air Traffic Situation Complexity with a Dynamic Weighted Network Approach
Directory of Open Access Journals (Sweden)
Hongyong Wang
2018-01-01
Full Text Available In order to address the flight delays and risks associated with the forecasted increase in air traffic, there is a need to increase the capacity of air traffic management systems. This should be based on objective measurements of traffic situation complexity. In current air traffic complexity research, no simple means is available to integrate airspace and traffic flow characteristics. In this paper, we propose a new approach for the measurement of air traffic situation complexity. This approach considers the effects of both airspace and traffic flow and objectively quantifies air traffic situation complexity. Considering the aircraft, waypoints, and airways as nodes, and the complexity relationships among these nodes as edges, a dynamic weighted network is constructed. Air traffic situation complexity is defined as the sum of the weights of all edges in the network, and the relationships of complexity with some commonly used indices are statistically analyzed. The results indicate that the new complexity index is more accurate than traffic count and reflects the number of trajectory changes as well as the high-risk situations. Additionally, analysis of potential applications reveals that this new index contributes to achieving complexity-based management, which represents an efficient method for increasing airspace system capacity.
International Nuclear Information System (INIS)
Srivastava, R.M.
2007-01-01
In its efforts to improve geological support of the safety case, Ontario Power Generation's Deep Geologic Repository Technology Programme (DGRTP) has developed a procedure (Srivastava, 2002) for creating realistic 3-D fracture network models (FNMs) that honor information typically available at the time of preliminary site characterisation: By accommodating all of the these various pieces of 'hard' and 'soft' data, these FNMs provide a single, coherent and consistent model that can serve the needs of many preliminary site characterisation studies. The detailed, complex and realistic models of 3-D fracture geometry produced by this method can serve as the basis for developing rock property models to be used in flow and transport studies. They can also be used for exploring the suitability of a proposed site by providing quantitative assessments of the probability that a proposed repository with a specified geometry will be intersected by fractures. When integrated with state-of-the-art scientific visualisation, these models can also help in the planning of additional data gathering activities by identifying critical fractures that merit further detailed investigation. Finally, these FNMs can serve as one of the central elements of the presentation and explanation of the Descriptive Conceptual Geosphere Model (DCM) to other interested parties, including non-technical audiences. In addition to being ideally suited to preliminary site characterisation, the approach also readily incorporates field data that may become available during subsequent site investigations, including ground reconnaissance, borehole programmes and other subsurface studies. A single approach can therefore serve the needs of the site characterisation from its inception through several years of data collection and more detailed site-specific investigations, accommodating new data as they become available and updating the FNMs accordingly. The FNMs from this method are probabilistic in the sense that
Coronges, Kate; Gonçalves, Bruno; Sinatra, Roberta; Vespignani, Alessandro; Proceedings of the 9th Conference on Complex Networks; CompleNet 2018
2018-01-01
This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security.
Gong, Tao; Shuai, Lan; Wu, Yicheng
2014-12-01
By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.
Structural design principles of complex bird songs: a network-based approach.
Directory of Open Access Journals (Sweden)
Kazutoshi Sasahara
Full Text Available Bird songs are acoustic communication signals primarily used in male-male aggression and in male-female attraction. These are often monotonous patterns composed of a few phrases, yet some birds have extremely complex songs with a large phrase repertoire, organized in non-random fashion with discernible patterns. Since structure is typically associated with function, the structures of complex bird songs provide important clues to the evolution of animal communication systems. Here we propose an efficient network-based approach to explore structural design principles of complex bird songs, in which the song networks--transition relationships among different phrases and the related structural measures--are employed. We demonstrate how this approach works with an example using California Thrasher songs, which are sequences of highly varied phrases delivered in succession over several minutes. These songs display two distinct features: a large phrase repertoire with a 'small-world' architecture, in which subsets of phrases are highly grouped and linked with a short average path length; and a balanced transition diversity amongst phrases, in which deterministic and non-deterministic transition patterns are moderately mixed. We explore the robustness of this approach with variations in sample size and the amount of noise. Our approach enables a more quantitative study of global and local structural properties of complex bird songs than has been possible to date.
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
Advances in network complexity
Dehmer, Matthias; Emmert-Streib, Frank
2013-01-01
A well-balanced overview of mathematical approaches to describe complex systems, ranging from chemical reactions to gene regulation networks, from ecological systems to examples from social sciences. Matthias Dehmer and Abbe Mowshowitz, a well-known pioneer in the field, co-edit this volume and are careful to include not only classical but also non-classical approaches so as to ensure topicality. Overall, a valuable addition to the literature and a must-have for anyone dealing with complex systems.
A complex network approach for nanoparticle agglomeration analysis in nanoscale images
Energy Technology Data Exchange (ETDEWEB)
Machado, Bruno Brandoli, E-mail: bruno.brandoli@ufms.br; Scabini, Leonardo Felipe, E-mail: leo.scabini@ufms.br; Margarido Orue, Jonatan Patrick, E-mail: jonatan.orue@ufms.br; Arruda, Mauro Santos de, E-mail: m.arruda@ufms.br; Goncalves, Diogo Nunes, E-mail: diogo.goncalves@ufms.br; Goncalves, Wesley Nunes, E-mail: wesley.goncalves@ufms.br [Federal University of Mato Grosso do Sul, CS Department (Brazil); Moreira, Raphaell, E-mail: moreira.raphaell@fu-berlin.de [Freie Universitat BerlinTakustr 3 (Germany); Rodrigues-Jr, Jose F, E-mail: junio@usp.br [University of Sao Paulo, CS Department (Brazil)
2017-02-15
Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.
Organization of complex networks
Kitsak, Maksim
Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how
Complex network approach to characterize the statistical features of the sunspot series
International Nuclear Information System (INIS)
Zou, Yong; Liu, Zonghua; Small, Michael; Kurths, Jürgen
2014-01-01
Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse-transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15–1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models. (paper)
Synchronization in complex networks
Energy Technology Data Exchange (ETDEWEB)
Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.
2007-12-12
Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
Book Review: Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks
Hossain, Faisal
2013-01-01
All nations have built their economies around water that is naturally available. Almost all sectors of the economy depend on water. Yet there is conflict among various users for the finite amount of water that is available. Managers and practitioners have long held the notion that competition rather than collaboration is the solution when there is conflict. Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks, by Shafiqul Islam and Lawrence Susskind, provides a refreshingly compelling alternative to overcoming water conflicts. The book argues that the dynamic sociopolitical and socioeconomic constraints of water resources are best addressed in a "diplomacy" framework. The book rebuts, using several case studies, the technically rigid competition approach of today's water sharing practice.
Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach
Energy Technology Data Exchange (ETDEWEB)
Ambrosiano, John [Los Alamos National Laboratory; Newkirk, Ryan [U OF MINNESOTA; Mc Donald, Mark P [VANDERBILT U
2010-12-03
The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk of intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-18
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Statistical mechanics of complex networks
Rubi, Miguel; Diaz-Guilera, Albert
2003-01-01
Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
Distinguishing humans from computers in the game of go: A complex network approach
Coquidé, C.; Georgeot, B.; Giraud, O.
2017-08-01
We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as a tool to implement a Turing-like test for go simulators.
Novel approaches to pin cluster synchronization on complex dynamical networks in Lur'e forms
Tang, Ze; Park, Ju H.; Feng, Jianwen
2018-04-01
This paper investigates the cluster synchronization of complex dynamical networks consisted of identical or nonidentical Lur'e systems. Due to the special topology structure of the complex networks and the existence of stochastic perturbations, a kind of randomly occurring pinning controller is designed which not only synchronizes all Lur'e systems in the same cluster but also decreases the negative influence among different clusters. Firstly, based on an extended integral inequality, the convex combination theorem and S-procedure, the conditions for cluster synchronization of identical Lur'e networks are derived in a convex domain. Secondly, randomly occurring adaptive pinning controllers with two independent Bernoulli stochastic variables are designed and then sufficient conditions are obtained for the cluster synchronization on complex networks consisted of nonidentical Lur'e systems. In addition, suitable control gains for successful cluster synchronization of nonidentical Lur'e networks are acquired by designing some adaptive updating laws. Finally, we present two numerical examples to demonstrate the validity of the control scheme and the theoretical analysis.
Modeling Pedestrian’s Conformity Violation Behavior: A Complex Network Based Approach
Directory of Open Access Journals (Sweden)
Zhuping Zhou
2014-01-01
Full Text Available Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network’s degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian’s illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian’s conformity violation behavior will increase as the spreading rate increases.
Ruf, Sebastian F.; Egersted, Magnus; Shamma, Jeff S.
2018-01-01
the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked
Beyond description. Comment on "Approaching human language with complex networks" by Cong and Liu
Ferrer-i-Cancho, R.
2014-12-01
In their historical overview, Cong & Liu highlight Sausurre as the father of modern linguistics [1]. They apparently miss G.K. Zipf as a pioneer of the view of language as a complex system. His idea of a balance between unification and diversification forces in the organization of natural systems, e.g., vocabularies [2], can be seen as a precursor of the view of complexity as a balance between order (unification) and disorder (diversification) near the edge of chaos [3]. Although not mentioned by Cong & Liu somewhere else, trade-offs between hearer and speaker needs are very important in Zipf's view, which has inspired research on the optimal networks mapping words into meanings [4-6]. Quantitative linguists regard G.K. Zipf as the funder of modern quantitative linguistics [7], a discipline where statistics plays a central role as in network science. Interestingly, that centrality of statistics is missing Saussure's work and that of many of his successors.
How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach
Directory of Open Access Journals (Sweden)
Tong Qiao
2017-11-01
Full Text Available Centrality is one of the most studied concepts in network analysis. Despite an abundance of methods for measuring centrality in social networks has been proposed, each approach exclusively characterizes limited parts of what it implies for an actor to be “vital” to the network. In this paper, a novel mechanism is proposed to quantitatively measure centrality using the re-defined entropy centrality model, which is based on decompositions of a graph into subgraphs and analysis on the entropy of neighbor nodes. By design, the re-defined entropy centrality which describes associations among node pairs and captures the process of influence propagation can be interpreted explained as a measure of actor potential for communication activity. We evaluate the efficiency of the proposed model by using four real-world datasets with varied sizes and densities and three artificial networks constructed by models including Barabasi-Albert, Erdos-Renyi and Watts-Stroggatz. The four datasets are Zachary’s karate club, USAir97, Collaboration network and Email network URV respectively. Extensive experimental results prove the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.
Adaptive capacity of geographical clusters: Complexity science and network theory approach
Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria
This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.
APINetworks Java. A Java approach to the efficient treatment of large-scale complex networks
Muñoz-Caro, Camelia; Niño, Alfonso; Reyes, Sebastián; Castillo, Miriam
2016-10-01
We present a new version of the core structural package of our Application Programming Interface, APINetworks, for the treatment of complex networks in arbitrary computational environments. The new version is written in Java and presents several advantages over the previous C++ version: the portability of the Java code, the easiness of object-oriented design implementations, and the simplicity of memory management. In addition, some additional data structures are introduced for storing the sets of nodes and edges. Also, by resorting to the different garbage collectors currently available in the JVM the Java version is much more efficient than the C++ one with respect to memory management. In particular, the G1 collector is the most efficient one because of the parallel execution of G1 and the Java application. Using G1, APINetworks Java outperforms the C++ version and the well-known NetworkX and JGraphT packages in the building and BFS traversal of linear and complete networks. The better memory management of the present version allows for the modeling of much larger networks.
International Nuclear Information System (INIS)
Wang Yao; Wang Zidong; Liang Jinling
2008-01-01
In this Letter, the synchronization problem is investigated for a class of stochastic complex networks with time delays. By utilizing a new Lyapunov functional form based on the idea of 'delay fractioning', we employ the stochastic analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited to demonstrate the advantage and applicability of the proposed result
Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan
2017-09-01
Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo
2017-02-01
In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.
Time irreversibility and intrinsics revealing of series with complex network approach
Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing
2018-06-01
In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.
Directory of Open Access Journals (Sweden)
Meng Zhou
2016-12-01
Full Text Available Spatial structure is a fundamental characteristic of cities that influences the urban functioning to a large extent. While administrative partitioning is generally done in the form of static spatial division, understanding a more temporally dynamic structure of the urban space would benefit urban planning and management immensely. This study makes use of a large-scale mobile phone positioning dataset to characterize the diurnal dynamics of the interaction-based urban spatial structure. To extract the temporally vibrant structure, spatial interaction networks at different times are constructed based on the movement connections of individuals between geographical units. Complex network community detection technique is applied to identify the spatial divisions as well as to quantify their temporal dynamics. Empirical analysis is conducted using data containing all user positions on a typical weekday in Shenzhen, China. Results are compared with official zoning and planned structure and indicate a certain degree of expansion in urban central areas and fragmentation in industrial suburban areas. A high level of variability in spatial divisions at different times of day is detected with some distinct temporal features. Peak and pre-/post-peak hours witness the most prominent fluctuation in spatial division indicating significant change in the characteristics of movements and activities during these periods of time. Findings of this study demonstrate great potential of large-scale mobility data in supporting intelligent spatial decision making and providing valuable knowledge to the urban planning sectors.
Waliszewski, P; Molski, M; Konarski, J
1998-06-01
A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self
Hierarchy Measure for Complex Networks
Mones, Enys; Vicsek, Lilla; Vicsek, Tamás
2012-01-01
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477
Ruf, Sebastian F.
2018-04-12
The problem of controlling complex networks is of interest to disciplines ranging from biology to swarm robotics. However, controllability can be too strict a condition, failing to capture a range of desirable behaviors. Herdability, which describes the ability to drive a system to a specific set in the state space, was recently introduced as an alternative network control notion. This paper considers the application of herdability to the study of complex networks. The herdability of a class of networked systems is investigated and two problems related to ensuring system herdability are explored. The first is the input addition problem, which investigates which nodes in a network should receive inputs to ensure that the system is herdable. The second is a related problem of selecting the best single node from which to herd the network, in the case that a single node is guaranteed to make the system is herdable. In order to select the best herding node, a novel control energy based herdability centrality measure is introduced.
Analysis of structural patterns in the brain with the complex network approach
Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.
International Nuclear Information System (INIS)
Han, Yong-Ming; Geng, Zhi-Qiang; Zhu, Qun-Xiong
2016-01-01
Graphical abstract: This paper proposed an energy optimization and prediction of complex petrochemical industries based on a DEA-integrated ANN approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA-ANN prediction model is effectively verified by executing a linear comparison between all DMUs and the effective DMUs through the standard data source from the UCI (University of California at Irvine) repository. Finally, the proposed model is validated through an application in a complex ethylene production system of China petrochemical industry. Meanwhile, the optimization result and the prediction value are obtained to reduce energy consumption of the ethylene production system, guide ethylene production and improve energy efficiency. - Highlights: • The DEA-integrated ANN approach is proposed. • The DEA-ANN prediction model is effectively verified through the standard data source from the UCI repository. • The energy optimization and prediction framework of complex petrochemical industries based on the proposed method is obtained. • The proposed method is valid and efficient in improvement of energy efficiency in complex petrochemical plants. - Abstract: Since the complex petrochemical data have characteristics of multi-dimension, uncertainty and noise, it is difficult to accurately optimize and predict the energy usage of complex petrochemical systems. Therefore, this paper proposes a data envelopment analysis (DEA) integrated artificial neural network (ANN) approach (DEA-ANN). The proposed approach utilizes the DEA model with slack variables for sensitivity analysis to determine the effective decision making units (DMUs) and indicate the optimized direction of the ineffective DMUs. Compared with the traditional ANN approach, the DEA
Ahram, Tareq Z; Karwowski, Waldemar
2012-01-01
The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired.
Dynamic and interacting complex networks
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible
Computer Networks A Systems Approach
Peterson, Larry L
2011-01-01
This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur
Role models for complex networks
Reichardt, J.; White, D. R.
2007-11-01
We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.
Vulnerability of complex networks
Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco
2011-01-01
We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.
DEFF Research Database (Denmark)
Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja
2015-01-01
The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...
Köhler, Reinhard
2014-12-01
We have long been used to the domination of qualitative methods in modern linguistics. Indeed, qualitative methods have advantages such as ease of use and wide applicability to many types of linguistic phenomena. However, this shall not overshadow the fact that a great part of human language is amenable to quantification. Moreover, qualitative methods may lead to over-simplification by employing the rigid yes/no scale. When variability and vagueness of human language must be taken into account, qualitative methods will prove inadequate and give way to quantitative methods [1, p. 11]. In addition to such advantages as exactness and precision, quantitative concepts and methods make it possible to find laws of human language which are just like those in natural sciences. These laws are fundamental elements of linguistic theories in the spirit of the philosophy of science [2,3]. Theorization effort of this type is what quantitative linguistics [1,4,5] is devoted to. The review of Cong and Liu [6] has provided an informative and insightful survey of linguistic complex networks as a young field of quantitative linguistics, including the basic concepts and measures, the major lines of research with linguistic motivation, and suggestions for future research.
Multilevel Complex Networks and Systems
Caldarelli, Guido
2014-03-01
Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.
A framework to approach problems of forensic anthropology using complex networks
Caridi, Inés; Dorso, Claudio O.; Gallo, Pablo; Somigliana, Carlos
2011-05-01
We have developed a method to analyze and interpret emerging structures in a set of data which lacks some information. It has been conceived to be applied to the problem of getting information about people who disappeared in the Argentine state of Tucumán from 1974 to 1981. Even if the military dictatorship formally started in Argentina had begun in 1976 and lasted until 1983, the disappearance and assassination of people began some months earlier. During this period several circuits of Illegal Detention Centres (IDC) were set up in different locations all over the country. In these secret centres, disappeared people were illegally kept without any sort of constitutional guarantees, and later assassinated. Even today, the final destination of most of the disappeared people’s remains is still unknown. The fundamental hypothesis in this work is that a group of people with the same political affiliation whose disappearances were closely related in time and space shared the same place of captivity (the same IDC or circuit of IDCs). This hypothesis makes sense when applied to the systematic method of repression and disappearances which was actually launched in Tucumán, Argentina (2007) [11]. In this work, the missing individuals are identified as nodes on a network and connections are established among them based on the individuals’ attributes while they were alive, by using rules to link them. In order to determine which rules are the most effective in defining the network, we use other kind of knowledge available in this problem: previous results from the anthropological point of view (based on other sources of information, both oral and written, historical and anthropological data, etc.); and information about the place (one or more IDCs) where some people were kept during their captivity. For these best rules, a prediction about these people’s possible destination is assigned (one or more IDCs where they could have been kept), and the success of the
Persistent homology of complex networks
International Nuclear Information System (INIS)
Horak, Danijela; Maletić, Slobodan; Rajković, Milan
2009-01-01
Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis
Identifying the greatest team and captain—A complex network approach to cricket matches
Mukherjee, Satyam
2012-12-01
We consider all Test matches played between 1877 and 2010 and One Day International (ODI) matches played between 1971 and 2010. We form directed and weighted networks of teams and also of their captains. The success of a team (or captain) is determined by the ‘quality’ of the wins, not simply by the number of wins. We apply the diffusion-based PageRank algorithm to the networks to assess the importance of the wins, and rank the respective teams and captains. Our analysis identifies Australia as the best team in both forms of cricket, Test and ODI. Steve Waugh is identified as the best captain in Test cricket and Ricky Ponting is the best captain in the ODI format. We also compare our ranking scheme with an existing ranking scheme, the Reliance ICC ranking. Our method does not depend on ‘external’ criteria in the ranking of teams (captains). The purpose of this paper is to introduce a revised ranking of cricket teams and to quantify the success of the captains.
A Complex Network Approach for the Estimation of the Energy Demand of Electric Mobility.
Mureddu, Mario; Facchini, Angelo; Scala, Antonio; Caldarelli, Guido; Damiano, Alfonso
2018-01-10
We study how renewable energy impacts regional infrastructures considering the full deployment of electric mobility at that scale. We use the Sardinia Island in Italy as a paradigmatic case study of a semi-closed system both by energy and mobility point of view. Human mobility patterns are estimated by means of census data listing the mobility dynamics of about 700,000 vehicles, the energy demand is estimated by modeling the charging behavior of electric vehicle owners. Here we show that current renewable energy production of Sardinia is able to sustain the commuter mobility even in the theoretical case of a full switch from internal combustion vehicles to electric ones. Centrality measures from network theory on the reconstructed network of commuter trips allows to identify the most important areas (hubs) involved in regional mobility. The analysis of the expected energy flows reveals long-range effects on infrastructures outside metropolitan areas and points out that the most relevant unbalances are caused by spatial segregation between production and consumption areas. Finally, results suggest the adoption of planning actions supporting the installation of renewable energy plants in areas mostly involved by the commuting mobility, avoiding spatial segregation between consumption and generation areas.
Epidemic processes in complex networks
Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-07-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
Directory of Open Access Journals (Sweden)
Samreen Laghari
Full Text Available Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT implies an inherent difficulty in modeling problems.It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS. The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC framework to model a Complex communication network problem.We use Exploratory Agent-based Modeling (EABM, as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy.The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Laghari, Samreen; Niazi, Muaz A
2016-01-01
Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Evolutionary dynamics of complex communications networks
Karyotis, Vasileios; Papavassiliou, Symeon
2013-01-01
Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to
Vincenot, Christian E
2018-03-14
Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics
A generation-attraction model for renewable energy flows in Italy: A complex network approach
Valori, Luca; Giannuzzi, Giovanni Luca; Facchini, Angelo; Squartini, Tiziano; Garlaschelli, Diego; Basosi, Riccardo
2016-10-01
In recent years, in Italy, the trend of the electricity demand and the need to connect a large number of renewable energy power generators to the power-grid, developed a novel type of energy transmission/distribution infrastructure. The Italian Transmission System Operator (TSO) and the Distribution System Operator (DSO), worked on a new infrastructural model, based on electronic meters and information technology. In pursuing this objective it is crucial importance to understand how even more larger shares of renewable energy can be fully integrated, providing a constant and reliable energy background over space and time. This is particularly true for intermittent sources as photovoltaic installations due to the fine-grained distribution of them across the Country. In this work we use an over-simplified model to characterize the Italian power grid as a graph whose nodes are Italian municipalities and the edges cross the administrative boundaries between a selected municipality and its first neighbours, following a Delaunay triangulation. Our aim is to describe the power flow as a diffusion process over a network, and using open data on the solar irradiation at the ground level, we estimate the production of photovoltaic energy in each node. An attraction index was also defined using demographic data, in accordance with average per capita energy consumption data. The available energy on each node was calculated by finding the stationary state of a generation-attraction model.
Research on the co-movement between high-end talent and economic growth: A complex network approach
Zhang, Zhen; Wang, Minggang; Xu, Hua; Zhang, Wenbin; Tian, Lixin
2018-02-01
The major goal of this paper is to focus on the co-movement between high-end talent and economic growth by a complex network approach. Firstly, the national high-end talent development efficiency from 1990 to 2015 is taken as the quantitative index to measure the development of high-end talent. The added values of the primary industry, secondary industry, tertiary industry are selected as economic growth indexes, and all the selected sample data are standardized by the mean value processing method. Secondly, let seven months as the length of the sliding window, and one month as the sliding step, then the grey correlation degrees between systems are measured using the slope correlation degrees, and the grey correlation degree sequence is mapped into the symbol series composed by three symbols { Y , O , N } based on the coarse graining method. Let three characters as a mode, the nodes are obtained by the modes according to the time sequence. Let the transformation between the modal be the edge, and the times of the transformation be weight, then the co-movement networks between national high-end talent development efficiency and the added values of the primary industry, secondary industry, tertiary industry are built respectively. Finally, the dynamic characteristics of the networks are analysed by the node strength, strength distribution, weighted clustering coefficient, conversion cycle of the modes and the transition between the co-movement modes. The results indicate that there are mutual influence and promotion relations between the national high-end talent development efficiency and the added values of the primary, secondary and tertiary industry.
Border detection in complex networks
International Nuclear Information System (INIS)
Travencolo, Bruno A N; Viana, Matheus Palhares; Costa, Luciano da Fontoura
2009-01-01
One important issue implied by the finite nature of real-world networks regards the identification of their more external (border) and internal nodes. The present work proposes a formal and objective definition of these properties, founded on the recently introduced concept of node diversity. It is shown that this feature does not exhibit any relevant correlation with several well-established complex networks measurements. A methodology for the identification of the borders of complex networks is described and illustrated with respect to theoretical (geographical and knitted networks) as well as real-world networks (urban and word association networks), yielding interesting results and insights in both cases.
Jin, Huiyuan; Liu, Haitao
2016-01-01
Deaf or hard-of-hearing individuals usually face a greater challenge to learn to write than their normal-hearing counterparts. Due to the limitations of traditional research methods focusing on microscopic linguistic features, a holistic characterization of the writing linguistic features of these language users is lacking. This study attempts to fill this gap by adopting the methodology of linguistic complex networks. Two syntactic dependency networks are built in order to compare the macroscopic linguistic features of deaf or hard-of-hearing students and those of their normal-hearing peers. One is transformed from a treebank of writing produced by Chinese deaf or hard-of-hearing students, and the other from a treebank of writing produced by their Chinese normal-hearing counterparts. Two major findings are obtained through comparison of the statistical features of the two networks. On the one hand, both linguistic networks display small-world and scale-free network structures, but the network of the normal-hearing students' exhibits a more power-law-like degree distribution. Relevant network measures show significant differences between the two linguistic networks. On the other hand, deaf or hard-of-hearing students tend to have a lower language proficiency level in both syntactic and lexical aspects. The rigid use of function words and a lower vocabulary richness of the deaf or hard-of-hearing students may partially account for the observed differences.
Stabilizing weighted complex networks
International Nuclear Information System (INIS)
Xiang Linying; Chen Zengqiang; Liu Zhongxin; Chen Fei; Yuan Zhuzhi
2007-01-01
Real networks often consist of local units which interact with each other via asymmetric and heterogeneous connections. In this paper, the V-stability problem is investigated for a class of asymmetric weighted coupled networks with nonidentical node dynamics, which includes the unweighted network as a special case. Pinning control is suggested to stabilize such a coupled network. The complicated stabilization problem is reduced to measuring the semi-negative property of the characteristic matrix which embodies not only the network topology, but also the node self-dynamics and the control gains. It is found that network stabilizability depends critically on the second largest eigenvalue of the characteristic matrix. The smaller the second largest eigenvalue is, the more the network is pinning controllable. Numerical simulations of two representative networks composed of non-chaotic systems and chaotic systems, respectively, are shown for illustration and verification
Combined Heuristic Attack Strategy on Complex Networks
Directory of Open Access Journals (Sweden)
Marek Šimon
2017-01-01
Full Text Available Usually, the existence of a complex network is considered an advantage feature and efforts are made to increase its robustness against an attack. However, there exist also harmful and/or malicious networks, from social ones like spreading hoax, corruption, phishing, extremist ideology, and terrorist support up to computer networks spreading computer viruses or DDoS attack software or even biological networks of carriers or transport centers spreading disease among the population. New attack strategy can be therefore used against malicious networks, as well as in a worst-case scenario test for robustness of a useful network. A common measure of robustness of networks is their disintegration level after removal of a fraction of nodes. This robustness can be calculated as a ratio of the number of nodes of the greatest remaining network component against the number of nodes in the original network. Our paper presents a combination of heuristics optimized for an attack on a complex network to achieve its greatest disintegration. Nodes are deleted sequentially based on a heuristic criterion. Efficiency of classical attack approaches is compared to the proposed approach on Barabási-Albert, scale-free with tunable power-law exponent, and Erdős-Rényi models of complex networks and on real-world networks. Our attack strategy results in a faster disintegration, which is counterbalanced by its slightly increased computational demands.
Loppini, Alessandro
2018-03-01
Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.
Multifractal analysis of complex networks
International Nuclear Information System (INIS)
Wang Dan-Ling; Yu Zu-Guo; Anh V
2012-01-01
Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)
Bell Inequalities for Complex Networks
2015-10-26
AFRL-AFOSR-VA-TR-2015-0355 YIP Bell Inequalities for Complex Networks Greg Ver Steeg UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES Final Report 10/26...performance report PI: Greg Ver Steeg Young Investigator Award Grant Title: Bell Inequalities for Complex Networks Grant #: FA9550-12-1-0417 Reporting...October 20, 2015 Final Report for “Bell Inequalities for Complex Networks” Greg Ver Steeg Abstract This effort studied new methods to understand the effect
Epidemic processes in complex networks
Pastor Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro
2015-01-01
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The t...
Directory of Open Access Journals (Sweden)
Huiyuan Jin
2016-11-01
Full Text Available Deaf or hard-of-hearing individuals usually face a greater challenge to learn to write than their normal-hearing counterparts, because sign language is the primary communicative skills for many deaf people. The current body of research only covers the detailed linguistic features of deaf or hard-of-hearing students. Due to the limitations of traditional research methods focusing on microscopic linguistic features, a holistic characterization of the writing linguistic features of these language users is lacking. This study attempts to fill this gap by adopting the methodology of linguistic complex networks. Two syntactic dependency networks in order to compare the macroscopic linguistic features of deaf or hard-of-hearing students and those of their normal-hearing peers. One is transformed from a treebank of writing produced by Chinese deaf or hard-of-hearing students, and the other from a treebank of writing produced by their Chinese normal-hearing counterparts. Two major findings are obtained through comparison of the statistical features of the two networks. On the one hand, both linguistic networks display small-world and scale-free network structures, but the network of the normal-hearing students’ exhibits a more power-law-like degree distribution. Relevant network measures show significant differences between the two linguistic networks. On the other hand, deaf or hard-of-hearing students tend to have a lower language proficiency level in both syntactic and lexical aspects. The rigid use of function words and a lower vocabulary richness of the deaf or hard-of-hearing students may partially account for the observed differences.
Jamming in complex networks with degree correlation
International Nuclear Information System (INIS)
Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.
2010-01-01
We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.
Cut Based Method for Comparing Complex Networks.
Liu, Qun; Dong, Zhishan; Wang, En
2018-03-23
Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.
Zhang, Zhen; Wang, Minggang; Tian, Lixin; Zhang, Wenbin
2017-01-01
In this paper, based on the panel data of 31 provinces and cities in China from 1991 to 2016, the regional development efficiency matrix of high-end talent is obtained by DEA method, and the matrix is converted into a continuous change of complex networks through the construction of sliding window. Using a series of continuous changes in the complex network topology statistics, the characteristics of regional high-end talent development efficiency system are analyzed. And the results show that the average development efficiency of high-end talent in the western region is at a low level. After 2005, the national regional high-end talent development efficiency network has both short-range relevance and long-range relevance in the evolution process. The central region plays an important intermediary role in the national regional high-end talent development system. And the western region has high clustering characteristics. With the implementation of the high-end talent policies with regional characteristics by different provinces and cities, the relevance of high-end talent development efficiency in various provinces and cities presents a weakening trend, and the geographical characteristics of high-end talent are more and more obvious.
Language Networks as Complex Systems
Lee, Max Kueiming; Ou, Sheue-Jen
2008-01-01
Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…
Complex networks: Dynamics and security
Indian Academy of Sciences (India)
This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. ... Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA; Institute of Mathematics and Computer Science, University of Sao Paulo, Brazil ...
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
International Nuclear Information System (INIS)
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Wealth distribution on complex networks
Ichinomiya, Takashi
2012-12-01
We study the wealth distribution of the Bouchaud-Mézard model on complex networks. It is known from numerical simulations that this distribution depends on the topology of the network; however, no one has succeeded in explaining it. Using “adiabatic” and “independent” assumptions along with the central-limit theorem, we derive equations that determine the probability distribution function. The results are compared to those of simulations for various networks. We find good agreement between our theory and the simulations, except for the case of Watts-Strogatz networks with a low rewiring rate due to the breakdown of independent assumption.
Analysis of complex networks using aggressive abstraction.
Energy Technology Data Exchange (ETDEWEB)
Colbaugh, Richard; Glass, Kristin.; Willard, Gerald
2008-10-01
This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.
Attractors in complex networks
Rodrigues, Alexandre A. P.
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenbing [Department of Mathematics, Yangzhou University, Yangzhou 225002 (China); Wang, Zidong [Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH (United Kingdom); Liu, Yurong, E-mail: yrliu@yzu.edu.cn [Department of Mathematics, Yangzhou University, Yangzhou 225002 (China); Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ding, Derui [Shanghai Key Lab of Modern Optical System, Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Alsaadi, Fuad E. [Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2017-01-05
The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator. - Highlights: • An event-triggered estimator is designed for complex networks with time-varying delays. • A novel event generator function is proposed to reduce the communication burden. • The comparison principle is utilized to derive the sufficient conditions. • The designed triggering condition is shown to be free of the Zeno behavior.
Border trees of complex networks
International Nuclear Information System (INIS)
Villas Boas, Paulino R; Rodrigues, Francisco A; Travieso, Gonzalo; Fontoura Costa, Luciano da
2008-01-01
The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed
Measuring distances between complex networks
International Nuclear Information System (INIS)
Andrade, Roberto F.S.; Miranda, Jose G.V.; Pinho, Suani T.R.; Lobao, Thierry Petit
2008-01-01
A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobao, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks
Information communication on complex networks
International Nuclear Information System (INIS)
Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki
2013-01-01
Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.
Learning Latent Structure in Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai
such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...
Ranking in evolving complex networks
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
Measure of robustness for complex networks
Youssef, Mina Nabil
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect
Epidemic extinction paths in complex networks
Hindes, Jason; Schwartz, Ira B.
2017-05-01
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Composing Music with Complex Networks
Liu, Xiaofan; Tse, Chi K.; Small, Michael
In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.
Complex Networks in Psychological Models
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Modification Propagation in Complex Networks
Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador
To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.
Neuronal avalanches in complex networks
Directory of Open Access Journals (Sweden)
Victor Hernandez-Urbina
2016-12-01
Full Text Available Brain networks are neither regular nor random. Their structure allows for optimal information processing and transmission across the entire neural substrate of an organism. However, for topological features to be appropriately harnessed, brain networks should implement a dynamical regime which prevents phase-locked and chaotic behaviour. Critical neural dynamics refer to a dynamical regime in which the system is poised at the boundary between regularity and randomness. It has been reported that neural systems poised at this boundary achieve maximum computational power. In this paper, we review recent results regarding critical neural dynamics that emerge from systems whose underlying structure exhibits complex network properties.
Russo, Lucia; Russo, Paola; Siettos, Constantinos I
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
Directory of Open Access Journals (Sweden)
Lucia Russo
Full Text Available Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a an artificial forest of randomly distributed density of vegetation, and (b a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
Maximizing information exchange between complex networks
International Nuclear Information System (INIS)
West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo
2008-01-01
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain's response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of modern
Maximizing information exchange between complex networks
West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo
2008-10-01
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of
Maximizing information exchange between complex networks
Energy Technology Data Exchange (ETDEWEB)
West, Bruce J. [Mathematical and Information Science, Army Research Office, Research Triangle Park, NC 27708 (United States); Physics Department, Duke University, Durham, NC 27709 (United States)], E-mail: bwest@nc.rr.com; Geneston, Elvis L. [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Physics Department, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92515 (United States); Grigolini, Paolo [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Istituto di Processi Chimico Fisici del CNR, Area della Ricerca di Pisa, Via G. Moruzzi, 56124, Pisa (Italy); Dipartimento di Fisica ' E. Fermi' Universita' di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)
2008-10-15
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain's response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Review of Public Safety in Viewpoint of Complex Networks
International Nuclear Information System (INIS)
Gai Chengcheng; Weng Wenguo; Yuan Hongyong
2010-01-01
In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.
Oustimov, Andrew; Gastounioti, Aimilia; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina
2017-03-01
We assess the feasibility of a parenchymal texture feature fusion approach, utilizing a convolutional neural network (ConvNet) architecture, to benefit breast cancer risk assessment. Hypothesizing that by capturing sparse, subtle interactions between localized motifs present in two-dimensional texture feature maps derived from mammographic images, a multitude of texture feature descriptors can be optimally reduced to five meta-features capable of serving as a basis on which a linear classifier, such as logistic regression, can efficiently assess breast cancer risk. We combine this methodology with our previously validated lattice-based strategy for parenchymal texture analysis and we evaluate the feasibility of this approach in a case-control study with 424 digital mammograms. In a randomized split-sample setting, we optimize our framework in training/validation sets (N=300) and evaluate its descriminatory performance in an independent test set (N=124). The discriminatory capacity is assessed in terms of the the area under the curve (AUC) of the receiver operator characteristic (ROC). The resulting meta-features exhibited strong classification capability in the test dataset (AUC = 0.90), outperforming conventional, non-fused, texture analysis which previously resulted in an AUC=0.85 on the same case-control dataset. Our results suggest that informative interactions between localized motifs exist and can be extracted and summarized via a fairly simple ConvNet architecture.
A Transdiagnostic Network Approach to Psychosis
Wigman, Johanna T. W.; de Vos, Stijn; Wichers, Marieke; van Os, Jim; Bartels-Velthuis, Agna A.
Our ability to accurately predict development and outcome of early expression of psychosis is limited. To elucidate the mechanisms underlying psychopathology, a broader, transdiagnostic approach that acknowledges the complexity of mental illness is required. The upcoming network paradigm may be
Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling
2017-12-28
Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of
Markovian dynamics on complex reaction networks
Energy Technology Data Exchange (ETDEWEB)
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Markovian dynamics on complex reaction networks
International Nuclear Information System (INIS)
Goutsias, J.; Jenkinson, G.
2013-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples
Controlling centrality in complex networks
Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.
2012-01-01
Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732
The Kuramoto model in complex networks
Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen
2016-01-01
Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.
Size reduction of complex networks preserving modularity
Energy Technology Data Exchange (ETDEWEB)
Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.
2008-12-24
The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Chen, Xinying
2014-12-01
Researchers have been talking about the language system theoretically for many years [1]. A well accepted assumption is that language is a complex adaptive system [2] which is hierarchical [3] and contains multiple levels along the meaning-form dimension [4]. Over the last decade or so, driven by the availability of digital language data and the popularity of statistical approach, many researchers interested in theoretical questions have started to try to quantitatively describe microscopic linguistic features in a certain level of a language system by using authentic language data. Despite the fruitful findings, one question remains unclear. That is, how does a whole language system look like? For answering this question, network approach, an analysis method emphasizes the macro features of structures, has been introduced into linguistic studies [5]. By analyzing the static and dynamic linguistics networks constructed from authentic language data, many macro and micro linguistic features, such as lexical, syntactic or semantic features have been discovered and successfully applied in linguistic typographical studies so that the huge potential of linguistic networks research has revealed [6].
Energy Technology Data Exchange (ETDEWEB)
Bhaduri, Susmita; Bhaduri, Anirban; Ghosh, Dipak [Deepa Ghosh Research Foundation, Kolkata (India)
2017-06-15
In the endeavour to study fluctuation and a signature of phase transition in ultrarelativistic nuclear collision during the process of particle production, an approach based on chaos and complex network is proposed. In this work we have attempted an exhaustive study of pion fluctuation in η space, φ space, their cross-correlation and finally two-dimensional fluctuation in terms of scaling of void probability distribution. The analysis is done on the η values and their corresponding φ values extracted from the {sup 32}S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The methods used are Multifractal Detrended Cross-Correlation Analysis (MF-DXA) and a chaos-based rigorous complex network method -Visibility Graph. The analysis reveals that the highest degree of cross-correlation between pseudorapidity and azimuthal angles exists in the most central region of the interaction. The analysis further shows that two-dimensional void distribution corresponding to the η-φ space reveals a strong scaling behaviour. Both cross-correlation coefficients of MF-DXA and PSVG (Power of the Scale-freeness in Visibility Graph, which is implicitly connected with the Hurst exponent) can be effectively used for the quantitative assessment of pion fluctuation in a very precise manner and have the capability to assess the tendency of approaching criticality for phase transitions. (orig.)
NEXCADE: perturbation analysis for complex networks.
Directory of Open Access Journals (Sweden)
Gitanjali Yadav
Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.
Energy Technology Data Exchange (ETDEWEB)
Venghaus, Sandra
2011-07-01
Given the economic, ecological and social importance of automotive transportation, the development of alternative fueling and propulsion technologies requires a wise and sustainable political course of action. Not least the public debate on the impact of transport emissions on climate change and the call for limits to automotive CO-2-emissions reflect the relevance of the topic. In the search for innovative alternatives to the conventional gasoline or diesel propulsion technology, electromobility and hydrogen-based fuel cell vehicles constitute the two most widely discussed long-term options. The market introduction of fuel cell vehicles serves as an expedient example of a highly complex system innovation (CSI), which requires the cooperation of a variety of actors from formerly independent economic sectors in order to overcome the significant barriers to market entry. As will be discussed, such CSI can only be successfully implemented in an environment, within which the complexity-induced knowledge gap is reduced by a systematic exchange of information with respect to both the critical success factors identified by each of the involved stakeholders as well as their cooperation needs and expectations. Given this challenge, a framework is developed, which serves as the basis for a structured dialogue among the multiple stakeholders involved in the development process of a complex system innovation. The framework can thus best be classified as a corporate moderation and decision-support tool to achieve transparency in and impose structure on complex contexts. Methodically, the presented thesis addresses the development of a holistic approach to the management of complex system innovations from two perspectives: (1) a theoretical perspective of analyzing underlying structures and processes of CSI management (i.e., the CSI Management Framework), as well as (2) the development of a strategic approach for the practical implementation of CSI management in complex networks
Measurement methods on the complexity of network
Institute of Scientific and Technical Information of China (English)
LIN Lin; DING Gang; CHEN Guo-song
2010-01-01
Based on the size of network and the number of paths in the network,we proposed a model of topology complexity of a network to measure the topology complexity of the network.Based on the analyses of the effects of the number of the equipment,the types of equipment and the processing time of the node on the complexity of the network with the equipment-constrained,a complexity model of equipment-constrained network was constructed to measure the integrated complexity of the equipment-constrained network.The algorithms for the two models were also developed.An automatic generator of the random single label network was developed to test the models.The results show that the models can correctly evaluate the topology complexity and the integrated complexity of the networks.
Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity
Zhang, Jihui; Xu, Junqin
Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy
Directory of Open Access Journals (Sweden)
Mikołaj Morzy
2017-01-01
Full Text Available One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have several vulnerabilities. These measures neither are independent of a particular representation of the network nor can capture the properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the basis for complexity definition for networks. Algorithmic entropy (also known as Kolmogorov complexity or K-complexity for short evaluates the complexity of the description required for a lossless recreation of the network. This measure is not affected by a particular choice of network features and it does not depend on the method of network representation. We perform experiments on Shannon entropy and K-complexity for gradually evolving networks. The results of these experiments point to K-complexity as the more robust and reliable measure of network complexity. The original contribution of the paper includes the introduction of several new entropy-deceiving networks and the empirical comparison of entropy and K-complexity as fundamental quantities for constructing complexity measures for networks.
Physical approach to complex systems
Kwapień, Jarosław; Drożdż, Stanisław
2012-06-01
Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but
Mathematical Properties of Complex Networks
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available Many researchers are attempting to create systems which
mimic human thought, or understand speech, or beat to the best human chess-player [14]. Understanding intelligence and Creating intelligent artifacts both are the twin goals of Artificial Intelligence (AI.In more recent times, the interest is focused on problems related with Complex Networks [3, 5,6, 19], in particular on questions such as clustering search and identification. We attempt, in this paper, a panoramic vision of such mathematical methods in AI.
Structural Analysis of Complex Networks
Dehmer, Matthias
2011-01-01
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,
Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling
Liu, D.
2013-01-01
The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our
Complex network description of the ionosphere
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.
A new information dimension of complex networks
International Nuclear Information System (INIS)
Wei, Daijun; Wei, Bo; Hu, Yong; Zhang, Haixin; Deng, Yong
2014-01-01
Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.
A new information dimension of complex networks
Energy Technology Data Exchange (ETDEWEB)
Wei, Daijun [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Science, Hubei University for Nationalities, Enshi 445000 (China); Wei, Bo [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Hu, Yong [Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang, Haixin [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Engineering, Vanderbilt University, TN 37235 (United States)
2014-03-01
Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.
Critical Fluctuations in Spatial Complex Networks
Bradde, Serena; Caccioli, Fabio; Dall'Asta, Luca; Bianconi, Ginestra
2010-05-01
An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.
Robustness and structure of complex networks
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks
Complex Network Analysis of Guangzhou Metro
Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic
2015-01-01
The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...
Complexity Characteristics of Currency Networks
Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.
2006-11-01
A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.
Spatially Distributed Social Complex Networks
Directory of Open Access Journals (Sweden)
Gerald F. Frasco
2014-01-01
Full Text Available We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat’s law for the rates of city growth (by population size, in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008.]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Spatially Distributed Social Complex Networks
Frasco, Gerald F.; Sun, Jie; Rozenfeld, Hernán D.; ben-Avraham, Daniel
2014-01-01
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat's law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008).]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali
2015-02-01
Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.
Outer Synchronization of Complex Networks by Impulse
International Nuclear Information System (INIS)
Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu
2011-01-01
This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)
Traffic Dynamics on Complex Networks: A Survey
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.
Wireless Sensor Networks Approach
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
Directory of Open Access Journals (Sweden)
Paolo Martini
2013-11-01
Full Text Available Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.
Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling
International Nuclear Information System (INIS)
Wang Lifu; Kong Zhi; Jing Yuanwei
2010-01-01
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Computer networking a top-down approach
Kurose, James
2017-01-01
Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.
The complex network reliability and influential nodes
Li, Kai; He, Yongfeng
2017-08-01
In order to study the complex network node important degree and reliability, considering semi-local centrality, betweenness centrality and PageRank algorithm, through the simulation method to gradually remove nodes and recalculate the importance in the random network, small world network and scale-free network. Study the relationship between the largest connected component and node removed proportion, the research results show that betweenness centrality and PageRank algorithm based on the global information network are more effective for evaluating the importance of nodes, and the reliability of the network is related to the network topology.
Statistical and machine learning approaches for network analysis
Dehmer, Matthias
2012-01-01
Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation
Flowshop Scheduling Using a Network Approach | Oladeinde ...
African Journals Online (AJOL)
In this paper, a network based formulation of a permutation flow shop problem is presented. Two nuances of flow shop problems with different levels of complexity are solved using different approaches to the linear programming formulation. Key flow shop parameters inclosing makespan of the flow shop problems were ...
Synchronizability on complex networks via pinning control
Indian Academy of Sciences (India)
Keywords. Complex network; the pinning synchronization; synchronizability. ... The findings reveal the relationship between the decreasing speed of maximum eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability on complex networks via pinning control. We discuss the ...
Modelling the structure of complex networks
DEFF Research Database (Denmark)
Herlau, Tue
networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...
Synchronization in complex networks with adaptive coupling
International Nuclear Information System (INIS)
Zhang Rong; Hu Manfeng; Xu Zhenyuan
2007-01-01
Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies
Pinning impulsive control algorithms for complex network
International Nuclear Information System (INIS)
Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo
2014-01-01
In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms
Inferring topologies of complex networks with hidden variables.
Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing
2012-10-01
Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.
Contagion on complex networks with persuasion
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Characterizing time series: when Granger causality triggers complex networks
International Nuclear Information System (INIS)
Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen
2012-01-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)
Characterizing time series: when Granger causality triggers complex networks
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
7th Workshop on Complex Networks
Gonçalves, Bruno; Menezes, Ronaldo; Sinatra, Roberta
2016-01-01
The last decades have seen the emergence of Complex Networks as the language with which a wide range of complex phenomena in fields as diverse as Physics, Computer Science, and Medicine (to name just a few) can be properly described and understood. This book provides a view of the state of the art in this dynamic field and covers topics ranging from network controllability, social structure, online behavior, recommendation systems, and network structure. This book includes the peer-reviewed list of works presented at the 7th Workshop on Complex Networks CompleNet 2016 which was hosted by the Université de Bourgogne, France, from March 23-25, 2016. The 28 carefully reviewed and selected contributions in this book address many topics related to complex networks and have been organized in seven major groups: (1) Theory of Complex Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms for networks, (5) Community detection, (6) Dynamics and spreading phenomena on networks, (7) Applicat...
Imaging complex nutrient dynamics in mycelial networks.
Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L
2008-08-01
Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier
Competitive Dynamics on Complex Networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan
2014-07-01
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
Introduction to Focus Issue: Complex network perspectives on flow systems.
Donner, Reik V; Hernández-García, Emilio; Ser-Giacomi, Enrico
2017-03-01
During the last few years, complex network approaches have demonstrated their great potentials as versatile tools for exploring the structural as well as dynamical properties of dynamical systems from a variety of different fields. Among others, recent successful examples include (i) functional (correlation) network approaches to infer hidden statistical interrelationships between macroscopic regions of the human brain or the Earth's climate system, (ii) Lagrangian flow networks allowing to trace dynamically relevant fluid-flow structures in atmosphere, ocean or, more general, the phase space of complex systems, and (iii) time series networks unveiling fundamental organization principles of dynamical systems. In this spirit, complex network approaches have proven useful for data-driven learning of dynamical processes (like those acting within and between sub-components of the Earth's climate system) that are hidden to other analysis techniques. This Focus Issue presents a collection of contributions addressing the description of flows and associated transport processes from the network point of view and its relationship to other approaches which deal with fluid transport and mixing and/or use complex network techniques.
Bipartite quantum states and random complex networks
International Nuclear Information System (INIS)
Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo
2012-01-01
We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)
Blockmodeling techniques for complex networks
Ball, Brian Joseph
The class of network models known as stochastic blockmodels has recently been gaining popularity. In this dissertation, we present new work that uses blockmodels to answer questions about networks. We create a blockmodel based on the idea of link communities, which naturally gives rise to overlapping vertex communities. We derive a fast and accurate algorithm to fit the model to networks. This model can be related to another blockmodel, which allows the method to efficiently find nonoverlapping communities as well. We then create a heuristic based on the link community model whose use is to find the correct number of communities in a network. The heuristic is based on intuitive corrections to likelihood ratio tests. It does a good job finding the correct number of communities in both real networks and synthetic networks generated from the link communities model. Two commonly studied types of networks are citation networks, where research papers cite other papers, and coauthorship networks, where authors are connected if they've written a paper together. We study a multi-modal network from a large dataset of Physics publications that is the combination of the two, allowing for directed links between papers as citations, and an undirected edge between a scientist and a paper if they helped to write it. This allows for new insights on the relation between social interaction and scientific production. We also have the publication dates of papers, which lets us track our measures over time. Finally, we create a stochastic model for ranking vertices in a semi-directed network. The probability of connection between two vertices depends on the difference of their ranks. When this model is fit to high school friendship networks, the ranks appear to correspond with a measure of social status. Students have reciprocated and some unreciprocated edges with other students of closely similar rank that correspond to true friendship, and claim an aspirational friendship with a much
Towards an Information Theory of Complex Networks
Dehmer, Matthias; Mehler, Alexander
2011-01-01
For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoreti
Reconfigurable optical implementation of quantum complex networks
Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V.
2018-05-01
Network theory has played a dominant role in understanding the structure of complex systems and their dynamics. Recently, quantum complex networks, i.e. collections of quantum systems arranged in a non-regular topology, have been theoretically explored leading to significant progress in a multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum communication, extreme violation of local realism, and quantum gravity theories. Despite important progress in several quantum platforms, the implementation of complex networks with arbitrary topology in quantum experiments is still a demanding task, especially if we require both a significant size of the network and the capability of generating arbitrary topology—from regular to any kind of non-trivial structure—in a single setup. Here we propose an all optical and reconfigurable implementation of quantum complex networks. The experimental proposal is based on optical frequency combs, parametric processes, pulse shaping and multimode measurements allowing the arbitrary control of the number of the nodes (optical modes) and topology of the links (interactions between the modes) within the network. Moreover, we also show how to simulate quantum dynamics within the network combined with the ability to address its individual nodes. To demonstrate the versatility of these features, we discuss the implementation of two recently proposed probing techniques for quantum complex networks and structured environments.
Regularization and Complexity Control in Feed-forward Networks
Bishop, C. M.
1995-01-01
In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.
Structural constraints in complex networks
International Nuclear Information System (INIS)
Zhou, S; Mondragon, R J
2007-01-01
We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich-club connectivity are preserved. We consider three real networks, the autonomous system (AS)-Internet, protein interaction and scientific collaboration. We show that for a given degree distribution, the rich-club connectivity is sensitive to the degree-degree correlation, and on the other hand the degree-degree correlation is constrained by the rich-club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich-club structure completely; while fixing the degree distribution and the rich-club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich-club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich-club connectivity in real networks
Modelling, Estimation and Control of Networked Complex Systems
Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro
2009-01-01
The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...
High-resolution method for evolving complex interface networks
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Synchronization in complex networks with switching topology
International Nuclear Information System (INIS)
Wang, Lei; Wang, Qing-guo
2011-01-01
This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.
Physics of flow in weighted complex networks
Wu, Zhenhua
This thesis uses concepts from statistical physics to understand the physics of flow in weighted complex networks. The traditional model for random networks is the Erdoḧs-Renyi (ER.) network, where a network of N nodes is created by connecting each of the N(N - 1)/2 pairs of nodes with a probability p. The degree distribution, which is the probability distribution of the number of links per node, is a Poisson distribution. Recent studies of the topology in many networks such as the Internet and the world-wide airport network (WAN) reveal a power law degree distribution, known as a scale-free (SF) distribution. To yield a better description of network dynamics, we study weighted networks, where each link or node is given a number. One asks how the weights affect the static and the dynamic properties of the network. In this thesis, two important dynamic problems are studied: the current flow problem, described by Kirchhoff's laws, and the maximum flow problem, which maximizes the flow between two nodes. Percolation theory is applied to these studies of the dynamics in complex networks. We find that the current flow in disordered media belongs to the same universality class as the optimal path. In a randomly weighted network, we identify the infinite incipient percolation cluster as the "superhighway", which contains most of the traffic in a network. We propose an efficient strategy to improve significantly the global transport by improving the superhighways, which comprise a small fraction of the network. We also propose a network model with correlated weights to describe weighted networks such as the WAN. Our model agrees with WAN data, and provides insight into the advantages of correlated weights in networks. Lastly, the upper critical dimension is evaluated using two different numerical methods, and the result is consistent with the theoretical prediction.
Complex networks principles, methods and applications
Latora, Vito; Russo, Giovanni
2017-01-01
Networks constitute the backbone of complex systems, from the human brain to computer communications, transport infrastructures to online social systems and metabolic reactions to financial markets. Characterising their structure improves our understanding of the physical, biological, economic and social phenomena that shape our world. Rigorous and thorough, this textbook presents a detailed overview of the new theory and methods of network science. Covering algorithms for graph exploration, node ranking and network generation, among the others, the book allows students to experiment with network models and real-world data sets, providing them with a deep understanding of the basics of network theory and its practical applications. Systems of growing complexity are examined in detail, challenging students to increase their level of skill. An engaging presentation of the important principles of network science makes this the perfect reference for researchers and undergraduate and graduate students in physics, ...
Stability analysis of impulsive parabolic complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)
2011-11-15
Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Stability analysis of impulsive parabolic complex networks
International Nuclear Information System (INIS)
Wang Jinliang; Wu Huaining
2011-01-01
Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Epidemics spreading in interconnected complex networks
International Nuclear Information System (INIS)
Wang, Y.; Xiao, G.
2012-01-01
We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.
Epidemics spreading in interconnected complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2012-09-03
We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.
Enabling Controlling Complex Networks with Local Topological Information.
Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene
2018-03-15
Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.
Attack robustness and centrality of complex networks.
Directory of Open Access Journals (Sweden)
Swami Iyer
Full Text Available Many complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks.
8th Conference on Complex Networks
Menezes, Ronaldo; Sinatra, Roberta; Zlatic, Vinko
2017-01-01
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommend...
Weighted Complex Network Analysis of Pakistan Highways
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2013-01-01
Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.
Mathematical modelling of complex contagion on clustered networks
O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James
2015-09-01
The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.
Mathematical modelling of complex contagion on clustered networks
Directory of Open Access Journals (Sweden)
David J. P. O'Sullivan
2015-09-01
Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.
Predicting and Controlling Complex Networks
2015-06-22
ubiquitous in nature and fundamental to evolution in ecosystems. However, a significant chal- lenge remains in understanding biodiversity since, by the...networks and control . . . . . . . . . . . . . . . . . . . 7 3.4 Pattern formation, synchronization and outbreak of biodiversity in cyclically...Ni, Y.-C. Lai, and C. Grebogi, “Pattern formation, synchronization and outbreak of biodiversity in cyclically competing games,” Physical Review E 83
Controlling extreme events on complex networks
Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng
2014-08-01
Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.
A Network Coding Approach to Loss Tomography
DEFF Research Database (Denmark)
Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina
2013-01-01
network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency......, and the complexity of probe path selection. We discuss the cases of inferring the loss rates of links in a tree topology or in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques but we also face novel challenges, such as dealing with cycles...
Computational Modeling of Complex Protein Activity Networks
Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude
2017-01-01
Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a
Visualization and Analysis of Complex Covert Networks
DEFF Research Database (Denmark)
Memon, Bisharat
systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....
The physics of communicability in complex networks
International Nuclear Information System (INIS)
Estrada, Ernesto; Hatano, Naomichi; Benzi, Michele
2012-01-01
A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.
Overlapping community detection in weighted networks via a Bayesian approach
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
An adaptive routing strategy for packet delivery in complex networks
International Nuclear Information System (INIS)
Zhang, Huan; Liu, Zonghua; Tang, Ming; Hui, P.M.
2007-01-01
We present an efficient routing approach for delivering packets in complex networks. On delivering a message from a node to a destination, a node forwards the message to a neighbor by estimating the waiting time along the shortest path from each of its neighbors to the destination. This projected waiting time is dynamical in nature and the path through which a message is delivered would be adapted to the distribution of messages in the network. Implementing the approach on scale-free networks, we show that the present approach performs better than the shortest-path approach and another approach that takes into account of the waiting time only at the neighboring nodes. Key features in numerical results are explained by a mean field theory. The approach has the merit that messages are distributed among the nodes according to the capabilities of the nodes in handling messages
Low Computational Complexity Network Coding For Mobile Networks
DEFF Research Database (Denmark)
Heide, Janus
2012-01-01
Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...
Self-organized topology of recurrence-based complex networks
International Nuclear Information System (INIS)
Yang, Hui; Liu, Gang
2013-01-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks
Hazard tolerance of spatially distributed complex networks
International Nuclear Information System (INIS)
Dunn, Sarah; Wilkinson, Sean
2017-01-01
In this paper, we present a new methodology for quantifying the reliability of complex systems, using techniques from network graph theory. In recent years, network theory has been applied to many areas of research and has allowed us to gain insight into the behaviour of real systems that would otherwise be difficult or impossible to analyse, for example increasingly complex infrastructure systems. Although this work has made great advances in understanding complex systems, the vast majority of these studies only consider a systems topological reliability and largely ignore their spatial component. It has been shown that the omission of this spatial component can have potentially devastating consequences. In this paper, we propose a number of algorithms for generating a range of synthetic spatial networks with different topological and spatial characteristics and identify real-world networks that share the same characteristics. We assess the influence of nodal location and the spatial distribution of highly connected nodes on hazard tolerance by comparing our generic networks to benchmark networks. We discuss the relevance of these findings for real world networks and show that the combination of topological and spatial configurations renders many real world networks vulnerable to certain spatial hazards. - Highlights: • We develop a method for quantifying the reliability of real-world systems. • We assess the spatial resilience of synthetic spatially distributed networks. • We form algorithms to generate spatial scale-free and exponential networks. • We show how these “synthetic” networks are proxies for real world systems. • Conclude that many real world systems are vulnerable to spatially coherent hazard.
Information processing in complex networks
Quax, R.
2013-01-01
Eerste resultaten van onderzoek van Rick Quax suggereren dat een combinatie van informatietheorie, netwerktheorie en statistische mechanica kan leiden tot een veelbelovende theorie om het gedrag van complexe netwerken te voorspellen. Er bestaat nog weinig theorie over het gedrag van dynamische eenheden die verbonden zijn in een netwerk, zoals neuronen in een breinnetwerk of genen in een gen-regulatienetwerk. Quax combineert informatietheorie, netwerktheorie, en statistische onderzoeken en mec...
Complex Network Analysis of Guangzhou Metro
Directory of Open Access Journals (Sweden)
Yasir Tariq Mohmand
2015-11-01
Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.
Cascade-based attacks on complex networks
Motter, Adilson E.; Lai, Ying-Cheng
2002-12-01
We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.
Mapping stochastic processes onto complex networks
International Nuclear Information System (INIS)
Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad
2009-01-01
We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks
Aging in complex interdependency networks.
Vural, Dervis C; Morrison, Greg; Mahadevan, L
2014-02-01
Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size distributions of disease and death and see that they have qualitatively different properties. We show that aging patterns are independent of the details of interdependence network structure, which suggests that aging is a many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the details of dependency structure or its formation.
Pinning impulsive control algorithms for complex network
Energy Technology Data Exchange (ETDEWEB)
Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)
2014-03-15
In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.
Inferring network topology from complex dynamics
International Nuclear Information System (INIS)
Shandilya, Srinivas Gorur; Timme, Marc
2011-01-01
Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.
Bribery games on interdependent complex networks.
Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim
2018-08-07
Bribe demands present a social conflict scenario where decisions have wide-ranging economic and ethical consequences. Nevertheless, such incidents occur daily in many countries across the globe. Harassment bribery constitute a significant sub-set of such bribery incidents where a government official demands a bribe for providing a service to a citizen legally entitled to it. We employ an evolutionary game-theoretic framework to analyse the evolution of corrupt and honest strategies in structured populations characterized by an interdependent complex network. The effects of changing network topology, average number of links and asymmetry in size of the citizen and officer population on the proliferation of incidents of bribery are explored. A complex network topology is found to be beneficial for the dominance of corrupt strategies over a larger region of phase space when compared with the outcome for a regular network, for equal citizen and officer population sizes. However, the extent of the advantage depends critically on the network degree and topology. A different trend is observed when there is a difference between the citizen and officer population sizes. Under those circumstances, increasing randomness of the underlying citizen network can be beneficial to the fixation of honest officers up to a certain value of the network degree. Our analysis reveals how the interplay between network topology, connectivity and strategy update rules can affect population level outcomes in such asymmetric games. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamics of functional failures and recovery in complex road networks
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Two statistical mechanics aspects of complex networks
Thurner, Stefan; Biely, Christoly
2006-12-01
By adopting an ensemble interpretation of non-growing rewiring networks, network theory can be reduced to a counting problem of possible network states and an identification of their associated probabilities. We present two scenarios of how different rewirement schemes can be used to control the state probabilities of the system. In particular, we review how by generalizing the linking rules of random graphs, in combination with superstatistics and quantum mechanical concepts, one can establish an exact relation between the degree distribution of any given network and the nodes’ linking probability distributions. In a second approach, we control state probabilities by a network Hamiltonian, whose characteristics are motivated by biological and socio-economical statistical systems. We demonstrate that a thermodynamics of networks becomes a fully consistent concept, allowing to study e.g. ‘phase transitions’ and computing entropies through thermodynamic relations.
Intentional risk management through complex networks analysis
Chapela, Victor; Moral, Santiago; Romance, Miguel
2015-01-01
This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution, the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...
Optimal search strategies on complex networks
Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco
2014-01-01
Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanism...
Chaotification of complex networks with impulsive control.
Guan, Zhi-Hong; Liu, Feng; Li, Juan; Wang, Yan-Wu
2012-06-01
This paper investigates the chaotification problem of complex dynamical networks (CDN) with impulsive control. Both the discrete and continuous cases are studied. The method is presented to drive all states of every node in CDN to chaos. The proposed impulsive control strategy is effective for both the originally stable and unstable CDN. The upper bound of the impulse intervals for originally stable networks is derived. Finally, the effectiveness of the theoretical results is verified by numerical examples.
Identifying modular relations in complex brain networks
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig
2012-01-01
We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure...
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
Studies on a network of complex neurons
Chakravarthy, Srinivasa V.; Ghosh, Joydeep
1993-09-01
In the last decade, much effort has been directed towards understanding the role of chaos in the brain. Work with rabbits reveals that in the resting state the electrical activity on the surface of the olfactory bulb is chaotic. But, when the animal is involved in a recognition task, the activity shifts to a specific pattern corresponding to the odor that is being recognized. Unstable, quasiperiodic behavior can be found in a class of conservative, deterministic physical systems called the Hamiltonian systems. In this paper, we formulate a complex version of Hopfield's network of real parameters and show that a variation on this model is a conservative system. Conditions under which the complex network can be used as a Content Addressable memory are studied. We also examine the effect of singularities of the complex sigmoid function on the network dynamics. The network exhibits unpredictable behavior at the singularities due to the failure of a uniqueness condition for the solution of the dynamic equations. On incorporating a weight adaptation rule, the structure of the resulting complex network equations is shown to have an interesting similarity with Kosko's Adaptive Bidirectional Associative Memory.
Characterizing English Poetic Style Using Complex Networks
Roxas-Villanueva, Ranzivelle Marianne; Nambatac, Maelori Krista; Tapang, Giovanni
Complex networks have been proven useful in characterizing written texts. Here, we use networks to probe if there exist a similarity within, and difference across, era as reflected within the poem's structure. In literary history, boundary lines are set to distinguish the change in writing styles through time. We obtain the network parameters and motif frequencies of 845 poems published from 1522 to 1931 and relate this to the writing of the Elizabethan, 17th Century, Augustan, Romantic and Victorian eras. Analysis of the different network parameters shows a significant difference of the Augustan era (1667-1780) with the rest. The network parameters and the convex hull and centroids of the motif frequencies reflect the adjectival sequence pattern of the poems of the Augustan era.
Competitive cluster growth in complex networks.
Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S
2006-06-01
In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.
Bose-Einstein Condensation in Complex Networks
International Nuclear Information System (INIS)
Bianconi, Ginestra; Barabasi, Albert-Laszlo
2001-01-01
The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the 'first-mover-advantage,' 'fit-get-rich,' and 'winner-takes-all' phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks
Spatial price dynamics: From complex network perspective
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
An improved sampling method of complex network
Gao, Qi; Ding, Xintong; Pan, Feng; Li, Weixing
2014-12-01
Sampling subnet is an important topic of complex network research. Sampling methods influence the structure and characteristics of subnet. Random multiple snowball with Cohen (RMSC) process sampling which combines the advantages of random sampling and snowball sampling is proposed in this paper. It has the ability to explore global information and discover the local structure at the same time. The experiments indicate that this novel sampling method could keep the similarity between sampling subnet and original network on degree distribution, connectivity rate and average shortest path. This method is applicable to the situation where the prior knowledge about degree distribution of original network is not sufficient.
Defining nodes in complex brain networks
Directory of Open Access Journals (Sweden)
Matthew Lawrence Stanley
2013-11-01
Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that
Networks of networks the last frontier of complexity
Scala, Antonio
2014-01-01
The present work is meant as a reference to provide an organic and comprehensive view of the most relevant results in the exciting new field of Networks of Networks (NetoNets). Seminal papers have recently been published posing the basis to study what happens when different networks interact, thus providing evidence for the emergence of new, unexpected behaviors and vulnerabilities. From those seminal works, the awareness on the importance understanding Networks of Networks (NetoNets) has spread to the entire community of Complexity Science. The reader will benefit from the experience of some of the most well-recognized leaders in this field. The contents have been aggregated under four headings; General Theory, Phenomenology, Applications and Risk Assessment. The reader will be impressed by the different applications of the general paradigm that span from physiology, to financial risk, to transports. We are currently making the first steps to reduce the distance between the language and the way of thinking o...
Atomic switch networks as complex adaptive systems
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
Community detection in complex networks using proximate support vector clustering
Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing
2018-03-01
Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.
Formulation and applications of complex network theory
Park, Juyong
algorithms with those officially used in college football's postseason proceedings, highlighting their simliarities and differences. These studies will show that the methods of statistical physics are well-suited for studying networks. As networks of interest become larger and more complex, they will become more relevant and necessary.
Energy Technology Data Exchange (ETDEWEB)
Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)
2009-12-28
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
International Nuclear Information System (INIS)
Xu Yuhua; Zhou Wuneng; Fang Jian'an; Lu Hongqian
2009-01-01
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.
Network Approach in Political Communication Studies
Directory of Open Access Journals (Sweden)
Нина Васильевна Опанасенко
2013-12-01
Full Text Available The article is devoted to issues of network approach application in political communication studies. The author considers communication in online and offline areas and gives the definition of rhizome, its characteristics, identifies links between rhizome and network approach. The author also analyses conditions and possibilities of the network approach in modern political communication. Both positive and negative features of the network approach are emphasized.
The complex network of musical tastes
Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.
2007-06-01
We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.
Energy Complexity of Recurrent Neural Networks
Czech Academy of Sciences Publication Activity Database
Šíma, Jiří
2014-01-01
Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014
Complex networks from multivariate time series
Czech Academy of Sciences Publication Activity Database
Paluš, Milan; Hartman, David; Vejmelka, Martin
2010-01-01
Roč. 12, - (2010), A-14382 ISSN 1607-7962. [General Asembly of the European Geophysical Society. 02.05.2010-07.05.2010, Vienna] R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex network * surface air temperature * reanalysis data * global change Subject RIV: BB - Applied Statistics, Operational Research
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Synchronization coupled systems to complex networks
Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas
2018-01-01
A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...
Average contraction and synchronization of complex switched networks
International Nuclear Information System (INIS)
Wang Lei; Wang Qingguo
2012-01-01
This paper introduces an average contraction analysis for nonlinear switched systems and applies it to investigating the synchronization of complex networks of coupled systems with switching topology. For a general nonlinear system with a time-dependent switching law, a basic convergence result is presented according to average contraction analysis, and a special case where trajectories of a distributed switched system converge to a linear subspace is then investigated. Synchronization is viewed as the special case with all trajectories approaching the synchronization manifold, and is thus studied for complex networks of coupled oscillators with switching topology. It is shown that the synchronization of a complex switched network can be evaluated by the dynamics of an isolated node, the coupling strength and the time average of the smallest eigenvalue associated with the Laplacians of switching topology and the coupling fashion. Finally, numerical simulations illustrate the effectiveness of the proposed methods. (paper)
Queueing networks a fundamental approach
Dijk, Nico
2011-01-01
This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...
6th Workshop on Complex Networks
Simini, Filippo; Uzzo, Stephen; Wang, Dashun
2015-01-01
Elucidating the spatial and temporal dynamics of how things connect has become one of the most important areas of research in the 21st century. Network science now pervades nearly every science domain, resulting in new discoveries in a host of dynamic social and natural systems, including: how neurons connect and communicate in the brain, how information percolates within and among social networks, the evolution of science research through co-authorship networks, the spread of epidemics, and many other complex phenomena. Over the past decade, advances in computational power have put the tools of network analysis in the hands of increasing numbers of scientists, enabling more explorations of our world than ever before possible. Information science, social sciences, systems biology, ecosystems ecology, neuroscience and physics all benefit from this movement, which combines graph theory with data sciences to develop and validate theories about the world around us. This book brings together cutting-edge research ...
A network approach to orthodontic diagnosis.
Auconi, P; Caldarelli, G; Scala, A; Ierardo, G; Polimeni, A
2011-11-01
Network analysis, a recent advancement in complexity science, enables understanding of the properties of complex biological processes characterized by the interaction, adaptive regulation, and coordination of a large number of participating components. We applied network analysis to orthodontics to detect and visualize the most interconnected clinical, radiographic, and functional data pertaining to the orofacial system. The sample consisted of 104 individuals from 7 to 13 years of age in the mixed dentition phase without previous orthodontic intervention. The subjects were divided according to skeletal class; their clinical, radiographic, and functional features were represented as vertices (nodes) and links (edges) connecting them. Class II subjects exhibited few highly connected orthodontic features (hubs), while Class III patients showed a more compact network structure characterized by strong co-occurrence of normal and abnormal clinical, functional, and radiological features. Restricting our analysis to the highest correlations, we identified critical peculiarities of Class II and Class III malocclusions. The topology of the dentofacial system obtained by network analysis could allow orthodontists to visually evaluate and anticipate the co-occurrence of auxological anomalies during individual craniofacial growth and possibly localize reactive sites for a therapeutic approach to malocclusion. © 2011 John Wiley & Sons A/S.
Self-similarity and scaling theory of complex networks
Song, Chaoming
Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.
Synchronization in complex networks with a modular structure.
Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won
2006-03-01
Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.
Factors determining nestedness in complex networks.
Directory of Open Access Journals (Sweden)
Samuel Jonhson
Full Text Available Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity. We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted - as a second factor - we find that nestedness is strongly correlated with disassortativity and hence - as random networks have been recently found to be naturally disassortative - they also tend to be naturally nested just as the result of chance.
On the origins of hierarchy in complex networks
Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos
2013-01-01
Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177
Protein complex prediction in large ontology attributed protein-protein interaction networks.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo
2013-01-01
Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.
Data reliability in complex directed networks
Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir
2013-12-01
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way.
Data reliability in complex directed networks
International Nuclear Information System (INIS)
Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir
2013-01-01
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way. (paper)
How complex a dynamical network can be?
International Nuclear Information System (INIS)
Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.
2011-01-01
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.
Coupled disease-behavior dynamics on complex networks: A review
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
International Nuclear Information System (INIS)
Li, Lixiang; Li, Weiwei; Kurths, Jürgen; Luo, Qun; Yang, Yixian; Li, Shudong
2015-01-01
For the reason that the uncertain complex dynamic network with multi-link is quite close to various practical networks, there is superiority in the fields of research and application. In this paper, we focus upon pinning adaptive synchronization for uncertain complex dynamic networks with multi-link against network deterioration. The pinning approach can be applied to adapt uncertain coupling factors of deteriorated networks which can compensate effects of uncertainty. Several new synchronization criterions for networks with multi-link are derived, which ensure the synchronized states to be local or global stable with uncertainty and deterioration. Results of simulation are shown to demonstrate the feasibility and usefulness of our method
COMPLEX NETWORKS IN CLIMATE SCIENCE: PROGRESS, OPPORTUNITIES AND CHALLENGES
National Aeronautics and Space Administration — COMPLEX NETWORKS IN CLIMATE SCIENCE: PROGRESS, OPPORTUNITIES AND CHALLENGES KARSTEN STEINHAEUSER, NITESH V. CHAWLA, AND AUROOP R. GANGULY Abstract. Networks have...
Current approaches to gene regulatory network modelling
Directory of Open Access Journals (Sweden)
Brazma Alvis
2007-09-01
Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-01-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-10-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks.
Analysis of remote synchronization in complex networks
Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia
2013-12-01
A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.
Different Epidemic Models on Complex Networks
International Nuclear Information System (INIS)
Zhang Haifeng; Small, Michael; Fu Xinchu
2009-01-01
Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.
The topology and dynamics of complex networks
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
Cascade of links in complex networks
Energy Technology Data Exchange (ETDEWEB)
Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)
2017-01-30
Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.
Cascade of links in complex networks
International Nuclear Information System (INIS)
Feng, Yeqian; Sun, Bihui; Zeng, An
2017-01-01
Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.
Complex growing networks with intrinsic vertex fitness
International Nuclear Information System (INIS)
Bedogne, C.; Rodgers, G. J.
2006-01-01
One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution ρ(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined
Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis
Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.
We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.
Emergent explosive synchronization in adaptive complex networks
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Characterization of subgraph relationships and distribution in complex networks
International Nuclear Information System (INIS)
Antiqueira, Lucas; Fontoura Costa, Luciano da
2009-01-01
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory
Directory of Open Access Journals (Sweden)
Nai-Ru Xu
2016-01-01
Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.
Information mining in weighted complex networks with nonlinear rating projection
Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong
2017-10-01
Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.
Module detection in complex networks using integer optimisation
Directory of Open Access Journals (Sweden)
Tsoka Sophia
2010-11-01
Full Text Available Abstract Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations. Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.
NITRD LSN Workshop Report on Complex Engineered Networks
Networking and Information Technology Research and Development, Executive Office of the President — Complex engineered networks are everywhere: power grids, Internet, transportation networks, and more. They are being used more than ever before, and yet our...
Synchronization in node of complex networks consist of complex chaotic system
Energy Technology Data Exchange (ETDEWEB)
Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Analysis of complex systems using neural networks
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Spreading to localized targets in complex networks
Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu
2016-12-01
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Complex network analysis of state spaces for random Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)
2008-01-15
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.
Complex network analysis of state spaces for random Boolean networks
International Nuclear Information System (INIS)
Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya
2008-01-01
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two
The Ultimatum Game in complex networks
International Nuclear Information System (INIS)
Sinatra, R; Gómez-Gardeñes, J; Latora, V; Iranzo, J; Floría, L M; Moreno, Y
2009-01-01
We address the problem of how cooperative (altruistic-like) behavior arises in natural and social systems by analyzing an Ultimatum Game in complex networks. Specifically, players of three types are considered: (a) empathetic, whose aspiration levels, and offers, are equal, (b) pragmatic, who do not distinguish between the different roles and aim to obtain the same benefit, and (c) agents whose aspiration levels, and offers, are independent. We analyze the asymptotic behavior of pure populations with different topologies using two kinds of strategic update rules: natural selection, which relies on replicator dynamics, and social penalty, inspired by the Bak–Sneppen dynamics, in which players are subject to a social selection rule penalizing not only the less fit individuals, but also their first neighbors. We discuss the emergence of fairness in the different settings and network topologies
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Complex quantum network geometries: Evolution and phase transitions
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
A network approach to leadership
DEFF Research Database (Denmark)
Lewis, Jenny; Ricard, Lykke Margot
Leaders’ ego-networks within an organization are pivotal as focal points that point to other organizational factors such as innovation capacity and leadership effectiveness. The aim of the paper is to provide a framework for exploring leaders’ ego-networks within the boundary of an organization. We...... a survey of senior administrators and politicians from Copenhagen municipality, we examine strategic information networks. Whole network analysis is used first to identify important individuals on the basis of centrality measures. The ego-networks of these individuals are then analysed to examine...
Considerations for Software Defined Networking (SDN): Approaches and use cases
Bakshi, K.
Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.
A network dynamics approach to chemical reaction networks
van der Schaft, Abraham; Rao, S.; Jayawardhana, B.
2016-01-01
A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a
Relaxation of synchronization on complex networks.
Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk
2008-07-01
We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.
Traffic of indistinguishable particles in complex networks
International Nuclear Information System (INIS)
Qing-Kuan, Meng; Jian-Yang, Zhu
2009-01-01
In this paper, we apply a simple walk mechanism to the study of the traffic of many indistinguishable particles in complex networks. The network with particles stands for a particle system, and every vertex in the network stands for a quantum state with the corresponding energy determined by the vertex degree. Although the particles are indistinguishable, the quantum states can be distinguished. When the many indistinguishable particles walk randomly in the system for a long enough time and the system reaches dynamic equilibrium, we find that under different restrictive conditions the particle distributions satisfy different forms, including the Bose–Einstein distribution, the Fermi–Dirac distribution and the non-Fermi distribution (as we temporarily call it). As for the Bose–Einstein distribution, we find that only if the particle density is larger than zero, with increasing particle density, do more and more particles condense in the lowest energy level. While the particle density is very low, the particle distribution transforms from the quantum statistical form to the classically statistical form, i.e., transforms from the Bose distribution or the Fermi distribution to the Boltzmann distribution. The numerical results fit well with the analytical predictions
Consensus and Synchronization in Complex Networks
2013-01-01
Synchronization in complex networks is one of the most captivating cooperative phenomena in nature and has been shown to be of fundamental importance in such varied circumstances as the continued existence of species, the functioning of heart pacemaker cells, epileptic seizures, neuronal firing in the feline visual cortex and cognitive tasks in humans. E.g. coupled visual and acoustic interactions make fireflies flash, crickets chirp, and an audience clap in unison. On the other hand, in distributed systems and networks, it is often necessary for some or all of the nodes to calculate some function of certain parameters, e.g. sink nodes in sensor networks being tasked with calculating the average measurement value of all the sensors or multi-agent systems in which all agents are required to coordinate their speed and direction. When all nodes calculate the same function of the initial values in the system, they are said to reach consensus. Such concepts - sometimes also called state agreement, rendezvous, and ...
Leaderless Covert Networks : A Quantitative Approach
Husslage, B.G.M.; Lindelauf, R.; Hamers, H.J.M.
2012-01-01
Abstract: Lindelauf et al. (2009a) introduced a quantitative approach to investigate optimal structures of covert networks. This approach used an objective function which is based on the secrecy versus information trade-off these organizations face. Sageman (2008) hypothesized that covert networks
The game of go as a complex network
Georgeot, Bertrand; Giraud, Olivier; Kandiah, Vivek
2014-03-01
We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective. We have defined a proper categorization of moves taking into account the local environment, and shown that in this case Zipf's law emerges from data taken from real games. The network shows differences between professional and amateur games, different level of amateurs, or different phases of the game. Certain eigenvectors are localized on specific groups of moves which correspond to different strategies (communities of moves). The point of view developed should allow to better modelize such games and could also help to design simulators which could in the future beat good human players. Our approach could be used for other types of games, and in parallel shed light on the human decision making process.
On system behaviour using complex networks of a compression algorithm
Walker, David M.; Correa, Debora C.; Small, Michael
2018-01-01
We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.
Complex network synchronization of chaotic systems with delay coupling
International Nuclear Information System (INIS)
Theesar, S. Jeeva Sathya; Ratnavelu, K.
2014-01-01
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology
Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
Li, Xiang
2005-01-01
In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...
Global synchronization of a class of delayed complex networks
International Nuclear Information System (INIS)
Li Ping; Yi Zhang; Zhang Lei
2006-01-01
Global synchronization of a class of complex networks with time-varying delays is investigated in this paper. Some sufficient conditions are derived. These conditions show that the synchronization of delayed complex networks can be determined by their topologies. In addition, these conditions are simply represented in terms of the networks coupling matrix and are easy to be checked. A typical example of complex networks with chaotic nodes is employed to illustrate the obtained global synchronization results
Coordination Approaches for Complex Software Systems
Bosse, T.; Hoogendoorn, M.; Treur, J.
2006-01-01
This document presents the results of a collaboration between the Vrije Universiteit Amsterdam, Department of Artificial Intelligence and Force Vision to investigate coordination approaches for complex software systems. The project was funded by Force Vision.
Effective distances for epidemics spreading on complex networks
Iannelli, Flavio; Koher, Andreas; Brockmann, Dirk; Hövel, Philipp; Sokolov, Igor M.
2017-01-01
We show that the recently introduced logarithmic metrics used to predict disease arrival times on complex networks are approximations of more general network-based measures derived from random walks theory. Using the daily air-traffic transportation data we perform numerical experiments to compare the infection arrival time with this alternative metric that is obtained by accounting for multiple walks instead of only the most probable path. The comparison with direct simulations reveals a higher correlation compared to the shortest-path approach used previously. In addition our method allows to connect fundamental observables in epidemic spreading with the cumulant-generating function of the hitting time for a Markov chain. Our results provides a general and computationally efficient approach using only algebraic methods.
Open complex-balanced mass action chemical reaction networks
Rao, Shodhan; van der Schaft, Arjan; Jayawardhana, Bayu
We consider open chemical reaction networks, i.e. ones with inflows and outflows. We assume that all the inflows to the network are constant and all outflows obey the mass action kinetics rate law. We define a complex-balanced open reaction network as one that admits a complex-balanced steady state.
Complex Regional Pain Syndrome and Treatment Approaches
Directory of Open Access Journals (Sweden)
Neslihan Gokcen
2013-08-01
Full Text Available Complex Regional Pain Syndrome is a symptom complex including severe pain which is disproportioned by the initiating event. Formerly, it was known as reflex sympathetic dystropy, Sudecks atrophy and algoneurodystrophy. There are two types of complex regional pain syndrome (CPRS. CRPS type 1 (Reflex sympathetic dystropy occurs after a minor trauma of the extremities, CRPS type 2 (Causalgia occurs following peripheral nevre injury. Diagnosis is made according to the history, symptoms and physical findings of the patients. Patient education, physical therapy and medical treatment are the most common treatment approaches of complex regional pain syndrome. The aim of this review is to revise the treatment options ofcomplex regional pain syndrome, as well as to overview the new treatment approaches and options for the refractory complex regional pain syndrome cases. [Archives Medical Review Journal 2013; 22(4.000: 514-531
Structural factoring approach for analyzing stochastic networks
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Efficient inference of overlapping communities in complex networks
DEFF Research Database (Denmark)
Fruergaard, Bjarne Ørum; Herlau, Tue
2014-01-01
We discuss two views on extending existing methods for complex network modeling which we dub the communities first and the networks first view, respectively. Inspired by the networks first view that we attribute to White, Boorman, and Breiger (1976)[1], we formulate the multiple-networks stochastic...
Exploitation of complex network topology for link prediction in biological interactomes
Alanis Lobato, Gregorio
2014-01-01
In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable
A network dynamics approach to chemical reaction networks
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
5th International Workshop on Complex Networks and their Applications
Gaito, Sabrina; Quattrociocchi, Walter; Sala, Alessandra
2017-01-01
This book highlights cutting-edge research in the field of network science, offering scientists, researchers and graduate students a unique opportunity to catch up on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the fifth International Workshop on Complex Networks & their Applications (COMPLEX NETWORKS 2016), which took place in Milan during the last week of November 2016. The carefully selected papers are divided into 11 sections reflecting the diversity and richness of research areas in the field. More specifically, the following topics are covered: Network models; Network measures; Community structure; Network dynamics; Diffusion, epidemics and spreading processes; Resilience and control; Network visualization; Social and political networks; Networks in finance and economics; Biological and ecological networks; and Network analysis.
Network approaches for expert decisions in sports.
Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus
2012-04-01
This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.
A density-based clustering model for community detection in complex networks
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
ICPP: Approach for Understanding Complexity of Plasma
Sato, Tetsuya
2000-10-01
In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.
Complexity of Resilient Power Distribution Networks
International Nuclear Information System (INIS)
May, Michael
2008-01-01
Power Systems in general and specifically the problems of communication, control, and coordination in human supervisory control of electric power transmission and distribution networks constitute a good case study for resilience engineering. Because of the high cost and high impact on society of transmission disturbances and blackouts and the vulnerability of power networks to terrorist attacks, Transmission Systems Operators (TSOs) are already focusing on organizational structures, procedures, and technical innovations that could improve the flexibility and robustness of power Systems and achieve the overall goal of providing secure power supply. For a number of reasons however the complexity of power Systems is increasing and new problems arise for human supervisory control and the ability of these Systems to implement fast recovery from disturbances. Around the world power Systems are currently being restructured to adapt to regional electricity markets and secure the availability, resilience and sustainability of electric power generation, transmission and distribution. This demands a reconsideration of the available decision support, the activity of human supervisory control of the highly automated processes involved and the procedures regulating it, as well as the role of the TSOs and the regional, national and international organizations set up to manage their activity. Unfortunately we can expect that human supervisory control of power Systems will become more complex in the near future for a number of reasons. The European Union for the Co-ordination of Transmission of Electricity (UCTE) has remarked that although the interconnected Systems of power transmission networks has been developed over the years with the main goal of providing secure power supply through common use of reserve capacities and the optimization of the use of energy resources, today's market dynamics imposing a high level of cross-border exchanges is 'out of the scope of the
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Complex brain networks: From topological communities to clustered
Indian Academy of Sciences (India)
Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.
PREFACE: Complex Networks: from Biology to Information Technology
Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.
2008-06-01
The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm
Navigation by anomalous random walks on complex networks.
Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan
2016-11-23
Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.
Navigation by anomalous random walks on complex networks
Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan
2016-11-01
Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.
Extending a configuration model to find communities in complex networks
International Nuclear Information System (INIS)
Jin, Di; Hu, Qinghua; He, Dongxiao; Yang, Bo; Baquero, Carlos
2013-01-01
Discovery of communities in complex networks is a fundamental data analysis task in various domains. Generative models are a promising class of techniques for identifying modular properties from networks, which has been actively discussed recently. However, most of them cannot preserve the degree sequence of networks, which will distort the community detection results. Rather than using a blockmodel as most current works do, here we generalize a configuration model, namely, a null model of modularity, to solve this problem. Towards decomposing and combining sub-graphs according to the soft community memberships, our model incorporates the ability to describe community structures, something the original model does not have. Also, it has the property, as with the original model, that it fixes the expected degree sequence to be the same as that of the observed network. We combine both the community property and degree sequence preserving into a single unified model, which gives better community results compared with other models. Thereafter, we learn the model using a technique of nonnegative matrix factorization and determine the number of communities by applying consensus clustering. We test this approach both on synthetic benchmarks and on real-world networks, and compare it with two similar methods. The experimental results demonstrate the superior performance of our method over competing methods in detecting both disjoint and overlapping communities. (paper)
The geometry of chaotic dynamics — a complex network perspective
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Complex Geography of the Internet Network
International Nuclear Information System (INIS)
Kallus, Z.; Haga, P.; Matray, P.; Vattay, G.; Laki, S.
2011-01-01
The geographic layout of the physical Internet inherently determines important network properties. In this paper, we analyze the spatial properties of the Internet topology. In particular, the distribution of the lengths of Internet links is presented - which was possible through spatial embedding of a representative set of IP addresses by applying a novel IP geolocalization service, called Spotter. The dataset is a result of a geographically dispersed topological discovery campaign. After showing the spatial likelihood of Internet nodes we present two approaches to describe the length distribution of the links. The resulting characterization reveals that the distribution can be separated into three characteristic distance ranges which can be mapped to the regional, transcontinental and intercontinental connections. These regimes follow a power-law function with different exponents. (author)
Impulsive generalized function synchronization of complex dynamical networks
International Nuclear Information System (INIS)
Zhang, Qunjiao; Chen, Juan; Wan, Li
2013-01-01
This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results
Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks
Directory of Open Access Journals (Sweden)
Chengrong Xie
2013-01-01
Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.
The neural network approach to parton fitting
International Nuclear Information System (INIS)
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-01-01
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
Analysis and Reduction of Complex Networks Under Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Knio, Omar M
2014-04-09
This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.
Identification of Functional Information Subgraphs in Complex Networks
International Nuclear Information System (INIS)
Bettencourt, Luis M. A.; Gintautas, Vadas; Ham, Michael I.
2008-01-01
We present a general information theoretic approach for identifying functional subgraphs in complex networks. We show that the uncertainty in a variable can be written as a sum of information quantities, where each term is generated by successively conditioning mutual informations on new measured variables in a way analogous to a discrete differential calculus. The analogy to a Taylor series suggests efficient optimization algorithms for determining the state of a target variable in terms of functional groups of other nodes. We apply this methodology to electrophysiological recordings of cortical neuronal networks grown in vitro. Each cell's firing is generally explained by the activity of a few neurons. We identify these neuronal subgraphs in terms of their redundant or synergetic character and reconstruct neuronal circuits that account for the state of target cells
Optimization-based topology identification of complex networks
International Nuclear Information System (INIS)
Tang Sheng-Xue; Chen Li; He Yi-Gang
2011-01-01
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)
Statistical physics of networks, information and complex systems
Energy Technology Data Exchange (ETDEWEB)
Ecke, Robert E [Los Alamos National Laboratory
2009-01-01
In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.
Complex systems and networks dynamics, controls and applications
Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu
2016-01-01
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...
Ranking important nodes in complex networks by simulated annealing
International Nuclear Information System (INIS)
Sun Yu; Yao Pei-Yang; Shen Jian; Zhong Yun; Wan Lu-Jun
2017-01-01
In this paper, based on simulated annealing a new method to rank important nodes in complex networks is presented. First, the concept of an importance sequence (IS) to describe the relative importance of nodes in complex networks is defined. Then, a measure used to evaluate the reasonability of an IS is designed. By comparing an IS and the measure of its reasonability to a state of complex networks and the energy of the state, respectively, the method finds the ground state of complex networks by simulated annealing. In other words, the method can construct a most reasonable IS. The results of experiments on real and artificial networks show that this ranking method not only is effective but also can be applied to different kinds of complex networks. (paper)
Self-sustained oscillations of complex genomic regulatory networks
International Nuclear Information System (INIS)
Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang
2010-01-01
Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.
Network-based Approaches in Pharmacology.
Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier
2017-10-01
In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adolescent pregnancy: networking and the interdisciplinary approach.
Canada, M J
1986-01-01
The networking approach to providing needed services to pregnant and parenting teenagers has numerous merits. An historical overview of the formation of the Brooklyn Teen Pregnancy Network highlights service agency need for information and resource sharing, and improved client referral systems as key factors in the genesis of the Network. The borough-wide approach and its spread as an agency model throughout New York City's other boroughs and several other northeastern cities is also attributed to its positive client impact, including: improved family communication and cooperation; early prenatal care with its concomitant improved pregnancy outcomes; financial support for teens; continued teen education; and parenting skills development. Resource information is provided regarding networks operating in the Greater New York metropolitan area. A planned Eastern Regional network initiative is under development.
Complexities of social networks: A Physicist's perspective
Sen, Parongama
2006-01-01
The review is a survey of the present status of research in social networks highlighting the topics of small world property, degree distributions, community structure, assortativity, modelling, dynamics and searching in social networks.
Control of multidimensional systems on complex network
Bagnoli, Franco; Battistelli, Giorgio; Chisci, Luigi; Fanelli, Duccio
2017-01-01
Multidimensional systems coupled via complex networks are widespread in nature and thus frequently invoked for a large plethora of interesting applications. From ecology to physics, individual entities in mutual interactions are grouped in families, homogeneous in kind. These latter interact selectively, through a sequence of self-consistently regulated steps, whose deeply rooted architecture is stored in the assigned matrix of connections. The asymptotic equilibrium eventually attained by the system, and its associated stability, can be assessed by employing standard nonlinear dynamics tools. For many practical applications, it is however important to externally drive the system towards a desired equilibrium, which is resilient, hence stable, to external perturbations. To this end we here consider a system made up of N interacting populations which evolve according to general rate equations, bearing attributes of universality. One species is added to the pool of interacting families and used as a dynamical controller to induce novel stable equilibria. Use can be made of the root locus method to shape the needed control, in terms of intrinsic reactivity and adopted protocol of injection. The proposed method is tested on both synthetic and real data, thus enabling to demonstrate its robustness and versatility. PMID:28892493
Collective almost synchronisation in complex networks.
Baptista, Murilo S; Ren, Hai-Peng; Swarts, Johen C M; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso
2012-01-01
This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.
A neural network approach to job-shop scheduling.
Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E
1991-01-01
A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.
Supervised maximum-likelihood weighting of composite protein networks for complex prediction
Directory of Open Access Journals (Sweden)
Yong Chern Han
2012-12-01
Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to
Scalable Approaches to Control Network Dynamics: Prospects for City Networks
Motter, Adilson E.; Gray, Kimberly A.
2014-07-01
A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...
Seismic Hazard Analysis on a Complex, Interconnected Fault Network
Page, M. T.; Field, E. H.; Milner, K. R.
2017-12-01
In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.
Communication and control for networked complex systems
Peng, Chen; Han, Qing-Long
2015-01-01
This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Analysis of Semantic Networks using Complex Networks Concepts
DEFF Research Database (Denmark)
Ortiz-Arroyo, Daniel
2013-01-01
In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...
Surname complex network for Brazil and Portugal
Ferreira, G. D.; Viswanathan, G. M.; da Silva, L. R.; Herrmann, H. J.
2018-06-01
We present a study of social networks based on the analysis of Brazilian and Portuguese family names (surnames). We construct networks whose nodes are names of families and whose edges represent parental relations between two families. From these networks we extract the connectivity distribution, clustering coefficient, shortest path and centrality. We find that the connectivity distribution follows an approximate power law. We associate the number of hubs, centrality and entropy to the degree of miscegenation in the societies in both countries. Our results show that Portuguese society has a higher miscegenation degree than Brazilian society. All networks analyzed lead to approximate inverse square power laws in the degree distribution. We conclude that the thermodynamic limit is reached for small networks (3 or 4 thousand nodes). The assortative mixing of all networks is negative, showing that the more connected vertices are connected to vertices with lower connectivity. Finally, the network of surnames presents some small world characteristics.
Applications of a formal approach to decipher discrete genetic networks.
Corblin, Fabien; Fanchon, Eric; Trilling, Laurent
2010-07-20
A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.
Dense power-law networks and simplicial complexes
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Characterization of complex networks : Application to robustness analysis
Jamakovic, A.
2008-01-01
This thesis focuses on the topological characterization of complex networks. It specifically focuses on those elementary graph measures that are of interest when quantifying topology-related aspects of the robustness of complex networks. This thesis makes the following contributions to the field of
Classes of feedforward neural networks and their circuit complexity
Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter
1992-01-01
This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a
Recent Progress in Some Active Topics on Complex Networks
International Nuclear Information System (INIS)
Gu, J; Zhu, Y; Wang, Q A; Guo, L; Jiang, J; Chi, L; Li, W; Cai, X
2015-01-01
Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics. (paper)
Temporal node centrality in complex networks
Kim, Hyoungshick; Anderson, Ross
2012-02-01
Many networks are dynamic in that their topology changes rapidly—on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
Epidemics and rumours in complex networks
Draief, Moez
2009-01-01
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling
Complex-valued neural networks advances and applications
Hirose, Akira
2013-01-01
Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and
Vulnerability Assessment Tools for Complex Information Networks
National Research Council Canada - National Science Library
Cassandras, Christos G; Gong, Weibo; Pepyne, David L; Lee, Wenke; Liu, Hong; Ho, Yu-Chi; Pfeffer, Avrom
2006-01-01
The specific aims of this research is to develop theories, methodologies, tools, and implementable solutions for modeling, analyzing, designing, and securing information networks against information-based attack...
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below which the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are pron...
Investigating solvability and complexity of linear active networks by means of matroids
DEFF Research Database (Denmark)
Petersen, Bjørn
1979-01-01
The solvability and complexity problems of finear active network are approached from a purely combinatorial point of view, using the concepts of matroid theory. Since the method is purely combinatorial, we take into account the network topology alone. Under this assumption necessary and sufficient...... conditions are given for the unique solvablity of linear active networks. The complexity and the number of dc-eigenfrequencies are also given. The method enables.you to decide if degeneracies are due to the topology alone, or if they are caused by special relations among network parameter values....... If the network parameter values are taken into account, the complexity and number of dc-eigenfrequencies given by the method, are only upper and lower bounds, respectively. The above conditions are fairly easily checked, and the complexity and number of dc-elgenfrequencies are found, using polynomially bounded...
Weak signal transmission in complex networks and its application in detecting connectivity.
Liang, Xiaoming; Liu, Zonghua; Li, Baowen
2009-10-01
We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Campbell Grant, Evan H.
2011-01-01
Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.
Synchronization of oscillators in complex networks
Indian Academy of Sciences (India)
Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...
Synchronization of oscillators in complex networks
Indian Academy of Sciences (India)
Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...
Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity
DEFF Research Database (Denmark)
Green, Sara; Serban, Maria; Scholl, Raphael
2018-01-01
of biological networks using tools from graph theory to the application of dynamical systems theory to understand the behavior of complex biological systems. We show how network approaches support and extend traditional mechanistic strategies but also offer novel strategies for dealing with biological...... strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from the investigation of organizational properties...
A Multifaceted Mathematical Approach for Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.
Neural network based multiscale image restoration approach
de Castro, Ana Paula A.; da Silva, José D. S.
2007-02-01
This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.
A biplex approach to PageRank centrality: From classic to multiplex networks.
Pedroche, Francisco; Romance, Miguel; Criado, Regino
2016-06-01
In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.
A biplex approach to PageRank centrality: From classic to multiplex networks
Pedroche, Francisco; Romance, Miguel; Criado, Regino
2016-06-01
In this paper, we present a new view of the PageRank algorithm inspired by multiplex networks. This new approach allows to introduce a new centrality measure for classic complex networks and a new proposal to extend the usual PageRank algorithm to multiplex networks. We give some analytical relations between these new approaches and the classic PageRank centrality measure, and we illustrate the new parameters presented by computing them on real underground networks.
Mining Important Nodes in Directed Weighted Complex Networks
Directory of Open Access Journals (Sweden)
Yunyun Yang
2017-01-01
Full Text Available In complex networks, mining important nodes has been a matter of concern by scholars. In recent years, scholars have focused on mining important nodes in undirected unweighted complex networks. But most of the methods are not applicable to directed weighted complex networks. Therefore, this paper proposes a Two-Way-PageRank method based on PageRank for further discussion of mining important nodes in directed weighted complex networks. We have mainly considered the frequency of contact between nodes and the length of time of contact between nodes. We have considered the source of the nodes (in-degree and the whereabouts of the nodes (out-degree simultaneously. We have given node important performance indicators. Through numerical examples, we analyze the impact of variation of some parameters on node important performance indicators. Finally, the paper has verified the accuracy and validity of the method through empirical network data.
5th Workshop on Complex Networks
Menezes, Ronaldo; Omicini, Andrea; Poncela-Casasnovas, Julia
2014-01-01
A network is a mathematical object consisting of a set of points that are connected to each other in some fashion by lines. It turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems, food webs, or protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social and professional relationships such as friendship, sex partners, network of Hollywood actors, co-authorship networks and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development...
Partially ordered sets in complex networks
International Nuclear Information System (INIS)
Xuan Qi; Du Fang; Wu Tiejun
2010-01-01
In this paper, a partial-order relation is defined among vertices of a network to describe which vertex is more important than another on its contribution to the connectivity of the network. A maximum linearly ordered subset of vertices is defined as a chain and the chains sharing the same end-vertex are grouped as a family. Through combining the same vertices appearing in different chains, a directed chain graph is obtained. Based on these definitions, a series of new network measurements, such as chain length distribution, family diversity distribution, as well as the centrality of families, are proposed. By studying the partially ordered sets in three kinds of real-world networks, many interesting results are revealed. For instance, the similar approximately power-law chain length distribution may be attributed to a chain-based positive feedback mechanism, i.e. new vertices prefer to participate in longer chains, which can be inferred by combining the notable preferential attachment rule with a well-ordered recommendation manner. Moreover, the relatively large average incoming degree of the chain graphs may indicate an efficient substitution mechanism in these networks. Most of the partially ordered set-based properties cannot be explained by the current well-known scale-free network models; therefore, we are required to propose more appropriate network models in the future.
Doubly stochastic coherence in complex neuronal networks
Gao, Yang; Wang, Jianjun
2012-11-01
A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.
Using complex networks to characterize international business cycles.
Caraiani, Petre
2013-01-01
There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. The use of complex networks is valuable for understanding the business cycle comovements at an international level.
Using complex networks to characterize international business cycles.
Directory of Open Access Journals (Sweden)
Petre Caraiani
Full Text Available BACKGROUND: There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. METHODOLOGY/PRINCIPAL FINDINGS: We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. CONCLUSION: The use of complex networks is valuable for understanding the business cycle comovements at an international level.
Exploring the morphospace of communication efficiency in complex networks.
Directory of Open Access Journals (Sweden)
Joaquín Goñi
Full Text Available Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing", we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion". The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.
Supervised Learning with Complex-valued Neural Networks
Suresh, Sundaram; Savitha, Ramasamy
2013-01-01
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...
Abnormal cascading failure spreading on complex networks
International Nuclear Information System (INIS)
Wang, Jianwei; Sun, Enhui; Xu, Bo; Li, Peng; Ni, Chengzhang
2016-01-01
Applying the mechanism of the preferential selection of the flow destination, we develop a new method to quantify the initial load on an edge, of which the flow is transported along the path with the shortest edge weight between two nodes. Considering the node weight, we propose a cascading model on the edge and investigate cascading dynamics induced by the removal of the edge with the largest load. We perform simulated attacks on four types of constructed networks and two actual networks and observe an interesting and counterintuitive phenomenon of the cascading spreading, i.e., gradually improving the capacity of nodes does not lead to the monotonous increase in the robustness of these networks against cascading failures. The non monotonous behavior of cascading dynamics is well explained by the analysis on a simple graph. We additionally study the effect of the parameter of the node weight on cascading dynamics and evaluate the network robustness by a new metric.
Generalised power graph compression reveals dominant relationship patterns in complex networks.
Ahnert, Sebastian E
2014-03-25
We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified.
Earthquake Complex Network applied along the Chilean Subduction Zone.
Martin, F.; Pasten, D.; Comte, D.
2017-12-01
In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.
Competitive seeds-selection in complex networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Lin; Wang, Xiaofan
2017-02-01
This paper investigates a competitive diffusion model where two competitors simultaneously select a set of nodes (seeds) in the network to influence. We focus on the problem of how to select these seeds such that, when the diffusion process terminates, a competitor can obtain more supports than its opponent. Instead of studying this problem in the game-theoretic framework as in the existing work, in this paper we design several heuristic seed-selection strategies inspired by commonly used centrality measures-Betweenness Centrality (BC), Closeness Centrality (CC), Degree Centrality (DC), Eigenvector Centrality (EC), and K-shell Centrality (KS). We mainly compare three centrality-based strategies, which have better performances in competing with the random selection strategy, through simulations on both real and artificial networks. Even though network structure varies across different networks, we find certain common trend appearing in all of these networks. Roughly speaking, BC-based strategy and DC-based strategy are better than CC-based strategy. Moreover, if a competitor adopts CC-based strategy, then BC-based strategy is a better strategy than DC-based strategy for his opponent, and the superiority of BC-based strategy decreases as the heterogeneity of the network decreases.
Explosive synchronization transitions in complex neural networks
Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai
2013-09-01
It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.
Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection
Directory of Open Access Journals (Sweden)
Suman Saha
2016-03-01
Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Multidimensional approach to complex system resilience analysis
International Nuclear Information System (INIS)
Gama Dessavre, Dante; Ramirez-Marquez, Jose E.; Barker, Kash
2016-01-01
Recent works have attempted to formally define a general metric for quantifying resilience for complex systems as a relationship of performance of the systems against time. The technical content in the proposed work introduces a new model that allows, for the first time, to compare the system resilience among systems (or different modifications to a system), by introducing a new dimension to system resilience models, called stress, to mimic the definition of resilience in material science. The applicability and usefulness of the model is shown with a new heat map visualization proposed in this work, and it is applied to a simulated network resilience case to exemplify its potential benefits. - Highlights: • We analyzed two of the main current metrics of resilience. • We create a new model that relates events with the effects they have. • We develop a novel heat map visualization to compare system resilience. • We showed the model and visualization usefulness in a simulated case.
Optimization of controllability and robustness of complex networks by edge directionality
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
Identifying a set of influential spreaders in complex networks
Zhang, Jian-Xiong; Chen, Duan-Bing; Dong, Qiang; Zhao, Zhi-Dan
2016-06-01
Identifying a set of influential spreaders in complex networks plays a crucial role in effective information spreading. A simple strategy is to choose top-r ranked nodes as spreaders according to influence ranking method such as PageRank, ClusterRank and k-shell decomposition. Besides, some heuristic methods such as hill-climbing, SPIN, degree discount and independent set based are also proposed. However, these approaches suffer from a possibility that some spreaders are so close together that they overlap sphere of influence or time consuming. In this report, we present a simply yet effectively iterative method named VoteRank to identify a set of decentralized spreaders with the best spreading ability. In this approach, all nodes vote in a spreader in each turn, and the voting ability of neighbors of elected spreader will be decreased in subsequent turn. Experimental results on four real networks show that under Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models, VoteRank outperforms the traditional benchmark methods on both spreading rate and final affected scale. What’s more, VoteRank has superior computational efficiency.
Intelligent Resource Management for Local Area Networks: Approach and Evolution
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation
Shi, Feng
Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as
Innovation Networks New Approaches in Modelling and Analyzing
Pyka, Andreas
2009-01-01
The science of graphs and networks has become by now a well-established tool for modelling and analyzing a variety of systems with a large number of interacting components. Starting from the physical sciences, applications have spread rapidly to the natural and social sciences, as well as to economics, and are now further extended, in this volume, to the concept of innovations, viewed broadly. In an abstract, systems-theoretical approach, innovation can be understood as a critical event which destabilizes the current state of the system, and results in a new process of self-organization leading to a new stable state. The contributions to this anthology address different aspects of the relationship between innovation and networks. The various chapters incorporate approaches in evolutionary economics, agent-based modeling, social network analysis and econophysics and explore the epistemic tension between insights into economics and society-related processes, and the insights into new forms of complex dynamics.
Comparing the Complexity of Two Network Architectures
Directory of Open Access Journals (Sweden)
Olivier Z. Zheng
2017-10-01
Full Text Available A Service Provider has different methods to provide a VPN service to its customers. But which method is the least complex to implement? In this paper, two architectures are described and analysed. Based on the analyses, two methods of complexity calculation are designed to evaluate the complexity of the architecture: the first method evaluates the resources consumed, the second evaluates the number of cases possible.
Weighted Complex Network Analysis of Shanghai Rail Transit System
Directory of Open Access Journals (Sweden)
Yingying Xing
2016-01-01
Full Text Available With increasing passenger flows and construction scale, Shanghai rail transit system (RTS has entered a new era of networking operation. In addition, the structure and properties of the RTS network have great implications for urban traffic planning, design, and management. Thus, it is necessary to acquire their network properties and impacts. In this paper, the Shanghai RTS, as well as passenger flows, will be investigated by using complex network theory. Both the topological and dynamic properties of the RTS network are analyzed and the largest connected cluster is introduced to assess the reliability and robustness of the RTS network. Simulation results show that the distribution of nodes strength exhibits a power-law behavior and Shanghai RTS network shows a strong weighted rich-club effect. This study also indicates that the intentional attacks are more detrimental to the RTS network than to the random weighted network, but the random attacks can cause slightly more damage to the random weighted network than to the RTS network. Our results provide a richer view of complex weighted networks in real world and possibilities of risk analysis and policy decisions for the RTS operation department.
Analyzing complex networks through correlations in centrality measurements
International Nuclear Information System (INIS)
Ricardo Furlan Ronqui, José; Travieso, Gonzalo
2015-01-01
Many real world systems can be expressed as complex networks of interconnected nodes. It is frequently important to be able to quantify the relative importance of the various nodes in the network, a task accomplished by defining some centrality measures, with different centrality definitions stressing different aspects of the network. It is interesting to know to what extent these different centrality definitions are related for different networks. In this work, we study the correlation between pairs of a set of centrality measures for different real world networks and two network models. We show that the centralities are in general correlated, but with stronger correlations for network models than for real networks. We also show that the strength of the correlation of each pair of centralities varies from network to network. Taking this fact into account, we propose the use of a centrality correlation profile, consisting of the values of the correlation coefficients between all pairs of centralities of interest, as a way to characterize networks. Using the yeast protein interaction network as an example we show also that the centrality correlation profile can be used to assess the adequacy of a network model as a representation of a given real network. (paper)
Ponzi scheme diffusion in complex networks
Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue
2017-08-01
Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Epidemic dynamics and endemic states in complex networks
International Nuclear Information System (INIS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks
Centrality Robustness and Link Prediction in Complex Social Networks
DEFF Research Database (Denmark)
Davidsen, Søren Atmakuri; Ortiz-Arroyo, Daniel
2012-01-01
. Secondly, we present a method to predict edges in dynamic social networks. Our experimental results indicate that the robustness of the centrality measures applied to more realistic social networks follows a predictable pattern and that the use of temporal statistics could improve the accuracy achieved......This chapter addresses two important issues in social network analysis that involve uncertainty. Firstly, we present am analysis on the robustness of centrality measures that extend the work presented in Borgati et al. using three types of complex network structures and one real social network...
On synchronized regions of discrete-time complex dynamical networks
International Nuclear Information System (INIS)
Duan Zhisheng; Chen Guanrong
2011-01-01
In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.
The guitar chord-generating algorithm based on complex network
Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais
2016-02-01
This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.
Exploiting global information in complex network repair processes
Institute of Scientific and Technical Information of China (English)
Tianyu WANG; Jun ZHANG; Sebastian WANDELT
2017-01-01
Robustness of complex networks has been studied for decades,with a particular focus on network attack.Research on network repair,on the other hand,has been conducted only very lately,given the even higher complexity and absence of an effective evaluation metric.A recently proposed network repair strategy is self-healing,which aims to repair networks for larger compo nents at a low cost only with local information.In this paper,we discuss the effectiveness and effi ciency of self-healing,which limits network repair to be a multi-objective optimization problem and makes it difficult to measure its optimality.This leads us to a new network repair evaluation metric.Since the time complexity of the computation is very high,we devise a greedy ranking strategy.Evaluations on both real-world and random networks show the effectiveness of our new metric and repair strategy.Our study contributes to optimal network repair algorithms and provides a gold standard for future studies on network repair.
Pheromone Static Routing Strategy for Complex Networks
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Epidemic spreading on weighted complex networks
International Nuclear Information System (INIS)
Sun, Ye; Liu, Chuang; Zhang, Chu-Xu; Zhang, Zi-Ke
2014-01-01
Nowadays, the emergence of online services provides various multi-relation information to support the comprehensive understanding of the epidemic spreading process. In this Letter, we consider the edge weights to represent such multi-role relations. In addition, we perform detailed analysis of two representative metrics, outbreak threshold and epidemic prevalence, on SIS and SIR models. Both theoretical and simulation results find good agreements with each other. Furthermore, experiments show that, on fully mixed networks, the weight distribution on edges would not affect the epidemic results once the average weight of whole network is fixed. This work may shed some light on the in-depth understanding of epidemic spreading on multi-relation and weighted networks.
Epidemic spreading on weighted complex networks
Energy Technology Data Exchange (ETDEWEB)
Sun, Ye [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Liu, Chuang, E-mail: liuchuang@hznu.edu.cn [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Zhang, Chu-Xu [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Zhang, Zi-Ke, E-mail: zhangzike@gmail.com [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China)
2014-01-31
Nowadays, the emergence of online services provides various multi-relation information to support the comprehensive understanding of the epidemic spreading process. In this Letter, we consider the edge weights to represent such multi-role relations. In addition, we perform detailed analysis of two representative metrics, outbreak threshold and epidemic prevalence, on SIS and SIR models. Both theoretical and simulation results find good agreements with each other. Furthermore, experiments show that, on fully mixed networks, the weight distribution on edges would not affect the epidemic results once the average weight of whole network is fixed. This work may shed some light on the in-depth understanding of epidemic spreading on multi-relation and weighted networks.
Speeding up the MATLAB complex networks package using graphic processors
International Nuclear Information System (INIS)
Zhang Bai-Da; Wu Jun-Jie; Li Xin; Tang Yu-Hua
2011-01-01
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3×. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research. (interdisciplinary physics and related areas of science and technology)
Reverse preferential spread in complex networks
Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio
2012-08-01
Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.
Network biology concepts in complex disease comorbidities
DEFF Research Database (Denmark)
Hu, Jessica Xin; Thomas, Cecilia Engel; Brunak, Søren
2016-01-01
collected electronically, disease co-occurrences are starting to be quantitatively characterized. Linking network dynamics to the real-life, non-ideal patient in whom diseases co-occur and interact provides a valuable basis for generating hypotheses on molecular disease mechanisms, and provides knowledge......The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often being...
Sistemic Approach - a Complexity Management Instrument
Directory of Open Access Journals (Sweden)
Vadim Dumitrascu
2006-04-01
Full Text Available he systemic principle uses the deduction and the induction, analyse and synthesis, inferency and proferency, in order to find out the interdependencies and the inner connections that make mooving the complex organized entities. The true valences of this approach can be found neither in the simplist models of the “in-out” type, nor in the “circular” models that fill in the Economics and Management handbooks, and that consecrate another kind of formalism, but in the constructiviste-reflexive strategies, used in order to explain the economic and social structures.
Sistemic Approach – a Complexity Management Instrument
Directory of Open Access Journals (Sweden)
Vadim Dumitrascu
2006-02-01
Full Text Available The systemic principle uses the deduction and the induction, analyse and synthesis, inferency and proferency, in order to find out the interdependencies and the inner connections that make mooving the complex organized entities. The true valences of this approach can be found neither in the simplist models of the “in-out” type, nor in the “circular” models that fill in the Economics and Management handbooks, and that consecrate another kind of formalism, but in the constructiviste-reflexive strategies, used in order to explain the economic and social structures.
Vulnerability of complex networks under intentional attack with incomplete information
International Nuclear Information System (INIS)
Wu, J; Deng, H Z; Tan, Y J; Zhu, D Z
2007-01-01
We study the vulnerability of complex networks under intentional attack with incomplete information, which means that one can only preferentially attack the most important nodes among a local region of a network. The known random failure and the intentional attack are two extreme cases of our study. Using the generating function method, we derive the exact value of the critical removal fraction f c of nodes for the disintegration of networks and the size of the giant component. To validate our model and method, we perform simulations of intentional attack with incomplete information in scale-free networks. We show that the attack information has an important effect on the vulnerability of scale-free networks. We also demonstrate that hiding a fraction of the nodes information is a cost-efficient strategy for enhancing the robustness of complex networks
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Modelling the self-organization and collapse of complex networks
Indian Academy of Sciences (India)
Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.
Competition of simple and complex adoption on interdependent networks
Czaplicka, Agnieszka; Toral, Raul; San Miguel, Maxi
2016-12-01
We consider the competition of two mechanisms for adoption processes: a so-called complex threshold dynamics and a simple susceptible-infected-susceptible (SIS) model. Separately, these mechanisms lead, respectively, to first-order and continuous transitions between nonadoption and adoption phases. We consider two interconnected layers. While all nodes on the first layer follow the complex adoption process, all nodes on the second layer follow the simple adoption process. Coupling between the two adoption processes occurs as a result of the inclusion of some additional interconnections between layers. We find that the transition points and also the nature of the transitions are modified in the coupled dynamics. In the complex adoption layer, the critical threshold required for extension of adoption increases with interlayer connectivity whereas in the case of an isolated single network it would decrease with average connectivity. In addition, the transition can become continuous depending on the detailed interlayer and intralayer connectivities. In the SIS layer, any interlayer connectivity leads to the extension of the adopter phase. Besides, a new transition appears as a sudden drop of the fraction of adopters in the SIS layer. The main numerical findings are described by a mean-field type analytical approach appropriately developed for the threshold-SIS coupled system.
Analysis and Design of Complex Networks
2014-12-02
systems. 08-NOV-10, . : , Barlas Oguz, Venkat Anantharam. Long range dependent Markov chains with applications , Information Theory and Applications ...JUL-12, . : , Michael Krishnan, Ehsan Haghani, Avideh Zakhor. Packet Length Adaptation in WLANs with Hidden Nodes and Time-Varying Channels, IEEE... WLAN networks with multi-antenna beam-forming nodes. VII. Use of busy/idle signals for discovering optimum AP association VIII
Does human migration affect international trade? A complex-network perspective.
Directory of Open Access Journals (Sweden)
Giorgio Fagiolo
Full Text Available This paper explores the relationships between international human migration and merchandise trade, using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960-2000. Next, we ask whether the position of any pair of countries in the migration network affects their bilateral trade flows. We show that: (i both weighted and binary versions of the networks of international migration and trade are strongly correlated; (ii such correlations can be mostly explained by country economic/demographic size and geographical distance; and (iii pairs of countries that are more central in the international-migration network trade more. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries but also by their relative embeddedness in the complex web of corridors making up the network of international human migration.
Does human migration affect international trade? A complex-network perspective.
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade, using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960-2000. Next, we ask whether the position of any pair of countries in the migration network affects their bilateral trade flows. We show that: (i) both weighted and binary versions of the networks of international migration and trade are strongly correlated; (ii) such correlations can be mostly explained by country economic/demographic size and geographical distance; and (iii) pairs of countries that are more central in the international-migration network trade more. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries but also by their relative embeddedness in the complex web of corridors making up the network of international human migration.
Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.
Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J
2016-01-01
Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.
An Intelligent Alternative Approach to the efficient Network Management
Directory of Open Access Journals (Sweden)
MARTÍN, A.
2012-12-01
Full Text Available Due to the increasing complexity and heterogeneity of networks and services, many efforts have been made to develop intelligent techniques for management. Network intelligent management is a key technology for operating large heterogeneous data transmission networks. This paper presents a proposal for an architecture that integrates management object specifications and the knowledge of expert systems. We present a new approach named Integrated Expert Management, for learning objects based on expert management rules and describe the design and implementation of an integrated intelligent management platform based on OSI and Internet management models. The main contributions of our approach is the integration of both expert system and managed models, so we can make use of them to construct more flexible intelligent management network. The prototype SONAP (Software for Network Assistant and Performance is accuracy-aware since it can control and manage a network. We have tested our system on real data to the fault diagnostic in a telecommunication system of a power utility. The results validate the model and show a significant improvement with respect to the number of rules and the error rate in others systems.
Common neighbour structure and similarity intensity in complex networks
Hou, Lei; Liu, Kecheng
2017-10-01
Complex systems as networks always exhibit strong regularities, implying underlying mechanisms governing their evolution. In addition to the degree preference, the similarity has been argued to be another driver for networks. Assuming a network is randomly organised without similarity preference, the present paper studies the expected number of common neighbours between vertices. A symmetrical similarity index is accordingly developed by removing such expected number from the observed common neighbours. The developed index can not only describe the similarities between vertices, but also the dissimilarities. We further apply the proposed index to measure of the influence of similarity on the wring patterns of networks. Fifteen empirical networks as well as artificial networks are examined in terms of similarity intensity and degree heterogeneity. Results on real networks indicate that, social networks are strongly governed by the similarity as well as the degree preference, while the biological networks and infrastructure networks show no apparent similarity governance. Particularly, classical network models, such as the Barabási-Albert model, the Erdös-Rényi model and the Ring Lattice, cannot well describe the social networks in terms of the degree heterogeneity and similarity intensity. The findings may shed some light on the modelling and link prediction of different classes of networks.
Summer School Mathematical Foundations of Complex Networked Information Systems
Fosson, Sophie; Ravazzi, Chiara
2015-01-01
Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.
Directory of Open Access Journals (Sweden)
Xuefei Wu
2014-01-01
Full Text Available The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods.
Constructive Lower Bounds on Model Complexity of Shallow Perceptron Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2018-01-01
Roč. 29, č. 7 (2018), s. 305-315 ISSN 0941-0643 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow and deep networks * model complexity and sparsity * signum perceptron networks * finite mappings * variational norms * Hadamard matrices Subject RIV: IN - Informatics, Computer Science Impact factor: 2.505, year: 2016
Social network approaches to leadership: an integrative conceptual review.
Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S
2015-05-01
Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.
Construction of ontology augmented networks for protein complex prediction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian
2013-01-01
Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.
Neural network approach to radiologic lesion detection
International Nuclear Information System (INIS)
Newman, F.D.; Raff, U.; Stroud, D.
1989-01-01
An area of artificial intelligence that has gained recent attention is the neural network approach to pattern recognition. The authors explore the use of neural networks in radiologic lesion detection with what is known in the literature as the novelty filter. This filter uses a linear model; images of normal patterns become training vectors and are stored as columns of a matrix. An image of an abnormal pattern is introduced and the abnormality or novelty is extracted. A VAX 750 was used to encode the novelty filter, and two experiments have been examined
Effective use of congestion in complex networks
Echagüe, Juan; Cholvi, Vicent; Kowalski, Dariusz R.
2018-03-01
In this paper, we introduce a congestion-aware routing protocol that selects the paths according to the congestion of nodes in the network. The aim is twofold: on one hand, and in order to prevent the networks from collapsing, it provides a good tolerance to nodes' overloads; on the other hand, and in order to guarantee efficient communication, it also incentivize the routes to follow short paths. We analyze the performance of our proposed routing strategy by means of a series of experiments carried out by using simulations. We show that it provides a tolerance to collapse close to the optimal value. Furthermore, the average length of the paths behaves optimally up to the certain value of packet generation rate ρ and it grows in a linear fashion with the increase of ρ.
Hybrid recommendation methods in complex networks.
Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N
2015-07-01
We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.
Ranking spreaders by decomposing complex networks
International Nuclear Information System (INIS)
Zeng, An; Zhang, Cheng-Jun
2013-01-01
Ranking the nodes' ability of spreading in networks is crucial for designing efficient strategies to hinder spreading in the case of diseases or accelerate spreading in the case of information dissemination. In the well-known k-shell method, nodes are ranked only according to the links between the remaining nodes (residual links) while the links connecting to the removed nodes (exhausted links) are entirely ignored. In this Letter, we propose a mixed degree decomposition (MDD) procedure in which both the residual degree and the exhausted degree are considered. By simulating the epidemic spreading process on real networks, we show that the MDD method can outperform the k-shell and degree methods in ranking spreaders.
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
English and Chinese languages as weighted complex networks
Sheng, Long; Li, Chunguang
2009-06-01
In this paper, we analyze statistical properties of English and Chinese written human language within the framework of weighted complex networks. The two language networks are based on an English novel and a Chinese biography, respectively, and both of the networks are constructed in the same way. By comparing the intensity and density of connections between the two networks, we find that high weight connections in Chinese language networks prevail more than those in English language networks. Furthermore, some of the topological and weighted quantities are compared. The results display some differences in the structural organizations between the two language networks. These observations indicate that the two languages may have different linguistic mechanisms and different combinatorial natures.
Towards a theoretical framework for analyzing complex linguistic networks
Lücking, Andy; Banisch, Sven; Blanchard, Philippe; Job, Barbara
2016-01-01
The aim of this book is to advocate and promote network models of linguistic systems that are both based on thorough mathematical models and substantiated in terms of linguistics. In this way, the book contributes first steps towards establishing a statistical network theory as a theoretical basis of linguistic network analysis the boarder of the natural sciences and the humanities.This book addresses researchers who want to get familiar with theoretical developments, computational models and their empirical evaluation in the field of complex linguistic networks. It is intended to all those who are interested in statisticalmodels of linguistic systems from the point of view of network research. This includes all relevant areas of linguistics ranging from phonological, morphological and lexical networks on the one hand and syntactic, semantic and pragmatic networks on the other. In this sense, the volume concerns readers from many disciplines such as physics, linguistics, computer science and information scien...
Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes
International Nuclear Information System (INIS)
Liu Tao; Zhao Jun; Hill, David J.
2009-01-01
In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.
A complex-network perspective on Alexander's wholeness
Jiang, Bin
2016-12-01
The wholeness, conceived and developed by Christopher Alexander, is what exists to some degree or other in space and matter, and can be described by precise mathematical language. However, it remains somehow mysterious and elusive, and therefore hard to grasp. This paper develops a complex network perspective on the wholeness to better understand the nature of order or beauty for sustainable design. I bring together a set of complexity-science subjects such as complex networks, fractal geometry, and in particular underlying scaling hierarchy derived by head/tail breaks - a classification scheme and a visualization tool for data with a heavy-tailed distribution, in order to make Alexander's profound thoughts more accessible to design practitioners and complexity-science researchers. Through several case studies (some of which Alexander studied), I demonstrate that the complex-network perspective helps reduce the mystery of wholeness and brings new insights to Alexander's thoughts on the concept of wholeness or objective beauty that exists in fine and deep structure. The complex-network perspective enables us to see things in their wholeness, and to better understand how the kind of structural beauty emerges from local actions guided by the 15 fundamental properties, and in particular by differentiation and adaptation processes. The wholeness goes beyond current complex network theory towards design or creation of living structures.
Deployment of check-in nodes in complex networks
Jiang, Zhong-Yuan; Ma, Jian-Feng
2017-01-01
In many real complex networks such as the city road networks and highway networks, vehicles often have to pass through some specially functioned nodes to receive check-in like services such as gas supplement at gas stations. Based on existing network structures, to guarantee every shortest path including at least a check-in node, the location selection of all check-in nodes is very essential and important to make vehicles to easily visit these check-in nodes, and it is still remains an open problem in complex network studies. In this work, we aim to find possible solutions for this problem. We first convert it into a set cover problem which is NP-complete and propose to employ the greedy algorithm to achieve an approximate result. Inspired by heuristic information of network structure, we discuss other four check-in node location deployment methods including high betweenness first (HBF), high degree first (HDF), random and low degree first (LDF). Finally, we compose extensive simulations in classical scale-free networks, random networks and real network models, and the results can well confirm the effectiveness of the greedy algorithm. This work has potential applications into many real networks.
Hybrid Bridge-Based Memetic Algorithms for Finding Bottlenecks in Complex Networks
DEFF Research Database (Denmark)
Chalupa, David; Hawick, Ken; Walker, James A
2018-01-01
We propose a memetic approach to find bottlenecks in complex networks based on searching for a graph partitioning with minimum conductance. Finding the optimum of this problem, also known in statistical mechanics as the Cheeger constant, is one of the most interesting NP-hard network optimisation...... as results for samples of social networks and protein–protein interaction networks. These indicate that both well-informed initial population generation and the use of a crossover seem beneficial in solving the problem in large-scale....
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Protein complex detection in PPI networks based on data integration and supervised learning method.
Yu, Feng; Yang, Zhi; Hu, Xiao; Sun, Yuan; Lin, Hong; Wang, Jian
2015-01-01
Revealing protein complexes are important for understanding principles of cellular organization and function. High-throughput experimental techniques have produced a large amount of protein interactions, which makes it possible to predict protein complexes from protein-protein interaction (PPI) networks. However, the small amount of known physical interactions may limit protein complex detection. The new PPI networks are constructed by integrating PPI datasets with the large and readily available PPI data from biomedical literature, and then the less reliable PPI between two proteins are filtered out based on semantic similarity and topological similarity of the two proteins. Finally, the supervised learning protein complex detection (SLPC), which can make full use of the information of available known complexes, is applied to detect protein complex on the new PPI networks. The experimental results of SLPC on two different categories yeast PPI networks demonstrate effectiveness of the approach: compared with the original PPI networks, the best average improvements of 4.76, 6.81 and 15.75 percentage units in the F-score, accuracy and maximum matching ratio (MMR) are achieved respectively; compared with the denoising PPI networks, the best average improvements of 3.91, 4.61 and 12.10 percentage units in the F-score, accuracy and MMR are achieved respectively; compared with ClusterONE, the start-of the-art complex detection method, on the denoising extended PPI networks, the average improvements of 26.02 and 22.40 percentage units in the F-score and MMR are achieved respectively. The experimental results show that the performances of SLPC have a large improvement through integration of new receivable PPI data from biomedical literature into original PPI networks and denoising PPI networks. In addition, our protein complexes detection method can achieve better performance than ClusterONE.
A study of the spreading scheme for viral marketing based on a complex network model
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
Robustness of pinning a general complex dynamical network
International Nuclear Information System (INIS)
Wang Lei; Sun Youxian
2010-01-01
This Letter studies the robustness problem of pinning a general complex dynamical network toward an assigned synchronous evolution. Several synchronization criteria are presented to guarantee the convergence of the pinning process locally and globally by construction of Lyapunov functions. In particular, if a pinning strategy has been designed for synchronization of a given complex dynamical network, then no matter what uncertainties occur among the pinned nodes, synchronization can still be guaranteed through the pinning. The analytical results show that pinning control has a certain robustness against perturbations on network architecture: adding, deleting and changing the weights of edges. Numerical simulations illustrated by scale-free complex networks verify the theoretical results above-acquired.
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Directory of Open Access Journals (Sweden)
Nadia M. Viljoen
2018-02-01
Full Text Available This article presents the multilayered complex network formulation for three different supply chain network archetypes on an urban road grid and describes how 500 instances were randomly generated for each archetype. Both the supply chain network layer and the urban road network layer are directed unweighted networks. The shortest path set is calculated for each of the 1 500 experimental instances. The datasets are used to empirically explore the impact that the supply chain's dependence on the transport network has on its vulnerability in Viljoen and Joubert (2017 [1]. The datasets are publicly available on Mendeley (Joubert and Viljoen, 2017 [2]. Keywords: Multilayered complex networks, Supply chain vulnerability, Urban road networks
Study on the complex network characteristics of urban road system based on GIS
Gao, Zhonghua; Chen, Zhenjie; Liu, Yongxue; Huang, Kang
2007-06-01
Urban road system is the basic bone of urban transportation and one of the most important factors that influent and controls the urban configuration. In this paper, an approach of modeling, analyzing and optimizing urban road system is described based on complex network theory and GIS technology. The urban road system is studied on three focuses: building the urban road network, modeling the computational procedures based on urban road networks and analyzing the urban road system of Changzhou City as the study case. The conclusion is that the urban road network is a scale-free network with small-world characteristic, and there is still space for development of the whole network as a small-world network, also the key road crosses should be kept expedite.
Weighted complex network analysis of the Beijing subway system: Train and passenger flows
Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun
2017-05-01
In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
Distinguishing fiction from non-fiction with complex networks
Larue, David M.; Carr, Lincoln D.; Jones, Linnea K.; Stevanak, Joe T.
2014-03-01
Complex Network Measures are applied to networks constructed from texts in English to demonstrate an initial viability in textual analysis. Texts from novels and short stories obtained from Project Gutenberg and news stories obtained from NPR are selected. Unique word stems in a text are used as nodes in an associated unweighted undirected network, with edges connecting words occurring within a certain number of words somewhere in the text. Various combinations of complex network measures are computed for each text's network. Fisher's Linear Discriminant analysis is used to build a parameter optimizing the ability to separate the texts according to their genre. Success rates in the 70% range for correctly distinguishing fiction from non-fiction were obtained using edges defined as within four words, using 400 word samples from 400 texts from each of the two genres with some combinations of measures such as the power-law exponents of degree distributions and clustering coefficients.
A paradox for traffic dynamics in complex networks with ATIS
International Nuclear Information System (INIS)
Zheng Jianfeng; Gao Ziyou
2008-01-01
In this work, we study the statistical properties of traffic (e.g., vehicles) dynamics in complex networks, by introducing advanced transportation information systems (ATIS). The ATIS can provide the information of traffic flow pattern throughout the network and have an obvious effect on path routing strategy for such vehicles equipped with ATIS. The ATIS can be described by the understanding of link cost functions. Different indices such as efficiency and system total cost are discussed in depth. It is found that, for random networks (scale-free networks), the efficiency is effectively improved (decreased) if ATIS is properly equipped; however the system total cost is largely increased (decreased). It indicates that there exists a paradox between the efficiency and system total cost in complex networks. Furthermore, we report the simulation results by considering different kinds of link cost functions, and the paradox is recovered. Finally, we extend our traffic model, and also find the existence of the paradox
An Efficient Hierarchy Algorithm for Community Detection in Complex Networks
Directory of Open Access Journals (Sweden)
Lili Zhang
2014-01-01
Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.
On imperfect node protection in complex communication networks
International Nuclear Information System (INIS)
Xiao Shi; Xiao Gaoxi
2011-01-01
Motivated by recent research on complex networks, we study enhancing complex communication networks against intentional attack which takes down network nodes in a decreasing order of their degrees. Specifically, we evaluate an effect which has been largely ignored in existing studies; many real-life systems, especially communication systems, have protection mechanisms for their important components. Due to the existence of such protection, it is generally quite difficult to totally crash a protected node, though partially paralyzing it may still be feasible. Our analytical and simulation results show that such 'imperfect' protections generally speaking still help significantly enhance network robustness. Such insight may be helpful for the future developments of efficient network attack and protection schemes.
Modeling the propagation of mobile malware on complex networks
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
A complex network-based importance measure for mechatronics systems
Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao
2017-01-01
In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.
On imperfect node protection in complex communication networks
Energy Technology Data Exchange (ETDEWEB)
Xiao Shi [Hubei Province Key Laboratory of Intelligent Robot and School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Xiao Gaoxi, E-mail: xiao_moon2002@yahoo.com.cn, E-mail: egxxiao@ntu.edu.sg [Division of Communication Engineering, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)
2011-02-04
Motivated by recent research on complex networks, we study enhancing complex communication networks against intentional attack which takes down network nodes in a decreasing order of their degrees. Specifically, we evaluate an effect which has been largely ignored in existing studies; many real-life systems, especially communication systems, have protection mechanisms for their important components. Due to the existence of such protection, it is generally quite difficult to totally crash a protected node, though partially paralyzing it may still be feasible. Our analytical and simulation results show that such 'imperfect' protections generally speaking still help significantly enhance network robustness. Such insight may be helpful for the future developments of efficient network attack and protection schemes.
Structural and functional networks in complex systems with delay.
Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex
2011-05-01
Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society
Infinite Multiple Membership Relational Modeling for Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai
Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...
International Symposium on Complex Computing-Networks
Sevgi, L; CCN2005; Complex computing networks: Brain-like and wave-oriented electrodynamic algorithms
2006-01-01
This book uniquely combines new advances in the electromagnetic and the circuits&systems theory. It integrates both fields regarding computational aspects of common interest. Emphasized subjects are those methods which mimic brain-like and electrodynamic behaviour; among these are cellular neural networks, chaos and chaotic dynamics, attractor-based computation and stream ciphers. The book contains carefully selected contributions from the Symposium CCN2005. Pictures from the bestowal of Honorary Doctorate degrees to Leon O. Chua and Leopold B. Felsen are included.
A Network Thermodynamic Approach to Compartmental Analysis
Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.
1979-01-01
We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387
Spontaneous brain network activity: Analysis of its temporal complexity
Directory of Open Access Journals (Sweden)
Mangor Pedersen
2017-06-01
Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex
Complex networks as an emerging property of hierarchical preferential attachment
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
Discrete approach to complex planar geometries
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.
1974-01-01
Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)
Complex human mobility dynamics on a network
International Nuclear Information System (INIS)
Szell, M.
2010-01-01
Massive multiplayer online games provide a fascinating new way of observing hundreds of thousands of simultaneously interacting individuals engaged in virtual socio-economic activities. We have compiled a data set consisting of practically all actions of all players over a period of four years from an online game played by over 350,000 people. The universe of this online world is a lattice-like network on which players move in order to interact with other players. We focus on the mobility of human players on this network over a time-period of 500 days. We take a number of mobility measurements and compare them with measures of simulated random walkers on the same topology. Mobility of players is sub-diffusive - the mean squared displacement follows a power law with exponent 0.4 - and significantly deviates from mobility patterns of random walkers. Mean first passage times and transition counts relate via a power-law with slope -1/3. We compare our results with studies where human mobility was measured via mobile phone data and find striking similarities. (author)
The complexity of classical music networks
Rolla, Vitor; Kestenberg, Juliano; Velho, Luiz
2018-02-01
Previous works suggest that musical networks often present the scale-free and the small-world properties. From a musician's perspective, the most important aspect missing in those studies was harmony. In addition to that, the previous works made use of outdated statistical methods. Traditionally, least-squares linear regression is utilised to fit a power law to a given data set. However, according to Clauset et al. such a traditional method can produce inaccurate estimates for the power law exponent. In this paper, we present an analysis of musical networks which considers the existence of chords (an essential element of harmony). Here we show that only 52.5% of music in our database presents the scale-free property, while 62.5% of those pieces present the small-world property. Previous works argue that music is highly scale-free; consequently, it sounds appealing and coherent. In contrast, our results show that not all pieces of music present the scale-free and the small-world properties. In summary, this research is focused on the relationship between musical notes (Do, Re, Mi, Fa, Sol, La, Si, and their sharps) and accompaniment in classical music compositions. More information about this research project is available at https://eden.dei.uc.pt/~vitorgr/MS.html.
Viljoen, Nadia M; Joubert, Johan W
2018-02-01
This article presents the multilayered complex network formulation for three different supply chain network archetypes on an urban road grid and describes how 500 instances were randomly generated for each archetype. Both the supply chain network layer and the urban road network layer are directed unweighted networks. The shortest path set is calculated for each of the 1 500 experimental instances. The datasets are used to empirically explore the impact that the supply chain's dependence on the transport network has on its vulnerability in Viljoen and Joubert (2017) [1]. The datasets are publicly available on Mendeley (Joubert and Viljoen, 2017) [2].
Cascade phenomenon against subsequent failures in complex networks
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
Narrowing the gap between network models and real complex systems
Viamontes Esquivel, Alcides
2014-01-01
Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...
Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke
2014-06-22
The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the 'small-world' character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval.
Structure-function relationship in complex brain networks expressed by hierarchical synchronization
International Nuclear Information System (INIS)
Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen
2007-01-01
The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks
Structure-function relationship in complex brain networks expressed by hierarchical synchronization
Energy Technology Data Exchange (ETDEWEB)
Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)
2007-06-15
The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.
Complexity Theory and Network Centric Warfare
2003-09-01
in Surface Growth. Cambridge University Press. Cambridge, UK. 10 MANDELBROT B (1997). Fractals and Scaling in Finance . Springer-Verlag. 11 TURNER A...to Econophysics; Correlations and Complexity in Finance . Cambridge University Press. Cambridge, UK. ADDITIONAL REFERENCE 14 PEITGEN H-O, JURGENS H...realms of the unknown. Defence thinkers everywhere are searching forward for the science and alchemy that will deliver operational success. CCRP
Complex network problems in physics, computer science and biology
Cojocaru, Radu Ionut
lattice at zero temperature and then we apply this formalism to the K-SAT problem defined in Chapter 1. The phase transition which physicists study often corresponds to a change in the computational complexity of the corresponding computer science problem. Chapter 3 presents phase transitions which are specific to the problems discussed in Chapter 1 and also known results for the K-SAT problem. We discuss the replica method and experimental evidences of replica symmetry breaking. The physics approach to hard problems is based on replica methods which are difficult to understand. In Chapter 4 we develop novel methods for studying hard problems using methods similar to the message passing techniques that were discussed in Chapter 2. Although we concentrated on the symmetric case, cavity methods show promise for generalizing our methods to the un-symmetric case. As has been highlighted by John Hopfield, several key features of biological systems are not shared by physical systems. Although living entities follow the laws of physics and chemistry, the fact that organisms adapt and reproduce introduces an essential ingredient that is missing in the physical sciences. In order to extract information from networks many algorithm have been developed. In Chapter 5 we apply polynomial algorithms like minimum spanning tree in order to study and construct gene regulatory networks from experimental data. As future work we propose the use of algorithms like min-cut/max-flow and Dijkstra for understanding key properties of these networks.
Identification of literary movements using complex networks to represent texts
International Nuclear Information System (INIS)
Amancio, Diego Raphael; Oliveira, Osvaldo N Jr; Fontoura Costa, Luciano da
2012-01-01
The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures. (paper)
A brief review of advances in complex networks of nuclear science and technology field
International Nuclear Information System (INIS)
Fang Jinqing
2010-01-01
A brief review of advances in complex networks of nuclear science and technology field at home and is given and summarized. These complex networks include: nuclear energy weapon network, network centric warfare, beam transport networks, continuum percolation evolving network associated with nuclear reactions, global nuclear power station network, (nuclear) chemistry reaction networks, radiological monitoring and anti-nuclear terror networks, and so on. Some challenge issues and development prospects of network science are pointed out finally. (authors)
Combining complex networks and data mining: Why and how
Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.
2016-05-01
The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
The application of complex network time series analysis in turbulent heated jets
International Nuclear Information System (INIS)
Charakopoulos, A. K.; Karakasidis, T. E.; Liakopoulos, A.; Papanicolaou, P. N.
2014-01-01
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics
Complexity in neuronal noise depends on network interconnectivity.
Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L
2011-06-01
"Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
Predicting language diversity with complex networks
Gubiec, Tomasz
2018-01-01
We analyze the model of social interactions with coevolution of the topology and states of the nodes. This model can be interpreted as a model of language change. We propose different rewiring mechanisms and perform numerical simulations for each. Obtained results are compared with the empirical data gathered from two online databases and anthropological study of Solomon Islands. We study the behavior of the number of languages for different system sizes and we find that only local rewiring, i.e. triadic closure, is capable of reproducing results for the empirical data in a qualitative manner. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change. PMID:29702699
Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems
Fox, P.
2012-04-01
The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.
Identifying partial topology of complex dynamical networks via a pinning mechanism
Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an
2018-04-01
In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.
Use of neural networks in the analysis of complex systems
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Lisewski, Andreas Martin; Lichtarge, Olivier
2010-08-15
Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the relative margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.
A brain network instantiating approach and avoidance motivation.
Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy
2012-09-01
Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.
NETWORK SERVICES FOR DIAGNOSTIC OPTODIGITAL COMPLEX FOR TELEMEDICINE
Directory of Open Access Journals (Sweden)
D. S. Kopylov
2014-03-01
Full Text Available The paper deals with a result of the network services development for the optodigital complex for telemedicine diagnostics. This complex is designed for laboratory and clinical tests in health care facilities. Composition of network services includes the following: a client application for database of diagnostic test, a web-service, a web interface, a video server and microimage processing server. Structure of these services makes it possible to combine set of software for transferring depersonalized medical data via the Internet and operating with optodigital devices included in the complex. Complex is consisted of three systems: micro-vision, endoscopic and network. The micro-vision system includes an automated digital microscope with two highly sensitive cameras which can be controlled remotely via the Internet. The endoscopic system gives the possibility to implement video broadcasting to remote users both during diagnostic tests and also off-line after tests. The network system is the core of the complex where network services and application software are functioning, intended for archiving, storage and providing access to the database of diagnostic tests. The following subjects are developed and tested for functional stability: states transfer protocol, commands transfer protocol and video-stream transfer protocol from automated digital microscope and video endoscope. These protocols can work in web browsers on modern mobile devices without additional software.
Upper critical field of complex superconducting networks in the continuum limit
International Nuclear Information System (INIS)
Santhanam, P.; Chi, C.C.
1988-01-01
We propose a simple method for calculating the superconducting upper critical field of complex periodic two-dimensional networks in the continuum limit. Two specific lattices with space groups P4gm and C2mm are used to demonstrate this approach. We obtain the result that the ratio of the critical field of these networks to that of a uniform film is close to but larger than 2
Complex interdependent supply chain networks: Cascading failure and robustness
Tang, Liang; Jing, Ke; He, Jie; Stanley, H. Eugene
2016-02-01
A supply chain network is a typical interdependent network composed of an undirected cyber-layer network and a directed physical-layer network. To analyze the robustness of this complex interdependent supply chain network when it suffers from disruption events that can cause nodes to fail, we use a cascading failure process that focuses on load propagation. We consider load propagation via connectivity links as node failure spreads through one layer of an interdependent network, and we develop a priority redistribution strategy for failed loads subject to flow constraint. Using a giant component function and a one-to-one directed interdependence relation between nodes in a cyber-layer network and physical-layer network, we construct time-varied functional equations to quantify the dynamic process of failed loads propagation in an interdependent network. Finally, we conduct a numerical simulation for two cases, i.e., single node removal and multiple node removal at the initial disruption. The simulation results show that when we increase the number of removed nodes in an interdependent supply chain network its robustness undergoes a first-order discontinuous phase transition, and that even removing a small number of nodes will cause it to crash.
Synchronization in Complex Oscillator Networks and Smart Grids
Energy Technology Data Exchange (ETDEWEB)
Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA
2012-07-24
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks
Directory of Open Access Journals (Sweden)
Liang Jinghang
2012-08-01
Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a
Opinion Dynamics on Complex Networks with Communities
International Nuclear Information System (INIS)
Ru, Wang; Li-Ping, Chi
2008-01-01
The Ising or Potts models of ferromagnetism have been widely used to describe locally interacting social or economic systems. We consider a related model, introduced by Sznajd to describe the evolution of consensus in the scale-free networks with the tunable strength (noted by Q) of community structure. In the Sznajd model, the opinion or state of any spins can only be changed by the influence of neighbouring pairs of similar connection spins. Such pairs can polarize their neighbours. Using asynchronous updating, it is found that the smaller the community strength Q, the larger the slope of the exponential relaxation time distribution. Then the effect of the initial up- spin concentration p as a function of the final all up probability E is investigated by taking different initialization strategies, the random node-chosen initialization strategy has no difference under different community strengths, while the strategies of community node-chosen initialization and hub node-chosen initialization are different in final probability under different Q, and the latter one is more effective in reaching final state
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
Dynamic properties of epidemic spreading on finite size complex networks
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Complex networks in the Euclidean space of communicability distances
Estrada, Ernesto
2012-06-01
We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.
Analyzing complex networks evolution through Information Theory quantifiers
International Nuclear Information System (INIS)
Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martin Gomez
2011-01-01
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Nino/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Analyzing complex networks evolution through Information Theory quantifiers
Energy Technology Data Exchange (ETDEWEB)
Carpi, Laura C., E-mail: Laura.Carpi@studentmail.newcastle.edu.a [Civil, Surveying and Environmental Engineering, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte (31270-901), MG (Brazil); Rosso, Osvaldo A., E-mail: rosso@fisica.ufmg.b [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte (31270-901), MG (Brazil); Chaos and Biology Group, Instituto de Calculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires (Argentina); Saco, Patricia M., E-mail: Patricia.Saco@newcastle.edu.a [Civil, Surveying and Environmental Engineering, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Departamento de Hidraulica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, Rosario (Argentina); Ravetti, Martin Gomez, E-mail: martin.ravetti@dep.ufmg.b [Departamento de Engenharia de Producao, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte (31270-901), MG (Brazil)
2011-01-24
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Nino/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion
Directory of Open Access Journals (Sweden)
Jin Qi
2015-01-01
Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.
Analysis of Linux kernel as a complex network
International Nuclear Information System (INIS)
Gao, Yichao; Zheng, Zheng; Qin, Fangyun
2014-01-01
Operating system (OS) acts as an intermediary between software and hardware in computer-based systems. In this paper, we analyze the core of the typical Linux OS, Linux kernel, as a complex network to investigate its underlying design principles. It is found that the Linux Kernel Network (LKN) is a directed network and its out-degree follows an exponential distribution while the in-degree follows a power-law distribution. The correlation between topology and functions is also explored, by which we find that LKN is a highly modularized network with 12 key communities. Moreover, we investigate the robustness of LKN under random failures and intentional attacks. The result shows that the failure of the large in-degree nodes providing basic services will do more damage on the whole system. Our work may shed some light on the design of complex software systems
Unraveling chaotic attractors by complex networks and measurements of stock market complexity.
Cao, Hongduo; Li, Ying
2014-03-01
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.
Unraveling chaotic attractors by complex networks and measurements of stock market complexity
International Nuclear Information System (INIS)
Cao, Hongduo; Li, Ying
2014-01-01
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
Wireless sensors in complex networks: study and performance evaluation of a new hybrid model
Curia, Vincenzo; Santamaria, Amilcare Francesco; Sottile, Cesare; Voznak, Miroslav
2014-05-01
Many recent research efforts have confirmed that, given the natural evolution of telecommunication systems, they can be approached by a new modeling technique, not based yet on traditional approach of graphs theory. The branch of complex networking, although young, is able to introduce a new and strong way of networks modeling, nevertheless they are social, telecommunication or friendship networks. In this paper we propose a new modeling technique applied to Wireless Sensor Networks (WSNs). The modeling has the purpose of ensuring an improvement of the distributed communication, quantifying it in terms of clustering coefficient and average diameter of the entire network. The main idea consists in the introduction of hybrid Data Mules, able to enhance the whole connectivity of the entire network. The distribution degree of individual nodes in the network will follow a logarithmic trend, meaning that the most of the nodes are not necessarily adjacent but, for each pair of them, there exists a relatively short path that connects them. The effectiveness of the proposed idea has been validated thorough a deep campaign of simulations, proving also the power of complex and small-world networks.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Complex networks-based energy-efficient evolution model for wireless sensor networks
Energy Technology Data Exchange (ETDEWEB)
Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)
2009-08-30
Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.
Complex networks-based energy-efficient evolution model for wireless sensor networks
International Nuclear Information System (INIS)
Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun
2009-01-01
Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.
Complex and unexpected dynamics in simple genetic regulatory networks
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
Efficient weighting strategy for enhancing synchronizability of complex networks
Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan
2018-04-01
Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.
Complex networks with scale-free nature and hierarchical modularity
Shekatkar, Snehal M.; Ambika, G.
2015-09-01
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.
Knowledge Discovery in Spectral Data by Means of Complex Networks
Directory of Open Access Journals (Sweden)
Stefano Boccaletti
2013-03-01
Full Text Available In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease.
GFT centrality: A new node importance measure for complex networks
Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.
2017-12-01
Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.
Global synchronization of general delayed complex networks with stochastic disturbances
International Nuclear Information System (INIS)
Tu Li-Lan
2011-01-01
In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous-time networks with time-varying delay. Based on the stochastic Lyapunov stability theory, Ito's differential rule and the linear matrix inequality (LMI) optimization technique, several delay-dependent synchronous criteria are established, which guarantee the asymptotical mean-square synchronization of drive networks and response networks with stochastic disturbances. The criteria are expressed in terms of LMI, which can be easily solved using the Matlab LMI Control Toolbox. Finally, two examples show the effectiveness and feasibility of the proposed synchronous conditions. (general)
Divisibility patterns of natural numbers on a complex network.
Shekatkar, Snehal M; Bhagwat, Chandrasheel; Ambika, G
2015-09-16
Investigation of divisibility properties of natural numbers is one of the most important themes in the theory of numbers. Various tools have been developed over the centuries to discover and study the various patterns in the sequence of natural numbers in the context of divisibility. In the present paper, we study the divisibility of natural numbers using the framework of a growing complex network. In particular, using tools from the field of statistical inference, we show that the network is scale-free but has a non-stationary degree distribution. Along with this, we report a new kind of similarity pattern for the local clustering, which we call "stretching similarity", in this network. We also show that the various characteristics like average degree, global clustering coefficient and assortativity coefficient of the network vary smoothly with the size of the network. Using analytical arguments we estimate the asymptotic behavior of global clustering and average degree which is validated using numerical analysis.
The structure of complex networks theory and applications
Estrada, Ernesto
2012-01-01
This book deals with the analysis of the structure of complex networks by combining results from graph theory, physics, and pattern recognition. The book is divided into two parts. 11 chapters are dedicated to the development of theoretical tools for the structural analysis of networks, and 7 chapters are illustrating, in a critical way, applications of these tools to real-world scenarios. The first chapters provide detailed coverage of adjacency and metric and topologicalproperties of networks, followed by chapters devoted to the analysis of individual fragments and fragment-based global inva
A deep learning approach for fetal QRS complex detection.
Zhong, Wei; Liao, Lijuan; Guo, Xuemei; Wang, Guoli
2018-04-20
Non-invasive foetal electrocardiography (NI-FECG) has the potential to provide more additional clinical information for detecting and diagnosing fetal diseases. We propose and demonstrate a deep learning approach for fetal QRS complex detection from raw NI-FECG signals by using a convolutional neural network (CNN) model. The main objective is to investigate whether reliable fetal QRS complex detection performance can still be obtained from features of single-channel NI-FECG signals, without canceling maternal ECG (MECG) signals. A deep learning method is proposed for recognizing fetal QRS complexes. Firstly, we collect data from set-a of the PhysioNet/computing in Cardiology Challenge database. The sample entropy method is used for signal quality assessment. Part of the bad quality signals is excluded in the further analysis. Secondly, in the proposed method, the features of raw NI-FECG signals are normalized before they are fed to a CNN classifier to perform fetal QRS complex detection. We use precision, recall, F-measure and accuracy as the evaluation metrics to assess the performance of fetal QRS complex detection. The proposed deep learning method can achieve relatively high precision (75.33%), recall (80.54%), and F-measure scores (77.85%) compared with three other well-known pattern classification methods, namely KNN, naive Bayes and SVM. the proposed deep learning method can attain reliable fetal QRS complex detection performance from the raw NI-FECG signals without canceling MECG signals. In addition, the influence of different activation functions and signal quality assessment on classification performance are evaluated, and results show that Relu outperforms the Sigmoid and Tanh on this particular task, and better classification performance is obtained with the signal quality assessment step in this study.
A Network Traffic Control Enhancement Approach over Bluetooth Networks
DEFF Research Database (Denmark)
Son, L.T.; Schiøler, Henrik; Madsen, Ole Brun
2003-01-01
This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated solu...... as capacity limitations and flow requirements in the network. Simulation shows that the performance of Bluetooth networks could be improved by applying the adaptive distributed network traffic control scheme...... solution of the stated optimization problem that satisfies quality of service requirements and topologically induced constraints in Bluetooth networks, such as link capacity and node resource limitations. The proposed scheme is decentralized and complies with frequent changes of topology as well......This paper analyzes network traffic control issues in Bluetooth data networks as convex optimization problem. We formulate the problem of maximizing of total network flows and minimizing the costs of flows. An adaptive distributed network traffic control scheme is proposed as an approximated...
Energy Technology Data Exchange (ETDEWEB)
Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-04-01
Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.
Su, Housheng
2013-01-01
Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering. Housheng Su is an Associate Professor at the Department of Contro...
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks
Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.
2000-01-01
Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Directory of Open Access Journals (Sweden)
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Garrido Ortiz, Pablo; Sørensen, Chres W.; Lucani Roetter, Daniel Enrique; Agüero Calvo, Ramón
2016-01-01
Random Linear Network Coding (RLNC) has been shown to be a technique with several benefits, in particular when applied over wireless mesh networks, since it provides robustness against packet losses. On the other hand, Tunable Sparse Network Coding (TSNC) is a promising concept, which leverages a trade-off between computational complexity and goodput. An optimal density tuning function has not been found yet, due to the lack of a closed-form expression that links density, performance and comp...
THE NETWORKS IN TOURISM: A THEORETICAL APPROACH
Directory of Open Access Journals (Sweden)
Maria TĂTĂRUȘANU
2016-12-01
Full Text Available The economic world in which tourism companies act today is in a continuous changing process. The most important factor of these changes is the globalization of their environment, both in economic, social, natural and cultural aspects. The tourism companies can benefit from the opportunities brought by globalization, but also could be menaced by the new context. How could react the companies to these changes in order to create and maintain long term competitive advantage for their business? In the present paper we make a literature review of the new tourism companies´ business approach: the networks - a result and/or a reason for exploiting the opportunities or, on the contrary, for keeping their actual position on the market. It’s a qualitative approach and the research methods used are analyses, synthesis, abstraction, which are considered the most appropriate to achieve the objective of the paper.
Detecting groups of similar components in complex networks
International Nuclear Information System (INIS)
Wang Jiao; Lai, C-H
2008-01-01
We study how to detect groups in a complex network each of which consists of component nodes sharing a similar connection pattern. Based on the mixture models and the exploratory analysis set up by Newman and Leicht (2007 Proc. Natl. Acad. Sci. USA 104 9564), we develop an algorithm that is applicable to a network with any degree distribution. The partition of a network suggested by this algorithm also applies to its complementary network. In general, groups of similar components are not necessarily identical with the communities in a community network; thus partitioning a network into groups of similar components provides additional information of the network structure. The proposed algorithm can also be used for community detection when the groups and the communities overlap. By introducing a tunable parameter that controls the involved effects of the heterogeneity, we can also investigate conveniently how the group structure can be coupled with the heterogeneity characteristics. In particular, an interesting example shows a group partition can evolve into a community partition in some situations when the involved heterogeneity effects are tuned. The extension of this algorithm to weighted networks is discussed as well.
Optimal topology to minimizing congestion in connected communication complex network
Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.
In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.
Robustness of Dengue Complex Network under Targeted versus Random Attack
Directory of Open Access Journals (Sweden)
Hafiz Abid Mahmood Malik
2017-01-01
Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.
Complex Regulatory Networks Governing Production of the Glycopeptide A40926
Directory of Open Access Journals (Sweden)
Rosa Alduina
2018-04-01
Full Text Available Glycopeptides (GPAs are an important class of antibiotics, with vancomycin and teicoplanin being used in the last 40 years as drugs of last resort to treat infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus. A few new GPAs have since reached the market. One of them is dalbavancin, a derivative of A40926 produced by the actinomycete Nonomuraea sp. ATCC 39727, recently classified as N. gerenzanensis. This review summarizes what we currently know on the multilevel regulatory processes governing production of the glycopeptide A40926 and the different approaches used to increase antibiotic yields. Some nutrients, e.g., valine, l-glutamine and maltodextrin, and some endogenous proteins, e.g., Dbv3, Dbv4 and RpoBR, have a positive role on A40926 biosynthesis, while other factors, e.g., phosphate, ammonium and Dbv23, have a negative effect. Overall, the results available so far point to a complex regulatory network controlling A40926 in the native producing strain.