WorldWideScience

Sample records for complex nanofiber interactions

  1. Studies on electrospun nylon-6/chitosan complex nanofiber interactions

    International Nuclear Information System (INIS)

    Zhang Haitao; Li Shubai; Branford White, Christopher J.; Ning Xin; Nie Huali; Zhu Limin

    2009-01-01

    Composite membranes of nylon-6/chitosan nanofibers with different weight ratio of nylon-6 to chitosan were fabricated successfully using electrospinning. Morphologies of the nanofibers were investigated by scanning electron microscopy (SEM) and the intermolecular interactions of the nylon-6/chitosan complex were evaluated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) as well as mechanical testing. We found that morphology and diameter of the nanofibers were influenced by the concentration of the solution and weight ratio of the blending component materials. Furthermore FT-IR analyses on interactions between components demonstrated an IR band frequency shift that appeared to be dependent on the amount of chitosan in the complex. Observations from XRD and DSC suggested that a new fraction of γ phase crystals appeared and increased with the increasing content of chitosan in blends, this indicated that intermolecular interactions occurred between nylon-6 and chitosan. Results from performance data in mechanical showed that intermolecular interactions varied with varying chitosan content in the fibers. It was concluded that a new composite product was created and the stability of this system was attributed to strong new interactions such as hydrogen bond formation between the nylon-6 polymers and chitosan structures.

  2. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tamer; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C (Denmark); Nur, Yusuf; Hacaloglu, Jale [Department of Chemistry, Middle East Technical University, Ankara, 06530 (Turkey)], E-mail: tamer@inano.dk, E-mail: tamer@unam.bilkent.edu.tr

    2009-03-25

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: {alpha}-CD, {beta}-CD, and {gamma}-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 deg. C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order {alpha}-CD<{beta}-CD<{gamma}-CD, the thermal evolution of menthol shifted to higher temperatures, suggesting that the strength of interaction between menthol and the CD cavity is in the order {gamma}-CD>{beta}-CD>{alpha}-CD.

  3. Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes

    International Nuclear Information System (INIS)

    Uyar, Tamer; Besenbacher, Flemming; Nur, Yusuf; Hacaloglu, Jale

    2009-01-01

    Electrospinning of nanofibers with cyclodextrin inclusion complexes (CD-ICs) is particularly attractive since distinct properties can be obtained by combining the nanofibers with specific functions of the CD-ICs. Here we report on the electrospinning of poly(methyl methacrylate) (PMMA) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-ICs). These CD-menthol-IC functionalized nanofibers were developed with the purpose of producing functional nanofibers that contain fragrances/flavors with high temperature stability, and menthol was used as a model fragrance/flavor material. The PMMA nanofibers were electrospun with CD-menthol-ICs using three type of CD: α-CD, β-CD, and γ-CD. Direct pyrolysis mass spectrometry (DP-MS) studies showed that the thermal evaporation of menthol occurred over a very high and a broad temperature range (100-355 deg. C) for PMMA/CDmenthol-IC nanowebs, demonstrating the complexation of menthol with the CD cavity and its high temperature stability. Furthermore, as the size of CD cavity increased in the order α-CD β-CD>α-CD.

  4. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang

    2018-05-29

    Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.

  5. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    Science.gov (United States)

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  6. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    Science.gov (United States)

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  7. Luminescent micro- and nanofibers based on novel europium phthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania); Preda, N.; Matei, E.; Enculescu, I. [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania)

    2012-09-14

    We synthesized by wet chemical route a novel europium-potassium phthalate complex Eu{sup 3+}K{sup +}[(COO){sub 2}(C{sub 6}H{sub 4})]{sub 2}. The compound is a white powder insoluble in water. X-ray diffraction evaluation shows that we obtained a new crystalline compound with no traces of the starting materials (potassium hydrogen phthalate and europium chloride). Scanning electron microscopy reveals that the powder consists of fiber-shaped structures with sizes larger than 250 nm in diameter. Energy dispersive X-ray analysis proves that the compound has a 1:1 europium-potassium ratio. Fourier transform infrared spectroscopy confirms the presence of the phthalate in the new compound. Photoluminescence and cathodoluminescence measurements show that the fiber-shaped structures are intensely luminescent with emission bands corresponding to the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1-4) Eu (III) ion's transitions in the region between 580 nm and 700 nm, the most intense maximum being observed around 615 nm. Up-converted luminescence with a maximum at 315 nm was recorded. -- Highlights: Black-Right-Pointing-Pointer A new europium-potassium phthalate complex was synthesized by wet chemical route. Black-Right-Pointing-Pointer Fiber-shaped crystalline structures with sizes larger than 250 nm. Black-Right-Pointing-Pointer The most probable structure of the molecule is [C{sub 6}H{sub 4}(COO{sup -}){sub 2}]{sub 2} K{sup +}Eu{sup 3+}. Black-Right-Pointing-Pointer Intense luminescence due to Eu{sup 3+} ions {sup 5}D{sub 0} {yields} {sup 7}F{sub J} transitions. Black-Right-Pointing-Pointer Up-converted luminescence with a maximum at 315 nm was recorded.

  8. Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Mo

    2011-03-01

    Full Text Available The native extracellular matrix (ECM is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF and hydroxybutyl chitosan (HBC blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP and trifluoroacetic acid (TFA as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR and 13C nuclear magnetic resonance (NMR showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.

  9. Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    International Nuclear Information System (INIS)

    Asadian, M; Grande, S; Morent, R; Nikiforov, A; De Geyter, N; Declercq, H

    2017-01-01

    In this study, liquid plasma treatment was used to improve the morphology of Poly-ε-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge (DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7 days clearly revealed the highly increased cellular interactions on the double plasma-treated nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology and (2) an increased surface hydrophilicity. (paper)

  10. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  11. Electrospinning preparation and photophysical properties of one-dimensional (1D) composite nanofibers doped with erbium(III) complexes

    International Nuclear Information System (INIS)

    Sun Xu; Li Bin; Song Luting; Gong Jian; Zhang Liming

    2010-01-01

    1D composite nanofibers of poly(vinylpyrrolidone) (PVP, M W ∼60,000) doped with three Er(III) complexes were prepared by electrospinning. They demonstrated strong near-infrared (NIR) photoluminescence (PL) at 1535 nm and ternary Er(TTA) 3 Phen (denoted as Er2, where TTA=2-thenoyltrifluoroacetonate; Phen=1,10-phenanthroline) fibers (Er2/PVP) exhibited maximum PL intensity. The crystal structure of Er2 complex has been determined by X-ray diffraction measurements. Er2 doped in fibers exhibited better thermal stability of NIR PL than the pure Er2 complex. These luminescent composite fibers have potential application in optical amplifiers.

  12. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.

    Science.gov (United States)

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  13. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H [Institute of Physics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle/S (Germany); Simon, Paul [Max-Planck Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187 Dresden (Germany); Kim, Jeong-Sook [Department of Dental Technology, Daegu Health College, 702-722 Daegu (Korea, Republic of)], E-mail: gyeong.kim@physik.uni-halle.de

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  14. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  15. Electrospun Polymer Nanofibers Reinforced by Tannic Acid/Fe+++ Complexes

    Science.gov (United States)

    Yang, Weiqiao; Sousa, Ana M. M.; Thomas-Gahring, Audrey; Fan, Xuetong; Jin, Tony; Li, Xihong; Tomasula, Peggy M.; Liu, LinShu

    2016-01-01

    We report the successful preparation of reinforced electrospun nanofibers and fibrous mats of polyvinyl alcohol (PVA) via a simple and inexpensive method using stable tannic acid (TA) and ferric ion (Fe+++) assemblies formed by solution mixing and pH adjustment. Changes in solution pH change the number of TA galloyl groups attached to the Fe+++ from one (pH PVA and TA. At pH ~ 5.5, the morphology and fiber diameter size (FDS) examined by SEM are determinant for the mechanical properties of the fibrous mats and depend on the PVA content. At an optimal 8 wt % concentration, PVA becomes fully entangled and forms uniform nanofibers with smaller FDS (p mechanical properties when compared to mats of PVA alone and of PVA with TA (p mechanical properties (p 0.05) suggesting the potential of TA-Fe+++ assemblies to reinforce polymer nanofibers with high functionality for use in diverse applications including food, biomedical and pharmaceutical. PMID:28773876

  16. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property.

    Science.gov (United States)

    Celebioglu, Asli; Kayaci-Senirmak, Fatma; İpek, Semran; Durgun, Engin; Uyar, Tamer

    2016-07-13

    Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced

  17. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes.

    Science.gov (United States)

    Robinson, Matthew E; Nazemi, Ali; Lunn, David J; Hayward, Dominic W; Boott, Charlotte E; Hsiao, Ming-Siao; Harniman, Robert L; Davis, Sean A; Whittell, George R; Richardson, Robert M; De Cola, Luisa; Manners, Ian

    2017-09-26

    Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG n , where n = 16, 12, 7]. The complex with the longest solubilizing PEG ligand, Pt-PEG 16 , self-assembled to form polydisperse one-dimensional (1D) nanofibers (diameters fibers of length up to ca. 400 nm. The fiber lengths were dependent on the Pt-PEG 16 complex to seed mass ratio in a manner analogous to a living covalent polymerization of molecular monomers. Moreover, the fiber lengths were unchanged in solution after 1 week and were therefore "static" with respect to interfiber exchange processes on this time scale. In contrast, similarly formed near-uniform fibers of Pt-PEG 12 exhibited dynamic behavior that led to broadening of the length distribution within 48 h. After aging for 4 weeks in solution, Pt-PEG 12 fibers partially evolved into 2D platelets. Furthermore, self-assembly of Pt-PEG 7 yielded only transient fibers which rapidly evolved into 2D platelets. On addition of further fiber-forming Pt complex (Pt-PEG 16 ), the platelets formed assemblies via the growth of fibers selectively from their short edges. Our studies demonstrate that when interfiber dynamic exchange is suppressed, dimensional control and hierarchical structure formation are possible for supramolecular polymers through the use of kinetically controlled seeded growth methods.

  19. Dynamic and interacting complex networks

    Science.gov (United States)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  20. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction.

    Science.gov (United States)

    Wang, Wenhang; Zhang, Xiuling; Li, Cong; Du, Guanhua; Zhang, Hongjie; Ni, Yonghao

    2018-06-01

    Collagen-based films including casings with a promising application in meat industry are still needed to improve its inferior performance. In the present study, the reinforcement of carboxylated cellulose nanofibers (CNF) for collagen film, based on inter-/intra- molecular electrostatic interaction between cationic acid-swollen collagen fiber and anionic carboxylated CNF, was investigated. Adding CNF decreased the zeta-potential but increased particle size of collagen fiber suspension, with little effect on pH. Furthermore, CNF addition led to a higher tensile strength but a lower elongation, and the water vapor and oxygen barrier properties were improved remarkably. Because the CNF content was 50 g kg -1 or lower, the films had a homogeneous interwoven network, and CNF homogeneously embedded into collagen fiber matrix according to the scanning electron microscopy and atomic force microscopy analysis. Additionally, CNF addition increased film thickness and opacity, as well as swelling rate. The incorporation of CNF endows collagen fiber films good mechanical and barrier properties over a proper concentration range (≤ 50 g kg -1 collagen fiber), which is closely associated with electrostatic reaction of collagen fiber and CNF and, subsequently, the form of the homogenous, compatible spatial network, indicating a potential applications of CNF in collagenous protein films, such as edible casings. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Interaction between molecular complexes in dispersive media

    International Nuclear Information System (INIS)

    Banagas, E.A.; Manykin, E.A.

    1987-01-01

    The interaction between molecular complexes in different dispersive media with local and nonlocal screening is investigated theoretically. On the basis of results of numerical analysis on a computer, the dependence of the coupled-system spectrum and the interaction energy of the polarized modes on the characteristic parameters of the dispersive media is considered

  2. Quantum mechanical calculations on weakly interacting complexes

    NARCIS (Netherlands)

    Heijmen, T.G.A.

    1998-01-01

    Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced

  3. Determination of morphology and properties of carbon nanofibers and carbon nanofiber polymer nanocomposites

    Science.gov (United States)

    Lawrence, Joseph G.

    Vapor grown carbon nanofibers which resemble carbon nanotubes in structure and properties, have been extensively manufactured and investigated in recent years. Carbon nanofibers have been used for producing multifunctional materials due to their excellent properties and low cost of production. Since, commercially available vapor grown carbon nanofibers are subjected to different processing and post processing conditions, the morphology and properties of these nanofibers are not well-known. In this study, we focus on the characterization of the morphology and properties of these nanofibers and the polymer nanocomposites made using these nanofibers as reinforcements. The morphology of the nanofibers was studied employing high resolution Transmission Electron Microscopy (TEM) images. The analysis showed that the nanofibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most of the conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Nanofibers that were heat treated to temperatures above 1,500°C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. Due to the complexity in the structure of these nanofibers, a novel method to study the elastic properties and corresponding morphology of individual nanofibers has been developed combining Atomic Force Microscopy (AFM), TEM and Focused Ion Beam (FIB) technology. Employing the developed method, the elastic modulus of individual nanofibers and their corresponding dimensions and morphology were determined. The dependence of elastic properties on the wall thickness and the orientation of graphene sheets in the nanofibers were studied. The elastic modulus of these

  4. Leakage radiation spectroscopy of organic nanofibers on metal films: evidence for exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Jozefowski, Leszek; Fiutowski, Jacek; Bordo, Vladimir

    2012-01-01

    of detection. The leakage radiation was observed on the opposite side of the Ag film at the phase matching angle. The spectrally resolved intensity of the scattered radiation has been measured as a function of scattering angle at normally incident light. The spectrum contains a distinct peak at an wavelength......Leakage radiation spectroscopy of organic nanofibers composed of self-assembled organic molecules (para-Hexaphenylene, p-6P) deposited on a thin (40-60 nm) Ag film has been performed in the spectral range 420-675 nm which overlaps with the nanofiber photoluminescence band. Using a soft transfer...

  5. Multifunctional e-spun colloidal nanofiber structures from various dispersed blends of PVA/ODA-MMT with PVP/ODA-MMT, poly(VP-alt-MA and AgNPs incorporated polymer complexes as electro-active platforms

    Directory of Open Access Journals (Sweden)

    U. Bunyatova

    2016-07-01

    Full Text Available This work presented a new approach to fabricate polymer nanocomposites films with nanofiber structures from solution blends of poly(vinyl alcohol + octadecyl amine-montmorillonite (ODA-MMT (matrix with poly(N-vinylpyrrolidone + ODA-MMT (partner-1, poly(N-vinylpyrrolidone-alt-maleic anhydride ((poly(VP-alt-MA + (ODA-MMT (partner-2 and their silver (Ag-carrying polymer complexes by electrospinning. Chemical and physical structures, surface morphologies, thermal behaviors, electrical conductivity and thermal resistance parameters of nanofiber structures were investigated. Poly(VP-alt-MA was used both as a crosslinker and a donor of the hydrophilic groups such as ‒COOH and ‒NH–C=O amide from pyrrolidone ring. Reactive poly(VP-alt-MA, in situ generated Ag nanoparticles (AgNPs and original partner polymer had an significant effect on the morphology and diameter distribution of nanofibers. High and excellent conductive behaviors were observed for the homopolymer and copolymer of VP based fiber structures, respectively. Upon successive chemical cross-linking of the nanofiber structures by reactive partner copolymer, the conductivity of nanofiber films as electro-active platforms dramatically increased to 3.90·10–2 S·cm–1 at room temperature. Comparative analysis results also indicated that electrical properties strongly depended on the loaded reactive organoclay and in situ generated AgNPs.

  6. Interactive drama in complex neurological disability management

    NARCIS (Netherlands)

    Fenech, Anne

    2009-01-01

    Purpose. To establish whether interactive drama has any effect on the responses of people with complex neurological disabilities resident in a long term care facility. Method. This was a service evaluation using interviews with a group of 31 independently consenting long term care residents, and 27

  7. Investigation of the mechanisms of using metal complexation and cellulose nanofiber/sodium alginate layer-by-layer coating for retaining anthocyanin pigments in thermally processed blueberries in aqueous media.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Simonsen, John; Zhao, Yanyun

    2015-03-25

    This study investigated the mechanisms of anthocyanin pigment retention using Fe(3+)-anthocyanin complexation and cellulose nanofiber (CNF)/sodium alginate (SA) layer-by-layer (LBL) coatings on thermally processed blueberries in aqueous media. Anthocyanin pigments were polymerized through complexation with Fe(3+) but readily degraded by heat (93 °C for 7 min) in the aqueous media because of poor stability. CNF/SA LBL coating was successful to retain anthocyanin pigments in thermally processed blueberries. Fruits coated with CNF containing CaCl2 followed by treatment in a SA bath formed a second hydrogel layer onto the CNF layer (LBL coating system) through cross-linking between Ca(2+) and alginic acid. Methyl-cellulose-modified CNF improved the interactions between CNF, the fruit surface, and the SA layer. This study demonstrated that the CNF/SA LBL coating system was effective to retain anthocyanin pigments on thermally processed whole blueberries, whereas no combined benefit of complexation with coating was observed. Results explained the mechanisms of the new approaches for developing colorful and nutritionally enhanced anthocyanin-rich fruit products.

  8. A proteomic analysis of the interactions between poly(L-lactic acid nanofibers and SH-SY5Y neuronal-like cells

    Directory of Open Access Journals (Sweden)

    Ana Marote

    2016-11-01

    Full Text Available Poly (L-lactic acid (PLLA is a biodegradable and biocompatible polymer that has been put forward as a promising material for therapeutic approaches aiming to restore neuronal function. The topographic cues present in PLLA-based scaffolds, defined by the technique used in their preparation, have been shown to play a role on the cellular behavior of adherent cells. Even though this interaction has been shown to influence the regenerative output of the scaffold, there is a lack of studies addressing this response at the proteomic level. Hence, this work focuses on the effect of electrospun PLLA-based nanofibers on the proteome, cellular processes and signaling pathways of SH-SY5Y neuroblastoma cells. It also further explores how these molecular mediators might influence cell proliferation and differentiation upon in vitro culture. For that, mass spectrometry followed by bioinformatics analysis was firstly performed and further complemented with Western blot, cell viability and imaging assays. Results show that PLLA nanofibers differentially activate and inhibit specific cellular functions and signaling pathways related to cell division, apoptosis, actin remodeling, among others. These ultimately block cellular proliferation and induce morphological rearrangements through cytoskeleton remodeling, adaptations that turn cells more prone to differentiate. In synthesis, PLLA nanofibers shift the SH-SY5Y cells proteome towards a state more responsive to differentiation-inductive cues such as the retinoic acid. Unveiling cells responses to nanomaterials is an important step to increase the tools available for their manipulation and potentiate their use in neural tissue engineering. Further studies should be performed to compare the effects of other topographic cues on cellular behavior.

  9. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jalaja, K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Sreehari, V.S. [Indian Institute of Science Education and Research Bhopal, Bhauri, Madhya Pradesh 462066 (India); Kumar, P.R. Anil [Tissue culture laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Nirmala, R. James, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29 ± 0.53 MPa to 21 ± 2.03 MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4 ± 2.03 MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. - Highlights: • Graphene oxide nano reinforced gelatin nanofibers are fabricated by electrospinning. • Graphene oxide (0.5%) loading resulted in increased tensile strength. • GO/gelatin nanofibers are cross-linked with dextran aldehyde. • Composite nanofibers favoured adhesion of L-929 cells. • GO/gelatin mats do not prevent bacterial growth.

  10. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance

  11. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  12. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng; Naveed, Hammad; Gao, Xin

    2015-01-01

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which

  13. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  14. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrodynamics as a theory of interacting complex charges

    International Nuclear Information System (INIS)

    Akeyo Omolo, Joseph

    2003-04-01

    In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)

  16. Bioactive Glass Nanoparticles-Loaded Poly(ɛ-caprolactone Nanofiber as Substrate for ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Tadeu Henrique Lima

    2016-01-01

    Full Text Available Bioactive glass nanoparticles-loaded poly(ɛ-caprolactone nanofibers (BIOG PCL nanofibers were synthesized and evaluated as substrates for ocular cells (ARPE-19. BIOG PCL nanofibers were characterized using SEM, FTIR, and DSC, and the in vitro degradation profile was also investigated. The in vitro ocular biocompatibility of nanofibers was exploited in Müller glial cells (MIO-M1 cells and in chorioallantoic membrane (CAM; and the proliferative capacity, cytotoxicity, and functionality were evaluated. Finally, ARPE-19 cells were seeded onto BIOG PCL nanofibers and they were investigated as supports for in vitro cell adhesion and proliferation. SEM images revealed the incorporation of BIOG nanoparticles into PCL nanofibers. Nanoparticles did not induce modifications in the chemical structure and semicrystalline nature of PCL in the nanofiber, as shown by FTIR and DSC. MIO-M1 cells exposed to BIOG PCL nanofibers showed viability, and they were able to proliferate and to express GFAP, indicating cellular functionality. Moreover, nanofibers were well tolerated by CAM. These findings suggested the in vitro ocular biocompatibility and absence of toxicity of these nanofibers. Finally, the BIOG nanoparticles modulated the protein adsorption, and, subsequently, ARPE-19 cells adhered and proliferated onto the nanostructured supports, establishing cell-substrate interactions. In conclusion, the biodegradable and biocompatible BIOG PCL nanofibers supported the ARPE-19 cells.

  17. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Zehong Yang

    2011-02-01

    Full Text Available Zehong Yang1, Xiaojun Zhao1,21Nanomedicine Laboratory, West China Hospital and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, People’s Republic of China; 2Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell–nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology.Keywords: 3D culture, anticancer drug, nanofiber scaffold, cell viability, ovarian cancer

  18. Bioactive thermoresponsive polyblend nanofiber formulations for wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Mahesh D. [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India); Rathna, G.V.N., E-mail: rv.gundloori@ncl.res.in [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Agrawal, Shubhang [Polymer Science and Engineering, National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008 (India); Kuchekar, Bhanudas S. [MAEER' s Maharashtra Institute of Pharmacy S. No. 124, MIT Campus Paud Road, Kothrud, Pune 411 038 (India)

    2015-03-01

    The rationale of this work is to develop new bioactive thermoresponsive polyblend nanofiber formulations for wound healing (topical). Various polymer compositions of thermoresponsive, poly(N-isopropylacrylamide), egg albumen and poly(ε-caprolactone) blend solutions with and without a drug [gatifloxacin hydrochloride, Gati] were prepared. Non-woven nanofibers of various compositions were fabricated using an electrospinning technique. The morphology of the nanofibers was analyzed by an environmental scanning electron microscope. The morphology was influenced by the concentration of polymer, drug, and polymer blend composition. Fourier transform infrared spectroscopy analysis showed the shift in bands due to hydrogen ion interactions between polymers and drug. Thermogram of PNIPAM/PCL/EA with Gati recorded a shift in lower critical solution temperature (LCST) and glass transition temperature (T{sub g}) of PNIPAM. Similarly T{sub g} and melting temperature (T{sub m}) of PCL were shifted. X-ray diffraction patterns recorded a decrease in the crystalline state of PCL nanofibers and transformed crystalline drug to an amorphous state. In vitro release study of nanofibers with Gati showed initial rapid release up to 10 h, followed by slow and controlled release for 696 h (29 days). Nanofiber mats with Gati exhibited antibacterial properties to Staphylococcus aureus, supported suitable controlled drug release with in vitro cell viability and in vivo wound healing. - Highlights: • Thermoresponsive and bioactive nanofiber blends of PNIPAM/EA/PCL were fabricated. • Nanofiber blends favored initial rapid release, followed by controlled release. • In vitro cell viability of pure polymers and nanofiber blends was least toxic. • In vivo studies of drug loaded nanofiber mats recorded faster tissue regeneration.

  19. Optics of Nanofibers

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    During the last decade, fabrication and investigation of submicron-sized optical fibers have been received growing attention. Such nanofibers or nanowires can be grown from both inorganic and organic semiconductor materials being arranged in mutually parallel nanoaggregates. Also, selected...

  20. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins: comparison of molecular filter performance.

    Science.gov (United States)

    Uyar, Tamer; Havelund, Rasmus; Hacaloglu, Jale; Besenbacher, Flemming; Kingshott, Peter

    2010-09-28

    Electrospinning has been used to successfully create polystyrene (PS) nanofibers containing either of three different types of cyclodextrin (CD); α-CD, β-CD, and γ-CD. These three CDs are chosen because they have different sized cavities that potentially allow for selective inclusion complex (IC) formation with molecules of different size or differences in affinity of IC formation with one type of molecule. The CD containing electrospun PS nanofibers (PS/CD) were initially characterized by scanning electron microscopy (SEM) to determine the uniformity of the fibers and their fiber diameter distributions. X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine the concentration of each CD on the different fiber surfaces. Static time-of-flight secondary ion mass spectrometry (static-ToF-SIMS) showed the presence of each type of CD on the PS nanofibers by the detection of both the CD sodium adduct molecular ions (M + Na+) and lower molecular weight oxygen containing fragment ions. The comparative efficiency of the PS/CD nanofibers/nanoweb for removing phenolphthalein, a model organic compound, from solution was determined by UV-vis spectrometry, and the kinetics of phenolphthalein capture was shown to follow the trend PS/α-CD > PS/β-CD > PS/γ-CD. Direct pyrolysis mass spectrometry (DP-MS) was also performed to ascertain the relative binding strengths of the phenolphthalein for the CD cavities, and the results showed the trend in the interaction strength was β-CD > γ-CD > α-CD. Our results demonstrate that nanofibers produced by electrospinning that incorporate cyclodextrins with different sized cavities can indeed filter organic molecules and can potentially be used for filtration, purification, and/or separation processes.

  1. Complex trophic interactions in kelp forest ecosystems

    Science.gov (United States)

    Estes, J.A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  2. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    Science.gov (United States)

    Vogel, Nancy Amanda

    Nanomaterials bridge the gap between bulk materials and molecular structures and are known for their unique material properties and highly functional nature which make them attractive for a variety of potential applications, from energy storage and pollution sensors to agricultural and biomedical products. These potential applications, coupled with advances in nanotechnology, have generated considerable interest in nanostructure research. The work presented in this dissertation focuses on two such nanostructures, electrospun nanofibers and nanodiamond particles, with an overarching goal of tailoring the material behavior for a desired outcome. Our first research theme focuses on realizing the full potential of chitosan electrospinning by understanding the mechanism that enables fiber formation through cyclodextrin complexation as a function of solution properties, solvent types, and cyclodextrin content. We demonstrate that cyclodextrin addition not only enables chitosan fiber formation, but also extends the composition and solvent window for nanofiber synthesis while introducing a variety of mat topologies, including three-dimensional, self-supporting mats. These fiber formation improvements cannot be fully explained by conventional electrospinning parameters, but instead seem to be related to the molecular interactions between chitosan and cyclodextrin. Our second research theme entails the modification of highly water soluble, poly(vinyl alcohol) (PVA) nanofibers dissolution properties via atomic layer deposition (ALD) post treatments. In this work, we demonstrate that applying different thicknesses of aluminum oxide nano-coatings can improve the stability of PVA nanofibers in high humidity conditions and significantly decrease the solubility of electrospun PVA mats in water, from seconds to multiple weeks. Controlling mat dissolution allows for the unique opportunity to modulate small molecule, such as drug, release from nanofibers without altering the core

  3. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  4. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  5. Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2015-01-01

    Proteins originating from natural sources may constitute a novel type of material for use in drug delivery. However, thorough understanding of the behavior and effects of such a material when processed into a matrix together with a drug is crucial prior to further development into a drug product....... In the present study the potential of using bioactive electrospun fish sarcoplasmic proteins (FSP) as a carrier matrix for small therapeutic proteins was demonstrated in relation to the interactions with biological components of the intestinal tract. The inherent structural and chemical properties of FSP...... as a biomaterial facilitated interactions with cells and enzymes found in the gastrointestinal tract and displayed excellent biocompatibility. More specifically, insulin was efficiently encapsulated into FSP fibers maintaining its conformation, and subsequent controlled release was obtained in simulated intestinal...

  6. Natural enemy interactions constrain pest control in complex agricultural landscapes.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-04-02

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions.

  7. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    International Nuclear Information System (INIS)

    Song Wei; Shi Tong; Ren Weiping; Markel, David C; Wang Sunxi; Mao Guangzhao

    2012-01-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol–collagen–hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic–organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications. (paper)

  8. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol Blend Nanofibers

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2014-01-01

    Full Text Available Wool keratin/poly(vinyl alcohol (PVA blend nanofibers were fabricated using the electrospinning method in formic acid solutions with different weight ratios of keratin to PVA. The resultant blend nanofibers were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermal gravimetric analysis (TGA, and tensile test. SEM images showed that the diameter of the blend nanofibers was affected by the content of keratin in blend solution. FTIR and XRD analyses data demonstrated that there were good interactions between keratin and PVA in the blended nanofibers caused by possibly hydrogen bonds. The TGA study revealed that the thermal stability of the blend nanofibers was between those of keratin and PVA. Tensile test indicated that the addition of PVA was able to improve the mechanical properties of the electrospun nanofibers.

  9. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  10. Electrospun Nanofibers: Solving Global Issues

    Science.gov (United States)

    Si, Yang; Tang, Xiaomin; Yu, Jianyong; Ding, Bin

    Energy and environment will head the list of top global issues facing society for the next 50 years. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibers optimized for energy and environmental applications. The route toward these nano-objects is based primarily on electrospinning: a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. The mechanism responsible for the fiber formation mainly includes the Taylor Cone theory and flight-instability theory, which can be predicted theoretically and controlled experimentally. Moreover, the electrospinning has been applied to natural polymers, synthetic polymers, ceramics, and carbon. Fibers with complex architectures, such as ribbon fiber, porous fiber, core-shell fiber, or hollow fiber, can be produced by special electrospinning methods. It is also possible to produce nanofibrous membranes with designed aggregate structure including alignment, patterning, and two-dimensional nanonets. Finally, the brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.

  11. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  12. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  13. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  14. Interactive effects of temperature and habitat complexity on freshwater communities.

    Science.gov (United States)

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  15. Interactions among the components of the interleukin-10 receptor complex.

    Science.gov (United States)

    Krause, Christopher D; Mei, Erwen; Mirochnitchenko, Olga; Lavnikova, Natasha; Xie, Junxia; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-02-10

    We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.

  16. Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber.

    Science.gov (United States)

    Das, Manoj; Shirasaki, A; Nayak, K P; Morinaga, M; Le Kien, Fam; Hakuta, K

    2010-08-02

    We show that the fluorescence emission spectrum of few atoms can be measured by using an optical nanofiber combined with the optical heterodyne and photon correlation spectroscopy. The observed fluorescence spectrum of the atoms near the nanofiber shows negligible effects of the atom-surface interaction and agrees well with the Mollow triplet spectrum of free-space atoms at high excitation intensity.

  17. Structure, complexity and cooperation in parallel external chat interactions

    DEFF Research Database (Denmark)

    Grønning, Anette

    2012-01-01

    This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with partic......This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context...... focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25), including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another...... and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various...

  18. High thermoelectric performance of graphite nanofibers

    OpenAIRE

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2017-01-01

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high ...

  19. Interaction mode between methylene blue-Sm(III) complex and ...

    African Journals Online (AJOL)

    Spectroscopic and viscosity methods were applied to investigate the interaction between methylene blue (MB)-Sm(III) complex and herring sperm DNA by using acridine orange as a spectral probe in Tris-HCl buffer (pH 7.40). By means of molar ratio method, the binding ratios between MB-Sm(III)and DNA were determined ...

  20. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...

  1. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  2. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release

    Energy Technology Data Exchange (ETDEWEB)

    Elashnikov, Roman; Slepička, Petr [Department of Solid State Engineering, University of Chemistry and Technology, Prague 166 28 (Czech Republic); Rimpelova, Silvie; Ulbrich, Pavel [Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague (Czech Republic); Švorčík, Vaclav [Department of Solid State Engineering, University of Chemistry and Technology, Prague 166 28 (Czech Republic); Lyutakov, Oleksiy, E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, Prague 166 28 (Czech Republic)

    2017-03-01

    Smart antimicrobial materials with on-demand drug release are highly desired for biomedical applications. Herein, we report about temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) nanospheres doped with crystal violet (CV) and incorporated into the poly-L-lactide (PLLA) nanofibers. The nanofibers were prepared by electrospinning, using different initial polymers ratios. The morphology of the nanofibers and polymers distribution in the nanofibers were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The interaction between PNIPAM and PLLA in the nanofibers was studied by Fourier transform infrared spectroscopy (FTIR) and its effect on the PNIPAM phase transition was also investigated. It was shown that by the changing of the environmental temperature across the lower critical solution temperature (LCST) of PNIPAM, the switchable wettability and controlled CV release can be achieved. The temperature-dependent release kinetics of CV from polymer nanofibers was investigated by ultraviolet-visible spectroscopy (UV–Vis). The temperature-responsive release of antibacterial CV was also tested for triggering of antibacterial activity, which was examined on Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli). Thus, the proposed material is promising value for controllable drug-release.

  3. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  4. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  5. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width

    KAUST Repository

    Zhang, Ye

    2013-04-03

    The integration of a tripeptide derivative, which is a versatile self-assembly motif, with a ruthenium(II)tris(bipyridine) complex affords the first supramolecular metallo-hydrogelator that not only self assembles in water to form a hydrogel but also exhibits gel-sol transition upon oxidation of the metal center. Surprisingly, the incorporation of the metal complex in the hydrogelator results in the nanofibers, formed by the self-assembly of the hydrogelator in water, to have the width of a single molecule of the hydrogelator. These results illustrate that metal complexes, besides being able to impart rich optical, electronic, redox, or magnetic properties to supramolecular hydrogels, also offer a unique geometrical control to prearrange the self-assembly motif prior to self-assembling. The use of metal complexes to modulate the dimensionality of intermolecular interactions may also help elucidate the interactions of the molecular nanofibers with other molecules, thus facilitating the development of supramolecular hydrogel materials for a wide range of applications. © 2013 American Chemical Society.

  6. Genome complexity, robustness and genetic interactions in digital organisms

    Science.gov (United States)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  7. Synchronization in human musical rhythms and mutually interacting complex systems.

    Science.gov (United States)

    Hennig, Holger

    2014-09-09

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person's interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks.

  8. Structure, complexity and cooperation in parallel external chat interactions

    Directory of Open Access Journals (Sweden)

    Anette Grønning

    2012-09-01

    Full Text Available This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with particular focus on the content of the parallel time spans of the chat interactions. The analysis was inspired by applied conversation analysis (CA. The empirical material has been placed at my disposal by Kristelig Fagbevægelse (Krifa, which is Denmark’s third-largest trade union. The article’s overall focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25, including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various references to other media, including telephone calls and e-mails.

  9. Complexity of generic biochemical circuits: topology versus strength of interactions

    Science.gov (United States)

    Tikhonov, Mikhail; Bialek, William

    2016-12-01

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  10. Magnetic dipolar interaction in two-dimensional complex plasmas

    International Nuclear Information System (INIS)

    Feldmann, J D; Kalman, G J; Rosenberg, M

    2006-01-01

    Various interactions can play a role between the mesoscopic dust grains of a complex plasma. We study a system composed of dust grains that have both an electric charge and a permanent magnetic dipole moment. It is assumed that the grains occupy lattice sites, as dictated by their Coulomb interaction. In addition, they possess a spin degree of freedom (orientation of magnetic dipole moment) that is not constrained by the Coulomb interaction, thus allowing for the possibility of equilibrium orientational ordering and 'wobbling' about the equilibrium orientations. As a result, collective modes develop. We identify in-plane and out-of-plane wobbling modes and discuss their dispersion characteristics both in the ferromagnetic and in the anti-ferromagnetic ground state

  11. Processing and Structure of Carbon Nanofiber Paper

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao

    2009-01-01

    Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.

  12. Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode

    International Nuclear Information System (INIS)

    Ren, Bo; Fan, Meiqing; Liu, Qi; Wang, Jun; Song, Dalei; Bai, Xuefeng

    2013-01-01

    Graphical abstract: The possible formation process of NiO nanofibers without citric acid (a), and modified by citric acid (b). When the nanofibers is modified by citric acid, the nickel citrate is produced by complexing action of citric acid and nickel nitrate. Because of the larger space steric hindrance, the structure is limited by the molecular geometry. Under high temperature, the hollow nanofibers composed of NiO slices formed after the removal of PVP. Highlights: ► The method of obtaining hollow nanofibers is raised for the first time. ► The prepared NiO nanofibers are hollow tube and comprised of many NiO sheets. ► The hollow structure facilitated the electrolyte penetration. ► The hollow NiO nanofibers have good electrochemical properties. -- Abstract: NiO nanofibers modified by citric acid (NiO/CA) for supercapacitor material have been fabricated by electrospinning process. The characterizations of the nanofibers are investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. Results show that the NiO/CA nanofibers are hollow tube and comprised of many NiO sheets. Furthermore, the NiO/CA nanofibers have good electrochemical reversibility and display superior capacitive performance with large capacitance (336 F g −1 ), which is 2.5 times of NiO electrodes. Moreover, the NiO/CA nanofibers show excellent cyclic performance after 1000 cycles

  13. Perspectives: Nanofibers and nanowires for disordered photonics

    Directory of Open Access Journals (Sweden)

    Dario Pisignano

    2017-03-01

    Full Text Available As building blocks of microscopically non-homogeneous materials, semiconductor nanowires and polymer nanofibers are emerging component materials for disordered photonics, with unique properties of light emission and scattering. Effects found in assemblies of nanowires and nanofibers include broadband reflection, significant localization of light, strong and collective multiple scattering, enhanced absorption of incident photons, synergistic effects with plasmonic particles, and random lasing. We highlight recent related discoveries, with a focus on material aspects. The control of spatial correlations in complex assemblies during deposition, the coupling of modes with efficient transmission channels provided by nanofiber waveguides, and the embedment of random architectures into individually coded nanowires will allow the potential of these photonic materials to be fully exploited, unconventional physics to be highlighted, and next-generation optical devices to be achieved. The prospects opened by this technology include enhanced random lasing and mode-locking, multi-directionally guided coupling to sensors and receivers, and low-cost encrypting miniatures for encoders and labels.

  14. Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment.

    Science.gov (United States)

    Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2016-04-11

    Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.

  15. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  16. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  17. Environment-Gene interaction in common complex diseases: New approaches

    Directory of Open Access Journals (Sweden)

    William A. Toscano, Jr.

    2014-10-01

    Full Text Available Approximately 100,000 different environmental chemicals that are in use as high production volume chemicals confront us in our daily lives. Many of the chemicals we encounter are persistent and have long half-lives in the environment and our bodies. These compounds are referred to as Persistent Organic Pollutants, or POPS. The total environment however is broader than just toxic pollutants. It includes social capital, social economic status, and other factors that are not commonly considered in traditional approaches to studying environment-human interactions. The mechanism of action of environmental agents in altering the human phenotype from health to disease is more complex than once thought. The focus in public health has shifted away from the study of single-gene rare diseases and has given way to the study of multifactorial complex diseases that are common in the population. To understand common complex diseases, we need teams of scientists from different fields working together with common aims. We review some approaches for studying the action of the environment by discussing use-inspired research, and transdisciplinary research approaches. The Genomic era has yielded new tools for study of gene-environment interactions, including genomics, epigenomics, and systems biology. We use environmentally-driven diabetes mellitus type two as an example of environmental epigenomics and disease. The aim of this review is to start the conversation of how the application of advances in biomedical science can be used to advance public health.

  18. Interactive social contagions and co-infections on complex networks

    Science.gov (United States)

    Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.

    2018-01-01

    What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.

  19. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers.

    Science.gov (United States)

    Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu

    2018-07-13

    Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.

  20. Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers.

    Science.gov (United States)

    López de Dicastillo, Carol; Garrido, Luan; Alvarado, Nancy; Romero, Julio; Palma, Juan Luis; Galotto, Maria Jose

    2017-05-11

    Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC) n were successfully obtained with a final concentration of 23% ( w / w ) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC respect to polymer weight) and nanocomposites were fully characterized. Overall, nanofibers containing CNC positively modified the physical properties of PLA materials, such as the crystallinity degree of PLA which was greatly enhanced. Specifically, materials with 1% nanofiber 1PLA(PV/CNC) n presented highest improvements related to mechanical and barrier properties; elongation at break was enhanced almost four times and the permeation of oxygen was reduced by approximately 30%.

  1. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    Science.gov (United States)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  2. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  3. Complex experimental analysis of rifle-shooter interaction

    Directory of Open Access Journals (Sweden)

    Michał Taraszewski, M.ScEng, PhD. candidate

    2017-10-01

    Full Text Available In this study, a complex analysis of a man-weapon interaction based on experimental effort is presented. The attention is focused on how a shooter can influence on a rifle, opposite to generally considered in literature rifle's impact on a shooter. It is shown, based on the kbk AKM weapon, that each support point of the rifle has an substantial impact on the system. It is said that identifying human reactions on weapon may let to describe gun movement and thus may be applied to weapon accuracy determination.

  4. Coalescence and the initial stage of formation of nanofibers by the 'vapor-liquid-solid' scheme

    International Nuclear Information System (INIS)

    Zhdanok, S.A.; Martynenko, V.V.; Fisenko, S.P.; Shabunya, S.I.

    2010-01-01

    It has been shown that the diffusion interaction of growing impurity clusters within catalytic nanodroplets determines the important geometric parameters of a nanofiber. The characteristic time of coalescence of the clusters has been found. (authors)

  5. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber

    Directory of Open Access Journals (Sweden)

    Libya Ahmed Sbia

    2014-01-01

    Full Text Available Ultrahigh performance concrete (UHPC realized distinctly high mechanical, impermeability, and durability characteristics by reducing the size and content of capillary pore, refining the microstructure of cement hydrates, and effectively using fiber reinforcement. The dense and fine microstructure of UHPC favor its potential to effectively disperse and interact with nanomaterials, which could complement the reinforcing action of fibers in UHPC. An optimization experimental program was implemented in order to identify the optimum combination of steel fiber and relatively low-cost carbon nanofiber in UHPC. The optimum volume fractions of steel fiber and carbon nanofiber identified for balanced improvement of flexural strength, ductility, energy sorption capacity, impact, and abrasion resistance of UHPC were 1.1% and 0.04%, respectively. Desired complementary/synergistic actions of nanofibers and steel fibers in UHPC were detected, which were attributed to their reinforcing effects at different scales, and the potential benefits of nanofibers to interfacial bonding and pull-out behavior of fibers in UHPC. Modification techniques which enhanced the hydrophilicity and bonding potential of nanofibers to cement hydrates benefited their reinforcement efficiency in UHPC.

  7. Mechanism of nanofiber crimp

    Directory of Open Access Journals (Sweden)

    Chen Rou-Xi

    2013-01-01

    Full Text Available Fabrication of crimped fibers has been caught much attention recently due to remarkable improvement surface-to-volume ratio. The precise mechanism of the fiber crimp is, however, rare and preliminary. This paper finds that pulsation of fibers is the key factor for fiber crimp, and its configuration (wave formation corresponds to its nature frequency after solidification. Crimping performance can be improved by temperature control of the uncrimped fibers. In the paper, polylactide/ dimethylfomamide solution is fabricated into crimped nanofibers by the bubble electrospinning, an approximate period- amplitude relationship of the wave formation is obtained.

  8. Interaction and Technological Resources to Support Learning of Complex Numbers

    Directory of Open Access Journals (Sweden)

    Cassiano Scott Puhl

    2016-02-01

    Full Text Available This article presents a didactic proposal, a workshop for the introduction of the study of complex numbers. Unlike recurrent practices, the workshop began developing the geometric shape of the complex number, implicitly, through vectors. Eliminating student formal vision and algebraic, enriching the teaching practice. The main objective of the strategy was to build the concept of imaginary unit without causing a feeling of strangeness or insignificance of number. The theory of David Ausubel, meaningful learning, the workshop was based on a strategy developed to analyze the subsumers of students and develop a learning by subject. Combined with dynamic and interactive activities in the workshop, there is the use of a learning object (http://matematicacomplexa.meximas.com/. An environment created and basing on the theory of meaningful learning, making students reflect and interact in developed applications sometimes being challenged and other testing hypotheses and, above all, building knowledge. This proposal provided a rich environment for exchange of information between participants and deepening of ideas and concepts that served as subsumers. The result of the experience was very positive, as evidenced by the comments and data submitted by the participants, thus demonstrating that the objectives of this didactic proposal have been achieved.

  9. Measuring pair-wise molecular interactions in a complex mixture

    Science.gov (United States)

    Chakraborty, Krishnendu; Varma, Manoj M.; Venkatapathi, Murugesan

    2016-03-01

    Complex biological samples such as serum contain thousands of proteins and other molecules spanning up to 13 orders of magnitude in concentration. Present measurement techniques do not permit the analysis of all pair-wise interactions between the components of such a complex mixture to a given target molecule. In this work we explore the use of nanoparticle tags which encode the identity of the molecule to obtain the statistical distribution of pair-wise interactions using their Localized Surface Plasmon Resonance (LSPR) signals. The nanoparticle tags are chosen such that the binding between two molecules conjugated to the respective nanoparticle tags can be recognized by the coupling of their LSPR signals. This numerical simulation is done by DDA to investigate this approach using a reduced system consisting of three nanoparticles (a gold ellipsoid with aspect ratio 2.5 and short axis 16 nm, and two silver ellipsoids with aspect ratios 3 and 2 and short axes 8 nm and 10 nm respectively) and the set of all possible dimers formed between them. Incident light was circularly polarized and all possible particle and dimer orientations were considered. We observed that minimum peak separation between two spectra is 5 nm while maximum is 184nm.

  10. Interactive Evolution of Complex Behaviours Through Skill Encapsulation

    DEFF Research Database (Denmark)

    González de Prado Salas, Pablo; Risi, Sebastian

    2017-01-01

    Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by it...... in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.......Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution...... by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP...

  11. Improved infiltration of stem cells on electrospun nanofibers

    International Nuclear Information System (INIS)

    Shabani, Iman; Haddadi-Asl, Vahid; Seyedjafari, Ehsan; Babaeijandaghi, Farshad; Soleimani, Masoud

    2009-01-01

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  12. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    Science.gov (United States)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  13. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yinghui; Zhou, Ying [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wu, Xiaomian [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Orthodontics College of Stomatology, Chongqing Medical University, Chongqing 401147 (China); Wang, Lu [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Xu, Ling, E-mail: lingxu@pku.edu.cn [Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057 (China); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. Black-Right-Pointing-Pointer AgNPs were in situ synthesized in electrospinning solution via a facile method. Black-Right-Pointing-Pointer AgNPs distributed homogeneously on the surface of nanofibers. Black-Right-Pointing-Pointer The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. Black-Right-Pointing-Pointer The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  14. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    International Nuclear Information System (INIS)

    Zhao, Yinghui; Zhou, Ying; Wu, Xiaomian; Wang, Lu; Xu, Ling; Wei, Shicheng

    2012-01-01

    Highlights: ► AgNPs/PVA/CM-chitosan nanofibers were prepared via electrospinning method. ► AgNPs were in situ synthesized in electrospinning solution via a facile method. ► AgNPs distributed homogeneously on the surface of nanofibers. ► The prepared nanofibers possessed certain antibacterial ability against Escherichia coli. ► The AgNPs containing nanofibers had potential as antibacterial biomaterial. - Abstract: A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV–vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4–14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  15. Microscopic methods for the interactions between complex nuclei

    International Nuclear Information System (INIS)

    Ikeda, Kiyomi; Tamagaki, Ryozo; Saito, Sakae; Horiuchi, Hisashi; Tohsaki-Suzuki, Akihiro.

    1978-01-01

    Microscopic study on composite-particle interaction performed in Japan is described in this paper. In chapter 1, brief historical description of the study is presented. In chapter 2, the theory of resonating group method (RGM) for describing microscopically the interaction between nuclei (clusters) is reviewed, and formulation on the description is presented. It is shown that the generator coordinate method (GCM) is a useful one for the description of interaction between shell model clusters, and that the kernels in the RGM are easily obtained from those of the GCM. The inter-cluster interaction can be well described by the orthogonality condition model (OCM). In chapter 3, the calculational procedures for the kernels of GCN, RGM and OCM and some properties related to their calculation are discussed. The GCM kernels for various types of systems are treated. The RGM kernels are evaluated by the integral transformation of GCM kernels. The problems related to the RGM norm kernel (RGM-NK) are discussed. The projection operator onto the Pauli-allowed state in OCM is obtained directly from the solution of the eigenvalue problem of RGM-NK. In chapter 4, the exchange kernels due to the antisymmetrization are derived in analytical way with the symbolical use of computer memory by taking the α + O 16 system as a typical example. New algorisms for deriving analytically the generator coordinate kernel (GCM kernel) are presented. In chapter 5, precise generalization of the Kohn-Hulthen-Kato variational method for scattering matrix is made for the purpose of microscopic study of reactions between complex nuclei with many channels coupled. (Kato, T.)

  16. Templates for integrated nanofiber growth

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de

    the growth direction and the nanofiber length and position can be controlled by placement of nano-structured lines on the substrate. These lines can be used to guide the surface diffusion and thereby steer the self-assembly process of the organic molecules leading to morphologically well-defined molecular...... the morphology of the resulting structures leading to notably different electrical properties. The transistor design influences its electrical characteristics, and the top-gate configuration shows to have the stronger gate effect. In addition, platforms for light-emitting devices were fabricated......Para-hexaphenylene (p6P) molecules have the ability to self-assemble into organic nanofibers. These nanofibers hold unique optoelectronic properties, which make them interesting candidates as elements in electronic and optoelectronic devices. Typically these nanofibers are grown on specific single...

  17. Interactions of quercetin-uranium complexes with biomembranes and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Enas Mohammed Hassan

    2014-07-21

    has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.

  18. Interactions of quercetin-uranium complexes with biomembranes and DNA

    International Nuclear Information System (INIS)

    Attia, Enas Mohammed Hassan

    2014-01-01

    has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.

  19. Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies

    Science.gov (United States)

    Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-12-01

    Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.

  20. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  1. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  2. Urban sustainability : complex interactions and the measurement of risk

    Directory of Open Access Journals (Sweden)

    Lidia Diappi

    1999-05-01

    Full Text Available This paper focuses on the concept of asustainable city and its theoretical implications for the urban system. Urban sustainability is based on positive interactions among three different urban sub-systems : social, economic and physical, where social well-being coexists with economic development and environmental quality. This utopian scenario doesn’t appear. Affluent economy is often associated with poverty and criminality, labour variety and urban efficiency coexist with pollution and congestion. The research subject is the analysis of local risk and opportunity conditions, based on the application of a special definition of risk elaborated and made operative with the production of a set of maps representing the multidimensional facets of spatial organisation in urban sustainability. The interactions among the economic/social and environmental systems are complex and unpredictable and present the opportunity for a new methodology of scientific investigation : the connectionistic approach, processed by Self-Reflexive Neural Networks (SRNN. These Networks are a useful instrument of investigation and analogic questioning of the Data Base. Once the SRNN has learned the structure of the weights from the DB, by querying the network with the maximization or minimization of specific groups of attributes, it is possible to read the related properties and to rank the areas. The survey scale assumed by the research is purposefully aimed at the micro-scale and concerns the Municipality of Milan which is spatially divided into 144 zones.

  3. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis

    Science.gov (United States)

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779

  4. Complexity of human and ecosystem interactions in an agricultural landscape

    Science.gov (United States)

    Coupe, Richard H.; Barlow, Jeannie R.; Capel, Paul D.

    2012-01-01

    The complexity of human interaction in the commercial agricultural landscape and the resulting impacts on the ecosystem services of water quality and quantity is largely ignored by the current agricultural paradigm that maximizes crop production over other ecosystem services. Three examples at different spatial scales (local, regional, and global) are presented where human and ecosystem interactions in a commercial agricultural landscape adversely affect water quality and quantity in unintended ways in the Delta of northwestern Mississippi. In the first example, little to no regulation of groundwater use for irrigation has caused declines in groundwater levels resulting in loss of baseflow to streams and threatening future water supply. In the second example, federal policy which subsidizes corn for biofuel production has encouraged many producers to switch from cotton to corn, which requires more nutrients and water, counter to national efforts to reduce nutrient loads to the Gulf of Mexico and exacerbating groundwater level declines. The third example is the wholesale adoption of a system for weed control that relies on a single chemical, initially providing many benefits and ultimately leading to the widespread occurrence of glyphosate and its degradates in Delta streams and necessitating higher application rates of glyphosate as well as the use of other herbicides due to increasing weed resistance. Although these examples are specific to the Mississippi Delta, analogous situations exist throughout the world and point to the need for change in how we grow our food, fuel, and fiber, and manage our soil and water resources.

  5. Simple genomes, complex interactions: Epistasis in RNA virus

    Science.gov (United States)

    Elena, Santiago F.; Solé, Ricard V.; Sardanyés, Josep

    2010-06-01

    Owed to their reduced size and low number of proteins encoded, RNA viruses and other subviral pathogens are often considered as being genetically too simple. However, this structural simplicity also creates the necessity for viral RNA sequences to encode for more than one protein and for proteins to carry out multiple functions, all together resulting in complex patterns of genetic interactions. In this work we will first review the experimental studies revealing that the architecture of viral genomes is dominated by antagonistic interactions among loci. Second, we will also review mathematical models and provide a description of computational tools for the study of RNA virus dynamics and evolution. As an application of these tools, we will finish this review article by analyzing a stochastic bit-string model of in silico virus replication. This model analyzes the interplay between epistasis and the mode of replication on determining the population load of deleterious mutations. The model suggests that, for a given mutation rate, the deleterious mutational load is always larger when epistasis is predominantly antagonistic than when synergism is the rule. However, the magnitude of this effect is larger if replication occurs geometrically than if it proceeds linearly.

  6. Observation of metallic sphere–complex plasma interactions in microgravity

    International Nuclear Information System (INIS)

    Schwabe, M; Zhdanov, S; Hagl, T; Huber, P; Rubin-Zuzic, M; Zaehringer, E; Thomas, H M; Lipaev, A M; Molotkov, V I; Naumkin, V N; Fortov, V E; Vinogradov, P V

    2017-01-01

    The PK-3 Plus laboratory on board the International Space Station is used to study the interaction between metallic spheres and a complex plasma. We show that the metallic spheres significantly affect both the local plasma environment and the microparticle dynamics. The spheres charge under the influence of the plasma and repel the microparticles, forming cavities surrounding the spheres. The size of the cavity around a sphere is used to study the force balance acting on microparticles at the cavity edge. We show that the ion drag force and pressure force from other microparticles balances with the electric force acting from the sphere to within 20%. At intermediate distances from the sphere surface, the interaction between the microparticles and the metallic spheres is attractive due to the drag force stemming from the ions which are moving towards the highly charged spheres. The spheres thus strongly affect the plasma fluxes. This modification of the plasma flux can lead to an effective surface tension acting on the microparticles, and to the excitation of dust-density waves near the spheres, as the local electric field crosses a threshold. (paper)

  7. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin; Wang, Lin; Gao, Fengmei; Wei, Guodong; Tang, Bin; Yang, Weiyou; Wu, Tao

    2014-01-01

    mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a

  8. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  9. Printed second harmonic active organic nanofiber arrays

    DEFF Research Database (Denmark)

    Balzer, Frank; Brewer, Jonathan R.; Kjelstrup-Hansen, Jakob

    2007-01-01

    Organic nanofibers from semiconducting conjugated molecules are well suited to meet refined demands for advanced applications in future optoelectronics and nanophotonics. In contrast to their inorganic counterparts, the properties of organic nanowires can be tailored at the molecular level...... investigated nanofibers as grown via organic epitaxy. In the present work we show how chemically changing the functionalizing end groups leads to a huge increase of second order susceptibility, making the nanofibers technologically very interesting as efficient frequency doublers. For that the nanofibers have...

  10. Effect of Carbon Nanofiber-Matrix Adhesion on Polymeric Nanocomposite Properties—Part II

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2008-01-01

    carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.

  11. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure-property relationships

    International Nuclear Information System (INIS)

    Naebe, Minoo; Lin Tong; Wang Xungai; Staiger, Mark P; Dai Liming

    2008-01-01

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde

  12. Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption

    International Nuclear Information System (INIS)

    Stephen, Musyoka; Catherine, Ngila; Brenda, Moodley; Andrew, Kindness; Leslie, Petrik; Corrine, Greyling

    2011-01-01

    Highlights: → Electrospun and modified cellulose nanofibers have high surface area. → Modified nanofibers showed improved adsorption of Cd and Pb from water. → Regenerated modified nanofibers had high adsorption capacity hence recyclable. - Abstract: Functionalized cellulose nanofibers have been obtained through electrospinning and modification with oxolane-2,5-dione. The application of the nanofibers for adsorption of cadmium and lead ions from model wastewater samples is presented for the first time. Physical and chemical properties of the nanofibers were characterized. Surface chemistry during preparation and functionalization was monitored using Fourier transform-infrared spectroscopy, scanning electron microscopy, carbon-13 solid state nuclear magnetic resonance spectroscopy and Brunauer Emmett and Teller. Enhanced surface area of 13.68 m 2 g -1 was recorded for the nanofibers as compared to the cellulose fibers with a surface area of 3.22 m 2 g -1 . Freundlich isotherm was found to describe the interactions better than Langmuir: K f = 1.0 and 2.91 mmol g -1 (r 2 = 0.997 and 0.988) for lead and cadmium, respectively. Regenerability of the fiber mats was investigated and the results obtained indicate sustainability in adsorption efficacy of the material.

  13. Electrospinning preparation and luminescence properties of Eu(TTA)_3phen/polystyrene composite nanofibers

    Institute of Scientific and Technical Information of China (English)

    张小萍; 温世鹏; 胡水; 张立群; 刘力

    2010-01-01

    Efficient luminescent composite nanofibers,composed of polystyrene(PS,Mw=250000) and europium complex Eu(TTA)3phen(TTA=2-thenoyltrifluoroacetone,phen=1,10-phenanthroline) with diameters ranging from 350 nm to 700 nm,were prepared by electrospinning and characterized by scanning electron microscope(SEM),Fourier transform infrared spectroscopy(FT-IR),fluorescence spectroscopy,and thermogravimetric analysis(TG).The room-temperature fluorescence spectra of the composite nanofibers were composed of the typical E...

  14. Vortex-Induced Alignment of a Water Soluble Supramolecular Nanofiber Composed of an Amphiphilic Dendrimer

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuda

    2013-06-01

    Full Text Available We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID. NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  15. Fabricated nano-fiber diameter as liquid concentration sensors

    Science.gov (United States)

    Chyad, Radhi M.; Mat Jafri, Mohd Zubir; Ibrahim, Kamarulazizi

    Nanofiber is characterized by thin, long, and very soft silica. Taper fibers are made using an easy and low cost chemical method. Etching is conducted with a HF solution to remove cladding and then a low molarity HF solution to reduce the fiber core diameter. One approach to on-line monitoring of the etching process uses spectrophotometer with a white light source. In the aforementioned technique, this method aims to determine the diameter of the reduced core and show the evolution of the two different processes from the nanofiber regime to the fixed regime in which the mode was remote from the surrounding evanescent field, intensity can propagate outside the segment fiber when the core diameter is less than 500 nm. Manufacturing technologies of nano-fiber sensors offer a number of approved properties of optical fiber sensors utilized in various sensory applications. The nano-fiber sensor is utilized to sense the difference in the concentration of D-glucose in double-distilled deionized water and to measure the refractive index (RI) of a sugar solution. Our proposed method exhibited satisfactory capability based on bimolecular interactions in the biological system. The response of the nano-fiber sensors indicates a different kind of interaction among various groups of AAs. These results can be interpreted in terms of solute-solute and solute-solvent interactions and the structure making or breaking ability of solutes in the given solution. This study utilized spectra photonics to measure the transmission of light through different concentrations of sugar solution, employing cell cumber and nano-optical fibers as sensors.

  16. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    Science.gov (United States)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  17. Electrospinning of Nanofibers for Energy Applications

    Science.gov (United States)

    Sun, Guiru; Sun, Liqun; Xie, Haiming; Liu, Jia

    2016-01-01

    With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage. PMID:28335256

  18. Electrospinning of Nanofibers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Guiru Sun

    2016-07-01

    Full Text Available With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage.

  19. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  20. Oriented nanofibers embedded in a polymer matrix

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  1. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  2. Nanofibers made of globular proteins.

    Science.gov (United States)

    Dror, Yael; Ziv, Tamar; Makarov, Vadim; Wolf, Hila; Admon, Arie; Zussman, Eyal

    2008-10-01

    Strong nanofibers composed entirely of a model globular protein, namely, bovine serum albumin (BSA), were produced by electrospinning directly from a BSA solution without the use of chemical cross-linkers. Control of the spinnability and the mechanical properties of the produced nanofibers was achieved by manipulating the protein conformation, protein aggregation, and intra/intermolecular disulfide bonds exchange. In this manner, a low-viscosity globular protein solution could be modified into a polymer-like spinnable solution and easily spun into fibers whose mechanical properties were as good as those of natural fibers made of fibrous protein. We demonstrate here that newly formed disulfide bonds (intra/intermolecular) have a dominant role in both the formation of the nanofibers and in providing them with superior mechanical properties. Our approach to engineer proteins into biocompatible fibrous structures may be used in a wide range of biomedical applications such as suturing, wound dressing, and wound closure.

  3. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  4. Ecological dynamics and complex interactions of Agrobacterium megaplasmids.

    Science.gov (United States)

    Platt, Thomas G; Morton, Elise R; Barton, Ian S; Bever, James D; Fuqua, Clay

    2014-01-01

    As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.

  5. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters.

    Science.gov (United States)

    Katti, Dhirendra S; Robinson, Kyle W; Ko, Frank K; Laurencin, Cato T

    2004-08-15

    Wound healing is a complex process that often requires treatment with antibiotics. This article reports the initial development of a biodegradable polymeric nanofiber-based antibiotic delivery system. The functions of such a system would be (a) to serve as a biodegradable gauze, and (b) to serve as an antibiotic delivery system. The polymer used in this study was poly(lactide-co-glycolide) (PLAGA), and nanofibers of PLAGA were fabricated with the use of the electrospinning process. The objective of this study was to determine the effect of fabrication parameters: orifice diameter (needle gauge), polymer solution concentration, and voltage per unit length, on the morphology and diameter of electrospun nanofibers. The needle gauges studied were 16 (1.19 mm), 18 (0.84 mm), and 20 (0.58 mm), and the range of polymer solution concentration studied was from 0.10 g/mL to 0.30 g/mL. The effect of voltage was determined by varying the voltage per unit electrospinning distance, and the range studied was from 0.375 kV/cm to 1.5 kV/cm. In addition, the mass per unit area of the electrospun nanofibers as a function of time was determined and the feasibility of antibiotic (cefazolin) loading into the nanofibers was also studied. The results indicate that the diameter of nanofibers decreased with an increase in needle gauge (decrease in orifice diameter), and increased with an increase in the concentration of the polymer solution. The voltage study demonstrated that the average diameter of the nanofibers decreased with an increase in voltage. However, the effect of voltage on fiber diameter was less pronounced as compared to polymer solution concentration. The results of the areal density study indicated that the mass per unit area of the electrospun nanofibers increased linearly with time. Feasibility of drug incorporation into the nanofibers was demonstrated with the use of cefazolin, a broad-spectrum antibiotic. Overall, these studies demonstrated that PLAGA nanofibers can be

  6. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide sensor based on quartz crystal microbalance technique

    Science.gov (United States)

    Rianjanu, A.; Julian, T.; Hidayat, S. N.; Suyono, E. A.; Kusumaatmaja, A.; Triyana, K.

    2018-04-01

    Here, we describe an N,N-dimethyl formamide (DMF) vapour sensor fabricated by coating polyacrylonitrile (PAN) nanofiber structured on quartz crystal microbalance (QCM). The PAN nanofiber sensors with an average diameter of 225 nm to 310 nm were fabricated via electrospinning process with different mass deposition on QCM substrate. The nanostructured of PAN nanofiber offers a high specific surface area that improved the sensing performance of nanofiber sensors. Benefiting from that fine structure, and high polymer-solvent affinity between PAN and DMF, the development of DMF sensors presented good response at ambient temperature. Since there is no chemical reaction between PAN nanofiber and DMF vapour, weak physical interaction such absorption and swelling were responsible for the sensing behavior. The results are indicating that the response of PAN nanofiber sensors has more dependency on the nanofiber structure (specific surface area) rather than its mass deposition. The sensor also showed good stability after a few days sensing. These findings have significant implications for developing DMF vapour sensor based on QCM coated polymer nanofibers.

  7. Nanocontainers in and onto Nanofibers.

    Science.gov (United States)

    Jiang, Shuai; Lv, Li-Ping; Landfester, Katharina; Crespy, Daniel

    2016-05-17

    Hierarchical structure is a key feature explaining the superior properties of many materials in nature. Fibers usually serve in textiles, for structural reinforcement, or as support for other materials, whereas spherical micro- and nanoobjects can be either highly functional or also used as fillers to reinforce structure materials. Combining nanocontainers with fibers in one single object has been used to increase the functionality of fibers, for example, antibacterial and thermoregulation, when the advantageous properties given by the encapsulated materials inside the containers are transferred to the fibers. Herein we focus our discussion on how the hierarchical structure composed of nanocontainers in nanofibers yields materials displaying advantages of both types of materials and sometimes synergetical effects. Such materials can be produced by first carefully designing nanocontainers with defined morphology and chemistry and subsequently electrospinning them to fabricate nanofibers. This method, called colloid-electrospinning, allows for marrying the properties of nanocontainers and nanofibers. The obtained fibers could be successfully applied in different fields such as catalysis, optics, energy conversion and production, and biomedicine. The miniemulsion process is a convenient approach for the encapsulation of hydrophobic or hydrophilic payloads in nanocontainers. These nanocontainers can be embedded in fibers by the colloid-electrospinning technique. The combination of nanocontainers with nanofibers by colloid-electrospinning has several advantages. (1) The fiber matrix serves as support for the embedded nanocontainers. For example, through combining catalysts nanoparticles with fiber networks, the catalysts can be easily separated from the reaction media and handled visually. This combination is beneficial for the reuse of the catalyst and the purification of products. (2) Electrospun nanofibers containing nanocontainers offer the active agents inside the

  8. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Varble, Adam [Univ. of Utah, Salt Lake City, UT (United States); Nesbitt, Steve [Univ. of Illinois, Urbana-Champaign, IL (United States); Salio, Paola [Univ. of Buenos Aires (Argentina); Zipser, Edward [Univ. of Utah, Salt Lake City, UT (United States); van den Heever, Susan [Colorado State Univ., Fort Collins, CO (United States); McFarquhar, Greg [Univ. of Illinois, Urbana-Champaign, IL (United States); Kollias, Pavlos [Stony Brook Univ., NY (United States); Kreidenweis, Sonia [Colorado State Univ., Fort Collins, CO (United States); DeMott, Paul [Colorado State Univ., Fort Collins, CO (United States); Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Houze, Jr., Robert [Univ. of Washington, Seattle, WA (United States); Rasmussen, Kristen [Colorado State Univ., Fort Collins, CO (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romps, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gochis, David [National Center for Atmospheric Research, Boulder, CO (United States); Avila, Eldo [National Univ. of Cordoba (Argentina); Williams, Christopher [Univ. of Colorado, Boulder, CO (United States); National Center for Atmospheric Research, Boulder, CO (United States)

    2017-02-01

    General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment in the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as

  9. Intramolecular interactions in a new tris-dithizonatocobalt(III) complex

    International Nuclear Information System (INIS)

    Eschwege, Karel G. von; As, Lydia van; Joubert, Chris C.; Swarts, Jannie C.; Aquino, Manuel A.S.; Cameron, T. Stanley

    2013-01-01

    Graphical abstract: Electrochemically Co(HDz) 3 (5), show three main ligand-based redox processes, two reductions and one oxidation. Ligand oxidations can be resolved into three components highlighting effective intramolecular interactions between molecular fragments; a spectroelectrochemical study of (5) highlighted spectroscopic changes during the six observed redox steps. - Highlights: • Comparative CV's of dithizone (1), PhHg(HDz) and new Co(HDz) 3 (5), is discussed. • One oxidation and two reductions per ligand and a Co III/II couple for (5) are observed. • Mono- and tris-coordinated PhHg(HDz) and (5) have stable metal thioether bonds. • Crystal structure details explain good resolution between ligand redox processes. • Spectro-electrochemistry of (5) highlights spectroscopic properties of redox products. - Abstract: The reactions between dithizone (H 2 Dz (1)) or potassium dithizonate (KHDz (3)), and [Co(H 2 O) 6 ] 2+ (6), in acetone or methanol to liberate tris-dithizonatocobalt(III), Co(HDz) 3 (5), are described. The structure of (5) was confirmed by single crystal X-ray analyses and shows bidentate coordination to Co III via S and N donor atoms for all three HDz − ligands. A comparative voltammetric and spectro-electrochemical study revealed that (1) can be oxidised in two one-electron transfer steps, to generate a disulphide first and then HDz + . In contrast, upon complexation with cobalt, the free mercaptan group of (1) becomes a stable “metal thioether”, Co-S-C, which effectively prevents disulphide formation in all three ligands of (5) upon electrochemical oxidation. As a result, each ligand of Co(HDz) 3 shows just one oxidation process. Intramolecular communication between ligands is evident because the three separate ligand-based oxidations are well resolved. Two irreversible ligand reduction steps, each consisting of three unresolved components related to each of the three ligands, were also observed. The Co II /Co III couple

  10. Structure of local interactions in complex financial dynamics.

    Science.gov (United States)

    Jiang, X F; Chen, T T; Zheng, B

    2014-06-17

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  11. Interactive Room Support for Complex and Distributed Design Projects

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Gundersen, Kristian Kroyer; Mogensen, Preben Holst

    2001-01-01

    We are investigating the design of digital 3D interaction technology embedded in a physical environment. We take as point of departure cemplex, collaborative industrial design projects involving heterogeneous sets of documents, and physical as well as digital 3D models. The paper introduces our...... interaction devices being experimented with in the interactive room environment. The interactive room technologies have all been designed with the requirement that they must seamlessly integrate both into the physical and into the digital work environment while providing new affordances for industrial design...

  12. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  13. Mechanical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kjelstrup-Hansen, Jakob; Hansen, Ole; Rubahn, H.R.

    2006-01-01

    Intrinsic elastic and inelastic mechanical Properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find...

  14. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  15. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals.

    Science.gov (United States)

    Liu, Xia; Ma, Jing; Wu, Xiaoming; Lin, Liwei; Wang, Xiaohong

    2017-02-28

    Piezoelectricity in macromolecule polymers has been gaining immense attention, particularly for applications in biocompatible, implantable, and flexible electronic devices. This paper introduces core-shell-structured piezoelectric polyvinylidene fluoride (PVDF) nanofibers chemically wrapped by graphene oxide (GO) lamellae (PVDF/GO nanofibers), in which the polar β-phase nanocrystals are formed and uniaxially self-oriented by the synergistic effect of mechanical stretching, high-voltage alignment, and chemical interactions. The β-phase orientation of the PVDF/GO nanofibers along their axes is observed at atomic scale through high resolution transmission electron microscopy, and the β-phase content is found to be 88.5%. The piezoelectric properties of the PVDF/GO nanofibers are investigated in terms of piezoresponse mapping, local hysteresis loops, and polarization reversal by advanced piezoresponse force microscopy. The PVDF/GO nanofibers show a desirable out-of-plane piezoelectric constant (d 33 ) of -93.75 pm V -1 (at 1.0 wt % GO addition), which is 426% higher than that of the conventional pure PVDF nanofibers. The mechanism behind this dramatic enhancement in piezoelectricity is elucidated by three-dimensional molecular modeling.

  16. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    Science.gov (United States)

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  18. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  19. Exchange coupling interactions in a Fe6 complex: A theoretical study using density functional theory

    International Nuclear Information System (INIS)

    Cauchy, Thomas; Ruiz, Eliseo; Alvarez, Santiago

    2006-01-01

    Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in an Fe 6 complex. The calculated exchange coupling constants are consistent with an S=5 ground state and agree well with those reported previously for other Fe III polynuclear complexes. Ferromagnetic interactions may appear through exchange pathways formed by two bridging hydroxo or oxo ligands

  20. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  1. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  2. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  3. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    The Schiff bases and metal complexes were characterized by analytical and spectral methods like elemental analysis, ... cleavages.8–10 Cisplatin and its second generation com- ..... in DMSO. The test microorganisms were grown on nutrient agar medium in ...... effects on polymer characteristics Appl. Organomet. Chem.

  4. Interacting with molecular structures : user performance versus system complexity

    NARCIS (Netherlands)

    Liere, van R.; Martens, J.B.; Kok, A.J.F.; van Tienen, M.H.A.; Blach, R.; Kjems, E.

    2005-01-01

    Effective interaction in a virtual environment requires that the user can adequately judge the spatial relationships between the objects in a 3D scene. In order to accomplish adequate depth perception, existing virtual environments create useful perceptual cues through stereoscopy, motion parallax

  5. The Emotional Complexity of Attachment Interactions in Nursery

    Science.gov (United States)

    Page, Jools; Elfer, Peter

    2013-01-01

    In a single intensive nursery case study, using in depth interviews, group discussion and self completed daily diaries, this article reports on staff accounts of the emotional aspects of their interactions with young children. The findings show how much the staff achieved through their empathy for children and families and the establishment of…

  6. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  7. Cellulose nanofibers use in coated paper

    Science.gov (United States)

    Richmond, Finley

    Cellulose Nanofibers (CNF) are materials that can be obtained by the mechanical breakdown of natural fibers. CNF have the potential to be produced at low cost in a paper mill and may provide novel properties to paper, paper coatings, paints, or other products. However, suspensions have a complex rheology even at low solid contents. To be able to coat, pump, or mix CNF at moderate solids, it is critical to understand the rheology of these suspensions and how they flow in process equipment; current papers only report the rheology up to 6% solids. Few publications are available that describe the coating of CNF onto paper or the use of CNF as an additive into a paper coating. The rheology of CNF suspensions and coatings that contain CNF were characterized with parallel-disk geometry in a controlled stress rheometer. The steady shear viscosity, the complex viscosity, the storage modulus, and the yield stress were determined for the range of solids or concentrations (2.5-10.5%). CNF were coated onto paper with a laboratory rod coater, a size press and a high speed cylindrical laboratory coater (CLC). For each case, the coat weights were measures and the properties of the papers were characterized. CNF water base suspension was found to be a shear thinning with a power law index of around 0.1. Oscillatory tests showed a linear viscoelastic region at low strains and significant storage and loss moduli even at low solids. The Cox Merz rule does not hold for CNF suspensions or coating formulations that contain CNF with complex viscosities that are about 100 times larger than the steady shear viscosities. Paper coating formulations that contain CNF were found to have viscosities and storage and loss moduli that are over ten times larger than coatings that contain starch at similar solids. CNF suspensions were coated on papers with low amount transferred on paper either at high solids or high nip loadings. The amount transferred appears to be controlled by an interaction of

  8. Analysis of the magnetic properties in hard-magnetic nanofibers composite

    Science.gov (United States)

    Murillo-Ortíz, R.; Mirabal-García, M.; Martínez-Huerta, J. M.; Cabal Velarde, J. G.; Castaneda-Robles, I. E.; Lobo-Guerrero, A.

    2018-03-01

    The magnetic properties of the strontium hexaferrite nanoparticles were studied as they were embedded at different concentrations in poly(vinyl alcohol) (PVA) nanofibers. These nanoparticles were prepared using the Pechini method and a low frequency sonication process obtaining a 3.4 nm average diameter. The composite consisting of hard magnetic nanoparticles homogeneously dispersed in a polymeric matrix was fabricated using a homemade electrospinning with 25 kV DC power supply. The obtained nanofibers had an average diameter of 110 nm, and nanoparticles were arranged and distributed within the nanofibers under the influence of a strong electric field. The configuration of the magnetic nanoparticles in the PVA nanofibers was such that the interparticle exchange interaction became negligible, while the magnetostatic interaction turned out predominant. The results reveal a considerable improvement in the energy product (BHmax) and in the squareness ratio (Mr/Ms) for nanoparticle concentrations between 15 and 30% per gram of PVA. The nanoparticles arrangement occurred at densities below the percolation concentration enhanced the hard-magnetic properties of the nanofibers, which indicates that the organization of the particles along the fibers induces anisotropy from the magnetostatic interaction among the magnetic nanoparticles. Finally, we close the discussion analyzing the observed effect below the percolation threshold, where the induced anisotropy caused the reduction of the full-width at half-maximum of the switching field distribution curves.

  9. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  10. Intensity limits for stationary and interacting multi-soliton complexes

    International Nuclear Information System (INIS)

    Sukhorukov, Andrey A.; Akhmediev, Nail N.

    2002-01-01

    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schroedinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given

  11. Proteomic interactions in the mouse vitreous-retina complex.

    Directory of Open Access Journals (Sweden)

    Jessica M Skeie

    Full Text Available Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina.Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software.We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor.Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  12. Proteomic interactions in the mouse vitreous-retina complex.

    Science.gov (United States)

    Skeie, Jessica M; Mahajan, Vinit B

    2013-01-01

    Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  13. Evaluation of the genotoxicity of cellulose nanofibers.

    Science.gov (United States)

    de Lima, Renata; Oliveira Feitosa, Leandro; Rodrigues Maruyama, Cintia; Abreu Barga, Mariana; Yamawaki, Patrícia Cristina; Vieira, Isolda Jesus; Teixeira, Eliangela M; Corrêa, Ana Carolina; Caparelli Mattoso, Luiz Henrique; Fernandes Fraceto, Leonardo

    2012-01-01

    Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials. Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison. The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed. This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental

  14. On the interaction of molybdenum cyanide complexes with hydroperoxide of tertiary butyl

    International Nuclear Information System (INIS)

    Vretsena, N.B.; Nikipanchuk, M.V.; Chernyak, B.I.

    1979-01-01

    Conducted is investigation of interaction of potassium dioxotetracyanomolybdate (4) K 4 [MoO 2 (CN) 4 ], potassium oxotetracyanomolybdate (2) K 4 [MoO(CN) 4 ] and potassium tetracyanomolybdate K 4 [Mo(CN) 4 ] in CCl 4 and hydroperoxide of tertiary butyl medium, (HPTB). Shown is the process complex mechanism which leads to molybdenum oxidation in complexes and also to coordination and HPTB decomposition. Calculated are parameters of complex formation process of molybdenum with HPTB cyanide complexes

  15. Experimental complex for high flux-materials interaction research

    International Nuclear Information System (INIS)

    Gagen-Torn, V.K.; Kirillov, I.R.; Komarov, V.L.; Litunovsky, V.N.; Mazul, I.V.; Ovchinnikov, I.B.; Prokofjev, Yu.G.; Saksagansky, G.L.; Titov, V.A.

    1995-01-01

    The experimental complex for high heat flux testing of divertor materials and bumper mock-ups under conditions close to both ITER stationary and plasma disruption PFC heat loads is described. High power plasma and electron beams are using as high heat flux sources. The former are applied to disruption simulation experiments. The values of pulsed plasma heat flux load up to 110 MJ/m 2 and stationary e-beam load up to 15 MW/m 2 can obtained on these facilities. (orig.)

  16. Diversity in a complex ecological network with two interaction types

    Czech Academy of Sciences Publication Activity Database

    Melián, C. J.; Bascompte, J.; Jordano, P.; Křivan, Vlastimil

    2009-01-01

    Roč. 118, č. 1 (2009), s. 122-130 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Grant - others:University of California(US) DEB-0553768; The Spanish Ministry of Science and Technology (ES) REN2003-04774; The Spanish Ministry of Science and Technology (ES) REN2003-00273 Institutional research plan: CEZ:AV0Z50070508 Keywords : complex ecological network Subject RIV: EH - Ecology, Behaviour Impact factor: 3.147, year: 2009

  17. Child Obesity and Mental Health: A Complex Interaction.

    Science.gov (United States)

    Small, Leigh; Aplasca, Alexis

    2016-04-01

    Prevalence rates of childhood obesity have risen steeply over the last 3 decades. Given the increased national focus, the frequency of this clinical problem, and the multiple mental health factors that coexist with it, make obesity a public health concern. The complex relationships between mental health and obesity serve to potentiate the severity and interdependency of each. The purpose of this review is to create a contextual connection for the 2 conditions as outlined by the research literature and consider treatment options that affect both health problems. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The complex nature of calcium cation interactions with phospholipid bilayers

    Science.gov (United States)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  19. Electrospun MOF nanofibers as hydrogen storage media

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-06-01

    Full Text Available showed that the incorporation of vacuum degassing was able to create visible porosity in and/or on the PAN nanofibers and the MOF nanocrystals inside the polymeric nanofibers were fully accessible by N2 and H2 gases. With 20 wt.% loading of MOF...

  20. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    International Nuclear Information System (INIS)

    De Yoreo, J.J.; Bartelt, M.C.; Orme, C.A.; Villacampa, A.; Weeks, B.L.; Miller, A.E.

    2002-01-01

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies

  2. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  3. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    International Nuclear Information System (INIS)

    Wang, Jianqiang; Luo, Chao; Qi, Genggeng; Pan, Kai; Cao, Bing

    2014-01-01

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr 2 O 7 2− and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl − and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl − , NO 3 − , and SO 4 2− ) except for PO 4 3− for the pH change

  4. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  5. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  6. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  7. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  8. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  9. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  10. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    Directory of Open Access Journals (Sweden)

    Cheng Jin

    2008-01-01

    Full Text Available Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  11. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  12. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  13. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems

    Directory of Open Access Journals (Sweden)

    Jalani G

    2014-05-01

    Full Text Available Ghulam Jalani,* Chan Woo Jung,* Jae Sang Lee, Dong Woo Lim Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea*These authors contributed equally to this workAbstract: Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide poly(NIPAM copolymers, and poly(NIPAM-co-stearyl acrylate poly(NIPAM-co-SA, while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA. Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be

  14. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  15. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  16. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  17. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    International Nuclear Information System (INIS)

    Navarro, Maribel; Betancourt, Adelmo; Hernandez, Clara; Marchan, Edgar

    2008-01-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl 2 (phen)] and [PdCl 2 (phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 μmol L -1 in 48 h. (author)

  18. Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions

    CSIR Research Space (South Africa)

    Naude, AH

    2008-06-01

    Full Text Available The paper outlines the challenges of modelling and assessing spatially complex human-ecosystem interactions, and the need to simultaneously consider rural-urban and rich-poor interactions. The context for exploring these challenges is South Africa...

  19. Interaction energies and structures of the (n 1–3) complexes

    Indian Academy of Sciences (India)

    JAMAL N DAWOUD

    Lithium ion complexes; ab initio calculations; bond dissociation energy; electrostatic interaction; carbon oxide. 1. Introduction. The chemistry of alkali metal interactions with lig- ands has been the subject of considerable attention in the last twenty years. It has decisive implications in biology, chemistry and physics.1–3 The ...

  20. Alkali metal cation complexation and solvent interactions by robust chromium(III) fluoride complexes

    DEFF Research Database (Denmark)

    Birk, T.; Magnussen, M.J.; Piligkos, Stergios

    2010-01-01

    )] have been synthesized from mer-[CrF3(py)(3)] and shown to precipitate sodium salts from solution, of which 3[CrF3(Me(3-)tacn)]center dot 2Na(Bph(4)).solv and 6[CrF3(terpy)]center dot 4Na(Bph(4)).solv have been crystallographically characterized. In these clusters, the neutral fluoride complexes bring...

  1. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex{sup ®} EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Sheikh, Faheem A. [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Cantu, Travis; Eubanks, Thomas M.; Salinas, M. Esther; Farhangi, Chakavak S.; Ahmad, Hassan [Department of Chemistry, University of Texas-Pan American, Edinburg TX 78539 (United States); Hassan, M. Shamshi; Khil, Myung-seob [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Maffi, Shivani K. [Regional Academic Health Center-Edinburg (E-RAHC), Medical Research Division, 1214 W. Schunior St, Edinburg TX 78541 (United States); Department of Molecular Medicine, University of Texas Health Science Center, 15355 Lambda Dr. San Antonio TX 78245 (United States); Kim, Hern [Energy and Environment Fusion Technology Center, Department of Energy and Biotechnology, Myongji University, Yongin Kyonggi-do 449-728 (Korea, Republic of); Bowlin, Gary l. [Department of Biomedical Engineering, The University of Memphis, Memphis TN 38152 (United States)

    2014-12-01

    Highlights: • This work suggested the efficient use of MWCNTs to impart high mechanical properties to nanofibers and while maintaining the toxicity of the materials. • The mechanical properties of the nanofibers can be improved by introducing 2% of MWCNTs, above this point the mechanical property is reduced in nanofibers fabricated from Tecoflex{sup ®} EG 80A. • The presence of MWCNTs in the nanofibers reflecting the successful electrospining event can be ascertained by FT-IR, Raman, and TEM. • The nanofibers obtained while introducing MWCNTs represent no toxic behavior to cultured fibroblast. - Abstract: The present study discusses the design, development, and characterization of electrospun Tecoflex{sup ®} EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The Fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C–N and N–H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas.

  2. Polyacrylonitrile nanofibers with added zeolitic imidazolate frameworks (ZIF-7) to enhance mechanical and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Wook [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); An, Seongpil; Song, Kyo Yong; Joshi, Bhavana N.; Jo, Hong Seok; Yoon, Sam S., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Al-Deyab, Salem S. [Department of Chemistry, King Saud University, Riyadh 11451 (Saudi Arabia); Yarin, Alexander L., E-mail: skyoon@korea.ac.kr, E-mail: ayarin@uic.edu [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, Illinois 60607-7022 (United States); School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-12-28

    Zeolitic imidazolate framework 7/polyacrylonitrile (ZIF-7/PAN) nanofiber mat of high porosity and surface area can be used as a flexible fibrous filtration membrane that is subjected to various modes of mechanical loading resulting in stresses and strains. Therefore, the stress-strain relation of ZIF-7/PAN nanofiber mats in the elastic and plastic regimes of deformation is of significant importance for numerous practical applications, including hydrogen storage, carbon dioxide capture, and molecular sensing. Here, we demonstrated the fabrication of ZIF-7/PAN nanofiber mats via electrospinning and report their mechanical properties measured in tensile tests covering the elastic and plastic domains. The effect of the mat fabrication temperature on the mechanical properties is elucidated. We showed the superior mechanical strength and thermal stability of the compound ZIF-7/PAN nanofiber mats in comparison with that of pure PAN nanofiber mats. Material characterization including scanning electron microscope, energy-dispersive X-ray spectroscopy, tensile tests, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed the enhanced chemical bonds of the ZIF-7/PAN complex.

  3. Electrospun Nanofibers: New Concepts, Materials, and Applications.

    Science.gov (United States)

    Xue, Jiajia; Xie, Jingwei; Liu, Wenying; Xia, Younan

    2017-08-15

    Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. It has been applied to successfully produce nanofibers, with diameters down to tens of nanometers, from a rich variety of materials, including polymers, ceramics, small molecules, and their combinations. In addition to solid nanofibers with a smooth surface, electrospinning has also been adapted to generate nanofibers with a number of secondary structures, including those characterized by a porous, hollow, or core-sheath structure. The surface and/or interior of such nanofibers can be further functionalized with molecular species or nanoparticles during or after an electrospinning process. In addition, electrospun nanofibers can be assembled into ordered arrays or hierarchical structures by manipulation of their alignment, stacking, and/or folding. All of these attributes make electrospun nanofibers well-suited for a broad spectrum of applications, including those related to air filtration, water purification, heterogeneous catalysis, environmental protection, smart textiles, surface coating, energy harvesting/conversion/storage, encapsulation of bioactive species, drug delivery, tissue engineering, and regenerative medicine. Over the past 15 years, our group has extensively explored the use of electrospun nanofibers for a range of applications. Here we mainly focus on two examples: (i) use of ceramic nanofibers as catalytic supports for noble-metal nanoparticles and (ii) exploration of polymeric nanofibers as scaffolding materials for tissue regeneration. Because of their high porosity, high surface area to volume ratio, well-controlled composition, and good thermal stability, nonwoven membranes made of ceramic nanofibers are terrific supports for catalysts based on noble-metal nanoparticles. We have investigated the use of ceramic nanofibers made of various oxides, including SiO 2 , TiO 2

  4. Carbon nanofibers obtained from electrospinning process

    Science.gov (United States)

    Bovi de Oliveira, Juliana; Müller Guerrini, Lília; Sizuka Oishi, Silvia; Rogerio de Oliveira Hein, Luis; dos Santos Conejo, Luíza; Cerqueira Rezende, Mirabel; Cocchieri Botelho, Edson

    2018-02-01

    In recent years, reinforcements consisting of carbon nanostructures, such as carbon nanotubes, fullerenes, graphenes, and carbon nanofibers have received significant attention due mainly to their chemical inertness and good mechanical, electrical and thermal properties. Since carbon nanofibers comprise a continuous reinforcing with high specific surface area, associated with the fact that they can be obtained at a low cost and in a large amount, they have shown to be advantageous compared to traditional carbon nanotubes. The main objective of this work is the processing of carbon nanofibers, using polyacrylonitrile (PAN) as a precursor, obtained by the electrospinning process via polymer solution, with subsequent use for airspace applications as reinforcement in polymer composites. In this work, firstly PAN nanofibers were produced by electrospinning with diameters in the range of (375 ± 85) nm, using a dimethylformamide solution. Using a furnace, the PAN nanofiber was converted into carbon nanofiber. Morphologies and structures of PAN and carbon nanofibers were investigated by scanning electron microscopy, Raman Spectroscopy, thermogravimetric analyses and differential scanning calorimeter. The resulting residual weight after carbonization was approximately 38% in weight, with a diameters reduction of 50%, and the same showed a carbon yield of 25%. From the analysis of the crystalline structure of the carbonized material, it was found that the material presented a disordered structure.

  5. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Uchikoga

    Full Text Available Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  6. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Science.gov (United States)

    Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ohue, Masahito; Hirokawa, Takatsugu; Akiyama, Yutaka

    2013-01-01

    Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  7. Molecular interactions in the complexes of toluene with butyronitrile: A DFT approach

    Science.gov (United States)

    Karthick, N. K.; Arivazhagan, G.

    2018-04-01

    Density Functional Theory (DFT) has been employed to investigate the self association of butyronitrile and the heterointeractions in the 1:2 (toluene: butyronitrile) and 1:1 complexes of toluene with butyronitrile. For this investigation the B3LYP functional with Grimme's dispersion correction (D3) term and ωB97XD functionals were used. The theoretical frequency analysis shows the unsuitability of B3LYP with D3 for the present investigation. Therefore, Natural Bonding Orbital analysis was done at the functional ωB97XD. It is found through this work that only the methylene hydrogens of butyronitrile are responsible for the self association among the butyronitrile molecules. In 1:1 complex, the red shift in the butyronitrile methyl asymmetric stretching mode is not due to the active participation of this group in heterointeractions and it is solely due to the other interactions happening in its vicinity. Only the interaction (TOL) C - H ⋯ N(BN) is present in the complex. In 1:2 complex the butyronitrile methyl/methylene hydrogens interact with the delocalized electron cloud of toluene and the toluene hydrogens interact with the butyronitrile nitrogen. Comparison of interaction energies shows that the stability of 1:2 complex is more than that of butyronitrile dimer and 1:1 complex.

  8. Biofunctionalized Nanofibers Using Arthrospira (Spirulina Biomass and Biopolymer

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Electrospun nanofibers composed of polymers have been extensively researched because of their scientific and technical applications. Commercially available polyhydroxybutyrate (PHB and polyhydroxybutyrate-co-valerate (PHB-HV copolymers are good choices for such nanofibers. We used a highly integrated method, by adjusting the properties of the spinning solutions, where the cyanophyte Arthrospira (formally Spirulina was the single source for nanofiber biofunctionalization. We investigated nanofibers using PHB extracted from Spirulina and the bacteria Cupriavidus necator and compared the nanofibers to those made from commercially available PHB and PHB-HV. Our study assessed nanofiber formation and their selected thermal, mechanical, and optical properties. We found that nanofibers produced from Spirulina PHB and biofunctionalized with Spirulina biomass exhibited properties which were equal to or better than nanofibers made with commercially available PHB or PHB-HV. Our methodology is highly promising for nanofiber production and biofunctionalization and can be used in many industrial and life science applications.

  9. Studies on the Interaction between Zinc-Hydroxybenzoite Complex and Genomic DNA

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2006-04-01

    Full Text Available Zinc-Hydroxybenzoite ([Zn (H206] (p-HO-C6H4COO22H20 complex which wassynthesized and characterized by instrumental methods and the DNA samples which hadbeen isolated from cattle were allowed to interact at 37 oC for different time periods. Theinteraction of genomic DNA with this complex has been followed by agarose gelelectrophoresis at 50 V for 2 h. When DNA samples were allowed to interact with this metalcomplex, it was found that band intensities changed with the concentrations of the complex.In the result of interaction between this complex and genomic DNA samples, it wasdetermined that the intensities of bands were changed at the different concentrations of thecomplex. The brightness of the bands was increased and mobility of the bands wasdecreased, indicating the occurrence of increased covalent binding of the metal complexwith DNA. In this study it was concluded that the damage effect of ascorbate was reducedby Zinc-Hydroxybenzoite.

  10. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  11. Advancement in organic nanofiber based transistors

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    and characterization of OLETs using the organic semiconductors para-hexaphenylene (p6P), 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP) and 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2). These molecules can self-assemble forming molecular crystalline nanofibers. Organic nanofibers can form the basis for light......The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication...

  12. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  13. Exploring the Interaction Natures in Plutonyl (VI Complexes with Topological Analyses of Electron Density

    Directory of Open Access Journals (Sweden)

    Jiguang Du

    2016-04-01

    Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.

  14. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  15. Fabrication of Carbon Nanotube Polymer Actuator Using Nanofiber Sheet

    Science.gov (United States)

    Kato, Hayato; Shimizu, Akikazu; Sato, Taiga; Kushida, Masahito

    2017-11-01

    Carbon nanotube polymer actuators were developed using composite nanofiber sheets fabricated by multi-walled carbon nanotubes(MWCNTs) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Nanofiber sheets were fabricated by electrospinning method. The effect of flow rate and polymer concentration on nanofiber formation were verified for optimum condition for fabricating nanofiber sheets. We examined the properties of MWCNT/PVDF-HFP nanofiber sheets, as follows. Electrical conductivity and mechanical strength increased as the MWCNT weight ratio increased. We fabricated carbon nanotube polymer actuators using MWCNT/PVDF-HFP nanofiber sheets and succeeded in operating of our actuators.

  16. Polyurethane nanofibers containing copper nanoparticles as future materials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Saran, Saurabh

    2011-01-01

    nanofibers. Typically, a colloidal gel consisting of copper NPs and polyurethane has been electrospun. SEM-EDX and TEM results confirmed well oriented nanofibers and good dispersion of pure copper NPs. Copper NPs have diameter in the range of 5–10nm. The thermal stability of the synthesized nanofibers...... the antimicrobial efficacy of these nanofiber mats. Subsequently, antimicrobial tests have indicated that the prepared nanofibers do posses good bactericidal effect. Accordingly, it is noted that the obtained nanofiber mats can be used as future filter membranes with good antimicrobial activities....

  17. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    Science.gov (United States)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  18. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties

    International Nuclear Information System (INIS)

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S. Hajir; Joghataei, M.T.

    2013-01-01

    Gum tragacanth (GT) is one of the most widely used natural gums which has found applications in many areas because of its attractive features such as biodegradability, nontoxic nature, natural availability, higher resistance to microbial attacks and long shelf-life properties. GT and poly(vinyl alcohol) (PVA) were dissolved in deionized water in different ratios i.e., 0/100, 30/70, 60/40, 50/50, 40/60, 70/30, 0/100 mass ratio of GT/PVA. Nanofibers were produced from these solutions using electrospinning technique. The effect of different electrospinning parameters such as extrusion rate of polymer solutions, solution concentration, electrode spacing distance and applied voltage on the morphology of nanofibers was examined. The antibacterial activity of nanofibers and GT solution against Staphylococcus aureus and Pseudomonas aeruginosa was examined and these nanofibers showed good antibacterial property against Gram-negative bacteria. FTIR data showed that these two polymers may be having hydrogen bonding interactions. DSC data revealed that the exothermic peak at about 194 °C for PVA shifted to a lower temperature in GT/PVA blend. Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. MTT assay was carried out on the GT/PVA nanofiber to investigate the proliferation rate of fibroblast cells on the scaffolds. - Highlights: • Novel biodegradable scaffolds from natural biopolymer gum tragacanth and poly(vinyl alcohol) were successfully fabricated. • Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. • MTT assay confirmed nanofibers have cell viability property and biological compatibility. • Biocompatibility and antibacterial properties of nanofibers showed that produced nanofibers are effective wound dressing

  19. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@yahoo.com [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Joghataei, M.T. [Cellular and Molecular Research Center, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Gum tragacanth (GT) is one of the most widely used natural gums which has found applications in many areas because of its attractive features such as biodegradability, nontoxic nature, natural availability, higher resistance to microbial attacks and long shelf-life properties. GT and poly(vinyl alcohol) (PVA) were dissolved in deionized water in different ratios i.e., 0/100, 30/70, 60/40, 50/50, 40/60, 70/30, 0/100 mass ratio of GT/PVA. Nanofibers were produced from these solutions using electrospinning technique. The effect of different electrospinning parameters such as extrusion rate of polymer solutions, solution concentration, electrode spacing distance and applied voltage on the morphology of nanofibers was examined. The antibacterial activity of nanofibers and GT solution against Staphylococcus aureus and Pseudomonas aeruginosa was examined and these nanofibers showed good antibacterial property against Gram-negative bacteria. FTIR data showed that these two polymers may be having hydrogen bonding interactions. DSC data revealed that the exothermic peak at about 194 °C for PVA shifted to a lower temperature in GT/PVA blend. Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. MTT assay was carried out on the GT/PVA nanofiber to investigate the proliferation rate of fibroblast cells on the scaffolds. - Highlights: • Novel biodegradable scaffolds from natural biopolymer gum tragacanth and poly(vinyl alcohol) were successfully fabricated. • Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. • MTT assay confirmed nanofibers have cell viability property and biological compatibility. • Biocompatibility and antibacterial properties of nanofibers showed that produced nanofibers are effective wound dressing.

  20. Guidelines and Recommendations for Developing Interactive eHealth Apps for Complex Messaging in Health Promotion.

    Science.gov (United States)

    Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis

    2016-02-09

    The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has

  1. Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility.

    Science.gov (United States)

    Liu, Hua; Liu, Wenjun; Luo, Binghong; Wen, Wei; Liu, Mingxian; Wang, Xiaoying; Zhou, Changren

    2016-08-20

    To improve both the mechanical properties and cytocompatibility of poly(l-lactide) (PLLA), rod-like chitin whiskers (CHWs) were prepared, and subsequently surface modified with l-lactide to obtain grafted CHWs (g-CHWs). Then, CHWs and g-CHWs were further introduced into PLLA matrix to fabricate CHWs/PLLA and g-CHWs/PLLA nanofiber membranes by electrospinning technique. Morphologies and properties of the CHWs and g-CHWs were characterized. The surface-grafted PLLA chains played an important role in improving interfacial interaction between the whiskers and PLLA matrix. The g-CHWs dispersed more uniformly in matrix than CHWs, and the as-prepared g-CHWs/PLLA nanofiber membrane showed relative smooth and uniform fiber. As a result, the tensile strength and modulus of the g-CHWs/PLLA nanofiber membrane were obviously superior to those of the pure PLLA and CHWs/PLLA nanofiber membranes. Cells culture results indicated that g-CHWs/PLLA nanofiber membrane is more effectively in promoting MC3T3-E1 cells adhesion, spreading and proliferation than pure PLLA and CHWs/PLLA nanofiber membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays

    International Nuclear Information System (INIS)

    Peckys, Diana B; De Jonge, Niels; Simpson, Michael L; McKnight, Timothy E

    2008-01-01

    We report the effective and site-specific binding of long double stranded (ds)DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications.

  3. Enhanced cell mitochondrial activity using electrospun nanofibers

    CSIR Research Space (South Africa)

    Jacobs, V

    2015-06-01

    Full Text Available Research in tissue engineering related to the improved processes using nanofiber scaffolds has seen considerable progress in the last decade in the regeneration and construction of a number of artificial tissue types. These designs are generally...

  4. Thermal conductivity of electrospun polyethylene nanofibers.

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  5. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  6. Magnetic-superexchange interactions of uranium(IV) chloride-addition complexes with amides, 2

    International Nuclear Information System (INIS)

    Miyake, Chie; Hinatsu, Yukio; Imoto, Shosuke

    1983-01-01

    The magnetic susceptibilities of five cyclic amide (lactam)-addition complexes of uranium(IV) chloride were measured between room temperature and 2 K. Magnetic-exchange interaction was found only for N-methyl-substituted amide complexes, and a dimer structure was assumed for them on the basis of their chemical properties. Treating interdimer interaction with a molecular-field approximation, the magnetic susceptibilities were calculated to be in good agreement with the experimental results in the temperature region of the maxima in chi sub(A). The transmission of antiparallel spin coupling via the π orbitals of the bridging amide ligands is proposed to explain the strong intradimer superexchange interaction for the uranium(IV) chloride-amide complexes with the magnetic-susceptibility maximum. (author)

  7. Fabrication of Conductive Polypyrrole Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Yiqun Cong

    2013-01-01

    Full Text Available Electrospinning is employed to prepare conductive polypyrrole nanofibers with uniform morphology and good mechanical strength. Soluble PPy was synthesized with NaDEHS as dopant and then applied to electrospinning with or without PEO as carrier. The PEO contents had great influence on the morphology and conductivity of the electrospun material. The results of these experiments will allow us to have a better understanding of PPy electrospun nanofibers and will permit the design of effective electrodes in the BMIs fields.

  8. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.

    Science.gov (United States)

    Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G

    2017-10-01

    Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome.

    Directory of Open Access Journals (Sweden)

    Nowel Azzouz

    Full Text Available BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation.

  10. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  11. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca2+-Calmodulin Complex.

    Science.gov (United States)

    Hisamatsu, Yosuke; Suzuki, Nozomi; Masum, Abdullah-Al; Shibuya, Ai; Abe, Ryo; Sato, Akira; Tanuma, Sei-Ichi; Aoki, Shin

    2017-02-15

    In our previous paper, we reported on the preparation of some cationic amphiphilic Ir complexes (2c, 2d) containing KKGG peptides that induce and detect cell death of Jurkat cells. Mechanistic studies suggest that 2c interacts with anionic molecules and/or membrane receptors on the cell surface to trigger an intracellular Ca 2+ response, resulting in the induction of cell death, accompanied by membrane disruption. We have continued the studies of cell death of Jurkat cells induced by 2c and found that xestospongin C, a selective inhibitor of an inositol 1,4,5-trisphosphate receptor located on the endoplasmic reticulum (ER), reduces the cytotoxicity of 2c, suggesting that 2c triggers the release of Ca 2+ from the ER, leading to an increase in the concentration of cytosolic Ca 2+ , thus inducing cell death. Moreover, we synthesized a series of new amphiphilic cationic Ir complexes 5a-c containing photoreactive 3-trifluoromethyl-3-phenyldiazirine (TFPD) groups, in an attempt to identify the target molecules of 2c. Interestingly, it was discovered that a TFPD group functions as a triplet quencher of Ir complexes. It was also found that 5b is useful as a turn-on phosphorescent probe of acidic proteins such as bovine serum albumin (BSA) (pI = 4.7) and their complexation was confirmed by luminescence titrations and SDS-PAGE of photochemical products between them. These successful results allowed us to carry out photoaffinity labeling of the target biomolecules of 5b (2c and analogues thereof) in Jurkat cells. A proteomic analysis of the products obtained by the photoirradiation of 5b with Jurkat cells suggests that the Ca 2+ -binding protein "calmodulin (CaM)" is one of target proteins of the Ir complexes. Indeed, 5b was found to interact with the Ca 2+ -CaM complex, as evidenced by luminescence titrations and the results of photochemical reactions of 5b with CaM in the presence of Ca 2+ (SDS-PAGE). A plausible mechanism for cell death induced by a cationic amphiphilic Ir

  12. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies.

    Science.gov (United States)

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Agren, Asa; Engberg, Elisabeth; Hu, Frank B; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W

    2014-12-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics.

  13. Time series analysis of embodied interaction: Movement variability and complexity matching as dyadic properties

    Directory of Open Access Journals (Sweden)

    Leonardo Zapata-Fonseca

    2016-12-01

    Full Text Available There is a growing consensus that a fuller understanding of social cognition depends on more systematic studies of real-time social interaction. Such studies require methods that can deal with the complex dynamics taking place at multiple interdependent temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of analysis. We demonstrate the value of adopting an extended multi-scale approach by re-analyzing movement time series generated in a study of embodied dyadic interaction in a minimal virtual reality environment (a perceptual crossing experiment. Reduced movement variability revealed an interdependence between social awareness and social coordination that cannot be accounted for by either subjective or objective factors alone: it picks out interactions in which subjective and objective conditions are convergent (i.e. elevated coordination is perceived as clearly social, and impaired coordination is perceived as socially ambiguous. This finding is consistent with the claim that interpersonal interaction can be partially constitutive of direct social perception. Clustering statistics (Allan Factor of salient events revealed fractal scaling. Complexity matching defined as the similarity between these scaling laws was significantly more pronounced in pairs of participants as compared to surrogate dyads. This further highlights the multi-scale and distributed character of social interaction and extends previous complexity matching results from dyadic conversation to nonverbal social interaction dynamics. Trials with successful joint interaction were also associated with an increase in local coordination. Consequently, a local coordination pattern emerges on the background of complex dyadic interactions in the PCE task and makes joint successful performance possible.

  14. Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    Directory of Open Access Journals (Sweden)

    Kamran Sedig

    2016-10-01

    Full Text Available Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces.

  15. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  16. Surface structure enhanced second harmonic generation in organic nanofibers

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana

    Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...

  17. Field-enhanced nonlinear optical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.

    2014-01-01

    Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...

  18. High thermoelectric performance of graphite nanofibers.

    Science.gov (United States)

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  19. MglA/SspA complex interactions are modulated by inorganic polyphosphate.

    Science.gov (United States)

    Wrench, Algevis P; Gardner, Christopher L; Siegel, Sara D; Pagliai, Fernando A; Malekiha, Mahsa; Gonzalez, Claudio F; Lorca, Graciela L

    2013-01-01

    The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen's virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions. In this study, we identified inorganic polyphosphate (polyP) as a signal molecule that promotes the interaction of MglA and SspA from F. tularensis SCHU S4. Analysis of the Mgla/SspA interaction was carried out using a two-hybrid system. The Escherichia coli reporter strain contained a deletion on the ppK-ppX operon, inhibiting polyP synthesis. The interaction between MglA and SspA was significantly impaired, as was the interaction between the MglA/SspA complex and the regulatory protein, FevR, indicating the stabilizing effect of polyP. In F. tularensis, chromatin immune precipitation studies revealed that in the absence of polyP, binding of the MglA/SspA complex to the promoter region of the pdpD, iglA, fevR and ppK genes is decreased. Isothermal titration calorimetry (ITC) indicated that polyP binds directly to the MglA/SspA complex with high affinity (KD = 0.3 µM). These observations directly correlated with results obtained from calorimetric scans (DSC), where a strong shift in the mid-transition temperature (Tm) of the MglA/SspA complex was observed in the presence of polyP.

  20. MglA/SspA complex interactions are modulated by inorganic polyphosphate.

    Directory of Open Access Journals (Sweden)

    Algevis P Wrench

    Full Text Available The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI genes. These genes are essential for this pathogen's virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions. In this study, we identified inorganic polyphosphate (polyP as a signal molecule that promotes the interaction of MglA and SspA from F. tularensis SCHU S4. Analysis of the Mgla/SspA interaction was carried out using a two-hybrid system. The Escherichia coli reporter strain contained a deletion on the ppK-ppX operon, inhibiting polyP synthesis. The interaction between MglA and SspA was significantly impaired, as was the interaction between the MglA/SspA complex and the regulatory protein, FevR, indicating the stabilizing effect of polyP. In F. tularensis, chromatin immune precipitation studies revealed that in the absence of polyP, binding of the MglA/SspA complex to the promoter region of the pdpD, iglA, fevR and ppK genes is decreased. Isothermal titration calorimetry (ITC indicated that polyP binds directly to the MglA/SspA complex with high affinity (KD = 0.3 µM. These observations directly correlated with results obtained from calorimetric scans (DSC, where a strong shift in the mid-transition temperature (Tm of the MglA/SspA complex was observed in the presence of polyP.

  1. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, S.A., E-mail: shehabsallam@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt); Abbas, A.M. [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt)

    2013-04-15

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and {sup 1}H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift.

  2. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    International Nuclear Information System (INIS)

    Sallam, S.A.; Abbas, A.M.

    2013-01-01

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1 H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift

  3. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  4. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  5. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  6. Obtaining nanofibers from sisal to reinforce nanocomposites biodegradable matrixes

    International Nuclear Information System (INIS)

    Oliveira, Francieli B. de; Teixeira, Eliangela de M.; Marconcini, Jose M.; Mattoso, Luiz H.C.; Teodoro, Kelcilene B.R.

    2009-01-01

    Cellulose nanofibers have been extracted by acid hydrolysis from sisal fibers. They are seen a good source material due to availability and low cost. The nanofibers was evaluated by thermal degradation behavior using thermogravimetry (TG), crystallinity by X-ray diffraction and morphological structure was investigated by atomic force microscopy (AFM) experiments. The resulting nanofibers was shown high crystallinity and a network of rodlike cellulose elements. The nanofibers will be incorporated as reinforcement in a biodegradable matrix and evaluated. (author)

  7. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    Science.gov (United States)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  8. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  9. A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis

    Science.gov (United States)

    Dion, Marc; Kashyap, Satish; Louie, Aloisius

    1991-06-01

    This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.

  10. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    NARCIS (Netherlands)

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.

    2005-01-01

    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  11. Visible lights induced polymerization reactions: interactions between rose bengal and iron aren complex

    International Nuclear Information System (INIS)

    Burget, D.; Grotzinger, C.; Jacques, P.; Fouassier, J.P.

    1999-01-01

    The present paper is devoted to an investigation of the interactions between Rose Bengal (RB) and an Iron aren (Irg(+)) complex that are usable in visible light induced polymerization reactions. Steady state and flash photolysis experiments were performed in order to elucidate the nature of the intermediates formed after light excitation. A complete scheme of evolution of the excited states is discussed

  12. A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction

    International Nuclear Information System (INIS)

    Ren Lulu; Liu Tianxi; Guo Juan; Guo Shuzhong; Wang Xiaoyan; Wang Weizhi

    2010-01-01

    We report that the graphene sheets can be stably dispersed in water by hydrophobic interaction with polyacrylamide. Most interestingly, the resultant graphene-polyacrylamide complexes show a reversible pH responsive property although polyacrylamide itself does not possess such characteristics. This method opens up novel opportunities for the potential applications of graphene in intelligent sensors, biology, medicine, nanoelectronics and other relevant areas.

  13. Interactions between metal cations with H2 in the M - H2 complexes ...

    Indian Academy of Sciences (India)

    turbation theory (SAPT) to analyze the effect of various components on the interaction of the complexes. The ... The objec- tive of this article is two-fold, firstly, how accurately. ∗ .... In the above equation, s6 is a scaling factor that depends entirely on the density ...... 265. 47. Huber K P and Herzberg G 1979 Molecular Spec-.

  14. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  15. Complexity of health-care needs and interactions in multidisciplinary medical teams

    NARCIS (Netherlands)

    Molleman, E.; Broekhuis, Manda; Stoffels, A.M.R.R.; Jaspers, F.

    By using an information processing and social identity approach, this study examines the relationships between the complexity of the health care needs of a patient and (1) the interactions among physicians during team meetings and (2) how the meeting participants evaluate the discussion. Three

  16. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    Science.gov (United States)

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  17. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    DEFF Research Database (Denmark)

    Payne, Ruth O; Silk, Sarah E; Elias, Sean C

    2017-01-01

    serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been...

  18. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  19. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction

    Science.gov (United States)

    Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.

    2006-05-01

    Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold

  20. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  1. A Framework for the Interactive Handling of High-Dimensional Simulation Data in Complex Geometries

    KAUST Repository

    Benzina, Amal; Buse, Gerrit; Butnaru, Daniel; Murarasu, Alin; Treib, Marc; Varduhn, Vasco; Mundani, Ralf-Peter

    2013-01-01

    Flow simulations around building infrastructure models involve large scale complex geometries, which when discretized in adequate detail entail high computational cost. Moreover, tasks such as simulation insight by steering or optimization require many such costly simulations. In this paper, we illustrate the whole pipeline of an integrated solution for interactive computational steering, developed for complex flow simulation scenarios that depend on a moderate number of both geometric and physical parameters. A mesh generator takes building information model input data and outputs a valid cartesian discretization. A sparse-grids-based surrogate model—a less costly substitute for the parameterized simulation—uses precomputed data to deliver approximated simulation results at interactive rates. Furthermore, a distributed multi-display visualization environment shows building infrastructure together with flow data. The focus is set on scalability and intuitive user interaction.

  2. Interacting complex systems: Theory and application to real-world situations

    Science.gov (United States)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  3. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    Science.gov (United States)

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Interactions of trivalent and tetravalent heavy metal-siderophore complexes with pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Yoshida, T.; Ozaki, T.; Ohnuki, T.; Francis, A.J.

    2004-01-01

    We investigated the interactions of the Fe(III)-, Eu(III)-, and Hf(IV)-desferrioxamine B (DFO) complexes with the Gram-negative aerobic bacterium Pseudomonas fluorescens. Potentiometric titration of 1:1 Fe(III)-, Eu(III)-, and Hf(IV)-DFO complexes showed that Hf(IV) formed a strong complex with DFO whose stability was comparable to that of the Fe(III)-DFO complex, while Eu(III) formed a weaker one. DFO in a growth medium was not degraded by P. fluorescens. Contact of P. fluorescens cells with the Fe(III)-, Eu(III)-, and Hf(IV)-DFO complexes at pH 4-9 revealed that there was negligible adsorption of Hf(IV) and Fe(III), whereas Eu(III) was dissociated from DFO and was readily adsorbed by the cells. These results suggest that Fe(III) and Hf(IV) form stable complexes with DFO and are not adsorbed by P. fluorescens cells. Europium(III) forms a weaker complex with DFO than Fe(III) and Hf(IV) do and its DFO complex is readily dissociated in the presence of the cells. (orig.)

  5. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  6. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  7. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy

    Directory of Open Access Journals (Sweden)

    Liu Lin

    2009-12-01

    Full Text Available Abstract Background microRNAs (miRNAs regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. Results We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT. Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. Conclusions This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and

  8. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  9. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.

    Science.gov (United States)

    Caracciolo, Giulio; Amenitsch, Heinz

    2012-10-01

    Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

  10. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan

    2017-01-22

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  11. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan; Abrar, Shafayat

    2017-01-01

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  12. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  13. Interactions among Ecological Factors That Explain the Psychosocial Quality of Life of Children with Complex Needs

    Directory of Open Access Journals (Sweden)

    Sandy Thurston

    2010-01-01

    Full Text Available Purpose. To explore the associations and interactions among ecological factors and explain the psychosocial quality of life of children with complex needs. Methods. In this cross-sectional survey consenting parents were identified by the Children's Treatment Network. Families were eligible if the child from 0 to 19 years, resided in Simcoe/York, and there were multiple family needs. Regression analysis was used to explore associations and interactions. n=429. Results. Younger children, without conduct disorder, without hostile and punitive parenting and with low adverse family impact demonstrated the highest levels of psychosocial quality of life. Statistically significant interactions between processes of care and parent variables highlight the complexity of real life situations. Conclusions. It is not possible to fully understand the child's psychosocial quality of life in complex needs families by considering only simple associations between ecological factors. A multitude of factors and interactions between these factors are simultaneously present and the care of these families requires a holistic approach.

  14. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Preparation and characterization of kefiran electrospun nanofibers.

    Science.gov (United States)

    Esnaashari, Seyedeh Sara; Rezaei, Sasan; Mirzaei, Esmaeil; Afshari, Hamed; Rezayat, Seyed Mahdi; Faridi-Majidi, Reza

    2014-09-01

    In this study, we report the first successful production of kefiran nanofibers through electrospinning process using distilled water as solvent. For this purpose, kefiran was extracted from cultured kefir grains, and homogenous kefiran solutions with different concentrations were prepared and then electrospun to obtain uniform nanofibers. The effect of main process parameters, including applied voltage, tip-to-collector distance, and feeding rate, on diameter and morphology of produced nanofibers, was studied. Scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to characterize electrospun mats. Rheological behavior of the kefiran solution was evaluated via a cone and plate rheometer too. The results exhibited that diameter of kefiran nanofibers increased with increasing polymer concentration, applied voltage, and polymer feeding rate, while tip-to-collector distance did not have significant effect on nanofiber diameter. ATR-FTIR spectra showed that kefiran has maintained its molecular structure during electrospinning process. Flow curves also demonstrated shear thinning behavior for kefiran solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cotton nanofibers obtained by different acid conditions

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Oliveira, Caue Ribeiro de; Mattoso, Luiz H.C.; Correa, Ana Carolina; Palladin, Priscila

    2009-01-01

    The thermal stability of cellulose nanofibers is related to their application and especially to polymer processing which temperatures of processing are around 200 deg C. In this work, nanofibers of commercial cotton were obtained by acid hydrolysis employing different acids: sulfuric, hydrochloric and a mixture (2:1; sulfuric acid: hydrochloric acid).The morphology of the nanofibers were characterized by transmission microscopy (TEM), crystallinity by x-ray diffraction (XRD) and thermal stability in air atmosphere by thermogravimetric analysis (TGA). The results indicated a very similar morphology and crystallinity among them. The main differences were relative to aggregation state e and thermal stability. The aggregation state of the suspensions decreases in the order HCl 2 SO 4 :HCl 2 SO 4- . The hydrolysis with a mix of HCl and H 2 SO 4 resulted in cellulose nanofibers with higher thermal stability than those hydrolyzed with H 2 SO 4 . The hydrolysis employed with a mixture of sulphuric and hydrochloric acids also showed a better dispersion than those suspensions of nanofibers obtained by hydrolysis with only HCl. (author)

  17. PANI-nanofibers/polyethylene blends: preparation and properties

    International Nuclear Information System (INIS)

    Oliveira, F.; Hubler, R.; Basso, N.R.S.; Fim, F.C.; Galland, G.B.

    2010-01-01

    In this work polyaniline nanofibers (PANI-nanofibers) were prepared via interfacial polymerization. The PANI-nanofibers were dispersed in polyethylene (PE) matrix by in situ polymerization of ethylene using Cp 2 ZrCl 2 [bis(cyclopentadienyl) zirconium(IV) dichloride)] and methylaluminoxane as catalytic system. The composites were characterized by infra-red spectroscopy, X-ray diffraction, thermal analysis, transmission electron microscopy and scanning electron microscopy. The results show that nanofibers with average diameters of 200 nm were synthesized and that it was obtained well dispersed PE/PANI nanocomposites. The PANI-nanofibers load did not affect the catalytic activity, but it decreased crystallinity degree of nanocomposites. (author)

  18. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    Science.gov (United States)

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  20. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    International Nuclear Information System (INIS)

    Valle-Bourrouet, Grettel; Ugalde-Saldivar, Victor M.; Gomez, Martin; Ortiz-Frade, Luis A.; Gonzalez, Ignacio; Frontana, Carlos

    2010-01-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw - ) 2 (Py) 2 ; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw - units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw - units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  1. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Bourrouet, Grettel [Universidad de Costa Rica, Escuela de Quimica, San Jose (Costa Rica); Ugalde-Saldivar, Victor M. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Gomez, Martin [Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana-Xochimilco, C.P. 04960, Mexico, D.F. (Mexico); Ortiz-Frade, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, 76703, Pedro Escobedo, Queretaro (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Apartado postal 55-534, 09340, Mexico, D.F. (Mexico); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. Instituto Politecnico Nacional No. 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico)

    2010-12-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw{sup -}){sub 2}(Py){sub 2}; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw{sup -} units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw{sup -} units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  2. INTERACTION OF FLUORIDE COMPLEXES DERIVED FROM GLASS-IONOMER CEMENTS WITH HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    Lewis S. M.

    2013-09-01

    Full Text Available A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoride complexes with protons as HF or HF2-, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes, whether or not it was complexed. SEM (EDAX study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process.

  3. Revealing the Structural Complexity of Component Interactions of Topic-Specific PCK when Planning to Teach

    Science.gov (United States)

    Mavhunga, Elizabeth

    2018-04-01

    Teaching pedagogical content knowledge (PCK) at a topic-specific level requires clarity on the content-specific nature of the components employed, as well as the specific features that bring about the desirable depth in teacher explanations. Such understanding is often hazy; yet, it influences the nature of teacher tasks and learning opportunities afforded to pre-service teachers in a teaching program. The purpose of this study was twofold: firstly, to illuminate the emerging complexity when content-specific components of PCK interact when planning to teach a chemistry topic; and secondly, to identify the kinds of teacher tasks that promote the emergence of such complexity. Data collected were content representations (CoRes) in chemical equilibrium accompanied by expanded lesson outlines from 15 pre-service teachers in their final year of study towards a first degree in teaching (B Ed). The analysis involved extraction of episodes that exhibited component interaction by using a qualitative in-depth analysis method. The results revealed the structure in which the components of PCK in a topic interact among each other to be linear, interwoven, or a combination of the two. The interwoven interactions contained multiple components that connected explanations on different aspects of a concept, all working in a complementary manner. The most sophisticated component interactions emerged from teacher tasks on descriptions of a lesson sequence and a summary of a lesson. Recommendations in this study highlight core practices for making pedagogical transformation of topic content knowledge more accessible.

  4. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  5. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  6. LES of the interaction between a premixed flame and complex turbulent swirling flow

    International Nuclear Information System (INIS)

    Iudiciani, P; Duwig, C; Szasz, R Z; Fuchs, L; Gutmark, E

    2011-01-01

    In this paper the Triple Annular Research Swirler, a fuel injector characterized by complex design with three concentric air passages, has been studied numerically. A swirl-stabilized lean premixed flame has been simulated by means of Large Eddy Simulation. The computations characterize successfully the dynamics of the flame and their interactions with the complex swirling flow. The flame is stabilized upstream the fuel injector exit, and the dynamics are led by a Precessing Vortex Core which seems to originate in the inner air passage. The results obtained by Proper Orthogonal Decomposition analysis are in agreement with previous findings in the context of swirling flows/flames.

  7. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  8. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    Science.gov (United States)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-08-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats.

  9. Fabrication of nanofiber mats from electrospinning of functionalized polymers

    International Nuclear Information System (INIS)

    Oktay, Burcu; Kayaman-Apohan, Nilhan; Erdem-Kuruca, Serap

    2014-01-01

    Electrospinning technique enabled us to prepare nanofibers from synthetic and natural polymers. In this study, it was aimed to fabricate electrospun poly(vinyl alcohol) (PVA) based nanofibers by reactive electrospinning process. To improve endurance of fiber toward to many solvents, PVA was functionalized with photo-crosslinkable groups before spinning. Afterward PVA was crosslinked by UV radiation during electrospinning process. The nanofiber mats were characterized by scanning electron microscopy (SEM). The results showed that homogenous, uniform and crosslinked PVA nanofibers in diameters of about 200 nm were obtained. Thermal stability of the nanofiber mat was investigated with thermal gravimetric analysis (TGA). Also the potential use of this nanofiber mats for tissue engineering was examined. Osteosarcoma (Saos) cells were cultured on the nanofiber mats

  10. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  11. Gas Sensing Properties of Indium Tin Oxide Nanofibers

    Directory of Open Access Journals (Sweden)

    Shiyou Xu

    2009-11-01

    Full Text Available Indium Tin Oxide (ITO nanofibers were fabricated by the electrospinning process. The morphology and crystal structure of ITO nanofibers were studied by SEM, XRD, and TEM respectively. The results showed that polycrystalline ITO nanofibers with an average diameter of 80 nm were obtained. Sensors based on these nanofibers were fabricated by collecting these nanofibers on the integrated sensor platforms. The ITO nanofiber-based sensors showed very fast and high sensor responses at both room and elevated temperatures for NO2. The ratios of resistance in NO2 over that in air were 5 at room temperature and 34 at the optimal working temperature, respectively. The ITO nanofiber-based sensor can be repeatedly used. The details for the fast, enhanced sensor responses and the optimal temperature were discussed.

  12. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  14. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments.

    Science.gov (United States)

    Geisser, P

    1990-07-01

    It has been shown in the present study that food components such as phytic acid, oxalic acid, tannin, sodium alginate, choline and choline salts, vitamins A, D3 and E, soy oil and soy flour, do not undergo any interactions with iron(III)-hydroxide polymaltose complex (Ferrum Hausmann). Phytic acid, oxalic acid, tannin and sodium alginate, however, react with iron(II) or iron(III)-salts at pH values of 3.0, 5.5 and 8.0, giving rise to iron complexes. Trimethylamine-N-oxide, which is present in fish meal, reacts with iron(II)-sulphate to produce iron(III) reaction products; it does not react with iron(III)-hydroxide polymaltose complex. Special soybean flours show no irreversible adsorption or precipitation with iron(III)-hydroxyide polymaltose complex over the pH range 3.0-8.0, in contrast to iron(II)-sulphate. Antacids containing aluminium hydroxide, talc, ion exchange resins or other unabsorbable, insoluble components absorb iron(III)-hydroxide polymaltose complex in the pH range 3.0-8.0 in a reversible manner, while the strong adsorption or precipitation observed with iron(II)-sulphate at pH 8.0 is irreversible. No interaction was observed between the steroid hormones studied and iron(II)-sulphate or iron(III)-hydroxide polymaltose complex. On the basis of the measured compatibilities, iron(III)-hydroxide polymaltose complex can be administered orally simultaneously with many other drugs, without prejudicing the absorption of iron or of the other drug as is often seen with iron(II) and iron(III) salts.

  15. Nanoparticles and nanofibers for topical drug delivery

    Science.gov (United States)

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  16. Chitosan based nanofibers in bone tissue engineering.

    Science.gov (United States)

    Balagangadharan, K; Dhivya, S; Selvamurugan, N

    2017-11-01

    Bone tissue engineering involves biomaterials, cells and regulatory factors to make biosynthetic bone grafts with efficient mineralization for regeneration of fractured or damaged bones. Out of all the techniques available for scaffold preparation, electrospinning is given priority as it can fabricate nanostructures. Also, electrospun nanofibers possess unique properties such as the high surface area to volume ratio, porosity, stability, permeability and morphological similarity to that of extra cellular matrix. Chitosan (CS) has a significant edge over other materials and as a graft material, CS can be used alone or in combination with other materials in the form of nanofibers to provide the structural and biochemical cues for acceleration of bone regeneration. Hence, this review was aimed to provide a detailed study available on CS and its composites prepared as nanofibers, and their associated properties found suitable for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  18. Intermolecular interactions of decamethoxinum and acetylsalicylic acid in systems of various complexity levels

    Directory of Open Access Journals (Sweden)

    O. V. Vashchenko

    2016-07-01

    Full Text Available Intermolecular interactions between decamethoxinum (DEC and acetylsalicylic acid (ASА have been studied in the phospholipid-containing systems of escalating complexity levels. The host media for these substances were solvents, L-α-dipalmitoylphosphatidylcholine (DPPC membranes, and samples of human erythrocytes. Peculiar effects caused by DEC-ASА interaction have been observed in each system using appropriate techniques: (a DEC-ASА non-covalent complexes formation in DPPC-containing systems were revealed by mass spectrometry with electrospray ionization; (b joint DEC-ASА action on DPPC model membranes led to increasing of membrane melting temperature Tm, whereas individual drugs caused pronounced Tm decreasing, which was demonstrated by differential scanning calorimetry; (c deceleration of DEC-induced haemolysis of erythrocytes under joint DEC-ASА application was observed by optical microscopy.

  19. Product development strategy in the Danish agricultural complex: Global interaction with clusters of marketing excellence

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    1992-01-01

    A study of the Danish foods industry shows that producers of food products have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently, the Danish agro-industrial complex been singled out in other studies as a paradigmatic...... produce and utilize sticky and fastchanging information about production and markets respectively. It is precisely by not interacting wi market business-to-business demand from changing end-user market that the Danish agro-industrial complex has avoided being insulated. The managerial implication...... is that a company in search of partners for joint development in global agro-industra networks can realize a competitive advantage by applying a market view that is euclidean upstream and equidstant downstream....

  20. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  1. Fanconi Anemia Proteins FANCA, FANCC, and FANCG/XRCC9 Interact in a Functional Nuclear Complex

    OpenAIRE

    Garcia-Higuera, Irene; Kuang, Yanan; Näf, Dieter; Wasik, Jennifer; D’Andrea, Alan D.

    1999-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently clone...

  2. Synthesis and DNA interaction of a Sm(III) complex of a Schiff base ...

    African Journals Online (AJOL)

    The interaction between the Sm(III) complex of an ionic Schiff base [HL]-, derived from vanillin and L-tryptophan, and herring sperm DNA at physiological pH (7.40) has been studied by UV-Vis absorption, fluorescence and viscosity methods. The binding ratios nSm(III) : nK[HL] = 1:1 and nSm(III)L: nDNA =5:1 were confirmed ...

  3. Fast-track to a solid dispersion formulation using multi-way analysis of complex interactions

    DEFF Research Database (Denmark)

    Wu, Jian-Xiong; Den Berg, Frans Van; Søgaard, Søren Vinter

    2013-01-01

    Several factors with complex interactions influence the physical stability of solid dispersions, thus highlighting the need for efficient experimental design together with robust and simple multivariate model. Design of Experiments together with ANalysis Of VAriance (ANOVA) model is one of the ce.......g., an entire spectral data set), model uniqueness, and curve resolution abilities. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:904-914, 2013....

  4. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Directory of Open Access Journals (Sweden)

    Alexej Abyzov

    2008-04-01

    Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in

  5. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    Science.gov (United States)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  6. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  7. Polyamic Acid Nanofibers Produced by Needleless Electrospinning

    Directory of Open Access Journals (Sweden)

    Oldrich Jirsak

    2010-01-01

    Full Text Available The polyimide precursor (polyamic acid produced of 4,4′-oxydiphthalic anhydride and 4,4′-oxydianiline was electrospun using needleless electrospinning method. Nonwoven layers consisting of submicron fibers with diameters in the range about 143–470 nm on the polypropylene spunbond supporting web were produced. Filtration properties of these nanofiber layers on the highly permeable polypropylene support—namely filtration effectivity and pressure drop—were evaluated. Consequently, these polyamic acid fibers were heated to receive polyimide nanofibers. The imidization process has been studied using IR spectroscopy. Some comparisons with the chemically identical polyimide prepared as the film were made.

  8. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that a...... of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire')....... responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable...

  9. Dealing with Tight Couplings and Multiple Interactions in Complex Technological Systems

    DEFF Research Database (Denmark)

    Aanestad, M.; Jensen, Tina Blegind; Grisot, M.

    In this paper we discuss the challenges of dealing with interdependencies in complex assemblages of heterogeneous and interconnected information systems (IS), which we conceptualize as organizationwide information infrastructures. We draw on Perrow's studies of complex technological systems, where...... couplings between information systems, actors, and work practices in the hospital environment. The paper's main focus is on describing what it entails in practice to deal with these interdependencies during and after implementation. We emphasize the work of sorting out and dealing with various types...... interactions, mechanisms, and couplings are emphasized. We base our paper on an empirical case study from a Norwegian hospital, where a seemingly trivial project aimed at the introduction of scanners turned out to be more complex than expected. This we claim is partly due to the interdependencies and tight...

  10. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  11. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  12. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  13. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  14. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity

    Directory of Open Access Journals (Sweden)

    Mateus Aparecido Clemente

    2012-01-01

    Full Text Available Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland. Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

  15. ZnO-PLLA Nanofiber Nanocomposite for Continuous Flow Mode Purification of Water from Cr(VI

    Directory of Open Access Journals (Sweden)

    T. Burks

    2015-01-01

    Full Text Available Nanomaterials of ZnO-PLLA nanofibers have been used for the adsorption of Cr(VI as a prime step for the purification of water. The fabrication and application of the flexible ZnO-PLLA nanofiber nanocomposite as functional materials in this well-developed architecture have been achieved by growing ZnO nanorod arrays by chemical bath deposition on synthesized electrospun poly-L-lactide nanofibers. The nanocomposite material has been tested for the removal and regeneration of Cr(IV in aqueous solution under a “continuous flow mode” by studying the effects of pH, contact time, and desorption steps. The adsorption of Cr(VI species in solution was greatly dependent upon pH. SEM micrographs confirmed the successful fabrication of the ZnO-PLLA nanofiber nanocomposite. The adsorption and desorption of Cr(VI species were more likely due to the electrostatic interaction between ZnO and Cr(VI ions as a function of pH. The adsorption and desorption experiments utilizing the ZnO-PLLA nanofiber nanocomposite have appeared to be an effective nanocomposite in the removal and regeneration of Cr(VI species.

  16. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Directory of Open Access Journals (Sweden)

    Kathrin Roderer

    Full Text Available The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS. The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  17. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Science.gov (United States)

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  18. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies

    Science.gov (United States)

    Huerta-Aguilar, Carlos Alberto; Thangarasu, Pandiyan; Mora, Jesús Gracia

    2018-04-01

    Copper complexes of N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,2-diaminoethane (L1) and N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L2) prepared were characterized completely by different analytical methods. The X-structure of the complexes shows that Cu(II) presents in trigonal bi-pyramidal (TBP) geometry, consisting with the electronic spectra where two visible bands corresponding to five coordinated structure were observed. Thus TD-DFT was used to analyze the orbital contribution to the electronic transitions for the visible bands. Furthermore, the interaction of cysteine with the complexes was spectrally studied, and the results were explained through DFT analysis, observing that the geometrical parameters and oxidation state of metal ions play a vital role in the binding of cysteine with copper ion. It appears that the TBP structure is being changed into octahedral geometry during the addition of cysteine to the complexes as two bands (from complex) is turned to a broad band in visible region, signifying the occupation of cysteine molecule at sixth position of octahedral geometry. In the molecular orbital analysis, the existence of a strong overlapping of HOMOs (from cysteine) with LUMOs of Cu ion was observed. The total energy of the systems calculated by DFT shows that cysteine binds favorably with copper (I) than that with Cu(II).

  19. Interaction between NANOS2 and the CCR4-NOT Deadenylation Complex Is Essential for Male Germ Cell Development in Mouse

    OpenAIRE

    Suzuki, Atsushi; Saba, Rie; Miyoshi, Kei; Morita, Yoshinori; Saga, Yumiko

    2012-01-01

    Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the f...

  20. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Zeeshan, E-mail: zeeshan.khatri@faculty.muet.edu.pk [Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062 (Pakistan); Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567 (Japan); Ali, Shamshad [Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062 (Pakistan); Department of Organic and Nano Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Khatri, Imran [Department of Entomology, Sindh Agriculture University, Tandojam (Pakistan); Mayakrishnan, Gopiraman [Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567 (Japan); Kim, Seong Hun [Department of Organic and Nano Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Ick-Soo, E-mail: kim@shinshu-u.ac.jp [Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567 (Japan)

    2015-07-01

    Graphical abstract: - Highlights: • UV responsive PVA nanofibers were prepared via electrospinning. • Quick response codes were recorded multiple times on UV responsive nanofibers. • The rate of photo-coloration was found faster than the rate of photo-reversibility. - Abstract: We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1′-3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2′-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3′-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording–erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA–indole nanofibers was five times higher than the PVA–oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA–oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  1. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    International Nuclear Information System (INIS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-01-01

    Graphical abstract: - Highlights: • UV responsive PVA nanofibers were prepared via electrospinning. • Quick response codes were recorded multiple times on UV responsive nanofibers. • The rate of photo-coloration was found faster than the rate of photo-reversibility. - Abstract: We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1′-3′-dihydro-8-methoxy-1′,3′,3′-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2′-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3′-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording–erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA–indole nanofibers was five times higher than the PVA–oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA–oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage

  2. Production of silk sericin/silk fibroin blend nanofibers

    Directory of Open Access Journals (Sweden)

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  3. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    International Nuclear Information System (INIS)

    Ming, Jinfa; Zuo, Baoqi

    2012-01-01

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 °C, and the degradation peak at 286 °C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 ± 0.0398 MPa and 6.55 ± 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: ► The novel SF/HAp nanofibers were directly prepared by electrospinning method. ► The nanofiber diameter had significant related to the content of HAp. ► The crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. ► The HAp crystals existing in the hybrid nanofibers were characterized

  4. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.

    Science.gov (United States)

    Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian

    2016-01-27

    Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.

  5. Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    W.K.Chee; H.N.Lim; Y.Andou; Z.Zainal; A.A.B.Hamra; I.Harrison; M.Altarawneh; Z.T.Jiang; N.M.Huang

    2017-01-01

    Graphene oxide has been used widely as a starting precursor for applications that cater to the needs of tunable graphene. However, the hydrophilic characteristic limits their application, especially in a hydrophobic condition. Herein, a novel non-covalent surface modification approach towards graphene oxide was conducted via a UV-induced photo-polymerization technique that involves two major routes; a UV-sensitive initiator embedded via pi-pi interactions on the graphene planar rings, and the polymerization of hydrophobic polymeric chains along the surface. The functionalized graphene oxide successfully achieved the desired hydrophobicity as it displayed the characteristic of being readily dissolved in organic solvent. Upon its addition into a polymeric solution and subjected to an electrospinning process,non-woven random nanofibers embedded with graphene oxide sheets were obtained. The prepared polymeric nanofibers were subjected to two-step thermal treatments that eventually converted the polymeric chains into a carbon-rich conductive structure. A unique morphology was observed upon the addition of the functionalized graphene oxide, whereby the sheets were embedded and intercalated within the carbon nanofibers and formed a continuous structure. This reinforcement effectively enhanced the electrochemical performance of the carbon nanofibers by recording a specific capacitance of up to 140.10 F/g at the current density of 1 A/g, which was approximately three folds more than that of pristine nanofibers.It also retained the capacitance up to 96.2% after 1000 vigorous charge/discharge cycles. This functionalization technique opens up a new pathway in tuning the solubility nature of graphene oxide towards the synthesis of a graphene oxide-reinforced polymeric structure.

  6. Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Gopalaswamy; Nehru, Selvan; Manojkumar, Yesaiyan; Arunachalam, Sankaralingam, E-mail: arunasurf@yahoo.com

    2014-01-15

    The interaction of HSA/BSA with single and double chain surfactant-cobalt(III) complexes, cis-[Co(phen){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (1), cis-[Co(phen){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (2), cis-[Co(en){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (3), cis-[Co(en){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (4), were investigated by steady state fluorescence, UV–vis absorption, synchronous, three dimensional fluorescence and circular dichroism spectroscopy. The results reveal that the quenching of HSA/BSA by all the four complexes takes place through static mechanism. The binding constant, binding sites and thermodymamic parameter were calculated. The results illustrate that the double chain surfactant-cobalt(III) complexes bind more strongly than the corresponding single chain complexes. The distance between donor (HSA/BSA) and acceptor (surfactant-cobalt(III) complexes) was obtained according to FRET. The results of synchronous, three dimensional and circular dichroism spectroscopy studies show that all the complexes caused considerable amount of conformational and some amount of environment changes in HSA/BSA. -- Highlights: • Binding of single and double chain surfactant-cobalt(III) complexes with serum albumins. • Hydrophobic attraction plays a major role in the binding process. • Binding induces considerable amount of conformational changes in the protein.

  7. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions?

    Science.gov (United States)

    Lira-Junior, Ronaldo; Figueredo, Carlos Marcelo

    2016-09-21

    Periodontal disease and inflammatory bowel disease (IBD) are both chronic inflammatory diseases. Their pathogenesis is mediated by a complex interplay between a dysbiotic microbiota and the host immune-inflammatory response, and both are influenced by genetic and environmental factors. This review aimed to provide an overview of the evidence dealing with a possible pathogenic interaction between periodontal disease and IBD. There seems to be an increased prevalence of periodontal disease in patients with IBD when compared to healthy controls, probably due to changes in the oral microbiota and a higher inflammatory response. Moreover, the induction of periodontitis seems to result in gut dysbiosis and altered gut epithelial cell barrier function, which might contribute to the pathogenesis of IBD. Considering the complexity of both periodontal disease and IBD, it is very challenging to understand the possible pathways involved in their coexistence. In conclusion, this review points to a complex pathogenic interaction between periodontal disease and IBD, in which one disease might alter the composition of the microbiota and increase the inflammatory response related to the other. However, we still need more data derived from human studies to confirm results from murine models. Thus, mechanistic studies are definitely warranted to clarify this possible bidirectional association.

  9. Electrospun nanofibers for energy and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Bin; Yu, Jianyong (eds.) [Donghua Univ., Shanghai (China). State Key Lab. for Modification of Chemical Fibers and Polymer Materials; Donghua Univ., Shanghai (China). Nanomaterials Research Center

    2014-10-01

    This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding.

  10. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Carbon nanofibers in catalytic membrane microreactors

    NARCIS (Netherlands)

    Aran, H.C.; Pacheco Benito, Sergio; Luiten-Olieman, Maria W.J.; Er, S.; Wessling, Matthias; Lefferts, Leonardus; Benes, Nieck Edwin; Lammertink, Rob G.H.

    2011-01-01

    In this study, we report on the fabrication and operation of new hybrid membrane microreactors for gas–liquid–solid (G–L–S) reactions. The presented reactors consist of porous stainless steel tubes onto which carbon nanofibers (CNFs) are grown as catalyst support, all encapsulated by a gas permeable

  12. PRODUKSI NANOFIBER DAN APLIKASINYA DALAM PENGOLAHAN AIR

    OpenAIRE

    Krisnandika, Vania Elita

    2017-01-01

    Abstrak Kebutuhan air meningkat seiring meningkatnya jumlah penduduk dan taraf kehidupan masyarakat. Pembangunan yang dilakukan secara terus-menerus dan sangat cepat di Indonesia mengakibatkan penurunan kualitas air permukaan. Teknologi membran merupakan salah satu teknologi pengolahan air yang menghasilkan produk dengan kualitas tinggi. Membran berstruktur nano, khususnya nanofiber, saat ini menjadi perhatian karena menjawab kebutuhan teknologi filtrasi yang efektif dan hemat biaya. Pr...

  13. Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Wiesler, Uwe-Martin; Weil, Tanja; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    A second-generation polyphenylene dendrimer 1 self-assembles into nanofibers on various substrates such as HOPG, silicon, glass, and mica from different solvents. The investigation with noncontact atomic force microscopy (NCAFM) and scanning electron microscopy (SEM) shows that the morphology of the

  14. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes.

    Science.gov (United States)

    Masschaele, Delphine; De Ceuninck, Leentje; Wauman, Joris; Defever, Dieter; Stenner, Frank; Lievens, Sam; Peelman, Frank; Tavernier, Jan

    2017-01-01

    RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.

  15. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes.

    Directory of Open Access Journals (Sweden)

    Delphine Masschaele

    Full Text Available RNF41 (Ring Finger Protein 41 is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein and the EARP (Endosome-Associated Recycling Protein complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.

  16. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  17. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  18. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  19. Complex interaction between genotypes and growing seasons of carioca common bean in Goiás/Distrito Federal

    Directory of Open Access Journals (Sweden)

    Helton Santos Pereira

    2011-01-01

    Full Text Available The objectives of this study were to assess the importance of the complex interaction between common beangenotypes and growing seasons in the state of Goiás and the Distrito Federal and verify the need for evaluation and indication ofcultivars for each season. Yield data of 16 genotypes in 16 trials conducted in two growing seasons (winter and rainy were used. Thecoefficient of determination was estimated in the analyses of variance with decomposition of the genotype x environment interaction.The complex percentage of the interaction was estimated and the Spearman correlation between seasons. Differences were detectedbetween seasons and presence of genotype - season (GS interaction, with greater significance than the other double interactionswith genotypes. The correlations indicated a predominantly complex GS interaction. This predominantly complex nature of the GSinteraction calls for an assessment of the genotypes in both seasons, which may however identify cultivars with general adaptation.

  20. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  1. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells

    DEFF Research Database (Denmark)

    Vandamme, Julien; Völkel, Pamela; Rosnoblet, Claire

    2011-01-01

    Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes...... known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Drosophila core PRC1 is composed of four subunits, Polycomb (Pc), Sex combs extra (Sce), Polyhomeotic (Ph), and Posterior sex combs (Psc). Each of these proteins has multiple orthologs in vertebrates classified respectively as the CBX, RING...... in order to identify interacting partners of CBX family proteins under the same experimental conditions. Our analysis identified with high confidence about 20 proteins co-eluted with CBX2 and CBX7 tagged proteins, about 40 with CBX4, and around 60 with CBX6 and CBX8. We provide evidences that the CBX...

  2. Interacting with complex systems. Models and games for a sustainable economy

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, H.J.M.

    2010-09-15

    In the last decades the science-policy interface has become more important and more complex too. In this report we search for novel ways to extend or reframe the economic and environmental theories and models upon which policy recommendations are, or should be, based. The methods and applications of Complex System Science, in particular, have been explored and are found to be still fragmented. But they certainly can and should form the basis for introducing behavioural and innovation dynamics which make these theories and models more like what happens in the real world. In combination with interactive simulation and games, of which some examples are discussed in this report, science can in a post-modern context contribute more effectively to the strategic decision making in government and other institutions regarding sustainable development. This will direly be needed in view of the new and global challenges facing us.

  3. Better decision making in complex, dynamic tasks training with human-facilitated interactive learning environments

    CERN Document Server

    Qudrat-Ullah, Hassan

    2015-01-01

    This book describes interactive learning environments (ILEs) and their underlying concepts. It explains how ILEs can be used to improve the decision-making process and how these improvements can be empirically verified. The objective of this book is to enhance our understanding of and to gain insights into the process by which human facilitated ILEs are effectively designed and used in improving users’ decision making in complex, dynamic tasks. This book is divided into four major parts. Part I serves as an introduction to the importance and complexity of decision making in dynamic tasks. Part II provides background material, drawing upon relevant literature, for the development of an integrated process model on the effectiveness of human facilitated ILEs in improving decision making in dynamic tasks. Part III focuses on the design, development, and application of FishBankILE in laboratory experiments to gather empirical evidence for the validity of the process model. Finally, part IV presents a comprehensi...

  4. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Anastasiya Solovieva

    2017-12-01

    Full Text Available The scaffolds made of polycaprolactone (PCL are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO2/C2H4 plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP. The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS, after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.

  5. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties.

    Science.gov (United States)

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S Hajir; Joghataei, M T

    2013-12-01

    Gum tragacanth (GT) is one of the most widely used natural gums which has found applications in many areas because of its attractive features such as biodegradability, nontoxic nature, natural availability, higher resistance to microbial attacks and long shelf-life properties. GT and poly(vinyl alcohol) (PVA) were dissolved in deionized water in different ratios i.e., 0/100, 30/70, 60/40, 50/50, 40/60, 70/30, 0/100 mass ratio of GT/PVA. Nanofibers were produced from these solutions using electrospinning technique. The effect of different electrospinning parameters such as extrusion rate of polymer solutions, solution concentration, electrode spacing distance and applied voltage on the morphology of nanofibers was examined. The antibacterial activity of nanofibers and GT solution against Staphylococcus aureus and Pseudomonas aeruginosa was examined and these nanofibers showed good antibacterial property against Gram-negative bacteria. FTIR data showed that these two polymers may be having hydrogen bonding interactions. DSC data revealed that the exothermic peak at about 194°C for PVA shifted to a lower temperature in GT/PVA blend. Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. MTT assay was carried out on the GT/PVA nanofiber to investigate the proliferation rate of fibroblast cells on the scaffolds. © 2013 Elsevier B.V. All rights reserved.

  6. FACET: A simulation software framework for modeling complex societal processes and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J. H.

    2000-06-02

    FACET, the Framework for Addressing Cooperative Extended Transactions, was developed at Argonne National Laboratory to address the need for a simulation software architecture in the style of an agent-based approach, but with sufficient robustness, expressiveness, and flexibility to be able to deal with the levels of complexity seen in real-world social situations. FACET is an object-oriented software framework for building models of complex, cooperative behaviors of agents. It can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET can also address other complex behaviors such as biological life cycles or manufacturing processes. To date, for example, FACET has been applied to such areas as land management, health care delivery, avian social behavior, and interactions between natural and social processes in ancient Mesopotamia.

  7. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  8. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  9. Effect of self-interaction on the evolution of cooperation in complex topologies

    Science.gov (United States)

    Wu, Yu'e.; Zhang, Zhipeng; Chang, Shuhua

    2017-09-01

    Self-interaction, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this text, we consider a new self-interaction mechanism in the two typical pairwise models including the prisoner's dilemma and the snowdrift games, where the cooperative agents will gain extra bonus for their selfless behavior. We find that under the mechanism the collective cooperation is elevated to a very high level especially after adopting the finite population analogue of replicator dynamics for evolution. The robustness of the new mechanism is tested for different complex topologies for the prisoner's dilemma game. All the presented results demonstrate that the enhancement effects are independent of the structure of the applied spatial networks and the potential evolutionary games, and thus showing a high degree of universality. Our conclusions might shed light on the understanding of the evolution of cooperation in the real world.

  10. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)

    2016-04-15

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  11. Basic Approaches of Complex Interaction DrumTerrain for Vibratory Compaction

    Directory of Open Access Journals (Sweden)

    Gigel Florin Capatana

    2013-09-01

    Full Text Available In this paper the author tries to use a new method to evaluate and analyze the interaction between roller and terrain. The analysis is rheological approached, with a predominantly dynamic behaviour, so as to reveal the compatibility of the working body performances with the characteristics of the terrain. The basic idea shows that it must be assured the energy transfer maximization in the interaction between the two components of the system. The model must have permanent and continuous adjustments of the material characteristics so it can be evaluated the technological capability. The fulfilling of these objectives will be provided by using a complex model with both distributed and concentrated elements which can have rheology of elastic, dissipative and plastic types. The first conclusions of the presented study goes to the idea that the harmonization of the basic parameters of the model with the experimental values can lead to structural and functional optimizations of the entire technological system.

  12. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    International Nuclear Information System (INIS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2016-01-01

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  13. Estimating risk propagation between interacting firms on inter-firm complex network.

    Science.gov (United States)

    Goto, Hayato; Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We derive a stochastic function of risk propagation empirically from comprehensive data of chain-reaction bankruptcy events in Japan from 2006 to 2015 over 5,000 pairs of firms. The probability is formulated by firm interaction between the pair of firms; it is proportional to the product of α-th power of the size of the first bankrupt firm and β-th power of that of the chain-reaction bankrupt firm. We confirm that α is positive and β is negative throughout the observing period, meaning that the probability of cascading failure is higher between a larger first bankrupt firm and smaller trading firm. We additionally introduce a numerical model simulating the whole ecosystem of firms and show that the interaction kernel is a key factor to express complexities of spreading bankruptcy risks on real ecosystems.

  14. Estimating risk propagation between interacting firms on inter-firm complex network.

    Directory of Open Access Journals (Sweden)

    Hayato Goto

    Full Text Available We derive a stochastic function of risk propagation empirically from comprehensive data of chain-reaction bankruptcy events in Japan from 2006 to 2015 over 5,000 pairs of firms. The probability is formulated by firm interaction between the pair of firms; it is proportional to the product of α-th power of the size of the first bankrupt firm and β-th power of that of the chain-reaction bankrupt firm. We confirm that α is positive and β is negative throughout the observing period, meaning that the probability of cascading failure is higher between a larger first bankrupt firm and smaller trading firm. We additionally introduce a numerical model simulating the whole ecosystem of firms and show that the interaction kernel is a key factor to express complexities of spreading bankruptcy risks on real ecosystems.

  15. Development and characterization of highly oriented PAN nanofiber

    Directory of Open Access Journals (Sweden)

    M. Sadrjahani

    2010-12-01

    Full Text Available A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min.

  16. Preparation and Properties of Flexible AZO@C Nanofibers

    Directory of Open Access Journals (Sweden)

    MA Hui

    2018-01-01

    Full Text Available A new type of environmental-friendly flexible nanofibers of aluminum doped zinc oxide (AZO coated carbon (AZO@C was successfully prepared by using polyvinyl alcohol (PVA as raw materials. The as-spun PVA nanofibers were prepared via electrospinning and its water resistance was greatly improved after heat-treatment. Then, the PVA nanofibers with a layer of zinc aluminum hydroxide on the surface were synthesized by hydrothermal method. Thereafter, new AZO@C composite nanofibers was produced after sintering at 500℃ to the carbonization of PVA nanofibers and the dehydration of zinc aluminum hydroxide to form AZO nanoparticles. The structure and properties of the samples were characterized by Fourier-transform infrared spectrometer (FT-IR, thermal gravimetric analyzer (TGA and scanning electron microscope (SEM. The average diameter of the AZO@C nanofibers is (320±45nm. The photocatalytic property of the resultant composite fibers is demonstrated by degrading methyl orange under solar light.

  17. Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction

    Science.gov (United States)

    Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu

    Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.

  18. The interaction of platinum complexes with low doses of X-rays in hypoxic cells

    International Nuclear Information System (INIS)

    Skov, K.A.

    1992-01-01

    It is not clear why electron affinic compounds (O2, nitroimidazoles) should be more effective sensitizers at high doses (modify double events, 6, 16) while platinum complexes interact to a greater extent at low doses (modification of single-events). The possibility that crosslinks are involved requires further consideration. While DNA intrastrand crosslinks do not appear essential, future low dose experiments are planned to determine the role of interstrand and DNA-protein crosslinks in modifying response at clinical doses. (author). 31 refs., 2 tabs

  19. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    Science.gov (United States)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  20. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  1. Analysis the complex interaction among flexible nanoparticles and materials surface in the mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Han Xuesong, E-mail: hanxuesongphd@yahoo.com.cn [School of Mechanical Engineering, Tianjin University, 300072 (China); Gan, Yong X. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, OH 43606 (United States)

    2011-02-01

    Mechanical polishing (MP), being the important technique of realizing the surface planarization, has already been widely applied in the area of microelectronic manufacturing and computer manufacturing technology. The surface planarization in the MP is mainly realized by mechanical process which depended on the microdynamic behavior of nanoparticle. The complex multibody interaction among nanoparticles and materials surface is different from interaction in the macroscopic multibody system which makes the traditional classical materials machining theory cannot accurately uncover the mystery of the surface generation in the MP. Large-scale classical molecular dynamic (MD) simulation of interaction among nanoparticles and solid surface has been carried out to investigate the physical essence of surface planarization. The particles with small impact angle can generate more uniform global planarization surface but the materials removal rate is lower. The shear interaction between particle and substrate may induce large friction torque and lead to the rotation of particle. The translation plus rotation makes the nanoparticle behaved like micro-milling tool. The results show that the nanoparticles may aggregrate together and form larger cluster thus deteriorate surface the quality. This MD simulation results illuminate that the f inal planarized surface can only be acquired by synergic behavior of all particles using various means such as cutting, impacting, scratching, indentation and so on.

  2. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  3. A method for developing standardised interactive education for complex clinical guidelines

    Directory of Open Access Journals (Sweden)

    Vaughan Janet I

    2012-11-01

    Full Text Available Abstract Background Although systematic use of the Perinatal Society of Australia and New Zealand internationally endorsed Clinical Practice Guideline for Perinatal Mortality (PSANZ-CPG improves health outcomes, implementation is inadequate. Its complexity is a feature known to be associated with non-compliance. Interactive education is effective as a guideline implementation strategy, but lacks an agreed definition. SCORPIO is an educational framework containing interactive and didactic teaching, but has not previously been used to implement guidelines. Our aim was to transform the PSANZ-CPG into an education workshop to develop quality standardised interactive education acceptable to participants for learning skills in collaborative interprofessional care. Methods The workshop was developed using the construct of an educational framework (SCORPIO, the PSANZ-CPG, a transformation process and tutor training. After a pilot workshop with key target and stakeholder groups, modifications were made to this and subsequent workshops based on multisource written observations from interprofessional participants, tutors and an independent educator. This participatory action research process was used to monitor acceptability and educational standards. Standardised interactive education was defined as the attainment of content and teaching standards. Quantitative analysis of positive expressed as a percentage of total feedback was used to derive a total quality score. Results Eight workshops were held with 181 participants and 15 different tutors. Five versions resulted from the action research methodology. Thematic analysis of multisource observations identified eight recurring education themes or quality domains used for standardisation. The two content domains were curriculum and alignment with the guideline and the six teaching domains; overload, timing, didacticism, relevance, reproducibility and participant engagement. Engagement was the most

  4. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    1 Award Number: W81XWH-11-2-0047 TITLE: Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration PRINCIPAL INVESTIGATOR: Ahmet Höke...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0047 Nanofiber nerve guide for peripheral nerve repair and regeneration 5b. GRANT NUMBER...goal of this collaborative research project was to develop next generation engineered nerve guide conduits (NGCs) with aligned nanofibers and

  5. Modeling Temperature Dependent Singlet Exciton Dynamics in Multilayered Organic Nanofibers

    DEFF Research Database (Denmark)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob

    2018-01-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers, but also by the behavior of the excitons generated...... dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a Kinetic Monte Carlo (KMC) model is employed in combination with a genetic algorithm to theoretically reproduce time resolved photoluminescence measurements...

  6. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi.

    Science.gov (United States)

    Kück, Ulrich; Beier, Anna M; Teichert, Ines

    2016-05-01

    The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    International Nuclear Information System (INIS)

    Lu, Yunfan; Wang, Jun; Niu, Hongli

    2015-01-01

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model

  8. Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions.

    Science.gov (United States)

    Suárez, Diego F; Consuegra, Jessika; Trajano, Vivianne C; Gontijo, Sávio M L; Guimarães, Pedro P G; Cortés, Maria E; Denadai, Ângelo L; Sinisterra, Rubén D

    2014-06-01

    Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/βCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and βCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/βCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of βCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/βCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/βCD compared with free DOX. These promising findings demonstrate the potential for DOX/βCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations. Copyright © 2014. Published by Elsevier B.V.

  9. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunfan, E-mail: yunfanlu@yeah.net; Wang, Jun; Niu, Hongli

    2015-06-12

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model.

  10. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    Directory of Open Access Journals (Sweden)

    Jeremiah Athmer

    2017-01-01

    Full Text Available Coronavirus (CoV replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER membranes in replication/transcription complexes (RTC. Many of the CoV nonstructural proteins (nsps are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV. In MHV, nsp15 contains the genomic RNA packaging signal (P/S, a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses.

  11. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  12. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    Science.gov (United States)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as

  13. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  14. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    Science.gov (United States)

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  15. Subnanomolar Inhibitor of Cytochrome bc1 Complex Designed via Optimizing Interaction with Conformationally Flexible Residues

    Science.gov (United States)

    Zhao, Pei-Liang; Wang, Le; Zhu, Xiao-Lei; Huang, Xiaoqin; Zhan, Chang-Guo; Wu, Jia-Wei; Yang, Guang-Fu

    2009-01-01

    Cytochrome bc1 complex (EC 1.10.2.2, bc1), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc1 complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective π-π interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the π-π interaction with conformationally flexible residues was proposed to design and discover new bc1 inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c with a Ki value of 570 pM was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc1 inhibitors including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc1 inhibitor discovered from structure-based design with a potency of subnanomolar Ki value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental Ki values with a correlation coefficient of r2 = 0.89. The further inhibitory kinetics studies revealed that compound 5c is a non-competitive inhibitor with respect to substrate cytochrome c, but is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar Ki potency and slow dissociation rate constant (k−0 = 0.00358 s−1), compound 5c could be used as a specific probe for further elucidation of the mechanism of bc1 function and as a new lead compound for future drug discovery. PMID:19928849

  16. Tiny but complex - interactive 3D visualization of the interstitial acochlidian gastropod Pseudunela cornuta (Challis, 1970

    Directory of Open Access Journals (Sweden)

    Heß Martin

    2009-09-01

    in a mesopsammic gastropod, though functionally not yet fully understood. Such organ complexity as shown herein by interactive 3D visualization is not plesiomorphically maintained from a larger, benthic ancestor, but newly evolved within small marine hedylopsacean ancestors of P. cornuta. The common picture of general organ regression within mesopsammic acochlidians thus is valid for microhedylacean species only.

  17. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  18. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-04-29

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.

  19. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS. This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months. Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss and central factors (pain/disability/stress/depression predicting motor dysfunction and hyperalgesia.

  20. Application of Biologically Based Lumping To Investigate the Toxicokinetic Interactions of a Complex Gasoline Mixture.

    Science.gov (United States)

    Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham

    2016-03-15

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.

  1. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  2. Interaction between water-soluble rhodium complex RhCl(CO)(TPPTS)₂ and surfactants probed by spectroscopic methods.

    Science.gov (United States)

    Zhou, Li-Mei; Guo, Cai-Hong; Fu, Hai-Yan; Jiang, Xiao-Hui; Chen, Hua; Li, Rui-Xiang; Li, Xian-Jun

    2012-07-01

    The interactions of rhodium complex RhCl(CO)(TPPTS)(2) [TPPTS=P(m-C(6)H(4)SO(3)Na)(3)] with cationic, nonionic, and anionic surfactants have been investigated by UV-vis, fluorescence and (1)H NMR measurements. The presence of four different species of RhCl(CO)(TPPTS)(2) in cationic cetyltrimethylammonium (CTAB) solution has been demonstrated: free rhodium complex, rhodium complex bound to CTAB monomer, rhodium complex bound to CTAB premicelles, rhodium complex bound to CTAB micelles. The spectroscopy data show that RhCl(CO)(TPPTS)(2) can adsorb on the interface of cationic CTAB micelles by strong electrostatic attraction, weakly bind to the nonionic polyoxyethylene (20) sorbitan monolaurate (Tween 20) micelles by hydrophobic interaction, and does not interact with anion sodium dodecyl sulfate (SDS) micelles due to the strong electrostatic repulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  4. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  5. New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction?

    Directory of Open Access Journals (Sweden)

    Massimo Nepi

    2017-03-01

    Full Text Available Floral and extra-floral nectars are secretions elaborated by specific organs (nectaries that can be associated with plant reproductive structures (the so-called floral nectaries found only in angiosperms or vegetative parts (extrafloral nectaries. These secretions are common in terrestrial vascular plants, especially angiosperms. Although gymnosperms do not seem to have true nectar, their ovular secretions may share evolutionary links with angiosperm nectar. Nectar is generally involved in interactions with animals and by virtue of its sugar and amino acid content, it has been considered a reward offered by plants to animals in exchange for benefits, mainly pollination and indirect defense against herbivores. These relationships are often cited as examples of classical mutualistic interactions. Nonetheless, recent studies dealing with compounds less abundant than sugars and amino acids challenge this view and suggest that nectar is much more complex than simply a reward in the form of food. Nectar proteins (nectarins and nectar secondary compounds have no primary nutritious function but are involved in plant–animal relationships in other ways. Nectarins protect against proliferation of microorganisms and infection of plant tissues by pathogens. Nectar secondary compounds can be involved in modulating the behavior of nectar feeders, maximizing benefits for the plant. Nectar-dwelling microorganisms (mainly yeasts were recently revealed to be a third partner in the scenario of plant–animal interactions mediated by nectar. There is evidence that yeast has a remarkable impact on nectar feeder behavior, although the effects on plant fitness have not yet been clearly assessed.

  6. Smart Grid as Multi-layer Interacting System for Complex Decision Makings

    Science.gov (United States)

    Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico

    This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.

  7. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy

    Science.gov (United States)

    Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.

    2018-01-01

    Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.

  8. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    Science.gov (United States)

    Grishin, A. M.; Jalalian, A.; Tsindlekht, M. I.

    2015-05-01

    Continuous bead-free C-type cubic gadolinium oxide (Gd2O3) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd3+ ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd2O3 powder. Being compared with commercial Gd-DTPA/Magnevist®, Gd2O3 diethyleneglycol-coated (Gd2O3-DEG) fibers show high 1/T1 and 1/T2 proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of 157Gd nucleus promise to integrate Gd2O3 fibers for multimodal bioimaging and neutron capture therapy.

  9. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    Directory of Open Access Journals (Sweden)

    A. M. Grishin

    2015-05-01

    Full Text Available Continuous bead-free C-type cubic gadolinium oxide (Gd2O3 nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd3+ ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd2O3 powder. Being compared with commercial Gd-DTPA/Magnevist®, Gd2O3 diethyleneglycol-coated (Gd2O3-DEG fibers show high 1/T1 and 1/T2 proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of 157Gd nucleus promise to integrate Gd2O3 fibers for multimodal bioimaging and neutron capture therapy.

  10. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Megha Rajaram

    Full Text Available Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8 or minimally (STC1 significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti

  11. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    Science.gov (United States)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  12. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  13. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  14. General strategy for fabricating thoroughly mesoporous nanofibers

    KAUST Repository

    Hou, Huilin

    2014-12-03

    Recently, preparation of mesoporous fibers has attracted extensive attentions because of their unique and broad applications in photocatalysis, optoelectronics, and biomaterials. However, it remains a great challenge to fabricate thoroughly mesoporous nanofibers with high purity and uniformity. Here, we report a general, simple and cost-effective strategy, namely, foaming-assisted electrospinning, for producing mesoporous nanofibers with high purity and enhanced specific surface areas. As a proof of concept, the as-fabricated mesoporous TiO2 fibers exhibit much higher photocatalytic activity and stability than both the conventional solid counterparts and the commercially available P25. The abundant vapors released from the introduced foaming agents are responsible for the creation of pores with uniform spatial distribution in the spun precursor fibers. The present work represents a critically important step in advancing the electrospinning technique for generating mesoporous fibers in a facile and universal manner.

  15. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  16. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  17. Self-Efficacy, Task Complexity and Task Performance: Exploring Interactions in Two Versions of Vocabulary Learning Tasks

    Science.gov (United States)

    Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan

    2012-01-01

    The present study aimed for better understanding of the interactions between task complexity and students' self-efficacy beliefs and students' use of learning strategies, and finally their interacting effects on task performance. This investigation was carried out in the context of Chinese students learning English as a foreign language in a…

  18. Antibacterial nanofiber materials activated by light

    Czech Academy of Sciences Publication Activity Database

    Jesenská, S.; Plištil, L.; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Štěpán; Szatmáry, Lórant; Mosinger, Jiří

    99A, č. 4 (2011), s. 676-683 ISSN 1549-3296 R&D Projects: GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : antibacterial nanofiber materials * photoactive * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.625, year: 2011

  19. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  20. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  1. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  2. Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by Multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeidifar, Maryam, E-mail: saeidifar@merc.ac.ir [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Mansouri-Torshizi, Hassan [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Akbar Saboury, Ali [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The interaction of [Pd(bpy)(n-pr-dtc)]Br (I) and ([Pd(phen)(n-pr-dtc)]Br (II) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline and n-pr-dtc=n-propyldithiocarbamate) with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH=7.4). It was observed that the two complexes interact with HSA via static fluorescence quenching. The thermodynamic parameters indicate that the binding process was spontaneous and that hydrogen bonds and van der Waals forces play a major role in the association of the HSA–Pd(II) complexes. The activation energy (E{sub a}), binding constant (K{sub b}) and number of binding sites (n) of the HSA–Pd(II) complexes were calculated from fluorescence data at 293 K, 303 K and 311 K. The conformational alternations of protein secondary structure in the presence of Pd(II) complexes were demonstrated using synchronous fluorescence, three-dimensional fluorescence spectra, UV–vis absorption and circular dichroism techniques. Furthermore, the apparent distance between donor (HSA) and acceptor (Pd(II) complexes) was determined using fluorescence resonance energy transfer (FRET). The binding studies between these complexes and HSA give us key insights into the transportation, distribution and toxicity of newly design antitumor Pd(II) complexes in human blood. - Highlights: • The HSA binding properties of two Palladium (II) complexes were studied. • Static quenching mechanism is effective in the interaction of HSA with Pd(II) complexes. • Hydrogen bonds and van der Waals forces were involved in the Pd(II) complexes–HSA interaction. • 3D fluorescence was used to study the interaction between two complexes and HSA.

  3. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    International Nuclear Information System (INIS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-01-01

    Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  4. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    Science.gov (United States)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  5. Adding Biotic Interactions into Paleodistribution Models: A Host-Cleptoparasite Complex of Neotropical Orchid Bees.

    Directory of Open Access Journals (Sweden)

    Daniel Paiva Silva

    Full Text Available Orchid bees compose an exclusive Neotropical pollinators group, with bright body coloration. Several of those species build their own nests, while others are reported as nest cleptoparasites. Here, the objective was to evaluate whether the inclusion of a strong biotic interaction, such as the presence of a host species, improved the ability of species distribution models (SDMs to predict the geographic range of the cleptoparasite species. The target species were Aglae caerulea and its host species Eulaema nigrita. Additionally, since A. caerulea is more frequently found in the Amazon rather than the Cerrado areas, a secondary objective was to evaluate whether this species is increasing or decreasing its distribution given South American past and current climatic conditions. SDMs methods (Maxent and Bioclim, in addition with current and past South American climatic conditions, as well as the occurrences for A. caerulea and E. nigrita were used to generate the distribution models. The distribution of A. caerulea was generated with and without the inclusion of the distribution of E. nigrita as a predictor variable. The results indicate A. caerulea was barely affected by past climatic conditions and the populations from the Cerrado savanna could be at least 21,000 years old (the last glacial maximum, as well as the Amazonian ones. On the other hand, in this study, the inclusion of the host-cleptoparasite interaction complex did not statistically improve the quality of the produced models, which means that the geographic range of this cleptoparasite species is mainly constrained by climate and not by the presence of the host species. Nonetheless, this could also be caused by unknown complexes of other Euglossini hosts with A. caerulea, which still are still needed to be described by science.

  6. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    Science.gov (United States)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  7. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  8. Fabrication of NiO/zirconium oxide nanofibers by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Sundarrajan, Subramanian, E-mail: sundarnus1@gmail.com [Department of Mechanical Engineering, NUS, 117576 (Singapore); Venkatesan, Arunachalam; Agarwal, Satya R.; Shaik Anwar Ahamed, Nabeela Nasreen [Department of Mechanical Engineering, NUS, 117576 (Singapore); Ramakrishna, Seeram, E-mail: seeram@nus.edu.sg [Department of Mechanical Engineering, NUS, 117576 (Singapore); King Saud University, Riyadh 11451 (Saudi Arabia); Institute of Materials Research and Engineering, 117602 (Singapore)

    2014-12-01

    The electrospinning technique has been used to fabricate 1D inorganic–organic composite nanofibers from solutions containing poly(vinyl alcohol) (PVA) and suitable aqueous precursors of nickel and zirconium ions. Upon calcination, nickel oxide/zirconia nanofibers retained the original morphological features of as-spun nanofibers. X-ray diffraction was used to identify the crystalline nature of the final product and analytical tools such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to elucidate the pathway of ceramic phase formation and the systematic evolution of morphological features in the as-spun and calcined fibers. These fibers will find potential applications in biomedical field. - Highlights: • PVA/NiO/zirconia composite nanofibers were synthesized via electrospinning. • Green processing of nanofibers using only water as solvent. • Calcination of composite nanofibers to yield ceramic nanofibers. • High aspect ratio nanofibers with diameters 106 ± 25 nm • The application of these fibers as dental composites and bone tissue engineering.

  9. Local field enhanced second-harmonic response of organic nanofibers

    DEFF Research Database (Denmark)

    Leißner, Till; Kostiučenko, Oksana; Fiutowski, Jacek

    Organic CNHP4 nanofibers showing a strong second-harmonic (SH) response have been successfully implemented as active components in a metal-organic hybrid system. Using nondestructive roll-on transfer technique nanofibers were transferred from the growing mica substrates onto electron...

  10. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Purpose: To prepare polystyrene nanofiber ion exchangers (PSNIE) with surface cation exchange functionality using a new method based on electrospinning and also to optimize crosslinking and sulfonation reactions to obtain PSNIE with maximum ion exchange capacity (IEC). Method: The nanofibers were prepared from ...

  11. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  12. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2016-06-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology.

  13. Interaction between N-fertilizer and water availability on borer-rot complex in sugarcane

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo da Rocha Pannuti

    2015-03-01

    Full Text Available This study aimed to evaluate the effects of nitrogen availability in fertigation and rainfed management, as well as their interactions with the incidence of and damage caused by D. saccharalis and red rot in sugarcane. The experiment consisted of four treatments (0 and 150 kg ha–1 of N-fertilizer with irrigation; 0 and 150 kg ha–1 of N-fertilizer in rainfed management in a randomized complete block design with four replications. The evaluated parameters were the number of holes and internodes with red rot per meter of cultivation, stalk yield and sugar content. In the laboratory (T = 25 ± 2 °C; R.H. = 70 ± 10%: 12:12-L:D, we evaluated the attractiveness and consumption of fragments of stalks from the different treatments for fourth instar larvae through choice and no-choice tests in a randomized complete block design with ten replications. Nitrogen fertilization via irrigation has favorable effects on borer-rot complex and leads to higher gains in stalk and sugar yields when compared to rainfed management. The increments of stalk and sugar yields due to nitrogen fertilization compensates for the increase in borer-rot complex infestation. In laboratory tests, D. saccharalis larvae were similarly attracted to all treatments regardless of the doses of N-fertilizer or the water regimes evaluated. However, fragments of sugarcane stalks produced with nitrogen fertilization were consumed more by D. saccharalis in both water regimes.

  14. Interaction of plutonium with complexing substances in soils and natural waters

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Reynolds, S.A.; Shanks, M.H.

    1976-01-01

    The reactions of Pu with selected organic substances found in the environment have been studied to evaluate the valence and metalcomplex behaviour of Pu. Hexavalent Pu (and by inference pentavalent Pu) was unstable in the presence of fulvic acid, polygalacturonic acid, and alginic acid. Citrate-Pu(VI) complexes, however, were relatively more stable. Plutonium (IV) was the most stable valence upon interaction with these organics. Further reduction of Pu(IV) to Pu(III) occurred by fulvic and humic acids. The reduction, under aerobic conditions, does not appear to occur above pH 3.1. The reduction mechanisms is probably similar to the Fe(III) reduction previously documented for phenolic humic substances. Data are presented that demonstrate that Pu is at least partially associated with humic materials in ORNL soil contaminated 30 years ago with trace levels of Pu. Desorption studies using solid exchange resins also showed that, while a cation exchange resin did not desorb Pu from soil after 14 weeks equilibration, chelating resin effected Pu desorption. The desorption rate was not constant, suggesting differential Pu forms. While the resin-extractable Pu was believed to originate from solid-phase organic complexes, over 80% of the Pu in this soil was not readily resin-desorbable. This indicates that more inert soil-Pu reaction products effectively immobilize soil Pu. Some of these associations also appear to be organic. (author)

  15. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex

    Energy Technology Data Exchange (ETDEWEB)

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.; Jakob, Clarissa G.; Zhu, Haizhong; Comess, Kenneth M.; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M.; Cheng, Dong; Klinge, Kelly L.; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A.; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C.; Petros, Andrew M.; Sweis, Ramzi F.; Torrent, Maricel; Bigelow, Lance J.; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J.; Lindley, David J.; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G.; Arrowsmith, Cheryl H.; Chiang, Gary G.; Sun, Chaohong; Pappano , William N. (AbbVie); (Toronto)

    2017-01-30

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  16. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  17. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  18. The interaction of two spheres in a simple-shear flow of complex fluids

    Science.gov (United States)

    Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).

  19. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Ková cs, Krisztiá n A.; Steinmann, Myriam; Halfon, Olivier; Magistretti, Pierre J.; Cardinaux, Jean René

    2015-01-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  20. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    Science.gov (United States)

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  1. Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Fu Ying-Jhe

    2010-01-01

    Full Text Available Abstract We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs and quantum rings (QRs. For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X, biexcitons (XX, and positive trions (X−. For negative trions (X− in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.

  2. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  3. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  4. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  5. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

    Science.gov (United States)

    Rosenthal, Sara Brin; Twomey, Colin R; Hartnett, Andrew T; Wu, Hai Shan; Couzin, Iain D

    2015-04-14

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.

  7. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex® EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes

    Science.gov (United States)

    Macossay, Javier; Sheikh, Faheem A.; Cantu, Travis; Eubanks, Thomas M.; Salinas, M. Esther; Farhangi, Chakavak S.; Ahmad, Hassan; Hassan, M. Shamshi; Khil, Myung-seob; Maffi, Shivani K.; Kim, Hern; Bowlin, Gary l.

    2014-12-01

    The present study discusses the design, development, and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The Fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. Furthermore, tensile testing indicated an increase in the Young's modulus of the nanofibers as the MWCNTs concentration was increased. Finally, NIH 3T3 fibroblasts were seeded on the obtained nanofibers, demonstrating cell biocompatibility and proliferation. Therefore, the results indicate the successful formation of polyurethane nanofibers with enhanced mechanical properties, and demonstrate their biocompatibility, suggesting their potential application in biomedical areas.

  8. INTERACTION OF IRON(II MIXED-LIGAND COMPLEXES WITH DNA: BASE-PAIR SPECIFICITY AND THERMAL DENATURATION STUDIES

    Directory of Open Access Journals (Sweden)

    Mudasir Mudasir

    2010-06-01

    Full Text Available A research about base-pair specificity of the DNA binding of [Fe(phen3]2+, [Fe(phen2(dip]2+ and [Fe(phen(dip2]2+ complexes and the effect of calf-thymus DNA (ct-DNA binding of these metal complexes on thermal denaturation of ct-DNA has been carried out. This research is intended to evaluate the preferential binding of the complexes to the sequence of DNA (A-T or G-C sequence and to investigate the binding strength and mode upon their interaction with DNA. Base-pair specificity of the DNA binding of the complexes was determined by comparing the equilibrium binding constant (Kb of each complex to polysynthetic DNA that contain only A-T or G-C sequence. The Kb value of the interaction was determined by spectrophotometric titration and thermal denaturation temperature (Tm was determined by monitoring the absorbance of the mixture solution of each complex and ct-DNA at λ =260 nm as temperature was elevated in the range of 25 - 100 oC. Results of the study show that in general all iron(II complexes studied exhibit a base-pair specificity in their DNA binding to prefer the relatively facile A-T sequence as compared to the G-C one. The thermal denaturation experiments have demonstrated that Fe(phen3]2+ and [Fe(phen2(dip]2+ interact weakly with double helical DNA via electrostatic interaction as indicated by insignificant changes in melting temperature, whereas [Fe(phen2(dip]2+  most probably binds to DNA in mixed modes of interaction, i.e.: intercalation and electrostatic interaction. This conclusion is based on the fact that the binding of [Fe(phen2(dip]2+ to ct-DNA moderately increase the Tm value of ct- DNA   Keywords: DNA Binding, mixed-ligand complexes

  9. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    2015-06-01

    Full Text Available Loss of mitochondrial function often leads to neurodegeneration and is thought to be one of the underlying causes of neurodegenerative diseases such as Parkinson's disease (PD. However, the precise events linking mitochondrial dysfunction to neuronal death remain elusive. PTEN-induced putative kinase 1 (PINK1 and Parkin (Park, either of which, when mutated, are responsible for early-onset PD, mark individual mitochondria for destruction at the mitochondrial outer membrane. The specific molecular pathways that regulate signaling between the nucleus and mitochondria to sense mitochondrial dysfunction under normal physiological conditions are not well understood. Here, we show that Drosophila Clueless (Clu, a highly conserved protein required for normal mitochondrial function, can associate with Translocase of the outer membrane (TOM 20, Porin and PINK1, and is thus located at the mitochondrial outer membrane. Previously, we found that clu genetically interacts with park in Drosophila female germ cells. Here, we show that clu also genetically interacts with PINK1, and our epistasis analysis places clu downstream of PINK1 and upstream of park. In addition, Clu forms a complex with PINK1 and Park, further supporting that Clu links mitochondrial function with the PINK1-Park pathway. Lack of Clu causes PINK1 and Park to interact with each other, and clu mutants have decreased mitochondrial protein levels, suggesting that Clu can act as a negative regulator of the PINK1-Park pathway. Taken together, these results suggest that Clu directly modulates mitochondrial function, and that Clu's function contributes to the PINK1-Park pathway of mitochondrial quality control.

  10. Electrochromic device based on electrospun WO{sub 3} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan; Oksuz, Aysegul Uygun, E-mail: ayseguluygun@sdu.edu.tr

    2015-12-15

    Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% at 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.

  11. Electrospun nanofibers: New generation materials for advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Thenmozhi, S. [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Dharmaraj, N., E-mail: dharmaraj@buc.edu.in [Inorganic & Nanomaterials Research Laboratory, Department of Chemistry, Bharathiar University, Coimbatore 641 046 (India); Kadirvelu, K. [DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641 046 (India); Kim, Hak Yong [Department of Textile Engineering, Chonbuk National University, Chonju 561-756 (Korea, Republic of)

    2017-03-15

    Highlights: • A review covering important aspects of electrospinning technique is presented. • Applications of nanofibers in various fields are reviewed. • Possibility to up-scale electrospinning technique to industry also included. - Abstract: Electrospinning (E-spin) is a unique technique to fabricate polymeric as well as metal oxide nanofibers. Research on electrospun nanofibers is a very active field in material science owing to their novel applications in diverse domains. The main focus of this review is to provide an insight into E-spin technique by understanding the working principle, influencing parameters and applications of nanofibers in different walks of life. Several hundreds of papers are published on the preparation, modification and applications of nanofibers produced by E-spin technique in the areas like sensor development, decontamination, energy storage, biomedical and catalysis etc. Details on the industrial scale development of E-spin technique, current scenario and future developments are also covered in this review.

  12. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  13. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers.

    Science.gov (United States)

    Saylan, Yeşeren; Tamahkar, Emel; Denizli, Adil

    2017-11-01

    Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.

  14. Biologically Active Polycaprolactone/Titanium Hybrid Electrospun Nanofibers for Hard Tissue Engineering

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Sheikh, Faheem A.; Al-Deyab, Salem S.

    2011-01-01

    In this study, a novel strategy to improve the bioactivity of polycaprolactone nanofibers is proposed. Incorporation of pure titanium nanoparticles into polycaprolactone nanofibers strongly enhances the precipitation of bone-like apatite materials when the doped nanofibers are soaked in a simulat...... nanofiber mats and the successful incorporation of the titanium nanoparticles make the prepared polycaprolactone nanofiber mat a proper candidate for the hard-tissue engineering applications....

  15. Quantum mechanics study of repulsive π-π interaction and flexibility of phenyl moiety in the iron azodioxide complex

    Science.gov (United States)

    Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.

    2015-10-01

    In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.

  16. Evaluation of protein adsorption onto a polyurethane nanofiber surface having different segment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yuko; Koizumi, Gaku [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan); Sakamoto, Hiroaki, E-mail: hi-saka@u-fukui.ac.jp [Tenure-Track Program for Innovative Research, University of Fukui (Japan); Suye, Shin-ichiro [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan)

    2017-02-01

    Electrospinning is well known to be an effective method for fabricating polymeric nanofibers with a diameter of several hundred nanometers. Recently, the molecular-level orientation within nanofibers has attracted particular attention. Previously, we used atomic force microscopy to visualize the phase separation between soft and hard segments of a polyurethane (PU) nanofiber surface prepared by electrospinning. The unstretched PU nanofibers exhibited irregularly distributed hard segments, whereas hard segments of stretched nanofibers prepared with a high-speed collector exhibited periodic structures along the long-axis direction. PU was originally used to inhibit protein adsorption, but because the surface segment distribution was changed in the stretched nanofiber, here, we hypothesized that the protein adsorption property on the stretched nanofiber might be affected. We investigated protein adsorption onto PU nanofibers to elucidate the effects of segment distribution on the surface properties of PU nanofibers. The amount of adsorbed protein on stretched PU nanofibers was increased compared with that of unstretched nanofibers. These results indicate that the hard segment alignment on stretched PU nanofibers mediated protein adsorption. It is therefore expected that the amount of protein adsorption can be controlled by rotation of the collector. - Highlights: • The hard segments of stretched PU nanofibers exhibit periodic structures. • The adsorbed protein on stretched PU nanofibers was increased compared with PU film. • The hard segment alignment on stretched PU nanofibers mediated protein adsorption.

  17. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiggelaar, R.M. [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K. [Catalytic Processes and Materials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gardeniers, J.G.E., E-mail: j.g.e.gardeniers@utwente.nl [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-05-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth.

  18. Transformation from Nanofibers to Nanoribbons in Poly(3-hexylthiophene) Solution by Adding Alkylthiols.

    Science.gov (United States)

    Pan, Shuang; Zhu, Mingjing; He, Luze; Zhang, Hongdong; Qiu, Feng; Lin, Zhiqun; Peng, Juan

    2018-05-10

    An intriguing morphological transition from poly(3-hexylthiophene) (P3HT) 1D nanofibers to 2D nanoribbons enabled by the addition of a series of alkylthiols is reported. First, P3HT 1D nanofibers are formed due to strong anisotropic π-π stacking between planar rigid backbones. Upon the addition of alkylthiols, P3HT nanofibers are transformed into nanoribbons associated with the crystallographic transition from edge-on orientation to flat-on orientation. The content of alkylthiols has a great influence on the P3HT morphology in the solution. The mechanism of such a morphological transformation is discussed based on the interaction between alkylthiols and P3HT chains. This work offers an effective strategy to tailor the crystal morphology and dimension of P3HT, which not only improves the understanding of P3HT crystallization but also may enable such discovery into conjugated polymer-based optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. Copyright © 2015. Published by Elsevier B.V.

  20. Process Optimization and Emperical Modelling for Electrospun Polyacrylonitrile (PAN) Nanofiber Precursor of Carbon nanofibers

    NARCIS (Netherlands)

    Gu, S.Y.; Gu, S.; Ren, J.; Vancso, Gyula J.

    2005-01-01

    Ultrafine fibers were spun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers using a homemade electrospinning set-up. Fibers with diameter ranging from 200 nm to 1200 nm were obtained. Morphology of fibers and distribution of fiber diameter were

  1. Complexity

    Indian Academy of Sciences (India)

    Rahul Pandit

    2008-10-31

    Oct 31, 2008 ... Centre for Condensed Matter Theory. Department of Physics. Indian Institute ... Interactions between a system's components are important role. ... Scale-free networks in, say, social networks or the world-wide web. ▻ A system ...

  2. Highly transparent and rollable PVA-co-PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices.

    Science.gov (United States)

    Xiong, Bing; Zhong, Weibing; Zhu, Qing; Liu, Ke; Li, Mufang; Sun, Gang; Wang, Dong

    2017-12-14

    The development of electronics towards a more functions-integrated, flexible and stretchable direction requires mechanically flexible substrates with high thermal and dimensional stability and optical transparency. Herein, rolls of an optically transparent PVA-co-PE nanofibrous membrane/epoxy composite with synergistically enhanced thermal stability, very low CTE, and outstanding mechanical properties are reported. The nanoscale size, the unique inter-stack structure, and the strong interfacial interactions between the PVA-co-PE nanofibers and the epoxy contribute to the synergistic effects. Because of the match between the refractive index (RI) of the PVA-co-PE nanofibers and the epoxy matrix, the visible light transmittance of nanocomposite film could be as high as 85% and the composite film was still optically transparent with a nanofiber loading content of up to 61.7 wt%. The break strength and compliance matrix of the composite film with a high fiber loading of 61.7 wt% increased by 2.3 times of that of the neat epoxy film and exceeded 3000 m 2 N -1 , respectively. PVA-co-PE nanofibers have a very low CTE value (3.634 × 10 -6 K -1 ) and could be applicable as a reinforcement to reduce the thermal expansion of epoxy. Furthermore, we developed a flexible alternating current electroluminescent (ACEL) device based on the transparent composite film and the experimental results showed that the transparent composite film could serve as substrate for flexible electronic devices. In addition, their electrical and optical properties were evaluated.

  3. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhangqi; Huang Ningping; Wang Yichun; Gu Zhongze [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Lu Huijun [Department of Vascular Surgery, Wuxi People' s Hospital, Wuxi 214023 (China); Leach, Michelle K [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Liu Changjian, E-mail: gu@seu.edu.c [Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008 (China)

    2010-12-15

    Nanofibrous scaffolds have been applied widely in tissue engineering to simulate the nanostructure of natural extracellular matrix (ECM) and promote cell bioactivity. The aim of this study was to design a biocompatible nanofibrous scaffold for blood outgrowth endothelial cells (BOECs) and investigate the interaction between the topography of the nanofibrous scaffold and cell growth. Poly(l-lactic acid) (PLLA) random and aligned nanofibers with a uniform diameter distribution were fabricated by electrospinning. NH{sub 3} plasma etching was used to create a hydrophilic surface on the nanofibers to improve type-I collagen adsorption; the conditions of the NH{sub 3} plasma etching were optimized by XPS and water contact angle analysis. Cell attachment, proliferation, viability, phenotype and morphology of BOECs cultured on type-I collagen-coated PLLA film (col-Film), random fibers (col-RFs) and aligned fibers (col-AFs) were detected over a 7 day culture period. The results showed that collagen-coated PLLA nanofibers improved cell attachment and proliferation; col-AFs induced the directional growth of cells along the aligned nanofibers and enhanced endothelialization. We suggest that col-AFs may be a potential implantable scaffold for vascular tissue engineering.

  4. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Directory of Open Access Journals (Sweden)

    Jyotica Batra

    Full Text Available Matrix metalloproteinases (MMPs play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  5. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Science.gov (United States)

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  6. Patient-centred communication intervention study to evaluate nurse-patient interactions in complex continuing care

    Science.gov (United States)

    2012-01-01

    Background Communication impairment is a frequent consequence of stroke. Patients who cannot articulate their needs respond with frustration and agitation, resulting in poor optimization of post-stroke functions. A key component of patient-centred care is the ability of staff to communicate in a way that allows them to understand the patient’s needs. We developed a patient-centred communication intervention targeting registered and unregulated nursing staff caring for complex continuing care patients with communication impairments post stroke. Research objectives include 1) examining the effects of the intervention on patients’ quality of life, depression, satisfaction with care, and agitation; and (2) examining the extent to which the intervention improves staff’s attitudes and knowledge in caring for patients with communication impairments. The intervention builds on a previous pilot study. Methods/design A quasi-experimental repeated measures non-equivalent control group design in a complex continuing care facility is being used. Patients with a communication impairment post-stroke admitted to the facility are eligible to participate. All staff nurses are eligible. Baseline data are collected from staff and patients. Follow-up will occur at 1 and 3 months post-intervention. Subject recruitment and data collection from 60 patients and 30 staff will take approximately 36 months. The Patient-Centred Communication Intervention consists of three components: (1) development of an individualized patient communication care plan; (2) a one-day workshop focused on communication and behavioural management strategies for nursing staff; and (3) a staff support system. The intervention takes comprehensive patient assessments into account to inform the development of communication and behavioural strategies specifically tailored to each patient. Discussion The Patient-Centred Communication Intervention will provide staff with strategies to facilitate interactions with

  7. Patient-centred communication intervention study to evaluate nurse-patient interactions in complex continuing care

    Directory of Open Access Journals (Sweden)

    McGilton Katherine S

    2012-10-01

    Full Text Available Abstract Background Communication impairment is a frequent consequence of stroke. Patients who cannot articulate their needs respond with frustration and agitation, resulting in poor optimization of post-stroke functions. A key component of patient-centred care is the ability of staff to communicate in a way that allows them to understand the patient’s needs. We developed a patient-centred communication intervention targeting registered and unregulated nursing staff caring for complex continuing care patients with communication impairments post stroke. Research objectives include 1 examining the effects of the intervention on patients’ quality of life, depression, satisfaction with care, and agitation; and (2 examining the extent to which the intervention improves staff’s attitudes and knowledge in caring for patients with communication impairments. The intervention builds on a previous pilot study. Methods/design A quasi-experimental repeated measures non-equivalent control group design in a complex continuing care facility is being used. Patients with a communication impairment post-stroke admitted to the facility are eligible to participate. All staff nurses are eligible. Baseline data are collected from staff and patients. Follow-up will occur at 1 and 3 months post-intervention. Subject recruitment and data collection from 60 patients and 30 staff will take approximately 36 months. The Patient-Centred Communication Intervention consists of three components: (1 development of an individualized patient communication care plan; (2 a one-day workshop focused on communication and behavioural management strategies for nursing staff; and (3 a staff support system. The intervention takes comprehensive patient assessments into account to inform the development of communication and behavioural strategies specifically tailored to each patient. Discussion The Patient-Centred Communication Intervention will provide staff with strategies to

  8. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-10-01

    indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers. Keywords: polyion complex micelles, electrostatic interaction, oligopeptide, stability, pharmacokinetics

  9. Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix.

    Directory of Open Access Journals (Sweden)

    Stéphane Chiron

    Full Text Available Anchorage of muscle cells to the extracellular matrix is crucial for a range of fundamental biological processes including migration, survival and differentiation. Three-dimensional (3D culture has been proposed to provide a more physiological in vitro model of muscle growth and differentiation than routine 2D cultures. However, muscle cell adhesion and cell-matrix interplay of engineered muscle tissue remain to be determined. We have characterized cell-matrix interactions in 3D muscle culture and analyzed their consequences on cell differentiation. Human myoblasts were embedded in a fibrin matrix cast between two posts, cultured until confluence, and then induced to differentiate. Myoblasts in 3D aligned along the longitudinal axis of the gel. They displayed actin stress fibers evenly distributed around the nucleus and a cortical mesh of thin actin filaments. Adhesion sites in 3D were smaller in size than in rigid 2D culture but expression of adhesion site proteins, including α5 integrin and vinculin, was higher in 3D compared with 2D (p<0.05. Myoblasts and myotubes in 3D exhibited thicker and ellipsoid nuclei instead of the thin disk-like shape of the nuclei in 2D (p<0.001. Differentiation kinetics were faster in 3D as demonstrated by higher mRNA concentrations of α-actinin and myosin. More important, the elastic modulus of engineered muscle tissues increased significantly from 3.5 ± 0.8 to 7.4 ± 4.7 kPa during proliferation (p<0.05 and reached 12.2 ± 6.0 kPa during differentiation (p<0.05, thus attesting the increase of matrix stiffness during proliferation and differentiation of the myocytes. In conclusion, we reported modulations of the adhesion complexes, the actin cytoskeleton and nuclear shape in 3D compared with routine 2D muscle culture. These findings point to complex interactions between muscle cells and the surrounding matrix with dynamic regulation of the cell-matrix stiffness.

  10. Interaction of Tim23 with Tim50 Is essential for protein translocation by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2009-02-20

    The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.

  11. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chunlin; Xiao, Hanxi [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Qing [Chemistry Department, City University of New York, New York, NY 10016 (United States); Tang, Jianting; Cai, Tiejun [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Deng, Qian, E-mail: dengqian10502@163.com [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2016-11-15

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules

  12. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  13. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Directory of Open Access Journals (Sweden)

    Celia Olabarria

    Full Text Available Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain, where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia. The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  14. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Science.gov (United States)

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  15. DNA Replication and Cell Cycle Progression Regulatedby Long Range Interaction between Protein Complexes bound to DNA.

    Science.gov (United States)

    Matsson, L

    2001-12-01

    A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0force at ϕ = 2N, from repulsion inS phase back to attraction in G(2), when all primed replicons havebeen duplicated once. F'(0) = 0corresponds to a resting cell in theabsence of driving force at ϕ= 0. The model thus ensures that the DNAcontent in G(2) cells is exactlytwice that of G(1) cells. The switch of interaction at the R-point, at which N pre-RCs have been assembled, starts the release of Rb protein thus also explaining the shift in the Rb phosphorylation from mitogen-dependent cyclinD to mitogen-independent cyclin E.Shape,slope and scale of the response curvesderived agree well with experimental datafrom dividing T cells and polymerising MTs,the variable length of which is due to anonlinear dependence of the growthamplitude on the initial concentrations oftubulin dimers and guanosine-tri-phosphate(GTP). The model also explains the dynamic instabilityin growing MTs.

  16. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  17. Emission solvatochromic behavior of a pentacoordinated Zn(II) complex: A viable tool for studying the metallodrug–protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy); Pucci, Daniela; Pirillo, Sante; La Deda, Massimo [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy)

    2014-07-01

    A metal complex with antitumoral activity, Zn(Curcumin)(bypiridine)Cl, was characterized from a photophysical point of view, showing a green emission and a positive solvatochromism. These characteristics can be conveniently used to study its interaction with Human Serum Albumin (HSA), a protein carrier of many non-aqueous biologically-active compounds in the blood stream. The intrinsic fluorescence of HSA was quenched by Fluorescence Resonance Energy Transfer toward the Zn(II) complex, and the Stern–Volmer equation was applied to determine the bimolecular quenching rate constant of the interaction. - Highlights: • Albumin binding information is a key characteristic of drug pharmacology. • Fluorescence spectroscopy offers a simple method for revealing drug–protein interaction. • The fluorescence of the Zn(II) complex and its solvatochromisms has allowed studying the binding from a dual perspective.

  18. Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process

    Science.gov (United States)

    Ayutsede, Jonathan Eyitouyo

    In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk

  19. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  20. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    International Nuclear Information System (INIS)

    Li, Rui; Wang, Jun

    2016-01-01

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  1. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: lirui1401@bjtu.edu.cn; Wang, Jun

    2016-01-08

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  2. Development of Protective Clothing against Nanoparticle Based on Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    M. Faccini

    2012-01-01

    Full Text Available In this paper, the development of efficient protective clothing against nanoparticulate aerosols is presented. Nanofibrous mats of polyamide 6 (PA6 were deposited onto a nonwoven viscose substrate by electrospinning technique. The influence of electrospinning parameters, including solution concentration, viscosity, and conductivity, was studied for the production of nonwovens with controlled fiber diameter showing a size distribution ranging from 66 to 195 nm. By varying several process parameters, textiles with different thickness of the nanofiber layer and thus air permeability were obtained. A hot-press lamination process using a thermoplastic resin as glue was applied to improve the adhesion of the nanofiber layer onto the textile support. After 1500 cycles of repeated compression and torsion, the nanofiber layer was still firmly attached to the support, while mechanical damage is visible in some areas. The penetration of NaCl particles with diameter ranging from 15 to 300 nm through the electrospun textiles was found to be strongly dependent on nanofiber layer thickness. A really thin nanofiber coating provides up to 80% retention of 20 nm size particles and over 50% retention of 200 nm size nanoparticles. Increasing the thickness of the nanofiber mat, the filtration efficiency was increased to over 99% along the whole nanoparticle range. The results obtained highlight the potential of nanofibers in the development of efficient personal protective equipments against nanoparticles.

  3. Synthesis and Property of Ag(NP)/catechin/Gelatin Nanofiber

    Science.gov (United States)

    Nasir, Muhamad; Apriani, Dita

    2017-12-01

    Nanomaterial play important role future industry such as for the medical, food, pharmaceutical and cosmetic industry. Ag (NP) and catechin exhibit antibacterial property. Ag(NP) with diameter around 15 nm was synthesis by microwaved method. We have successfully produce Ag(NP)/catechin/gelatin nanofiber composite by electrospinning process. Ag(NP)/catechin/gelatin nanofiber was synthesized by using gelatin from tuna fish, polyethylene oxide (PEO), acetic acid as solvent and silver nanoparticle(NP)/catechin as bioactive component, respectively. Morphology and structure of bioactive catechin-gelatin nanofiber were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. SEM analysis showed that morphology of nanofiber composite was smooth and had average diameter 398.97 nm. FTIR analysis results were used to confirm structure of catechin-gelatin nanofiber. It was confirmed by FTIR that specific vibration band peak amide A (N-H) at 3286,209 cm-1, amide B (N-H) 3069,396 cm-1, amide I (C=O) at 1643,813 cm-1, amide II (N-H and CN) at 1538,949 cm-1, amide III (C-N) at 1276,789 cm-1, C-O-C from polyethylene oxide at 1146,418 cm-1, respectively. When examined to S. Aureus bacteria, Ag/catechin/gelatin nanofiber show inhabitation performance around 40.44%. Ag(NP)/catechin/gelatin nanofiber has potential application antibacterial medical application.

  4. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  5. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    Science.gov (United States)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  6. Fast methods for long-range interactions in complex systems. Lecture notes

    International Nuclear Information System (INIS)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas

    2011-01-01

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  7. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  8. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  9. The US business cycle: power law scaling for interacting units with complex internal structure

    Science.gov (United States)

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  10. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.

    Science.gov (United States)

    Schmitt, Michael

    2004-09-01

    We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.

  11. The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation.

    Directory of Open Access Journals (Sweden)

    Vinod Balhara

    Full Text Available The enolase from Streptococcus pyogenes (Str enolase F137L/E363G is a homo-octamer shaped like a donut. Plasminogen (Pgn is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI experiments coupled with atomic force microscopy (AFM, isothermal titration calorimetry (ITC, dynamic light scattering (DLS, and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase.

  12. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    MCT-1 is an oncogene that was initially identified in a human T cell lymphoma and has been shown to induce cell proliferation as well as activate survival-related pathways. MCT-1 contains the PUA domain, a recently described RNA-binding domain that is found in several tRNA and rRNA modification...... enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up......-regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  13. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    International Nuclear Information System (INIS)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph; Bernatchez, Pascal

    2011-01-01

    Highlights: ► Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. ► Dysferlin interacts with key signaling proteins for transcytosis in EC. ► Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  14. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  15. Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota

    Science.gov (United States)

    Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas

    2013-01-01

    Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845

  16. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions

    Directory of Open Access Journals (Sweden)

    Igor Otavio Minatel

    2016-08-01

    Full Text Available γ-oryzanol (Orz, a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs, inflammatory responses (nuclear factor kappa-B (NF-κB, and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs. It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  17. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions.

    Science.gov (United States)

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-08-09

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  18. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    Science.gov (United States)

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  19. Network analysis highlights complex interactions between pathogen, host and commensal microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Boutin

    Full Text Available Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities' samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1 the abundance of probiotic-like bacteria decreased after stress exposure; and 2 pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier.

  20. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.

    Science.gov (United States)

    Warner, Jeremy L; Denny, Joshua C; Kreda, David A; Alterovitz, Gil

    2015-03-01

    Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor. Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adjacent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phenotype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers with the metabolic syndrome. Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis. Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  2. Caffeine/sleep-deprivation interaction in mice produces complex memory effects.

    Science.gov (United States)

    Onaolapo, Olakunle J; Onaolapo, Adejoke Y; Akanmu, Moses A; Olayiwola, Gbola

    2015-07-01

    Sleep deprivation negatively impacts memory, causing deficits in memory processes. Of interest is any agent that can offset such deficits. Mice were given varying doses of caffeine for 14 days and then deprived of sleep for 6 hours by the 'gentle handling' method. Memory was assessed using the Novel Object Recognition Test and Y maze alternation. The study was designed to ascertain the impact of varying doses of caffeine combined with total sleep-deprivation on spatial and non spatial memory in mice. Adult Swiss Webster mice of both sexes were assigned to six groups viz., vehicle (distilled water), or one of five selected doses of caffeine (10, 20, 40, 80 and 120 mg/kg) for 14 days via the oral route. Open field novel object recognition test and Y maze spatial working memory tests were carried out on day 14. Results were analysed using multi-factorial ANOVA followed by Tukey HSD test and expressed as mean ± S.E.M, with p values less than 0.05 were considered statistically significant. Novel object recognition tests (NOR) revealed that pre-training and pre-test sleep deprivation and caffeine combination impaired non spatial and spatial memory in male and female mice. The study shows the complex interactions with memory that may arise when total sleep deprivation is superimposed on caffeine administration.

  3. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    Energy Technology Data Exchange (ETDEWEB)

    Kobets, L V; Buchikhin, E P; Klyshevich, R P; Belyachis, G F

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined.

  4. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    International Nuclear Information System (INIS)

    Kobets, L.V.; Buchikhin, E.P.; Klyshevich, R.P.; Belyachis, G.F.

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined

  5. Dielectric Response at THz Frequencies of Mg Water Complexes Interacting with O3 Calculated by Density Functional Theory

    Science.gov (United States)

    2012-10-24

    of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the transition state every normal...Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E...calculations of ground state resonance structure associated with water complexes of Mg and the interaction of these complexes with Ozone using DFT. The

  6. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  7. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  8. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  9. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  10. A smart core-sheath nanofiber that captures and releases red blood cells from the blood

    Science.gov (United States)

    Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.

    2016-01-01

    A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from

  11. Nanofiber Anisotropic Conductive Films (ACF) for Ultra-Fine-Pitch Chip-on-Glass (COG) Interconnections

    Science.gov (United States)

    Lee, Sang-Hoon; Kim, Tae-Wan; Suk, Kyung-Lim; Paik, Kyung-Wook

    2015-11-01

    Nanofiber anisotropic conductive films (ACF) were invented, by adapting nanofiber technology to ACF materials, to overcome the limitations of ultra-fine-pitch interconnection packaging, i.e. shorts and open circuits as a result of the narrow space between bumps and electrodes. For nanofiber ACF, poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS) polymers were used as nanofiber polymer materials. For PVDF and PBS nanofiber ACF, conductive particles of diameter 3.5 μm were incorporated into nanofibers by electrospinning. In ultra-fine-pitch chip-on-glass assembly, insulation was significantly improved by using nanofiber ACF, because nanofibers inside the ACF suppressed the mobility of conductive particles, preventing them from flowing out during the bonding process. Capture of conductive particles was increased from 31% (conventional ACF) to 65%, and stable electrical properties and reliability were achieved by use of nanofiber ACF.

  12. Copper(II Complexes Based on Aminohydroxamic Acids: Synthesis, Structures, In Vitro Cytotoxicities and DNA/BSA Interactions

    Directory of Open Access Journals (Sweden)

    Jia Zhang

    2018-05-01

    Full Text Available Four complexes, [Cu2(glyha(bpy2(H2O]·2ClO4·H2O (1, [Cu2(glyha(phen2]·2ClO4 (2, [Cu2(alaha(bpy2Cl]·Cl·4H2O (3, and [{Cu2(alaha(phen2}{Cu2(alaha(phen2(NO3}]·3NO3 (4 (glyha2− = dianion glycinehydroxamic acid, alaha2− = dianion alaninehydroxamic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline have been successfully synthesized and characterized by X-ray single crystal diffraction. The interactions of these complexes with calf thymus DNA (CT-DNA were studied through UV spectroscopy, fluorescence spectroscopy, and circular dichroism. The results revealed that complexes 1–4 could interact with CT-DNA through intercalation. Interactions of all complexes with bovine serum albumin (BSA were confirmed by the docking study to quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the in vitro cytotoxic effect of the complexes was also examined on four tumor cell lines, including human lung carcinoma cell line (A549, human colon carcinoma cell line (HCT-116, human promyelocytic leukemia cell (HL-60 and cervical cancer cell line (HeLa. All complexes exhibited different antitumor activities.

  13. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  14. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors

    Science.gov (United States)

    Zhang, Yimei; Wang, Fei; Zhu, Hao; Zhou, Lincheng; Zheng, Xinliang; Li, Xinghua; Chen, Zhuang; Wang, Yue; Zhang, Dandan; Pan, Duo

    2017-12-01

    Carbon materials derived from various biomasses have aroused forceful interest from scientific community based on their abundant resource, low cost, environment friendly and easy fabrication. Herein, the method has been developed to prepare nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel (NCGA) as the binder-free electrode for supercapacitors. Ethylenediamine (EDA) is select as nitrogen source for its high nitrogen content and strong interaction with graphene oxide (GO) and cellulose nanofibers (CNFs) via hydrothermal self-assembly method to form hybrid hydrogel, and finally converts to NCGA by freeze-drying and carbonization. After carbonization the insulated CNFs converted to high conductivity carbon nanofibers. The NCGA electrode exhibits a high specific capacitance of 289 F g-1 at 5 mV s-1 and high stability of 90.5% capacitance retention ratio after 5000 cycles at 3 A g-1. This novel biomass electrode could be potential candidate for high performance supercapacitors.

  15. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  16. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  17. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  18. Growth and Integration of Organic Nanofibers in Devices

    DEFF Research Database (Denmark)

    Thilsing-Hansen, Kasper

    kæder af krystalliter, der tilslutter sig den allerede eksisterende P6P nanofiber. Overførsel af P6P nanofibre fra deres vækst substrat er uundgåeligt for at implementere p6P nanofibre i komponenter. Kontrolleret overførsel af 200x200μm2 nanofiber områder fra vækst substratet til præfabrikerede silicium......) exciteret med en pulserende laserstråle et guld/vakuum interface, hvilket resulterer i nanofiber lokaliseret mønstre i PEEM billederne....

  19. Cement/clay interactions: feedback on the increasing complexity of modeling assumptions

    International Nuclear Information System (INIS)

    Marty, Nicolas C.M.; Gaucher, Eric C.; Tournassat, Christophe; Gaboreau, Stephane; Vong, Chan Quang; Claret, F.; Munier, Isabelle; Cochepin, Benoit

    2012-01-01

    Document available in extended abstract form only. Cementitious materials will be widely used in French concept of radioactive waste repositories. During their degradation over time, in contact with geological pore water, they will release hyper-alkaline fluids rich in calcium and alkaline cations. This chemical gradient likely to develop at the cement/clay interfaces will induce geochemical transformations. The first simplified calculations based mainly on simple mass balance calculation led to a very pessimistic understanding of the real expansion mechanism of the alkaline plume. However, geochemical and migration processes are much more complex because of the dissolution of the barrier's accessory phases and the precipitation of secondary minerals. To describe and to understand this complexity, coupled geochemistry and transport calculations are a useful and a mandatory tool. Furthermore, such sets of modeling when properly calibrated on experimental results are able to give insights on larger time scale unreachable with experiments. Since approximately 20 years, numerous papers have described the results of reactive transport modeling of cement/clay interactions with various numerical assumptions. For example, some authors selected a purely thermodynamic approach while others preferred a coupled thermodynamic/kinetic approach. Unfortunately, most of these studies used different and not comparable parameters as space discretization, initial and boundary conditions, thermodynamic databases, clayey and cementitious materials, etc... This study revisits the types of simulations proposed in the past to represent the effect of an alkaline perturbation with regard to the degree of complexity that was considered. The main goal of the study is to perform simulations with a consistent set of data and an increasing complexity. In doing so, the analysis of numerical results will give a clear vision of key parameters driving the expansion of alteration fronts and

  20. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  1. Swift heavy ion irradiation induced modifications in the optical band gap and Urbach's tail in polyaniline nanofibers

    International Nuclear Information System (INIS)

    Banerjee, Somik; Kumar, A.

    2011-01-01

    Optical band gap and Urbach tail width of HCl and CSA doped polyaniline (PAni) nanofibers and the ion beam induced modifications in the band gap and Urbach's tail of the samples have been studied employing UV-Vis absorption spectroscopy. All the major bands appearing in the FTIR spectra exhibit a decrease in intensity and broadening in their band widths upon interaction with the highly energetic ion beams. This suggests that SHI irradiation induces chain-scissioning events in the PAni nanofibers. An interesting result that comes out from the FTIR analysis is a transition from the benzenoid to quinoid states in the PAni chains, which reveals that there is a decrease in the degree of conjugation in the polymer upon irradiation. Optical absorption studies indicate three direct allowed transitions at ∼2.64, 3.61 and 4.08 eV for HCl doped PAni nanofibers and at ∼2.62, 3.49 and 4.02 eV for the CSA doped PAni nanofibers. The optical band gap is found to increase with increasing ion fluence which may be attributed to the reduction in the fiber diameters upon irradiation, which is corroborated by TEM analysis. Increase in the optical band gap also points out to a decrease in the conjugation length due to the larger torsion angles between the adjacent phenyl rings of the polymer with respect to the plane of the nitrogen atoms, which is also supported by FTIR results. The Urbach tail width decreases with increasing ion fluence indicating that structural disorders are annealed out of the PAni nanofibers which is also observed from the plots of (αhν) 2 against photon energy (hν) for HCl doped PAni nanofibers. The quantum confinement effect is confirmed by fact that a band gap exhibits a linear dependence on the inverse of the square of the radius of the PAni nanofibers. Infact, the increase in the optical band gap may be a combined effect of the decrease in the Urbach band width and the quantum confinement effect.

  2. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  3. The HCClF_2-HCCH Complex: Microwave Spectrum, Structure and C-H\\cdotsπ Interactions

    Science.gov (United States)

    Peebles, Rebecca A.; Sexton, John M.; Elliott, Ashley A.; Steber, Amanda L.; Peebles, Sean A.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.

    2010-06-01

    The HCF_3-HCCH complex was recently found to have a weak C-H\\cdotsπ interaction between the fluoroform and acetylene, as well as having a secondary interaction between the fluorine atoms and one of the acetylene hydrogen atoms; however, extensive splittings due to large amplitude motions within the complex have complicated our efforts at making a full assignment of the HCF_3-HCCH spectrum. In an attempt to remove some of the ambiguity in the HCF_3-HCCH study, we have substituted a chlorine atom for one fluorine atom and undertaken an investigation of the HCClF_2-HCCH complex. This eliminates the possibility of internal rotation of the methane subunit, while still maintaining a C-H\\cdotsπ interaction. Using the chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer at the University of Virginia and the Balle-Flygare FTMW spectrometer at Eastern Illinois University, the spectra of four isotopologues of HCClF_2-HCCH have been assigned, with no indication of internal motions within the complex. The structure has been determined from the experimental moments of inertia, confirming that this dimer has the expected weak C-H\\cdotsπ interaction. In addition, the off-diagonal χab quadrupole coupling constant has been used to determine the angle between the C-Cl bond and the a-axis of the complex. This, and Kraitchman coordinates for the chlorine atom, help confirm the structural details from the inertial fit. The structural results will be compared with other complexes showing C-H\\cdotsπ and C-H\\cdotsO interactions. S. A. Peebles, M. M. Serafin, R. A. Peebles, 61st International Symposium on Molecular Spectroscopy, Talk MH13, June 19, 2006.

  4. Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families.

    Directory of Open Access Journals (Sweden)

    Jessica J R Hudson

    2011-02-01

    Full Text Available The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1. In an examination of the evolutionary conservation o