WorldWideScience

Sample records for complex mirna-mrna interactions

  1. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  2. Dynamic and interacting complex networks

    Science.gov (United States)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  3. Interaction between molecular complexes in dispersive media

    International Nuclear Information System (INIS)

    Banagas, E.A.; Manykin, E.A.

    1987-01-01

    The interaction between molecular complexes in different dispersive media with local and nonlocal screening is investigated theoretically. On the basis of results of numerical analysis on a computer, the dependence of the coupled-system spectrum and the interaction energy of the polarized modes on the characteristic parameters of the dispersive media is considered

  4. Quantum mechanical calculations on weakly interacting complexes

    NARCIS (Netherlands)

    Heijmen, T.G.A.

    1998-01-01

    Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced

  5. Interactive drama in complex neurological disability management

    NARCIS (Netherlands)

    Fenech, Anne

    2009-01-01

    Purpose. To establish whether interactive drama has any effect on the responses of people with complex neurological disabilities resident in a long term care facility. Method. This was a service evaluation using interviews with a group of 31 independently consenting long term care residents, and 27

  6. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  7. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng; Naveed, Hammad; Gao, Xin

    2015-01-01

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which

  8. Electrodynamics as a theory of interacting complex charges

    International Nuclear Information System (INIS)

    Akeyo Omolo, Joseph

    2003-04-01

    In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)

  9. Complex trophic interactions in kelp forest ecosystems

    Science.gov (United States)

    Estes, J.A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  10. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  11. Natural enemy interactions constrain pest control in complex agricultural landscapes.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-04-02

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions.

  12. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  13. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  14. Interactive effects of temperature and habitat complexity on freshwater communities.

    Science.gov (United States)

    Scrine, Jennifer; Jochum, Malte; Ólafsson, Jón S; O'Gorman, Eoin J

    2017-11-01

    Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the

  15. Interactions among the components of the interleukin-10 receptor complex.

    Science.gov (United States)

    Krause, Christopher D; Mei, Erwen; Mirochnitchenko, Olga; Lavnikova, Natasha; Xie, Junxia; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-02-10

    We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.

  16. Structure, complexity and cooperation in parallel external chat interactions

    DEFF Research Database (Denmark)

    Grønning, Anette

    2012-01-01

    This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with partic......This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context...... focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25), including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another...... and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various...

  17. Interaction mode between methylene blue-Sm(III) complex and ...

    African Journals Online (AJOL)

    Spectroscopic and viscosity methods were applied to investigate the interaction between methylene blue (MB)-Sm(III) complex and herring sperm DNA by using acridine orange as a spectral probe in Tris-HCl buffer (pH 7.40). By means of molar ratio method, the binding ratios between MB-Sm(III)and DNA were determined ...

  18. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...

  19. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  20. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng

    2015-06-13

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are keys to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successfully access the similarities of protein structures or certain types of interaction interfaces, existing alignment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA molecules. Specifically, they require a \\'blackbox preprocessing\\' to standardize interface types and chain identifiers. Yet their performance is limited and sometimes unsatisfactory. Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures. Our method uses sequentially remote fragments to search for the optimal superimposition. The optimal residue matching problem is then formulated as a maximum weighted bipartite matching problem to detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-redundant protein-DNA complexes in PDB shows significant performance improvement of our method over TM-align and iAlign (with the \\'blackbox preprocessing\\'). Two case studies where our method discovers, for the first time, structural similarities between two pairs of functionally related protein-DNA complexes are presented. We further demonstrate the power of our method on detecting structural similarities between a protein-protein complex and a protein-RNA complex, which is biologically known as a protein-RNA mimicry case. © The Author 2015. Published by Oxford University Press.

  1. Genome complexity, robustness and genetic interactions in digital organisms

    Science.gov (United States)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  2. Synchronization in human musical rhythms and mutually interacting complex systems.

    Science.gov (United States)

    Hennig, Holger

    2014-09-09

    Though the music produced by an ensemble is influenced by multiple factors, including musical genre, musician skill, and individual interpretation, rhythmic synchronization is at the foundation of musical interaction. Here, we study the statistical nature of the mutual interaction between two humans synchronizing rhythms. We find that the interbeat intervals of both laypeople and professional musicians exhibit scale-free (power law) cross-correlations. Surprisingly, the next beat to be played by one person is dependent on the entire history of the other person's interbeat intervals on timescales up to several minutes. To understand this finding, we propose a general stochastic model for mutually interacting complex systems, which suggests a physiologically motivated explanation for the occurrence of scale-free cross-correlations. We show that the observed long-term memory phenomenon in rhythmic synchronization can be imitated by fractal coupling of separately recorded or synthesized audio tracks and thus applied in electronic music. Though this study provides an understanding of fundamental characteristics of timing and synchronization at the interbrain level, the mutually interacting complex systems model may also be applied to study the dynamics of other complex systems where scale-free cross-correlations have been observed, including econophysics, physiological time series, and collective behavior of animal flocks.

  3. Studies on electrospun nylon-6/chitosan complex nanofiber interactions

    International Nuclear Information System (INIS)

    Zhang Haitao; Li Shubai; Branford White, Christopher J.; Ning Xin; Nie Huali; Zhu Limin

    2009-01-01

    Composite membranes of nylon-6/chitosan nanofibers with different weight ratio of nylon-6 to chitosan were fabricated successfully using electrospinning. Morphologies of the nanofibers were investigated by scanning electron microscopy (SEM) and the intermolecular interactions of the nylon-6/chitosan complex were evaluated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) as well as mechanical testing. We found that morphology and diameter of the nanofibers were influenced by the concentration of the solution and weight ratio of the blending component materials. Furthermore FT-IR analyses on interactions between components demonstrated an IR band frequency shift that appeared to be dependent on the amount of chitosan in the complex. Observations from XRD and DSC suggested that a new fraction of γ phase crystals appeared and increased with the increasing content of chitosan in blends, this indicated that intermolecular interactions occurred between nylon-6 and chitosan. Results from performance data in mechanical showed that intermolecular interactions varied with varying chitosan content in the fibers. It was concluded that a new composite product was created and the stability of this system was attributed to strong new interactions such as hydrogen bond formation between the nylon-6 polymers and chitosan structures.

  4. Structure, complexity and cooperation in parallel external chat interactions

    Directory of Open Access Journals (Sweden)

    Anette Grønning

    2012-09-01

    Full Text Available This article examines structure, complexity and cooperation in external chat interactions at the workplace in which one of the participants is taking part in multiple parallel conversations. The investigation is based on an analysis of nine chat interactions in a work-related context, with particular focus on the content of the parallel time spans of the chat interactions. The analysis was inspired by applied conversation analysis (CA. The empirical material has been placed at my disposal by Kristelig Fagbevægelse (Krifa, which is Denmark’s third-largest trade union. The article’s overall focus is on “turn-taking organisation as the fundamental and generic aspect of interaction organisation” (Drew & Heritage, 1992, p. 25, including the use of turn-taking rules, adjacency pairs, and the importance of pauses. Even though the employee and the union members do not know one another and cannot see, hear, or touch one another, it is possible to detect an informal, pleasant tone in their interactions. This challenges the basically asymmetrical relationship between employee and customer, and one can sense a further level of asymmetry. In terms of medium, chat interactions exist via various references to other media, including telephone calls and e-mails.

  5. Complexity of generic biochemical circuits: topology versus strength of interactions

    Science.gov (United States)

    Tikhonov, Mikhail; Bialek, William

    2016-12-01

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  6. Magnetic dipolar interaction in two-dimensional complex plasmas

    International Nuclear Information System (INIS)

    Feldmann, J D; Kalman, G J; Rosenberg, M

    2006-01-01

    Various interactions can play a role between the mesoscopic dust grains of a complex plasma. We study a system composed of dust grains that have both an electric charge and a permanent magnetic dipole moment. It is assumed that the grains occupy lattice sites, as dictated by their Coulomb interaction. In addition, they possess a spin degree of freedom (orientation of magnetic dipole moment) that is not constrained by the Coulomb interaction, thus allowing for the possibility of equilibrium orientational ordering and 'wobbling' about the equilibrium orientations. As a result, collective modes develop. We identify in-plane and out-of-plane wobbling modes and discuss their dispersion characteristics both in the ferromagnetic and in the anti-ferromagnetic ground state

  7. Environment-Gene interaction in common complex diseases: New approaches

    Directory of Open Access Journals (Sweden)

    William A. Toscano, Jr.

    2014-10-01

    Full Text Available Approximately 100,000 different environmental chemicals that are in use as high production volume chemicals confront us in our daily lives. Many of the chemicals we encounter are persistent and have long half-lives in the environment and our bodies. These compounds are referred to as Persistent Organic Pollutants, or POPS. The total environment however is broader than just toxic pollutants. It includes social capital, social economic status, and other factors that are not commonly considered in traditional approaches to studying environment-human interactions. The mechanism of action of environmental agents in altering the human phenotype from health to disease is more complex than once thought. The focus in public health has shifted away from the study of single-gene rare diseases and has given way to the study of multifactorial complex diseases that are common in the population. To understand common complex diseases, we need teams of scientists from different fields working together with common aims. We review some approaches for studying the action of the environment by discussing use-inspired research, and transdisciplinary research approaches. The Genomic era has yielded new tools for study of gene-environment interactions, including genomics, epigenomics, and systems biology. We use environmentally-driven diabetes mellitus type two as an example of environmental epigenomics and disease. The aim of this review is to start the conversation of how the application of advances in biomedical science can be used to advance public health.

  8. Interactive social contagions and co-infections on complex networks

    Science.gov (United States)

    Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.

    2018-01-01

    What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.

  9. Complex experimental analysis of rifle-shooter interaction

    Directory of Open Access Journals (Sweden)

    Michał Taraszewski, M.ScEng, PhD. candidate

    2017-10-01

    Full Text Available In this study, a complex analysis of a man-weapon interaction based on experimental effort is presented. The attention is focused on how a shooter can influence on a rifle, opposite to generally considered in literature rifle's impact on a shooter. It is shown, based on the kbk AKM weapon, that each support point of the rifle has an substantial impact on the system. It is said that identifying human reactions on weapon may let to describe gun movement and thus may be applied to weapon accuracy determination.

  10. Interaction and Technological Resources to Support Learning of Complex Numbers

    Directory of Open Access Journals (Sweden)

    Cassiano Scott Puhl

    2016-02-01

    Full Text Available This article presents a didactic proposal, a workshop for the introduction of the study of complex numbers. Unlike recurrent practices, the workshop began developing the geometric shape of the complex number, implicitly, through vectors. Eliminating student formal vision and algebraic, enriching the teaching practice. The main objective of the strategy was to build the concept of imaginary unit without causing a feeling of strangeness or insignificance of number. The theory of David Ausubel, meaningful learning, the workshop was based on a strategy developed to analyze the subsumers of students and develop a learning by subject. Combined with dynamic and interactive activities in the workshop, there is the use of a learning object (http://matematicacomplexa.meximas.com/. An environment created and basing on the theory of meaningful learning, making students reflect and interact in developed applications sometimes being challenged and other testing hypotheses and, above all, building knowledge. This proposal provided a rich environment for exchange of information between participants and deepening of ideas and concepts that served as subsumers. The result of the experience was very positive, as evidenced by the comments and data submitted by the participants, thus demonstrating that the objectives of this didactic proposal have been achieved.

  11. Measuring pair-wise molecular interactions in a complex mixture

    Science.gov (United States)

    Chakraborty, Krishnendu; Varma, Manoj M.; Venkatapathi, Murugesan

    2016-03-01

    Complex biological samples such as serum contain thousands of proteins and other molecules spanning up to 13 orders of magnitude in concentration. Present measurement techniques do not permit the analysis of all pair-wise interactions between the components of such a complex mixture to a given target molecule. In this work we explore the use of nanoparticle tags which encode the identity of the molecule to obtain the statistical distribution of pair-wise interactions using their Localized Surface Plasmon Resonance (LSPR) signals. The nanoparticle tags are chosen such that the binding between two molecules conjugated to the respective nanoparticle tags can be recognized by the coupling of their LSPR signals. This numerical simulation is done by DDA to investigate this approach using a reduced system consisting of three nanoparticles (a gold ellipsoid with aspect ratio 2.5 and short axis 16 nm, and two silver ellipsoids with aspect ratios 3 and 2 and short axes 8 nm and 10 nm respectively) and the set of all possible dimers formed between them. Incident light was circularly polarized and all possible particle and dimer orientations were considered. We observed that minimum peak separation between two spectra is 5 nm while maximum is 184nm.

  12. Interactive Evolution of Complex Behaviours Through Skill Encapsulation

    DEFF Research Database (Denmark)

    González de Prado Salas, Pablo; Risi, Sebastian

    2017-01-01

    Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by it...... in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.......Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution...... by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP...

  13. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    Science.gov (United States)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  14. Microscopic methods for the interactions between complex nuclei

    International Nuclear Information System (INIS)

    Ikeda, Kiyomi; Tamagaki, Ryozo; Saito, Sakae; Horiuchi, Hisashi; Tohsaki-Suzuki, Akihiro.

    1978-01-01

    Microscopic study on composite-particle interaction performed in Japan is described in this paper. In chapter 1, brief historical description of the study is presented. In chapter 2, the theory of resonating group method (RGM) for describing microscopically the interaction between nuclei (clusters) is reviewed, and formulation on the description is presented. It is shown that the generator coordinate method (GCM) is a useful one for the description of interaction between shell model clusters, and that the kernels in the RGM are easily obtained from those of the GCM. The inter-cluster interaction can be well described by the orthogonality condition model (OCM). In chapter 3, the calculational procedures for the kernels of GCN, RGM and OCM and some properties related to their calculation are discussed. The GCM kernels for various types of systems are treated. The RGM kernels are evaluated by the integral transformation of GCM kernels. The problems related to the RGM norm kernel (RGM-NK) are discussed. The projection operator onto the Pauli-allowed state in OCM is obtained directly from the solution of the eigenvalue problem of RGM-NK. In chapter 4, the exchange kernels due to the antisymmetrization are derived in analytical way with the symbolical use of computer memory by taking the α + O 16 system as a typical example. New algorisms for deriving analytically the generator coordinate kernel (GCM kernel) are presented. In chapter 5, precise generalization of the Kohn-Hulthen-Kato variational method for scattering matrix is made for the purpose of microscopic study of reactions between complex nuclei with many channels coupled. (Kato, T.)

  15. Interactions of quercetin-uranium complexes with biomembranes and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Enas Mohammed Hassan

    2014-07-21

    has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.

  16. Interactions of quercetin-uranium complexes with biomembranes and DNA

    International Nuclear Information System (INIS)

    Attia, Enas Mohammed Hassan

    2014-01-01

    has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.

  17. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  18. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  19. Urban sustainability : complex interactions and the measurement of risk

    Directory of Open Access Journals (Sweden)

    Lidia Diappi

    1999-05-01

    Full Text Available This paper focuses on the concept of asustainable city and its theoretical implications for the urban system. Urban sustainability is based on positive interactions among three different urban sub-systems : social, economic and physical, where social well-being coexists with economic development and environmental quality. This utopian scenario doesn’t appear. Affluent economy is often associated with poverty and criminality, labour variety and urban efficiency coexist with pollution and congestion. The research subject is the analysis of local risk and opportunity conditions, based on the application of a special definition of risk elaborated and made operative with the production of a set of maps representing the multidimensional facets of spatial organisation in urban sustainability. The interactions among the economic/social and environmental systems are complex and unpredictable and present the opportunity for a new methodology of scientific investigation : the connectionistic approach, processed by Self-Reflexive Neural Networks (SRNN. These Networks are a useful instrument of investigation and analogic questioning of the Data Base. Once the SRNN has learned the structure of the weights from the DB, by querying the network with the maximization or minimization of specific groups of attributes, it is possible to read the related properties and to rank the areas. The survey scale assumed by the research is purposefully aimed at the micro-scale and concerns the Municipality of Milan which is spatially divided into 144 zones.

  20. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis

    Science.gov (United States)

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779

  1. Complexity of human and ecosystem interactions in an agricultural landscape

    Science.gov (United States)

    Coupe, Richard H.; Barlow, Jeannie R.; Capel, Paul D.

    2012-01-01

    The complexity of human interaction in the commercial agricultural landscape and the resulting impacts on the ecosystem services of water quality and quantity is largely ignored by the current agricultural paradigm that maximizes crop production over other ecosystem services. Three examples at different spatial scales (local, regional, and global) are presented where human and ecosystem interactions in a commercial agricultural landscape adversely affect water quality and quantity in unintended ways in the Delta of northwestern Mississippi. In the first example, little to no regulation of groundwater use for irrigation has caused declines in groundwater levels resulting in loss of baseflow to streams and threatening future water supply. In the second example, federal policy which subsidizes corn for biofuel production has encouraged many producers to switch from cotton to corn, which requires more nutrients and water, counter to national efforts to reduce nutrient loads to the Gulf of Mexico and exacerbating groundwater level declines. The third example is the wholesale adoption of a system for weed control that relies on a single chemical, initially providing many benefits and ultimately leading to the widespread occurrence of glyphosate and its degradates in Delta streams and necessitating higher application rates of glyphosate as well as the use of other herbicides due to increasing weed resistance. Although these examples are specific to the Mississippi Delta, analogous situations exist throughout the world and point to the need for change in how we grow our food, fuel, and fiber, and manage our soil and water resources.

  2. Simple genomes, complex interactions: Epistasis in RNA virus

    Science.gov (United States)

    Elena, Santiago F.; Solé, Ricard V.; Sardanyés, Josep

    2010-06-01

    Owed to their reduced size and low number of proteins encoded, RNA viruses and other subviral pathogens are often considered as being genetically too simple. However, this structural simplicity also creates the necessity for viral RNA sequences to encode for more than one protein and for proteins to carry out multiple functions, all together resulting in complex patterns of genetic interactions. In this work we will first review the experimental studies revealing that the architecture of viral genomes is dominated by antagonistic interactions among loci. Second, we will also review mathematical models and provide a description of computational tools for the study of RNA virus dynamics and evolution. As an application of these tools, we will finish this review article by analyzing a stochastic bit-string model of in silico virus replication. This model analyzes the interplay between epistasis and the mode of replication on determining the population load of deleterious mutations. The model suggests that, for a given mutation rate, the deleterious mutational load is always larger when epistasis is predominantly antagonistic than when synergism is the rule. However, the magnitude of this effect is larger if replication occurs geometrically than if it proceeds linearly.

  3. Observation of metallic sphere–complex plasma interactions in microgravity

    International Nuclear Information System (INIS)

    Schwabe, M; Zhdanov, S; Hagl, T; Huber, P; Rubin-Zuzic, M; Zaehringer, E; Thomas, H M; Lipaev, A M; Molotkov, V I; Naumkin, V N; Fortov, V E; Vinogradov, P V

    2017-01-01

    The PK-3 Plus laboratory on board the International Space Station is used to study the interaction between metallic spheres and a complex plasma. We show that the metallic spheres significantly affect both the local plasma environment and the microparticle dynamics. The spheres charge under the influence of the plasma and repel the microparticles, forming cavities surrounding the spheres. The size of the cavity around a sphere is used to study the force balance acting on microparticles at the cavity edge. We show that the ion drag force and pressure force from other microparticles balances with the electric force acting from the sphere to within 20%. At intermediate distances from the sphere surface, the interaction between the microparticles and the metallic spheres is attractive due to the drag force stemming from the ions which are moving towards the highly charged spheres. The spheres thus strongly affect the plasma fluxes. This modification of the plasma flux can lead to an effective surface tension acting on the microparticles, and to the excitation of dust-density waves near the spheres, as the local electric field crosses a threshold. (paper)

  4. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    Science.gov (United States)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  5. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  6. Ecological dynamics and complex interactions of Agrobacterium megaplasmids.

    Science.gov (United States)

    Platt, Thomas G; Morton, Elise R; Barton, Ian S; Bever, James D; Fuqua, Clay

    2014-01-01

    As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.

  7. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Varble, Adam [Univ. of Utah, Salt Lake City, UT (United States); Nesbitt, Steve [Univ. of Illinois, Urbana-Champaign, IL (United States); Salio, Paola [Univ. of Buenos Aires (Argentina); Zipser, Edward [Univ. of Utah, Salt Lake City, UT (United States); van den Heever, Susan [Colorado State Univ., Fort Collins, CO (United States); McFarquhar, Greg [Univ. of Illinois, Urbana-Champaign, IL (United States); Kollias, Pavlos [Stony Brook Univ., NY (United States); Kreidenweis, Sonia [Colorado State Univ., Fort Collins, CO (United States); DeMott, Paul [Colorado State Univ., Fort Collins, CO (United States); Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Houze, Jr., Robert [Univ. of Washington, Seattle, WA (United States); Rasmussen, Kristen [Colorado State Univ., Fort Collins, CO (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romps, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gochis, David [National Center for Atmospheric Research, Boulder, CO (United States); Avila, Eldo [National Univ. of Cordoba (Argentina); Williams, Christopher [Univ. of Colorado, Boulder, CO (United States); National Center for Atmospheric Research, Boulder, CO (United States)

    2017-02-01

    General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment in the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as

  8. Intramolecular interactions in a new tris-dithizonatocobalt(III) complex

    International Nuclear Information System (INIS)

    Eschwege, Karel G. von; As, Lydia van; Joubert, Chris C.; Swarts, Jannie C.; Aquino, Manuel A.S.; Cameron, T. Stanley

    2013-01-01

    Graphical abstract: Electrochemically Co(HDz) 3 (5), show three main ligand-based redox processes, two reductions and one oxidation. Ligand oxidations can be resolved into three components highlighting effective intramolecular interactions between molecular fragments; a spectroelectrochemical study of (5) highlighted spectroscopic changes during the six observed redox steps. - Highlights: • Comparative CV's of dithizone (1), PhHg(HDz) and new Co(HDz) 3 (5), is discussed. • One oxidation and two reductions per ligand and a Co III/II couple for (5) are observed. • Mono- and tris-coordinated PhHg(HDz) and (5) have stable metal thioether bonds. • Crystal structure details explain good resolution between ligand redox processes. • Spectro-electrochemistry of (5) highlights spectroscopic properties of redox products. - Abstract: The reactions between dithizone (H 2 Dz (1)) or potassium dithizonate (KHDz (3)), and [Co(H 2 O) 6 ] 2+ (6), in acetone or methanol to liberate tris-dithizonatocobalt(III), Co(HDz) 3 (5), are described. The structure of (5) was confirmed by single crystal X-ray analyses and shows bidentate coordination to Co III via S and N donor atoms for all three HDz − ligands. A comparative voltammetric and spectro-electrochemical study revealed that (1) can be oxidised in two one-electron transfer steps, to generate a disulphide first and then HDz + . In contrast, upon complexation with cobalt, the free mercaptan group of (1) becomes a stable “metal thioether”, Co-S-C, which effectively prevents disulphide formation in all three ligands of (5) upon electrochemical oxidation. As a result, each ligand of Co(HDz) 3 shows just one oxidation process. Intramolecular communication between ligands is evident because the three separate ligand-based oxidations are well resolved. Two irreversible ligand reduction steps, each consisting of three unresolved components related to each of the three ligands, were also observed. The Co II /Co III couple

  9. Structure of local interactions in complex financial dynamics.

    Science.gov (United States)

    Jiang, X F; Chen, T T; Zheng, B

    2014-06-17

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  10. Interactive Room Support for Complex and Distributed Design Projects

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Gundersen, Kristian Kroyer; Mogensen, Preben Holst

    2001-01-01

    We are investigating the design of digital 3D interaction technology embedded in a physical environment. We take as point of departure cemplex, collaborative industrial design projects involving heterogeneous sets of documents, and physical as well as digital 3D models. The paper introduces our...... interaction devices being experimented with in the interactive room environment. The interactive room technologies have all been designed with the requirement that they must seamlessly integrate both into the physical and into the digital work environment while providing new affordances for industrial design...

  11. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  12. Exchange coupling interactions in a Fe6 complex: A theoretical study using density functional theory

    International Nuclear Information System (INIS)

    Cauchy, Thomas; Ruiz, Eliseo; Alvarez, Santiago

    2006-01-01

    Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in an Fe 6 complex. The calculated exchange coupling constants are consistent with an S=5 ground state and agree well with those reported previously for other Fe III polynuclear complexes. Ferromagnetic interactions may appear through exchange pathways formed by two bridging hydroxo or oxo ligands

  13. DNA interactions and biocidal activity of metal complexes of ...

    Indian Academy of Sciences (India)

    Narendrula Vamsikrishna

    The Schiff bases and metal complexes were characterized by analytical and spectral methods like elemental analysis, ... cleavages.8–10 Cisplatin and its second generation com- ..... in DMSO. The test microorganisms were grown on nutrient agar medium in ...... effects on polymer characteristics Appl. Organomet. Chem.

  14. Interacting with molecular structures : user performance versus system complexity

    NARCIS (Netherlands)

    Liere, van R.; Martens, J.B.; Kok, A.J.F.; van Tienen, M.H.A.; Blach, R.; Kjems, E.

    2005-01-01

    Effective interaction in a virtual environment requires that the user can adequately judge the spatial relationships between the objects in a 3D scene. In order to accomplish adequate depth perception, existing virtual environments create useful perceptual cues through stereoscopy, motion parallax

  15. The Emotional Complexity of Attachment Interactions in Nursery

    Science.gov (United States)

    Page, Jools; Elfer, Peter

    2013-01-01

    In a single intensive nursery case study, using in depth interviews, group discussion and self completed daily diaries, this article reports on staff accounts of the emotional aspects of their interactions with young children. The findings show how much the staff achieved through their empathy for children and families and the establishment of…

  16. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  17. Intensity limits for stationary and interacting multi-soliton complexes

    International Nuclear Information System (INIS)

    Sukhorukov, Andrey A.; Akhmediev, Nail N.

    2002-01-01

    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schroedinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given

  18. Proteomic interactions in the mouse vitreous-retina complex.

    Directory of Open Access Journals (Sweden)

    Jessica M Skeie

    Full Text Available Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina.Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software.We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor.Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  19. Proteomic interactions in the mouse vitreous-retina complex.

    Science.gov (United States)

    Skeie, Jessica M; Mahajan, Vinit B

    2013-01-01

    Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  20. On the interaction of molybdenum cyanide complexes with hydroperoxide of tertiary butyl

    International Nuclear Information System (INIS)

    Vretsena, N.B.; Nikipanchuk, M.V.; Chernyak, B.I.

    1979-01-01

    Conducted is investigation of interaction of potassium dioxotetracyanomolybdate (4) K 4 [MoO 2 (CN) 4 ], potassium oxotetracyanomolybdate (2) K 4 [MoO(CN) 4 ] and potassium tetracyanomolybdate K 4 [Mo(CN) 4 ] in CCl 4 and hydroperoxide of tertiary butyl medium, (HPTB). Shown is the process complex mechanism which leads to molybdenum oxidation in complexes and also to coordination and HPTB decomposition. Calculated are parameters of complex formation process of molybdenum with HPTB cyanide complexes

  1. Experimental complex for high flux-materials interaction research

    International Nuclear Information System (INIS)

    Gagen-Torn, V.K.; Kirillov, I.R.; Komarov, V.L.; Litunovsky, V.N.; Mazul, I.V.; Ovchinnikov, I.B.; Prokofjev, Yu.G.; Saksagansky, G.L.; Titov, V.A.

    1995-01-01

    The experimental complex for high heat flux testing of divertor materials and bumper mock-ups under conditions close to both ITER stationary and plasma disruption PFC heat loads is described. High power plasma and electron beams are using as high heat flux sources. The former are applied to disruption simulation experiments. The values of pulsed plasma heat flux load up to 110 MJ/m 2 and stationary e-beam load up to 15 MW/m 2 can obtained on these facilities. (orig.)

  2. Diversity in a complex ecological network with two interaction types

    Czech Academy of Sciences Publication Activity Database

    Melián, C. J.; Bascompte, J.; Jordano, P.; Křivan, Vlastimil

    2009-01-01

    Roč. 118, č. 1 (2009), s. 122-130 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Grant - others:University of California(US) DEB-0553768; The Spanish Ministry of Science and Technology (ES) REN2003-04774; The Spanish Ministry of Science and Technology (ES) REN2003-00273 Institutional research plan: CEZ:AV0Z50070508 Keywords : complex ecological network Subject RIV: EH - Ecology, Behaviour Impact factor: 3.147, year: 2009

  3. Child Obesity and Mental Health: A Complex Interaction.

    Science.gov (United States)

    Small, Leigh; Aplasca, Alexis

    2016-04-01

    Prevalence rates of childhood obesity have risen steeply over the last 3 decades. Given the increased national focus, the frequency of this clinical problem, and the multiple mental health factors that coexist with it, make obesity a public health concern. The complex relationships between mental health and obesity serve to potentiate the severity and interdependency of each. The purpose of this review is to create a contextual connection for the 2 conditions as outlined by the research literature and consider treatment options that affect both health problems. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The complex nature of calcium cation interactions with phospholipid bilayers

    Science.gov (United States)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  5. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    International Nuclear Information System (INIS)

    De Yoreo, J.J.; Bartelt, M.C.; Orme, C.A.; Villacampa, A.; Weeks, B.L.; Miller, A.E.

    2002-01-01

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies

  6. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  7. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  8. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  9. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  10. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  11. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  12. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  13. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  14. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    International Nuclear Information System (INIS)

    Navarro, Maribel; Betancourt, Adelmo; Hernandez, Clara; Marchan, Edgar

    2008-01-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl 2 (phen)] and [PdCl 2 (phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 μmol L -1 in 48 h. (author)

  15. Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions

    CSIR Research Space (South Africa)

    Naude, AH

    2008-06-01

    Full Text Available The paper outlines the challenges of modelling and assessing spatially complex human-ecosystem interactions, and the need to simultaneously consider rural-urban and rich-poor interactions. The context for exploring these challenges is South Africa...

  16. Interaction energies and structures of the (n 1–3) complexes

    Indian Academy of Sciences (India)

    JAMAL N DAWOUD

    Lithium ion complexes; ab initio calculations; bond dissociation energy; electrostatic interaction; carbon oxide. 1. Introduction. The chemistry of alkali metal interactions with lig- ands has been the subject of considerable attention in the last twenty years. It has decisive implications in biology, chemistry and physics.1–3 The ...

  17. Alkali metal cation complexation and solvent interactions by robust chromium(III) fluoride complexes

    DEFF Research Database (Denmark)

    Birk, T.; Magnussen, M.J.; Piligkos, Stergios

    2010-01-01

    )] have been synthesized from mer-[CrF3(py)(3)] and shown to precipitate sodium salts from solution, of which 3[CrF3(Me(3-)tacn)]center dot 2Na(Bph(4)).solv and 6[CrF3(terpy)]center dot 4Na(Bph(4)).solv have been crystallographically characterized. In these clusters, the neutral fluoride complexes bring...

  18. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Uchikoga

    Full Text Available Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  19. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Science.gov (United States)

    Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ohue, Masahito; Hirokawa, Takatsugu; Akiyama, Yutaka

    2013-01-01

    Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  20. Molecular interactions in the complexes of toluene with butyronitrile: A DFT approach

    Science.gov (United States)

    Karthick, N. K.; Arivazhagan, G.

    2018-04-01

    Density Functional Theory (DFT) has been employed to investigate the self association of butyronitrile and the heterointeractions in the 1:2 (toluene: butyronitrile) and 1:1 complexes of toluene with butyronitrile. For this investigation the B3LYP functional with Grimme's dispersion correction (D3) term and ωB97XD functionals were used. The theoretical frequency analysis shows the unsuitability of B3LYP with D3 for the present investigation. Therefore, Natural Bonding Orbital analysis was done at the functional ωB97XD. It is found through this work that only the methylene hydrogens of butyronitrile are responsible for the self association among the butyronitrile molecules. In 1:1 complex, the red shift in the butyronitrile methyl asymmetric stretching mode is not due to the active participation of this group in heterointeractions and it is solely due to the other interactions happening in its vicinity. Only the interaction (TOL) C - H ⋯ N(BN) is present in the complex. In 1:2 complex the butyronitrile methyl/methylene hydrogens interact with the delocalized electron cloud of toluene and the toluene hydrogens interact with the butyronitrile nitrogen. Comparison of interaction energies shows that the stability of 1:2 complex is more than that of butyronitrile dimer and 1:1 complex.

  1. Studies on the Interaction between Zinc-Hydroxybenzoite Complex and Genomic DNA

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2006-04-01

    Full Text Available Zinc-Hydroxybenzoite ([Zn (H206] (p-HO-C6H4COO22H20 complex which wassynthesized and characterized by instrumental methods and the DNA samples which hadbeen isolated from cattle were allowed to interact at 37 oC for different time periods. Theinteraction of genomic DNA with this complex has been followed by agarose gelelectrophoresis at 50 V for 2 h. When DNA samples were allowed to interact with this metalcomplex, it was found that band intensities changed with the concentrations of the complex.In the result of interaction between this complex and genomic DNA samples, it wasdetermined that the intensities of bands were changed at the different concentrations of thecomplex. The brightness of the bands was increased and mobility of the bands wasdecreased, indicating the occurrence of increased covalent binding of the metal complexwith DNA. In this study it was concluded that the damage effect of ascorbate was reducedby Zinc-Hydroxybenzoite.

  2. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction.

    Science.gov (United States)

    Wang, Yijie; Qian, Xiaoning

    2017-03-14

    Intuitively, proteins in the same protein complexes should highly interact with each other but rarely interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing computational algorithms do not directly detect protein complexes based on both of these topological properties. Most of them, depending on mathematical definitions of either "modularity" or "conductance", have their own limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance characterizes the separability of complexes but fails to capture the interaction density within complexes. In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense interactions) to predict overlapping protein complexes with the desired topological structure, which is densely connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the protein complexes by solving another MIP problem that aims to find the dense subnetwork in the minimum-conductance set. Experiments on four large-scale yeast PPI networks from different public databases demonstrate that the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.

  3. Exploring the Interaction Natures in Plutonyl (VI Complexes with Topological Analyses of Electron Density

    Directory of Open Access Journals (Sweden)

    Jiguang Du

    2016-04-01

    Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.

  4. Guidelines and Recommendations for Developing Interactive eHealth Apps for Complex Messaging in Health Promotion.

    Science.gov (United States)

    Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis

    2016-02-09

    The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has

  5. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  6. Magnetic-superexchange interactions of uranium(IV) chloride-addition complexes with amides, 2

    International Nuclear Information System (INIS)

    Miyake, Chie; Hinatsu, Yukio; Imoto, Shosuke

    1983-01-01

    The magnetic susceptibilities of five cyclic amide (lactam)-addition complexes of uranium(IV) chloride were measured between room temperature and 2 K. Magnetic-exchange interaction was found only for N-methyl-substituted amide complexes, and a dimer structure was assumed for them on the basis of their chemical properties. Treating interdimer interaction with a molecular-field approximation, the magnetic susceptibilities were calculated to be in good agreement with the experimental results in the temperature region of the maxima in chi sub(A). The transmission of antiparallel spin coupling via the π orbitals of the bridging amide ligands is proposed to explain the strong intradimer superexchange interaction for the uranium(IV) chloride-amide complexes with the magnetic-susceptibility maximum. (author)

  7. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.

    Science.gov (United States)

    Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G

    2017-10-01

    Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome.

    Directory of Open Access Journals (Sweden)

    Nowel Azzouz

    Full Text Available BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation.

  9. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  10. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca2+-Calmodulin Complex.

    Science.gov (United States)

    Hisamatsu, Yosuke; Suzuki, Nozomi; Masum, Abdullah-Al; Shibuya, Ai; Abe, Ryo; Sato, Akira; Tanuma, Sei-Ichi; Aoki, Shin

    2017-02-15

    In our previous paper, we reported on the preparation of some cationic amphiphilic Ir complexes (2c, 2d) containing KKGG peptides that induce and detect cell death of Jurkat cells. Mechanistic studies suggest that 2c interacts with anionic molecules and/or membrane receptors on the cell surface to trigger an intracellular Ca 2+ response, resulting in the induction of cell death, accompanied by membrane disruption. We have continued the studies of cell death of Jurkat cells induced by 2c and found that xestospongin C, a selective inhibitor of an inositol 1,4,5-trisphosphate receptor located on the endoplasmic reticulum (ER), reduces the cytotoxicity of 2c, suggesting that 2c triggers the release of Ca 2+ from the ER, leading to an increase in the concentration of cytosolic Ca 2+ , thus inducing cell death. Moreover, we synthesized a series of new amphiphilic cationic Ir complexes 5a-c containing photoreactive 3-trifluoromethyl-3-phenyldiazirine (TFPD) groups, in an attempt to identify the target molecules of 2c. Interestingly, it was discovered that a TFPD group functions as a triplet quencher of Ir complexes. It was also found that 5b is useful as a turn-on phosphorescent probe of acidic proteins such as bovine serum albumin (BSA) (pI = 4.7) and their complexation was confirmed by luminescence titrations and SDS-PAGE of photochemical products between them. These successful results allowed us to carry out photoaffinity labeling of the target biomolecules of 5b (2c and analogues thereof) in Jurkat cells. A proteomic analysis of the products obtained by the photoirradiation of 5b with Jurkat cells suggests that the Ca 2+ -binding protein "calmodulin (CaM)" is one of target proteins of the Ir complexes. Indeed, 5b was found to interact with the Ca 2+ -CaM complex, as evidenced by luminescence titrations and the results of photochemical reactions of 5b with CaM in the presence of Ca 2+ (SDS-PAGE). A plausible mechanism for cell death induced by a cationic amphiphilic Ir

  11. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies.

    Science.gov (United States)

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Agren, Asa; Engberg, Elisabeth; Hu, Frank B; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W

    2014-12-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics.

  12. Time series analysis of embodied interaction: Movement variability and complexity matching as dyadic properties

    Directory of Open Access Journals (Sweden)

    Leonardo Zapata-Fonseca

    2016-12-01

    Full Text Available There is a growing consensus that a fuller understanding of social cognition depends on more systematic studies of real-time social interaction. Such studies require methods that can deal with the complex dynamics taking place at multiple interdependent temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of analysis. We demonstrate the value of adopting an extended multi-scale approach by re-analyzing movement time series generated in a study of embodied dyadic interaction in a minimal virtual reality environment (a perceptual crossing experiment. Reduced movement variability revealed an interdependence between social awareness and social coordination that cannot be accounted for by either subjective or objective factors alone: it picks out interactions in which subjective and objective conditions are convergent (i.e. elevated coordination is perceived as clearly social, and impaired coordination is perceived as socially ambiguous. This finding is consistent with the claim that interpersonal interaction can be partially constitutive of direct social perception. Clustering statistics (Allan Factor of salient events revealed fractal scaling. Complexity matching defined as the similarity between these scaling laws was significantly more pronounced in pairs of participants as compared to surrogate dyads. This further highlights the multi-scale and distributed character of social interaction and extends previous complexity matching results from dyadic conversation to nonverbal social interaction dynamics. Trials with successful joint interaction were also associated with an increase in local coordination. Consequently, a local coordination pattern emerges on the background of complex dyadic interactions in the PCE task and makes joint successful performance possible.

  13. Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    Directory of Open Access Journals (Sweden)

    Kamran Sedig

    2016-10-01

    Full Text Available Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces.

  14. MglA/SspA complex interactions are modulated by inorganic polyphosphate.

    Science.gov (United States)

    Wrench, Algevis P; Gardner, Christopher L; Siegel, Sara D; Pagliai, Fernando A; Malekiha, Mahsa; Gonzalez, Claudio F; Lorca, Graciela L

    2013-01-01

    The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen's virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions. In this study, we identified inorganic polyphosphate (polyP) as a signal molecule that promotes the interaction of MglA and SspA from F. tularensis SCHU S4. Analysis of the Mgla/SspA interaction was carried out using a two-hybrid system. The Escherichia coli reporter strain contained a deletion on the ppK-ppX operon, inhibiting polyP synthesis. The interaction between MglA and SspA was significantly impaired, as was the interaction between the MglA/SspA complex and the regulatory protein, FevR, indicating the stabilizing effect of polyP. In F. tularensis, chromatin immune precipitation studies revealed that in the absence of polyP, binding of the MglA/SspA complex to the promoter region of the pdpD, iglA, fevR and ppK genes is decreased. Isothermal titration calorimetry (ITC) indicated that polyP binds directly to the MglA/SspA complex with high affinity (KD = 0.3 µM). These observations directly correlated with results obtained from calorimetric scans (DSC), where a strong shift in the mid-transition temperature (Tm) of the MglA/SspA complex was observed in the presence of polyP.

  15. MglA/SspA complex interactions are modulated by inorganic polyphosphate.

    Directory of Open Access Journals (Sweden)

    Algevis P Wrench

    Full Text Available The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI genes. These genes are essential for this pathogen's virulence and survival within host cells. Our goal was to determine if an intracellular metabolite modulate these protein/protein interactions. In this study, we identified inorganic polyphosphate (polyP as a signal molecule that promotes the interaction of MglA and SspA from F. tularensis SCHU S4. Analysis of the Mgla/SspA interaction was carried out using a two-hybrid system. The Escherichia coli reporter strain contained a deletion on the ppK-ppX operon, inhibiting polyP synthesis. The interaction between MglA and SspA was significantly impaired, as was the interaction between the MglA/SspA complex and the regulatory protein, FevR, indicating the stabilizing effect of polyP. In F. tularensis, chromatin immune precipitation studies revealed that in the absence of polyP, binding of the MglA/SspA complex to the promoter region of the pdpD, iglA, fevR and ppK genes is decreased. Isothermal titration calorimetry (ITC indicated that polyP binds directly to the MglA/SspA complex with high affinity (KD = 0.3 µM. These observations directly correlated with results obtained from calorimetric scans (DSC, where a strong shift in the mid-transition temperature (Tm of the MglA/SspA complex was observed in the presence of polyP.

  16. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sallam, S.A., E-mail: shehabsallam@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt); Abbas, A.M. [Chemistry Department, Faculty of Science, Suez Canal University, Isamilia (Egypt)

    2013-04-15

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and {sup 1}H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift.

  17. Ni(II) complexes of arginine Schiff-bases and its interaction with DNA

    International Nuclear Information System (INIS)

    Sallam, S.A.; Abbas, A.M.

    2013-01-01

    Ni(II) complexes with Schiff-bases obtained by condensation of arginine with salicylaldehyde; 2,3-; 2,4-; 2,5-dihydroxybenzaldehyde and o-hydroxynaphthaldehyde have been synthesized using the template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1 H NMR spectra as well as thermal analysis (TG, DTG and DTA). The Schiff-bases are dibasic tridentate donors and the complexes have diamagnetic square planar and octahedral structures. The complexes decompose in three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy. -- Highlights: ► Arginine Schiff-bases and their nickel(II) complexes have been synthesized. ► Magnetic and spectral data show diamagnetic square planar and octahedral complexes. ► The complexes thermally decompose in three stages. Interaction with FM-DNA shows hyperchromism with blue shift

  18. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  19. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  20. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  1. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    Science.gov (United States)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  2. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  3. A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis

    Science.gov (United States)

    Dion, Marc; Kashyap, Satish; Louie, Aloisius

    1991-06-01

    This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.

  4. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    NARCIS (Netherlands)

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.

    2005-01-01

    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  5. Visible lights induced polymerization reactions: interactions between rose bengal and iron aren complex

    International Nuclear Information System (INIS)

    Burget, D.; Grotzinger, C.; Jacques, P.; Fouassier, J.P.

    1999-01-01

    The present paper is devoted to an investigation of the interactions between Rose Bengal (RB) and an Iron aren (Irg(+)) complex that are usable in visible light induced polymerization reactions. Steady state and flash photolysis experiments were performed in order to elucidate the nature of the intermediates formed after light excitation. A complete scheme of evolution of the excited states is discussed

  6. A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction

    International Nuclear Information System (INIS)

    Ren Lulu; Liu Tianxi; Guo Juan; Guo Shuzhong; Wang Xiaoyan; Wang Weizhi

    2010-01-01

    We report that the graphene sheets can be stably dispersed in water by hydrophobic interaction with polyacrylamide. Most interestingly, the resultant graphene-polyacrylamide complexes show a reversible pH responsive property although polyacrylamide itself does not possess such characteristics. This method opens up novel opportunities for the potential applications of graphene in intelligent sensors, biology, medicine, nanoelectronics and other relevant areas.

  7. Interactions between metal cations with H2 in the M - H2 complexes ...

    Indian Academy of Sciences (India)

    turbation theory (SAPT) to analyze the effect of various components on the interaction of the complexes. The ... The objec- tive of this article is two-fold, firstly, how accurately. ∗ .... In the above equation, s6 is a scaling factor that depends entirely on the density ...... 265. 47. Huber K P and Herzberg G 1979 Molecular Spec-.

  8. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  9. Complexity of health-care needs and interactions in multidisciplinary medical teams

    NARCIS (Netherlands)

    Molleman, E.; Broekhuis, Manda; Stoffels, A.M.R.R.; Jaspers, F.

    By using an information processing and social identity approach, this study examines the relationships between the complexity of the health care needs of a patient and (1) the interactions among physicians during team meetings and (2) how the meeting participants evaluate the discussion. Three

  10. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    Science.gov (United States)

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  11. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    DEFF Research Database (Denmark)

    Payne, Ruth O; Silk, Sarah E; Elias, Sean C

    2017-01-01

    serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been...

  12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  13. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  14. A Framework for the Interactive Handling of High-Dimensional Simulation Data in Complex Geometries

    KAUST Repository

    Benzina, Amal; Buse, Gerrit; Butnaru, Daniel; Murarasu, Alin; Treib, Marc; Varduhn, Vasco; Mundani, Ralf-Peter

    2013-01-01

    Flow simulations around building infrastructure models involve large scale complex geometries, which when discretized in adequate detail entail high computational cost. Moreover, tasks such as simulation insight by steering or optimization require many such costly simulations. In this paper, we illustrate the whole pipeline of an integrated solution for interactive computational steering, developed for complex flow simulation scenarios that depend on a moderate number of both geometric and physical parameters. A mesh generator takes building information model input data and outputs a valid cartesian discretization. A sparse-grids-based surrogate model—a less costly substitute for the parameterized simulation—uses precomputed data to deliver approximated simulation results at interactive rates. Furthermore, a distributed multi-display visualization environment shows building infrastructure together with flow data. The focus is set on scalability and intuitive user interaction.

  15. Interacting complex systems: Theory and application to real-world situations

    Science.gov (United States)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  16. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    Science.gov (United States)

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Interactions of trivalent and tetravalent heavy metal-siderophore complexes with pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Yoshida, T.; Ozaki, T.; Ohnuki, T.; Francis, A.J.

    2004-01-01

    We investigated the interactions of the Fe(III)-, Eu(III)-, and Hf(IV)-desferrioxamine B (DFO) complexes with the Gram-negative aerobic bacterium Pseudomonas fluorescens. Potentiometric titration of 1:1 Fe(III)-, Eu(III)-, and Hf(IV)-DFO complexes showed that Hf(IV) formed a strong complex with DFO whose stability was comparable to that of the Fe(III)-DFO complex, while Eu(III) formed a weaker one. DFO in a growth medium was not degraded by P. fluorescens. Contact of P. fluorescens cells with the Fe(III)-, Eu(III)-, and Hf(IV)-DFO complexes at pH 4-9 revealed that there was negligible adsorption of Hf(IV) and Fe(III), whereas Eu(III) was dissociated from DFO and was readily adsorbed by the cells. These results suggest that Fe(III) and Hf(IV) form stable complexes with DFO and are not adsorbed by P. fluorescens cells. Europium(III) forms a weaker complex with DFO than Fe(III) and Hf(IV) do and its DFO complex is readily dissociated in the presence of the cells. (orig.)

  18. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  19. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  20. Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy

    Directory of Open Access Journals (Sweden)

    Liu Lin

    2009-12-01

    Full Text Available Abstract Background microRNAs (miRNAs regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. Results We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT. Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. Conclusions This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and

  1. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  2. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.

    Science.gov (United States)

    Caracciolo, Giulio; Amenitsch, Heinz

    2012-10-01

    Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

  3. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan

    2017-01-22

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  4. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan; Abrar, Shafayat

    2017-01-01

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  5. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  6. Interactions among Ecological Factors That Explain the Psychosocial Quality of Life of Children with Complex Needs

    Directory of Open Access Journals (Sweden)

    Sandy Thurston

    2010-01-01

    Full Text Available Purpose. To explore the associations and interactions among ecological factors and explain the psychosocial quality of life of children with complex needs. Methods. In this cross-sectional survey consenting parents were identified by the Children's Treatment Network. Families were eligible if the child from 0 to 19 years, resided in Simcoe/York, and there were multiple family needs. Regression analysis was used to explore associations and interactions. n=429. Results. Younger children, without conduct disorder, without hostile and punitive parenting and with low adverse family impact demonstrated the highest levels of psychosocial quality of life. Statistically significant interactions between processes of care and parent variables highlight the complexity of real life situations. Conclusions. It is not possible to fully understand the child's psychosocial quality of life in complex needs families by considering only simple associations between ecological factors. A multitude of factors and interactions between these factors are simultaneously present and the care of these families requires a holistic approach.

  7. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    Science.gov (United States)

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  10. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    International Nuclear Information System (INIS)

    Valle-Bourrouet, Grettel; Ugalde-Saldivar, Victor M.; Gomez, Martin; Ortiz-Frade, Luis A.; Gonzalez, Ignacio; Frontana, Carlos

    2010-01-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw - ) 2 (Py) 2 ; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw - units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw - units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  11. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Bourrouet, Grettel [Universidad de Costa Rica, Escuela de Quimica, San Jose (Costa Rica); Ugalde-Saldivar, Victor M. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Gomez, Martin [Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana-Xochimilco, C.P. 04960, Mexico, D.F. (Mexico); Ortiz-Frade, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, 76703, Pedro Escobedo, Queretaro (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Apartado postal 55-534, 09340, Mexico, D.F. (Mexico); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. Instituto Politecnico Nacional No. 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico)

    2010-12-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw{sup -}){sub 2}(Py){sub 2}; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw{sup -} units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw{sup -} units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  12. INTERACTION OF FLUORIDE COMPLEXES DERIVED FROM GLASS-IONOMER CEMENTS WITH HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    Lewis S. M.

    2013-09-01

    Full Text Available A study has been undertaken of the interaction of complexed fluoride extracted from glass-ionomer dental cements with synthetic hydroxyapatite powder. Extracts were prepared from two commercial glass-ionomers (Fuji IX and ChemFlex under both neutral and acidic conditions. They were analysed by ICP-OES and by fluoride-ion selective electrode with and without added TISAB to decomplex the fluoride. The pH of the acid extracts was 4, conditions under which fluoride complexes with protons as HF or HF2-, it also complexes with aluminium, which was found to be present in higher amounts in the acid extracts. Fluoride was found to be almost completely complexed in acid extracts, but not in neutral extracts, which contained free fluoride ions. Exposure of these extracts to synthetic hydroxyapatite powder showed that fluoride was taken up rapidly (within 5 minutes, whether or not it was complexed. SEM (EDAX study of recovered hydroxyapatite showed only minute traces of aluminium taken up under all conditions. This showed that aluminium interacts hardly at all with hydroxyapatite, and hence is probably not involved in the remineralisation process.

  13. Revealing the Structural Complexity of Component Interactions of Topic-Specific PCK when Planning to Teach

    Science.gov (United States)

    Mavhunga, Elizabeth

    2018-04-01

    Teaching pedagogical content knowledge (PCK) at a topic-specific level requires clarity on the content-specific nature of the components employed, as well as the specific features that bring about the desirable depth in teacher explanations. Such understanding is often hazy; yet, it influences the nature of teacher tasks and learning opportunities afforded to pre-service teachers in a teaching program. The purpose of this study was twofold: firstly, to illuminate the emerging complexity when content-specific components of PCK interact when planning to teach a chemistry topic; and secondly, to identify the kinds of teacher tasks that promote the emergence of such complexity. Data collected were content representations (CoRes) in chemical equilibrium accompanied by expanded lesson outlines from 15 pre-service teachers in their final year of study towards a first degree in teaching (B Ed). The analysis involved extraction of episodes that exhibited component interaction by using a qualitative in-depth analysis method. The results revealed the structure in which the components of PCK in a topic interact among each other to be linear, interwoven, or a combination of the two. The interwoven interactions contained multiple components that connected explanations on different aspects of a concept, all working in a complementary manner. The most sophisticated component interactions emerged from teacher tasks on descriptions of a lesson sequence and a summary of a lesson. Recommendations in this study highlight core practices for making pedagogical transformation of topic content knowledge more accessible.

  14. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  15. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  16. LES of the interaction between a premixed flame and complex turbulent swirling flow

    International Nuclear Information System (INIS)

    Iudiciani, P; Duwig, C; Szasz, R Z; Fuchs, L; Gutmark, E

    2011-01-01

    In this paper the Triple Annular Research Swirler, a fuel injector characterized by complex design with three concentric air passages, has been studied numerically. A swirl-stabilized lean premixed flame has been simulated by means of Large Eddy Simulation. The computations characterize successfully the dynamics of the flame and their interactions with the complex swirling flow. The flame is stabilized upstream the fuel injector exit, and the dynamics are led by a Precessing Vortex Core which seems to originate in the inner air passage. The results obtained by Proper Orthogonal Decomposition analysis are in agreement with previous findings in the context of swirling flows/flames.

  17. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    Science.gov (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  18. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  19. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments.

    Science.gov (United States)

    Geisser, P

    1990-07-01

    It has been shown in the present study that food components such as phytic acid, oxalic acid, tannin, sodium alginate, choline and choline salts, vitamins A, D3 and E, soy oil and soy flour, do not undergo any interactions with iron(III)-hydroxide polymaltose complex (Ferrum Hausmann). Phytic acid, oxalic acid, tannin and sodium alginate, however, react with iron(II) or iron(III)-salts at pH values of 3.0, 5.5 and 8.0, giving rise to iron complexes. Trimethylamine-N-oxide, which is present in fish meal, reacts with iron(II)-sulphate to produce iron(III) reaction products; it does not react with iron(III)-hydroxide polymaltose complex. Special soybean flours show no irreversible adsorption or precipitation with iron(III)-hydroxyide polymaltose complex over the pH range 3.0-8.0, in contrast to iron(II)-sulphate. Antacids containing aluminium hydroxide, talc, ion exchange resins or other unabsorbable, insoluble components absorb iron(III)-hydroxide polymaltose complex in the pH range 3.0-8.0 in a reversible manner, while the strong adsorption or precipitation observed with iron(II)-sulphate at pH 8.0 is irreversible. No interaction was observed between the steroid hormones studied and iron(II)-sulphate or iron(III)-hydroxide polymaltose complex. On the basis of the measured compatibilities, iron(III)-hydroxide polymaltose complex can be administered orally simultaneously with many other drugs, without prejudicing the absorption of iron or of the other drug as is often seen with iron(II) and iron(III) salts.

  20. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  1. Intermolecular interactions of decamethoxinum and acetylsalicylic acid in systems of various complexity levels

    Directory of Open Access Journals (Sweden)

    O. V. Vashchenko

    2016-07-01

    Full Text Available Intermolecular interactions between decamethoxinum (DEC and acetylsalicylic acid (ASА have been studied in the phospholipid-containing systems of escalating complexity levels. The host media for these substances were solvents, L-α-dipalmitoylphosphatidylcholine (DPPC membranes, and samples of human erythrocytes. Peculiar effects caused by DEC-ASА interaction have been observed in each system using appropriate techniques: (a DEC-ASА non-covalent complexes formation in DPPC-containing systems were revealed by mass spectrometry with electrospray ionization; (b joint DEC-ASА action on DPPC model membranes led to increasing of membrane melting temperature Tm, whereas individual drugs caused pronounced Tm decreasing, which was demonstrated by differential scanning calorimetry; (c deceleration of DEC-induced haemolysis of erythrocytes under joint DEC-ASА application was observed by optical microscopy.

  2. Product development strategy in the Danish agricultural complex: Global interaction with clusters of marketing excellence

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    1992-01-01

    A study of the Danish foods industry shows that producers of food products have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently, the Danish agro-industrial complex been singled out in other studies as a paradigmatic...... produce and utilize sticky and fastchanging information about production and markets respectively. It is precisely by not interacting wi market business-to-business demand from changing end-user market that the Danish agro-industrial complex has avoided being insulated. The managerial implication...... is that a company in search of partners for joint development in global agro-industra networks can realize a competitive advantage by applying a market view that is euclidean upstream and equidstant downstream....

  3. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  4. Fanconi Anemia Proteins FANCA, FANCC, and FANCG/XRCC9 Interact in a Functional Nuclear Complex

    OpenAIRE

    Garcia-Higuera, Irene; Kuang, Yanan; Näf, Dieter; Wasik, Jennifer; D’Andrea, Alan D.

    1999-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently clone...

  5. Synthesis and DNA interaction of a Sm(III) complex of a Schiff base ...

    African Journals Online (AJOL)

    The interaction between the Sm(III) complex of an ionic Schiff base [HL]-, derived from vanillin and L-tryptophan, and herring sperm DNA at physiological pH (7.40) has been studied by UV-Vis absorption, fluorescence and viscosity methods. The binding ratios nSm(III) : nK[HL] = 1:1 and nSm(III)L: nDNA =5:1 were confirmed ...

  6. Fast-track to a solid dispersion formulation using multi-way analysis of complex interactions

    DEFF Research Database (Denmark)

    Wu, Jian-Xiong; Den Berg, Frans Van; Søgaard, Søren Vinter

    2013-01-01

    Several factors with complex interactions influence the physical stability of solid dispersions, thus highlighting the need for efficient experimental design together with robust and simple multivariate model. Design of Experiments together with ANalysis Of VAriance (ANOVA) model is one of the ce.......g., an entire spectral data set), model uniqueness, and curve resolution abilities. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:904-914, 2013....

  7. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Directory of Open Access Journals (Sweden)

    Alexej Abyzov

    2008-04-01

    Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in

  8. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    Science.gov (United States)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  9. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  10. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that a...... of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire')....... responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable...

  11. Dealing with Tight Couplings and Multiple Interactions in Complex Technological Systems

    DEFF Research Database (Denmark)

    Aanestad, M.; Jensen, Tina Blegind; Grisot, M.

    In this paper we discuss the challenges of dealing with interdependencies in complex assemblages of heterogeneous and interconnected information systems (IS), which we conceptualize as organizationwide information infrastructures. We draw on Perrow's studies of complex technological systems, where...... couplings between information systems, actors, and work practices in the hospital environment. The paper's main focus is on describing what it entails in practice to deal with these interdependencies during and after implementation. We emphasize the work of sorting out and dealing with various types...... interactions, mechanisms, and couplings are emphasized. We base our paper on an empirical case study from a Norwegian hospital, where a seemingly trivial project aimed at the introduction of scanners turned out to be more complex than expected. This we claim is partly due to the interdependencies and tight...

  12. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  13. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  14. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  15. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity

    Directory of Open Access Journals (Sweden)

    Mateus Aparecido Clemente

    2012-01-01

    Full Text Available Network analysis as a tool for ecological interactions studies has been widely used since last decade. However, there are few studies on the factors that shape network patterns in communities. In this sense, we compared the topological properties of the interaction network between flower-visiting social wasps and plants in two distinct phytophysiognomies in a Brazilian savanna (Riparian Forest and Rocky Grassland. Results showed that the landscapes differed in species richness and composition, and also the interaction networks between wasps and plants had different patterns. The network was more complex in the Riparian Forest, with a larger number of species and individuals and a greater amount of connections between them. The network specialization degree was more generalist in the Riparian Forest than in the Rocky Grassland. This result was corroborated by means of the nestedness index. In both networks was found asymmetry, with a large number of wasps per plant species. In general aspects, most wasps had low niche amplitude, visiting from one to three plant species. Our results suggest that differences in structural complexity of the environment directly influence the structure of the interaction network between flower-visiting social wasps and plants.

  16. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Directory of Open Access Journals (Sweden)

    Kathrin Roderer

    Full Text Available The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS. The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  17. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Science.gov (United States)

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  18. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies

    Science.gov (United States)

    Huerta-Aguilar, Carlos Alberto; Thangarasu, Pandiyan; Mora, Jesús Gracia

    2018-04-01

    Copper complexes of N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,2-diaminoethane (L1) and N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L2) prepared were characterized completely by different analytical methods. The X-structure of the complexes shows that Cu(II) presents in trigonal bi-pyramidal (TBP) geometry, consisting with the electronic spectra where two visible bands corresponding to five coordinated structure were observed. Thus TD-DFT was used to analyze the orbital contribution to the electronic transitions for the visible bands. Furthermore, the interaction of cysteine with the complexes was spectrally studied, and the results were explained through DFT analysis, observing that the geometrical parameters and oxidation state of metal ions play a vital role in the binding of cysteine with copper ion. It appears that the TBP structure is being changed into octahedral geometry during the addition of cysteine to the complexes as two bands (from complex) is turned to a broad band in visible region, signifying the occupation of cysteine molecule at sixth position of octahedral geometry. In the molecular orbital analysis, the existence of a strong overlapping of HOMOs (from cysteine) with LUMOs of Cu ion was observed. The total energy of the systems calculated by DFT shows that cysteine binds favorably with copper (I) than that with Cu(II).

  19. Interaction between NANOS2 and the CCR4-NOT Deadenylation Complex Is Essential for Male Germ Cell Development in Mouse

    OpenAIRE

    Suzuki, Atsushi; Saba, Rie; Miyoshi, Kei; Morita, Yoshinori; Saga, Yumiko

    2012-01-01

    Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the f...

  20. Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Gopalaswamy; Nehru, Selvan; Manojkumar, Yesaiyan; Arunachalam, Sankaralingam, E-mail: arunasurf@yahoo.com

    2014-01-15

    The interaction of HSA/BSA with single and double chain surfactant-cobalt(III) complexes, cis-[Co(phen){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (1), cis-[Co(phen){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (2), cis-[Co(en){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (3), cis-[Co(en){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (4), were investigated by steady state fluorescence, UV–vis absorption, synchronous, three dimensional fluorescence and circular dichroism spectroscopy. The results reveal that the quenching of HSA/BSA by all the four complexes takes place through static mechanism. The binding constant, binding sites and thermodymamic parameter were calculated. The results illustrate that the double chain surfactant-cobalt(III) complexes bind more strongly than the corresponding single chain complexes. The distance between donor (HSA/BSA) and acceptor (surfactant-cobalt(III) complexes) was obtained according to FRET. The results of synchronous, three dimensional and circular dichroism spectroscopy studies show that all the complexes caused considerable amount of conformational and some amount of environment changes in HSA/BSA. -- Highlights: • Binding of single and double chain surfactant-cobalt(III) complexes with serum albumins. • Hydrophobic attraction plays a major role in the binding process. • Binding induces considerable amount of conformational changes in the protein.

  1. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    Science.gov (United States)

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions?

    Science.gov (United States)

    Lira-Junior, Ronaldo; Figueredo, Carlos Marcelo

    2016-09-21

    Periodontal disease and inflammatory bowel disease (IBD) are both chronic inflammatory diseases. Their pathogenesis is mediated by a complex interplay between a dysbiotic microbiota and the host immune-inflammatory response, and both are influenced by genetic and environmental factors. This review aimed to provide an overview of the evidence dealing with a possible pathogenic interaction between periodontal disease and IBD. There seems to be an increased prevalence of periodontal disease in patients with IBD when compared to healthy controls, probably due to changes in the oral microbiota and a higher inflammatory response. Moreover, the induction of periodontitis seems to result in gut dysbiosis and altered gut epithelial cell barrier function, which might contribute to the pathogenesis of IBD. Considering the complexity of both periodontal disease and IBD, it is very challenging to understand the possible pathways involved in their coexistence. In conclusion, this review points to a complex pathogenic interaction between periodontal disease and IBD, in which one disease might alter the composition of the microbiota and increase the inflammatory response related to the other. However, we still need more data derived from human studies to confirm results from murine models. Thus, mechanistic studies are definitely warranted to clarify this possible bidirectional association.

  3. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes.

    Science.gov (United States)

    Masschaele, Delphine; De Ceuninck, Leentje; Wauman, Joris; Defever, Dieter; Stenner, Frank; Lievens, Sam; Peelman, Frank; Tavernier, Jan

    2017-01-01

    RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.

  4. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes.

    Directory of Open Access Journals (Sweden)

    Delphine Masschaele

    Full Text Available RNF41 (Ring Finger Protein 41 is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein and the EARP (Endosome-Associated Recycling Protein complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.

  5. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  6. iview: an interactive WebGL visualizer for protein-ligand complex.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  7. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    Science.gov (United States)

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  8. Complex interaction between genotypes and growing seasons of carioca common bean in Goiás/Distrito Federal

    Directory of Open Access Journals (Sweden)

    Helton Santos Pereira

    2011-01-01

    Full Text Available The objectives of this study were to assess the importance of the complex interaction between common beangenotypes and growing seasons in the state of Goiás and the Distrito Federal and verify the need for evaluation and indication ofcultivars for each season. Yield data of 16 genotypes in 16 trials conducted in two growing seasons (winter and rainy were used. Thecoefficient of determination was estimated in the analyses of variance with decomposition of the genotype x environment interaction.The complex percentage of the interaction was estimated and the Spearman correlation between seasons. Differences were detectedbetween seasons and presence of genotype - season (GS interaction, with greater significance than the other double interactionswith genotypes. The correlations indicated a predominantly complex GS interaction. This predominantly complex nature of the GSinteraction calls for an assessment of the genotypes in both seasons, which may however identify cultivars with general adaptation.

  9. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  10. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells

    DEFF Research Database (Denmark)

    Vandamme, Julien; Völkel, Pamela; Rosnoblet, Claire

    2011-01-01

    Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes...... known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Drosophila core PRC1 is composed of four subunits, Polycomb (Pc), Sex combs extra (Sce), Polyhomeotic (Ph), and Posterior sex combs (Psc). Each of these proteins has multiple orthologs in vertebrates classified respectively as the CBX, RING...... in order to identify interacting partners of CBX family proteins under the same experimental conditions. Our analysis identified with high confidence about 20 proteins co-eluted with CBX2 and CBX7 tagged proteins, about 40 with CBX4, and around 60 with CBX6 and CBX8. We provide evidences that the CBX...

  11. Interacting with complex systems. Models and games for a sustainable economy

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, H.J.M.

    2010-09-15

    In the last decades the science-policy interface has become more important and more complex too. In this report we search for novel ways to extend or reframe the economic and environmental theories and models upon which policy recommendations are, or should be, based. The methods and applications of Complex System Science, in particular, have been explored and are found to be still fragmented. But they certainly can and should form the basis for introducing behavioural and innovation dynamics which make these theories and models more like what happens in the real world. In combination with interactive simulation and games, of which some examples are discussed in this report, science can in a post-modern context contribute more effectively to the strategic decision making in government and other institutions regarding sustainable development. This will direly be needed in view of the new and global challenges facing us.

  12. Better decision making in complex, dynamic tasks training with human-facilitated interactive learning environments

    CERN Document Server

    Qudrat-Ullah, Hassan

    2015-01-01

    This book describes interactive learning environments (ILEs) and their underlying concepts. It explains how ILEs can be used to improve the decision-making process and how these improvements can be empirically verified. The objective of this book is to enhance our understanding of and to gain insights into the process by which human facilitated ILEs are effectively designed and used in improving users’ decision making in complex, dynamic tasks. This book is divided into four major parts. Part I serves as an introduction to the importance and complexity of decision making in dynamic tasks. Part II provides background material, drawing upon relevant literature, for the development of an integrated process model on the effectiveness of human facilitated ILEs in improving decision making in dynamic tasks. Part III focuses on the design, development, and application of FishBankILE in laboratory experiments to gather empirical evidence for the validity of the process model. Finally, part IV presents a comprehensi...

  13. FACET: A simulation software framework for modeling complex societal processes and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J. H.

    2000-06-02

    FACET, the Framework for Addressing Cooperative Extended Transactions, was developed at Argonne National Laboratory to address the need for a simulation software architecture in the style of an agent-based approach, but with sufficient robustness, expressiveness, and flexibility to be able to deal with the levels of complexity seen in real-world social situations. FACET is an object-oriented software framework for building models of complex, cooperative behaviors of agents. It can be used to implement simulation models of societal processes such as the complex interplay of participating individuals and organizations engaged in multiple concurrent transactions in pursuit of their various goals. These transactions can be patterned on, for example, clinical guidelines and procedures, business practices, government and corporate policies, etc. FACET can also address other complex behaviors such as biological life cycles or manufacturing processes. To date, for example, FACET has been applied to such areas as land management, health care delivery, avian social behavior, and interactions between natural and social processes in ancient Mesopotamia.

  14. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  15. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  16. Effect of self-interaction on the evolution of cooperation in complex topologies

    Science.gov (United States)

    Wu, Yu'e.; Zhang, Zhipeng; Chang, Shuhua

    2017-09-01

    Self-interaction, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this text, we consider a new self-interaction mechanism in the two typical pairwise models including the prisoner's dilemma and the snowdrift games, where the cooperative agents will gain extra bonus for their selfless behavior. We find that under the mechanism the collective cooperation is elevated to a very high level especially after adopting the finite population analogue of replicator dynamics for evolution. The robustness of the new mechanism is tested for different complex topologies for the prisoner's dilemma game. All the presented results demonstrate that the enhancement effects are independent of the structure of the applied spatial networks and the potential evolutionary games, and thus showing a high degree of universality. Our conclusions might shed light on the understanding of the evolution of cooperation in the real world.

  17. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)

    2016-04-15

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  18. Basic Approaches of Complex Interaction DrumTerrain for Vibratory Compaction

    Directory of Open Access Journals (Sweden)

    Gigel Florin Capatana

    2013-09-01

    Full Text Available In this paper the author tries to use a new method to evaluate and analyze the interaction between roller and terrain. The analysis is rheological approached, with a predominantly dynamic behaviour, so as to reveal the compatibility of the working body performances with the characteristics of the terrain. The basic idea shows that it must be assured the energy transfer maximization in the interaction between the two components of the system. The model must have permanent and continuous adjustments of the material characteristics so it can be evaluated the technological capability. The fulfilling of these objectives will be provided by using a complex model with both distributed and concentrated elements which can have rheology of elastic, dissipative and plastic types. The first conclusions of the presented study goes to the idea that the harmonization of the basic parameters of the model with the experimental values can lead to structural and functional optimizations of the entire technological system.

  19. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    International Nuclear Information System (INIS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2016-01-01

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  20. Estimating risk propagation between interacting firms on inter-firm complex network.

    Science.gov (United States)

    Goto, Hayato; Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We derive a stochastic function of risk propagation empirically from comprehensive data of chain-reaction bankruptcy events in Japan from 2006 to 2015 over 5,000 pairs of firms. The probability is formulated by firm interaction between the pair of firms; it is proportional to the product of α-th power of the size of the first bankrupt firm and β-th power of that of the chain-reaction bankrupt firm. We confirm that α is positive and β is negative throughout the observing period, meaning that the probability of cascading failure is higher between a larger first bankrupt firm and smaller trading firm. We additionally introduce a numerical model simulating the whole ecosystem of firms and show that the interaction kernel is a key factor to express complexities of spreading bankruptcy risks on real ecosystems.

  1. Estimating risk propagation between interacting firms on inter-firm complex network.

    Directory of Open Access Journals (Sweden)

    Hayato Goto

    Full Text Available We derive a stochastic function of risk propagation empirically from comprehensive data of chain-reaction bankruptcy events in Japan from 2006 to 2015 over 5,000 pairs of firms. The probability is formulated by firm interaction between the pair of firms; it is proportional to the product of α-th power of the size of the first bankrupt firm and β-th power of that of the chain-reaction bankrupt firm. We confirm that α is positive and β is negative throughout the observing period, meaning that the probability of cascading failure is higher between a larger first bankrupt firm and smaller trading firm. We additionally introduce a numerical model simulating the whole ecosystem of firms and show that the interaction kernel is a key factor to express complexities of spreading bankruptcy risks on real ecosystems.

  2. Organizational Adaptative Behavior: The Complex Perspective of Individuals-Tasks Interaction

    Science.gov (United States)

    Wu, Jiang; Sun, Duoyong; Hu, Bin; Zhang, Yu

    Organizations with different organizational structures have different organizational behaviors when responding environmental changes. In this paper, we use a computational model to examine organizational adaptation on four dimensions: Agility, Robustness, Resilience, and Survivability. We analyze the dynamics of organizational adaptation by a simulation study from a complex perspective of the interaction between tasks and individuals in a sales enterprise. The simulation studies in different scenarios show that more flexible communication between employees and less hierarchy level with the suitable centralization can improve organizational adaptation.

  3. The interaction of platinum complexes with low doses of X-rays in hypoxic cells

    International Nuclear Information System (INIS)

    Skov, K.A.

    1992-01-01

    It is not clear why electron affinic compounds (O2, nitroimidazoles) should be more effective sensitizers at high doses (modify double events, 6, 16) while platinum complexes interact to a greater extent at low doses (modification of single-events). The possibility that crosslinks are involved requires further consideration. While DNA intrastrand crosslinks do not appear essential, future low dose experiments are planned to determine the role of interstrand and DNA-protein crosslinks in modifying response at clinical doses. (author). 31 refs., 2 tabs

  4. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    Science.gov (United States)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  5. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  6. Analysis the complex interaction among flexible nanoparticles and materials surface in the mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Han Xuesong, E-mail: hanxuesongphd@yahoo.com.cn [School of Mechanical Engineering, Tianjin University, 300072 (China); Gan, Yong X. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, OH 43606 (United States)

    2011-02-01

    Mechanical polishing (MP), being the important technique of realizing the surface planarization, has already been widely applied in the area of microelectronic manufacturing and computer manufacturing technology. The surface planarization in the MP is mainly realized by mechanical process which depended on the microdynamic behavior of nanoparticle. The complex multibody interaction among nanoparticles and materials surface is different from interaction in the macroscopic multibody system which makes the traditional classical materials machining theory cannot accurately uncover the mystery of the surface generation in the MP. Large-scale classical molecular dynamic (MD) simulation of interaction among nanoparticles and solid surface has been carried out to investigate the physical essence of surface planarization. The particles with small impact angle can generate more uniform global planarization surface but the materials removal rate is lower. The shear interaction between particle and substrate may induce large friction torque and lead to the rotation of particle. The translation plus rotation makes the nanoparticle behaved like micro-milling tool. The results show that the nanoparticles may aggregrate together and form larger cluster thus deteriorate surface the quality. This MD simulation results illuminate that the f inal planarized surface can only be acquired by synergic behavior of all particles using various means such as cutting, impacting, scratching, indentation and so on.

  7. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  8. A method for developing standardised interactive education for complex clinical guidelines

    Directory of Open Access Journals (Sweden)

    Vaughan Janet I

    2012-11-01

    Full Text Available Abstract Background Although systematic use of the Perinatal Society of Australia and New Zealand internationally endorsed Clinical Practice Guideline for Perinatal Mortality (PSANZ-CPG improves health outcomes, implementation is inadequate. Its complexity is a feature known to be associated with non-compliance. Interactive education is effective as a guideline implementation strategy, but lacks an agreed definition. SCORPIO is an educational framework containing interactive and didactic teaching, but has not previously been used to implement guidelines. Our aim was to transform the PSANZ-CPG into an education workshop to develop quality standardised interactive education acceptable to participants for learning skills in collaborative interprofessional care. Methods The workshop was developed using the construct of an educational framework (SCORPIO, the PSANZ-CPG, a transformation process and tutor training. After a pilot workshop with key target and stakeholder groups, modifications were made to this and subsequent workshops based on multisource written observations from interprofessional participants, tutors and an independent educator. This participatory action research process was used to monitor acceptability and educational standards. Standardised interactive education was defined as the attainment of content and teaching standards. Quantitative analysis of positive expressed as a percentage of total feedback was used to derive a total quality score. Results Eight workshops were held with 181 participants and 15 different tutors. Five versions resulted from the action research methodology. Thematic analysis of multisource observations identified eight recurring education themes or quality domains used for standardisation. The two content domains were curriculum and alignment with the guideline and the six teaching domains; overload, timing, didacticism, relevance, reproducibility and participant engagement. Engagement was the most

  9. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi.

    Science.gov (United States)

    Kück, Ulrich; Beier, Anna M; Teichert, Ines

    2016-05-01

    The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    International Nuclear Information System (INIS)

    Lu, Yunfan; Wang, Jun; Niu, Hongli

    2015-01-01

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model

  11. Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions.

    Science.gov (United States)

    Suárez, Diego F; Consuegra, Jessika; Trajano, Vivianne C; Gontijo, Sávio M L; Guimarães, Pedro P G; Cortés, Maria E; Denadai, Ângelo L; Sinisterra, Rubén D

    2014-06-01

    Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/βCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and βCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/βCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of βCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/βCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/βCD compared with free DOX. These promising findings demonstrate the potential for DOX/βCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations. Copyright © 2014. Published by Elsevier B.V.

  12. Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yunfan, E-mail: yunfanlu@yeah.net; Wang, Jun; Niu, Hongli

    2015-06-12

    An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model.

  13. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    Directory of Open Access Journals (Sweden)

    Jeremiah Athmer

    2017-01-01

    Full Text Available Coronavirus (CoV replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER membranes in replication/transcription complexes (RTC. Many of the CoV nonstructural proteins (nsps are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV. In MHV, nsp15 contains the genomic RNA packaging signal (P/S, a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses.

  14. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  15. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    Science.gov (United States)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as

  16. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system

    Directory of Open Access Journals (Sweden)

    Barbara Lukasch

    2017-08-01

    Full Text Available Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  17. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system.

    Science.gov (United States)

    Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert

    2017-01-01

    A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.

  18. Subnanomolar Inhibitor of Cytochrome bc1 Complex Designed via Optimizing Interaction with Conformationally Flexible Residues

    Science.gov (United States)

    Zhao, Pei-Liang; Wang, Le; Zhu, Xiao-Lei; Huang, Xiaoqin; Zhan, Chang-Guo; Wu, Jia-Wei; Yang, Guang-Fu

    2009-01-01

    Cytochrome bc1 complex (EC 1.10.2.2, bc1), an essential component of the cellular respiratory chain and the photosynthetic apparatus in photosynthetic bacteria, has been identified as a promising target for new drugs and agricultural fungicides. X-ray diffraction structures of the free bc1 complex and its complexes with various inhibitors revealed that the phenyl group of Phe274 in the binding pocket exhibited significant conformational flexibility upon different inhibitors binding to optimize respective π-π interactions, whereas the side chains of other hydrophobic residues showed conformational stability. Therefore, in the present study, a strategy of optimizing the π-π interaction with conformationally flexible residues was proposed to design and discover new bc1 inhibitors with a higher potency. Eight new compounds were designed and synthesized, among which compound 5c with a Ki value of 570 pM was identified as the most promising drug or fungicide candidate, significantly more potent than the commercially available bc1 inhibitors including azoxystrobin (AZ), kresoxim-methyl (KM), and pyraclostrobin (PY). To our knowledge, this is the first bc1 inhibitor discovered from structure-based design with a potency of subnanomolar Ki value. For all of the compounds synthesized and assayed, the calculated binding free energies correlated reasonably well with the binding free energies derived from the experimental Ki values with a correlation coefficient of r2 = 0.89. The further inhibitory kinetics studies revealed that compound 5c is a non-competitive inhibitor with respect to substrate cytochrome c, but is a competitive inhibitor with respect to substrate ubiquinol. Due to its subnanomolar Ki potency and slow dissociation rate constant (k−0 = 0.00358 s−1), compound 5c could be used as a specific probe for further elucidation of the mechanism of bc1 function and as a new lead compound for future drug discovery. PMID:19928849

  19. Tiny but complex - interactive 3D visualization of the interstitial acochlidian gastropod Pseudunela cornuta (Challis, 1970

    Directory of Open Access Journals (Sweden)

    Heß Martin

    2009-09-01

    in a mesopsammic gastropod, though functionally not yet fully understood. Such organ complexity as shown herein by interactive 3D visualization is not plesiomorphically maintained from a larger, benthic ancestor, but newly evolved within small marine hedylopsacean ancestors of P. cornuta. The common picture of general organ regression within mesopsammic acochlidians thus is valid for microhedylacean species only.

  20. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  1. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-04-29

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.

  2. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS. This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months. Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss and central factors (pain/disability/stress/depression predicting motor dysfunction and hyperalgesia.

  3. Application of Biologically Based Lumping To Investigate the Toxicokinetic Interactions of a Complex Gasoline Mixture.

    Science.gov (United States)

    Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham

    2016-03-15

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.

  4. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  5. Interaction between water-soluble rhodium complex RhCl(CO)(TPPTS)₂ and surfactants probed by spectroscopic methods.

    Science.gov (United States)

    Zhou, Li-Mei; Guo, Cai-Hong; Fu, Hai-Yan; Jiang, Xiao-Hui; Chen, Hua; Li, Rui-Xiang; Li, Xian-Jun

    2012-07-01

    The interactions of rhodium complex RhCl(CO)(TPPTS)(2) [TPPTS=P(m-C(6)H(4)SO(3)Na)(3)] with cationic, nonionic, and anionic surfactants have been investigated by UV-vis, fluorescence and (1)H NMR measurements. The presence of four different species of RhCl(CO)(TPPTS)(2) in cationic cetyltrimethylammonium (CTAB) solution has been demonstrated: free rhodium complex, rhodium complex bound to CTAB monomer, rhodium complex bound to CTAB premicelles, rhodium complex bound to CTAB micelles. The spectroscopy data show that RhCl(CO)(TPPTS)(2) can adsorb on the interface of cationic CTAB micelles by strong electrostatic attraction, weakly bind to the nonionic polyoxyethylene (20) sorbitan monolaurate (Tween 20) micelles by hydrophobic interaction, and does not interact with anion sodium dodecyl sulfate (SDS) micelles due to the strong electrostatic repulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  7. New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction?

    Directory of Open Access Journals (Sweden)

    Massimo Nepi

    2017-03-01

    Full Text Available Floral and extra-floral nectars are secretions elaborated by specific organs (nectaries that can be associated with plant reproductive structures (the so-called floral nectaries found only in angiosperms or vegetative parts (extrafloral nectaries. These secretions are common in terrestrial vascular plants, especially angiosperms. Although gymnosperms do not seem to have true nectar, their ovular secretions may share evolutionary links with angiosperm nectar. Nectar is generally involved in interactions with animals and by virtue of its sugar and amino acid content, it has been considered a reward offered by plants to animals in exchange for benefits, mainly pollination and indirect defense against herbivores. These relationships are often cited as examples of classical mutualistic interactions. Nonetheless, recent studies dealing with compounds less abundant than sugars and amino acids challenge this view and suggest that nectar is much more complex than simply a reward in the form of food. Nectar proteins (nectarins and nectar secondary compounds have no primary nutritious function but are involved in plant–animal relationships in other ways. Nectarins protect against proliferation of microorganisms and infection of plant tissues by pathogens. Nectar secondary compounds can be involved in modulating the behavior of nectar feeders, maximizing benefits for the plant. Nectar-dwelling microorganisms (mainly yeasts were recently revealed to be a third partner in the scenario of plant–animal interactions mediated by nectar. There is evidence that yeast has a remarkable impact on nectar feeder behavior, although the effects on plant fitness have not yet been clearly assessed.

  8. Smart Grid as Multi-layer Interacting System for Complex Decision Makings

    Science.gov (United States)

    Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico

    This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.

  9. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Megha Rajaram

    Full Text Available Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8 or minimally (STC1 significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti

  10. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    Science.gov (United States)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  11. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  12. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  13. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  14. Self-Efficacy, Task Complexity and Task Performance: Exploring Interactions in Two Versions of Vocabulary Learning Tasks

    Science.gov (United States)

    Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan

    2012-01-01

    The present study aimed for better understanding of the interactions between task complexity and students' self-efficacy beliefs and students' use of learning strategies, and finally their interacting effects on task performance. This investigation was carried out in the context of Chinese students learning English as a foreign language in a…

  15. Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by Multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeidifar, Maryam, E-mail: saeidifar@merc.ac.ir [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Mansouri-Torshizi, Hassan [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Akbar Saboury, Ali [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The interaction of [Pd(bpy)(n-pr-dtc)]Br (I) and ([Pd(phen)(n-pr-dtc)]Br (II) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline and n-pr-dtc=n-propyldithiocarbamate) with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH=7.4). It was observed that the two complexes interact with HSA via static fluorescence quenching. The thermodynamic parameters indicate that the binding process was spontaneous and that hydrogen bonds and van der Waals forces play a major role in the association of the HSA–Pd(II) complexes. The activation energy (E{sub a}), binding constant (K{sub b}) and number of binding sites (n) of the HSA–Pd(II) complexes were calculated from fluorescence data at 293 K, 303 K and 311 K. The conformational alternations of protein secondary structure in the presence of Pd(II) complexes were demonstrated using synchronous fluorescence, three-dimensional fluorescence spectra, UV–vis absorption and circular dichroism techniques. Furthermore, the apparent distance between donor (HSA) and acceptor (Pd(II) complexes) was determined using fluorescence resonance energy transfer (FRET). The binding studies between these complexes and HSA give us key insights into the transportation, distribution and toxicity of newly design antitumor Pd(II) complexes in human blood. - Highlights: • The HSA binding properties of two Palladium (II) complexes were studied. • Static quenching mechanism is effective in the interaction of HSA with Pd(II) complexes. • Hydrogen bonds and van der Waals forces were involved in the Pd(II) complexes–HSA interaction. • 3D fluorescence was used to study the interaction between two complexes and HSA.

  16. Adding Biotic Interactions into Paleodistribution Models: A Host-Cleptoparasite Complex of Neotropical Orchid Bees.

    Directory of Open Access Journals (Sweden)

    Daniel Paiva Silva

    Full Text Available Orchid bees compose an exclusive Neotropical pollinators group, with bright body coloration. Several of those species build their own nests, while others are reported as nest cleptoparasites. Here, the objective was to evaluate whether the inclusion of a strong biotic interaction, such as the presence of a host species, improved the ability of species distribution models (SDMs to predict the geographic range of the cleptoparasite species. The target species were Aglae caerulea and its host species Eulaema nigrita. Additionally, since A. caerulea is more frequently found in the Amazon rather than the Cerrado areas, a secondary objective was to evaluate whether this species is increasing or decreasing its distribution given South American past and current climatic conditions. SDMs methods (Maxent and Bioclim, in addition with current and past South American climatic conditions, as well as the occurrences for A. caerulea and E. nigrita were used to generate the distribution models. The distribution of A. caerulea was generated with and without the inclusion of the distribution of E. nigrita as a predictor variable. The results indicate A. caerulea was barely affected by past climatic conditions and the populations from the Cerrado savanna could be at least 21,000 years old (the last glacial maximum, as well as the Amazonian ones. On the other hand, in this study, the inclusion of the host-cleptoparasite interaction complex did not statistically improve the quality of the produced models, which means that the geographic range of this cleptoparasite species is mainly constrained by climate and not by the presence of the host species. Nonetheless, this could also be caused by unknown complexes of other Euglossini hosts with A. caerulea, which still are still needed to be described by science.

  17. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    Science.gov (United States)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  18. Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes.

    Directory of Open Access Journals (Sweden)

    Amin R Mazloom

    2011-12-01

    Full Text Available Coregulator proteins (CoRegs are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP followed by mass spectrometry (MS applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.

  19. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2016-06-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology.

  20. Interaction between N-fertilizer and water availability on borer-rot complex in sugarcane

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo da Rocha Pannuti

    2015-03-01

    Full Text Available This study aimed to evaluate the effects of nitrogen availability in fertigation and rainfed management, as well as their interactions with the incidence of and damage caused by D. saccharalis and red rot in sugarcane. The experiment consisted of four treatments (0 and 150 kg ha–1 of N-fertilizer with irrigation; 0 and 150 kg ha–1 of N-fertilizer in rainfed management in a randomized complete block design with four replications. The evaluated parameters were the number of holes and internodes with red rot per meter of cultivation, stalk yield and sugar content. In the laboratory (T = 25 ± 2 °C; R.H. = 70 ± 10%: 12:12-L:D, we evaluated the attractiveness and consumption of fragments of stalks from the different treatments for fourth instar larvae through choice and no-choice tests in a randomized complete block design with ten replications. Nitrogen fertilization via irrigation has favorable effects on borer-rot complex and leads to higher gains in stalk and sugar yields when compared to rainfed management. The increments of stalk and sugar yields due to nitrogen fertilization compensates for the increase in borer-rot complex infestation. In laboratory tests, D. saccharalis larvae were similarly attracted to all treatments regardless of the doses of N-fertilizer or the water regimes evaluated. However, fragments of sugarcane stalks produced with nitrogen fertilization were consumed more by D. saccharalis in both water regimes.

  1. Interaction of plutonium with complexing substances in soils and natural waters

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Reynolds, S.A.; Shanks, M.H.

    1976-01-01

    The reactions of Pu with selected organic substances found in the environment have been studied to evaluate the valence and metalcomplex behaviour of Pu. Hexavalent Pu (and by inference pentavalent Pu) was unstable in the presence of fulvic acid, polygalacturonic acid, and alginic acid. Citrate-Pu(VI) complexes, however, were relatively more stable. Plutonium (IV) was the most stable valence upon interaction with these organics. Further reduction of Pu(IV) to Pu(III) occurred by fulvic and humic acids. The reduction, under aerobic conditions, does not appear to occur above pH 3.1. The reduction mechanisms is probably similar to the Fe(III) reduction previously documented for phenolic humic substances. Data are presented that demonstrate that Pu is at least partially associated with humic materials in ORNL soil contaminated 30 years ago with trace levels of Pu. Desorption studies using solid exchange resins also showed that, while a cation exchange resin did not desorb Pu from soil after 14 weeks equilibration, chelating resin effected Pu desorption. The desorption rate was not constant, suggesting differential Pu forms. While the resin-extractable Pu was believed to originate from solid-phase organic complexes, over 80% of the Pu in this soil was not readily resin-desorbable. This indicates that more inert soil-Pu reaction products effectively immobilize soil Pu. Some of these associations also appear to be organic. (author)

  2. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex

    Energy Technology Data Exchange (ETDEWEB)

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.; Jakob, Clarissa G.; Zhu, Haizhong; Comess, Kenneth M.; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M.; Cheng, Dong; Klinge, Kelly L.; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A.; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C.; Petros, Andrew M.; Sweis, Ramzi F.; Torrent, Maricel; Bigelow, Lance J.; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J.; Lindley, David J.; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G.; Arrowsmith, Cheryl H.; Chiang, Gary G.; Sun, Chaohong; Pappano , William N. (AbbVie); (Toronto)

    2017-01-30

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  3. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  4. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  5. The interaction of two spheres in a simple-shear flow of complex fluids

    Science.gov (United States)

    Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).

  6. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Ková cs, Krisztiá n A.; Steinmann, Myriam; Halfon, Olivier; Magistretti, Pierre J.; Cardinaux, Jean René

    2015-01-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  7. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    Science.gov (United States)

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  8. Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Fu Ying-Jhe

    2010-01-01

    Full Text Available Abstract We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs and quantum rings (QRs. For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X, biexcitons (XX, and positive trions (X−. For negative trions (X− in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.

  9. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  10. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  11. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  12. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

    Science.gov (United States)

    Rosenthal, Sara Brin; Twomey, Colin R; Hartnett, Andrew T; Wu, Hai Shan; Couzin, Iain D

    2015-04-14

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion.

  14. INTERACTION OF IRON(II MIXED-LIGAND COMPLEXES WITH DNA: BASE-PAIR SPECIFICITY AND THERMAL DENATURATION STUDIES

    Directory of Open Access Journals (Sweden)

    Mudasir Mudasir

    2010-06-01

    Full Text Available A research about base-pair specificity of the DNA binding of [Fe(phen3]2+, [Fe(phen2(dip]2+ and [Fe(phen(dip2]2+ complexes and the effect of calf-thymus DNA (ct-DNA binding of these metal complexes on thermal denaturation of ct-DNA has been carried out. This research is intended to evaluate the preferential binding of the complexes to the sequence of DNA (A-T or G-C sequence and to investigate the binding strength and mode upon their interaction with DNA. Base-pair specificity of the DNA binding of the complexes was determined by comparing the equilibrium binding constant (Kb of each complex to polysynthetic DNA that contain only A-T or G-C sequence. The Kb value of the interaction was determined by spectrophotometric titration and thermal denaturation temperature (Tm was determined by monitoring the absorbance of the mixture solution of each complex and ct-DNA at λ =260 nm as temperature was elevated in the range of 25 - 100 oC. Results of the study show that in general all iron(II complexes studied exhibit a base-pair specificity in their DNA binding to prefer the relatively facile A-T sequence as compared to the G-C one. The thermal denaturation experiments have demonstrated that Fe(phen3]2+ and [Fe(phen2(dip]2+ interact weakly with double helical DNA via electrostatic interaction as indicated by insignificant changes in melting temperature, whereas [Fe(phen2(dip]2+  most probably binds to DNA in mixed modes of interaction, i.e.: intercalation and electrostatic interaction. This conclusion is based on the fact that the binding of [Fe(phen2(dip]2+ to ct-DNA moderately increase the Tm value of ct- DNA   Keywords: DNA Binding, mixed-ligand complexes

  15. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    2015-06-01

    Full Text Available Loss of mitochondrial function often leads to neurodegeneration and is thought to be one of the underlying causes of neurodegenerative diseases such as Parkinson's disease (PD. However, the precise events linking mitochondrial dysfunction to neuronal death remain elusive. PTEN-induced putative kinase 1 (PINK1 and Parkin (Park, either of which, when mutated, are responsible for early-onset PD, mark individual mitochondria for destruction at the mitochondrial outer membrane. The specific molecular pathways that regulate signaling between the nucleus and mitochondria to sense mitochondrial dysfunction under normal physiological conditions are not well understood. Here, we show that Drosophila Clueless (Clu, a highly conserved protein required for normal mitochondrial function, can associate with Translocase of the outer membrane (TOM 20, Porin and PINK1, and is thus located at the mitochondrial outer membrane. Previously, we found that clu genetically interacts with park in Drosophila female germ cells. Here, we show that clu also genetically interacts with PINK1, and our epistasis analysis places clu downstream of PINK1 and upstream of park. In addition, Clu forms a complex with PINK1 and Park, further supporting that Clu links mitochondrial function with the PINK1-Park pathway. Lack of Clu causes PINK1 and Park to interact with each other, and clu mutants have decreased mitochondrial protein levels, suggesting that Clu can act as a negative regulator of the PINK1-Park pathway. Taken together, these results suggest that Clu directly modulates mitochondrial function, and that Clu's function contributes to the PINK1-Park pathway of mitochondrial quality control.

  16. Quantum mechanics study of repulsive π-π interaction and flexibility of phenyl moiety in the iron azodioxide complex

    Science.gov (United States)

    Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.

    2015-10-01

    In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.

  17. Complexity

    Indian Academy of Sciences (India)

    Rahul Pandit

    2008-10-31

    Oct 31, 2008 ... Centre for Condensed Matter Theory. Department of Physics. Indian Institute ... Interactions between a system's components are important role. ... Scale-free networks in, say, social networks or the world-wide web. ▻ A system ...

  18. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Directory of Open Access Journals (Sweden)

    Jyotica Batra

    Full Text Available Matrix metalloproteinases (MMPs play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  19. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Science.gov (United States)

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  20. Patient-centred communication intervention study to evaluate nurse-patient interactions in complex continuing care

    Science.gov (United States)

    2012-01-01

    Background Communication impairment is a frequent consequence of stroke. Patients who cannot articulate their needs respond with frustration and agitation, resulting in poor optimization of post-stroke functions. A key component of patient-centred care is the ability of staff to communicate in a way that allows them to understand the patient’s needs. We developed a patient-centred communication intervention targeting registered and unregulated nursing staff caring for complex continuing care patients with communication impairments post stroke. Research objectives include 1) examining the effects of the intervention on patients’ quality of life, depression, satisfaction with care, and agitation; and (2) examining the extent to which the intervention improves staff’s attitudes and knowledge in caring for patients with communication impairments. The intervention builds on a previous pilot study. Methods/design A quasi-experimental repeated measures non-equivalent control group design in a complex continuing care facility is being used. Patients with a communication impairment post-stroke admitted to the facility are eligible to participate. All staff nurses are eligible. Baseline data are collected from staff and patients. Follow-up will occur at 1 and 3 months post-intervention. Subject recruitment and data collection from 60 patients and 30 staff will take approximately 36 months. The Patient-Centred Communication Intervention consists of three components: (1) development of an individualized patient communication care plan; (2) a one-day workshop focused on communication and behavioural management strategies for nursing staff; and (3) a staff support system. The intervention takes comprehensive patient assessments into account to inform the development of communication and behavioural strategies specifically tailored to each patient. Discussion The Patient-Centred Communication Intervention will provide staff with strategies to facilitate interactions with

  1. Patient-centred communication intervention study to evaluate nurse-patient interactions in complex continuing care

    Directory of Open Access Journals (Sweden)

    McGilton Katherine S

    2012-10-01

    Full Text Available Abstract Background Communication impairment is a frequent consequence of stroke. Patients who cannot articulate their needs respond with frustration and agitation, resulting in poor optimization of post-stroke functions. A key component of patient-centred care is the ability of staff to communicate in a way that allows them to understand the patient’s needs. We developed a patient-centred communication intervention targeting registered and unregulated nursing staff caring for complex continuing care patients with communication impairments post stroke. Research objectives include 1 examining the effects of the intervention on patients’ quality of life, depression, satisfaction with care, and agitation; and (2 examining the extent to which the intervention improves staff’s attitudes and knowledge in caring for patients with communication impairments. The intervention builds on a previous pilot study. Methods/design A quasi-experimental repeated measures non-equivalent control group design in a complex continuing care facility is being used. Patients with a communication impairment post-stroke admitted to the facility are eligible to participate. All staff nurses are eligible. Baseline data are collected from staff and patients. Follow-up will occur at 1 and 3 months post-intervention. Subject recruitment and data collection from 60 patients and 30 staff will take approximately 36 months. The Patient-Centred Communication Intervention consists of three components: (1 development of an individualized patient communication care plan; (2 a one-day workshop focused on communication and behavioural management strategies for nursing staff; and (3 a staff support system. The intervention takes comprehensive patient assessments into account to inform the development of communication and behavioural strategies specifically tailored to each patient. Discussion The Patient-Centred Communication Intervention will provide staff with strategies to

  2. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-10-01

    indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers. Keywords: polyion complex micelles, electrostatic interaction, oligopeptide, stability, pharmacokinetics

  3. Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix.

    Directory of Open Access Journals (Sweden)

    Stéphane Chiron

    Full Text Available Anchorage of muscle cells to the extracellular matrix is crucial for a range of fundamental biological processes including migration, survival and differentiation. Three-dimensional (3D culture has been proposed to provide a more physiological in vitro model of muscle growth and differentiation than routine 2D cultures. However, muscle cell adhesion and cell-matrix interplay of engineered muscle tissue remain to be determined. We have characterized cell-matrix interactions in 3D muscle culture and analyzed their consequences on cell differentiation. Human myoblasts were embedded in a fibrin matrix cast between two posts, cultured until confluence, and then induced to differentiate. Myoblasts in 3D aligned along the longitudinal axis of the gel. They displayed actin stress fibers evenly distributed around the nucleus and a cortical mesh of thin actin filaments. Adhesion sites in 3D were smaller in size than in rigid 2D culture but expression of adhesion site proteins, including α5 integrin and vinculin, was higher in 3D compared with 2D (p<0.05. Myoblasts and myotubes in 3D exhibited thicker and ellipsoid nuclei instead of the thin disk-like shape of the nuclei in 2D (p<0.001. Differentiation kinetics were faster in 3D as demonstrated by higher mRNA concentrations of α-actinin and myosin. More important, the elastic modulus of engineered muscle tissues increased significantly from 3.5 ± 0.8 to 7.4 ± 4.7 kPa during proliferation (p<0.05 and reached 12.2 ± 6.0 kPa during differentiation (p<0.05, thus attesting the increase of matrix stiffness during proliferation and differentiation of the myocytes. In conclusion, we reported modulations of the adhesion complexes, the actin cytoskeleton and nuclear shape in 3D compared with routine 2D muscle culture. These findings point to complex interactions between muscle cells and the surrounding matrix with dynamic regulation of the cell-matrix stiffness.

  4. Interaction of Tim23 with Tim50 Is essential for protein translocation by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2009-02-20

    The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.

  5. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chunlin; Xiao, Hanxi [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Qing [Chemistry Department, City University of New York, New York, NY 10016 (United States); Tang, Jianting; Cai, Tiejun [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Deng, Qian, E-mail: dengqian10502@163.com [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2016-11-15

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules

  6. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  7. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Directory of Open Access Journals (Sweden)

    Celia Olabarria

    Full Text Available Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain, where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia. The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  8. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Science.gov (United States)

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  9. DNA Replication and Cell Cycle Progression Regulatedby Long Range Interaction between Protein Complexes bound to DNA.

    Science.gov (United States)

    Matsson, L

    2001-12-01

    A nonstationary interaction that controlsDNA replication and the cell cycle isderived from many-body physics in achemically open T cell. The model predictsa long range force F'(ξ) =- (κ/2) ξ(1 - ξ)(2 - ξ)between thepre-replication complexes (pre-RCs) boundby the origins in DNA, ξ = ϕ/N being the relativedisplacement of pre-RCs, ϕ the number of pre-RCs, N the number of replicons to be replicated,and κ the compressibilitymodulus in the lattice of pre-RCs whichbehaves dynamically like an elasticallybraced string. Initiation of DNAreplication is induced at the thresholdϕ = N by a switch ofsign of F''(ξ), fromattraction (-) and assembly in the G(1) phase (0force at ϕ = 2N, from repulsion inS phase back to attraction in G(2), when all primed replicons havebeen duplicated once. F'(0) = 0corresponds to a resting cell in theabsence of driving force at ϕ= 0. The model thus ensures that the DNAcontent in G(2) cells is exactlytwice that of G(1) cells. The switch of interaction at the R-point, at which N pre-RCs have been assembled, starts the release of Rb protein thus also explaining the shift in the Rb phosphorylation from mitogen-dependent cyclinD to mitogen-independent cyclin E.Shape,slope and scale of the response curvesderived agree well with experimental datafrom dividing T cells and polymerising MTs,the variable length of which is due to anonlinear dependence of the growthamplitude on the initial concentrations oftubulin dimers and guanosine-tri-phosphate(GTP). The model also explains the dynamic instabilityin growing MTs.

  10. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  11. Emission solvatochromic behavior of a pentacoordinated Zn(II) complex: A viable tool for studying the metallodrug–protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy); Pucci, Daniela; Pirillo, Sante; La Deda, Massimo [Department of Chemistry and Chemical Technology, University of Calabria, I-87036 Rende (CS) (Italy); Centre of Excellence “Functional Nanostructured Materials” CEMIF.CAL, LASCAMM and CR INSTM, INSTM Calabria Unit, and CNR-IPCF-UOS Cosenza - Licryl Laboratory, I-87036 Rende (CS) (Italy)

    2014-07-01

    A metal complex with antitumoral activity, Zn(Curcumin)(bypiridine)Cl, was characterized from a photophysical point of view, showing a green emission and a positive solvatochromism. These characteristics can be conveniently used to study its interaction with Human Serum Albumin (HSA), a protein carrier of many non-aqueous biologically-active compounds in the blood stream. The intrinsic fluorescence of HSA was quenched by Fluorescence Resonance Energy Transfer toward the Zn(II) complex, and the Stern–Volmer equation was applied to determine the bimolecular quenching rate constant of the interaction. - Highlights: • Albumin binding information is a key characteristic of drug pharmacology. • Fluorescence spectroscopy offers a simple method for revealing drug–protein interaction. • The fluorescence of the Zn(II) complex and its solvatochromisms has allowed studying the binding from a dual perspective.

  12. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  13. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    International Nuclear Information System (INIS)

    Li, Rui; Wang, Jun

    2016-01-01

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  14. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: lirui1401@bjtu.edu.cn; Wang, Jun

    2016-01-08

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  15. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  16. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    Science.gov (United States)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  17. Fast methods for long-range interactions in complex systems. Lecture notes

    International Nuclear Information System (INIS)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas

    2011-01-01

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  18. Fast methods for long-range interactions in complex systems. Lecture notes

    Energy Technology Data Exchange (ETDEWEB)

    Sutmann, Godehard; Gibbon, Paul; Lippert, Thomas (eds.)

    2011-10-13

    Parallel computing and computer simulations of complex particle systems including charges have an ever increasing impact in a broad range of fields in the physical sciences, e.g. in astrophysics, statistical physics, plasma physics, material sciences, physical chemistry, and biophysics. The present summer school, funded by the German Heraeus-Foundation, took place at the Juelich Supercomputing Centre from 6 - 10 September 2010. The focus was on providing an introduction and overview over different methods, algorithms and new trends for the computational treatment of long-range interactions in particle systems. The Lecture Notes contain an introduction into particle simulation, as well as five different fast methods, i.e. the Fast Multipole Method, Barnes-Hut Tree Method, Multigrid, FFT based methods, and Fast Summation using the non-equidistant FFT. In addition to introducing the methods, efficient parallelization of the methods is presented in detail. This publication was edited at the Juelich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Juelich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Juelich which use simulation on supercomputers as their main research methodology. (orig.)

  19. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  20. The US business cycle: power law scaling for interacting units with complex internal structure

    Science.gov (United States)

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  1. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.

    Science.gov (United States)

    Schmitt, Michael

    2004-09-01

    We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.

  2. The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation.

    Directory of Open Access Journals (Sweden)

    Vinod Balhara

    Full Text Available The enolase from Streptococcus pyogenes (Str enolase F137L/E363G is a homo-octamer shaped like a donut. Plasminogen (Pgn is a monomeric protein composed of seven discrete separated domains organized into a lock washer. The enolase is known to bind Pgn. In past work we searched for conditions in which the two proteins would bind to one another. The two native proteins in solution would not bind under any of the tried conditions. We found that if the structures were perturbed binding would occur. We stated that only the non-native Str enolase or Pgn would interact such that we could detect binding. We report here the results of a series of dual polarization interferometry (DPI experiments coupled with atomic force microscopy (AFM, isothermal titration calorimetry (ITC, dynamic light scattering (DLS, and fluorescence. We show that the critical condition for forming stable complexes of the two native proteins involves Str enolase binding to a surface. Surfaces that attract Str enolase are a sufficient condition for binding Pgn. Under certain conditions, Pgn adsorbed to a surface will bind Str enolase.

  3. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    MCT-1 is an oncogene that was initially identified in a human T cell lymphoma and has been shown to induce cell proliferation as well as activate survival-related pathways. MCT-1 contains the PUA domain, a recently described RNA-binding domain that is found in several tRNA and rRNA modification...... enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up......-regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  4. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    International Nuclear Information System (INIS)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph; Bernatchez, Pascal

    2011-01-01

    Highlights: ► Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. ► Dysferlin interacts with key signaling proteins for transcytosis in EC. ► Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  5. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  6. Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota

    Science.gov (United States)

    Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas

    2013-01-01

    Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845

  7. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions

    Directory of Open Access Journals (Sweden)

    Igor Otavio Minatel

    2016-08-01

    Full Text Available γ-oryzanol (Orz, a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs, inflammatory responses (nuclear factor kappa-B (NF-κB, and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs. It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  8. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions.

    Science.gov (United States)

    Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira

    2016-08-09

    γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.

  9. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    Science.gov (United States)

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  10. Network analysis highlights complex interactions between pathogen, host and commensal microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Boutin

    Full Text Available Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities' samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1 the abundance of probiotic-like bacteria decreased after stress exposure; and 2 pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier.

  11. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization.

    Science.gov (United States)

    Warner, Jeremy L; Denny, Joshua C; Kreda, David A; Alterovitz, Gil

    2015-03-01

    Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based on observed electronic medical record data. A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive Care II database. Network visualizations depicting primary relationships were compared to those incorporating secondary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor. Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adjacent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phenotype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers with the metabolic syndrome. Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis. Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  13. Caffeine/sleep-deprivation interaction in mice produces complex memory effects.

    Science.gov (United States)

    Onaolapo, Olakunle J; Onaolapo, Adejoke Y; Akanmu, Moses A; Olayiwola, Gbola

    2015-07-01

    Sleep deprivation negatively impacts memory, causing deficits in memory processes. Of interest is any agent that can offset such deficits. Mice were given varying doses of caffeine for 14 days and then deprived of sleep for 6 hours by the 'gentle handling' method. Memory was assessed using the Novel Object Recognition Test and Y maze alternation. The study was designed to ascertain the impact of varying doses of caffeine combined with total sleep-deprivation on spatial and non spatial memory in mice. Adult Swiss Webster mice of both sexes were assigned to six groups viz., vehicle (distilled water), or one of five selected doses of caffeine (10, 20, 40, 80 and 120 mg/kg) for 14 days via the oral route. Open field novel object recognition test and Y maze spatial working memory tests were carried out on day 14. Results were analysed using multi-factorial ANOVA followed by Tukey HSD test and expressed as mean ± S.E.M, with p values less than 0.05 were considered statistically significant. Novel object recognition tests (NOR) revealed that pre-training and pre-test sleep deprivation and caffeine combination impaired non spatial and spatial memory in male and female mice. The study shows the complex interactions with memory that may arise when total sleep deprivation is superimposed on caffeine administration.

  14. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    Energy Technology Data Exchange (ETDEWEB)

    Kobets, L V; Buchikhin, E P; Klyshevich, R P; Belyachis, G F

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined.

  15. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    International Nuclear Information System (INIS)

    Kobets, L.V.; Buchikhin, E.P.; Klyshevich, R.P.; Belyachis, G.F.

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined

  16. Dielectric Response at THz Frequencies of Mg Water Complexes Interacting with O3 Calculated by Density Functional Theory

    Science.gov (United States)

    2012-10-24

    of the atoms in a chemical system , at the maximal peak of the energy surface separating reactants from products . In the transition state every normal...Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E...calculations of ground state resonance structure associated with water complexes of Mg and the interaction of these complexes with Ozone using DFT. The

  17. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  18. Copper(II Complexes Based on Aminohydroxamic Acids: Synthesis, Structures, In Vitro Cytotoxicities and DNA/BSA Interactions

    Directory of Open Access Journals (Sweden)

    Jia Zhang

    2018-05-01

    Full Text Available Four complexes, [Cu2(glyha(bpy2(H2O]·2ClO4·H2O (1, [Cu2(glyha(phen2]·2ClO4 (2, [Cu2(alaha(bpy2Cl]·Cl·4H2O (3, and [{Cu2(alaha(phen2}{Cu2(alaha(phen2(NO3}]·3NO3 (4 (glyha2− = dianion glycinehydroxamic acid, alaha2− = dianion alaninehydroxamic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline have been successfully synthesized and characterized by X-ray single crystal diffraction. The interactions of these complexes with calf thymus DNA (CT-DNA were studied through UV spectroscopy, fluorescence spectroscopy, and circular dichroism. The results revealed that complexes 1–4 could interact with CT-DNA through intercalation. Interactions of all complexes with bovine serum albumin (BSA were confirmed by the docking study to quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the in vitro cytotoxic effect of the complexes was also examined on four tumor cell lines, including human lung carcinoma cell line (A549, human colon carcinoma cell line (HCT-116, human promyelocytic leukemia cell (HL-60 and cervical cancer cell line (HeLa. All complexes exhibited different antitumor activities.

  19. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  20. Cement/clay interactions: feedback on the increasing complexity of modeling assumptions

    International Nuclear Information System (INIS)

    Marty, Nicolas C.M.; Gaucher, Eric C.; Tournassat, Christophe; Gaboreau, Stephane; Vong, Chan Quang; Claret, F.; Munier, Isabelle; Cochepin, Benoit

    2012-01-01

    Document available in extended abstract form only. Cementitious materials will be widely used in French concept of radioactive waste repositories. During their degradation over time, in contact with geological pore water, they will release hyper-alkaline fluids rich in calcium and alkaline cations. This chemical gradient likely to develop at the cement/clay interfaces will induce geochemical transformations. The first simplified calculations based mainly on simple mass balance calculation led to a very pessimistic understanding of the real expansion mechanism of the alkaline plume. However, geochemical and migration processes are much more complex because of the dissolution of the barrier's accessory phases and the precipitation of secondary minerals. To describe and to understand this complexity, coupled geochemistry and transport calculations are a useful and a mandatory tool. Furthermore, such sets of modeling when properly calibrated on experimental results are able to give insights on larger time scale unreachable with experiments. Since approximately 20 years, numerous papers have described the results of reactive transport modeling of cement/clay interactions with various numerical assumptions. For example, some authors selected a purely thermodynamic approach while others preferred a coupled thermodynamic/kinetic approach. Unfortunately, most of these studies used different and not comparable parameters as space discretization, initial and boundary conditions, thermodynamic databases, clayey and cementitious materials, etc... This study revisits the types of simulations proposed in the past to represent the effect of an alkaline perturbation with regard to the degree of complexity that was considered. The main goal of the study is to perform simulations with a consistent set of data and an increasing complexity. In doing so, the analysis of numerical results will give a clear vision of key parameters driving the expansion of alteration fronts and

  1. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  2. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  3. The HCClF_2-HCCH Complex: Microwave Spectrum, Structure and C-H\\cdotsπ Interactions

    Science.gov (United States)

    Peebles, Rebecca A.; Sexton, John M.; Elliott, Ashley A.; Steber, Amanda L.; Peebles, Sean A.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.

    2010-06-01

    The HCF_3-HCCH complex was recently found to have a weak C-H\\cdotsπ interaction between the fluoroform and acetylene, as well as having a secondary interaction between the fluorine atoms and one of the acetylene hydrogen atoms; however, extensive splittings due to large amplitude motions within the complex have complicated our efforts at making a full assignment of the HCF_3-HCCH spectrum. In an attempt to remove some of the ambiguity in the HCF_3-HCCH study, we have substituted a chlorine atom for one fluorine atom and undertaken an investigation of the HCClF_2-HCCH complex. This eliminates the possibility of internal rotation of the methane subunit, while still maintaining a C-H\\cdotsπ interaction. Using the chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer at the University of Virginia and the Balle-Flygare FTMW spectrometer at Eastern Illinois University, the spectra of four isotopologues of HCClF_2-HCCH have been assigned, with no indication of internal motions within the complex. The structure has been determined from the experimental moments of inertia, confirming that this dimer has the expected weak C-H\\cdotsπ interaction. In addition, the off-diagonal χab quadrupole coupling constant has been used to determine the angle between the C-Cl bond and the a-axis of the complex. This, and Kraitchman coordinates for the chlorine atom, help confirm the structural details from the inertial fit. The structural results will be compared with other complexes showing C-H\\cdotsπ and C-H\\cdotsO interactions. S. A. Peebles, M. M. Serafin, R. A. Peebles, 61st International Symposium on Molecular Spectroscopy, Talk MH13, June 19, 2006.

  4. Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families.

    Directory of Open Access Journals (Sweden)

    Jessica J R Hudson

    2011-02-01

    Full Text Available The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1. In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.

  5. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    Science.gov (United States)

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  6. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage.

    Science.gov (United States)

    Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel

    2015-07-01

    The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A structured workflow for mapping human Sin3 histone deacetylase complex interactions using Halo-MudPIT AP-MS.

    Science.gov (United States)

    Banks, Charles A S; Thornton, Janet L; Eubanks, Cassandra G; Adams, Mark K; Miah, Sayem; Boanca, Gina; Liu, Xingyu; Katt, Maria; Parmely, Tari; Florens, Laurence A; Washburn, Michael P

    2018-03-29

    Although a variety of affinity purification mass spectrometry (AP-MS) strategies have been used to investigate complex interactions, many of these are susceptible to artifacts due to substantial overexpression of the exogenously expressed bait protein. Here we present a logical and systematic workflow that uses the multifunctional Halo tag to assess the correct localization and behavior of tagged subunits of the Sin3 histone deacetylase complex prior to further AP-MS analysis. Using this workflow, we modified our tagging/expression strategy with 21.7% of the tagged bait proteins that we constructed, allowing us to quickly develop validated reagents. Specifically, we apply the workflow to map interactions between stably expressed versions of the Sin3 subunits SUDS3, SAP30 or SAP30L and other cellular proteins.  Here we show that the SAP30 and SAP30L paralogues strongly associate with the core Sin3 complex, but SAP30L has unique associations with the proteasome and the myelin sheath.  Next, we demonstrate an advancement of the complex NSAF (cNSAF) approach, in which normalization to the scaffold protein SIN3A accounts for variations in the proportion of each bait capturing Sin3 complexes and allows a comparison between different baits capturing the same protein complex. This analysis reveals that although the Sin3 subunit SUDS3 appears to be used in both SIN3A and SIN3B based complexes, the SAP30 subunit is not used in SIN3B based complexes. Intriguingly, we do not detect the Sin3 subunits SAP18 and SAP25 among the 128 high-confidence interactions identified, suggesting that these subunits may not be common to all versions of the Sin3 complex in human cells. This workflow provides the framework for building validated reagents to assemble quantitative interaction networks for chromatin remodeling complexes and provides novel insights into focused protein interaction networks. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Application of Biologically-Based Lumping To Investigate the Toxicological Interactions of a Complex Gasoline Mixture

    Science.gov (United States)

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these exp...

  9. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  10. Intramolecular Valence and Spin Interaction in meso and rac Diastereomers of a p-Quinonoid-Bridged Diruthenium Complex

    Czech Academy of Sciences Publication Activity Database

    Kumbhakar, D.; Sarkar, B.; Maji, S.; Mobin, S. M.; Fiedler, Jan; Urbanos, F. A.; Jimenez-Aparicio, R.; Kaim, W.; Lahiri, G. K.

    2008-01-01

    Roč. 130, č. 51 (2008), s. 17575-17583 ISSN 0002-7863 R&D Projects: GA MŠk OC 139; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : intramolecular valence * spin interaction * diruthenium complex Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.091, year: 2008

  11. Binding orientation and interaction of bile salt in its ternary complex with pancreatic lipase-colipase system.

    Science.gov (United States)

    Haque, Neshatul; Prakash Prabhu, N

    2018-05-23

    The interfacial activity of pancreatic lipases (PL) depends on the presence of colipase and bile salt. The activity of PL is inhibited by micellar concentrations of bile salt which can be restored by the addition of colipase. Though the formation of 1:1:1 tertiary complex by lipase-colipase-bile salt micelle is well accepted, the residue-level interactions between lipase-colipase and bile salt are yet to be clearly understood. Molecular dynamic simulations of lipase-colipase complex, lipase and colipase were performed in the presence of a model bile salt, sodium taurocholate (NaTC), at its near-CMC and supra-micellar concentrations. From the interactions obtained from the molecular dynamic simulations, the ternary complex was modelled and compared with earlier reports. The analysis suggested that a micelle of NaTC consisting of nine monomers was formed at the concave groove between lipase and colipase chain and it mainly interacted with the fourth finger of colipase. This complex was mainly stabilized by van der Waals interactions. Interestingly, the C-terminal domain of lipase which holds the colipase did not show any significant role in formation or stabilization of NaTC micelle. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Anion-assisted trans-cis isomerization of palladium(II) phosphine complexes containing acetanilide functionalities through hydrogen bonding interactions.

    Science.gov (United States)

    Lu, Xiao-Xia; Tang, Hau-San; Ko, Chi-Chiu; Wong, Jenny Ka-Yan; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2005-03-28

    The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.

  13. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  14. Interaction between NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell development in mouse.

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    Full Text Available Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the first 10 amino acids (AAs of NANOS2 are required for this binding. We further observe that a NANOS2 mutant lacking these first 10 AAs (NANOS2-ΔN10 fails to rescue defects in the Nanos2-null mouse. Our current data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In addition, we further demonstrate that NANOS2-ΔN10 can associate with specific mRNAs as well as wild-type NANOS2, suggesting the existence of other NANOS2-associated factor(s that determine the specificity of RNA-binding independently of the CCR4-NOT deadenylation complex.

  15. The RSV F and G glycoproteins interact to form a complex on the surface of infected cells

    International Nuclear Information System (INIS)

    Low, Kit-Wei; Tan, Timothy; Ng, Ken; Tan, Boon-Huan; Sugrue, Richard J.

    2008-01-01

    In this study, the interaction between the respiratory syncytial virus (RSV) fusion (F) protein, attachment (G) protein, and small hydrophobic (SH) proteins was examined. Immunoprecipitation analysis suggested that the F and G proteins exist as a protein complex on the surface of RSV-infected cells, and this conclusion was supported by ultracentrifugation analysis that demonstrated co-migration of surface-expressed F and G proteins. Although our analysis provided evidence for an interaction between the G and SH proteins, no evidence was obtained for a single protein complex involving all three of the virus proteins. These data suggest the existence of multiple virus glycoprotein complexes within the RSV envelope. Although the stimulus that drives RSV-mediated membrane fusion is unknown, the association between the G and F proteins suggest an indirect role for the G protein in this process

  16. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    Directory of Open Access Journals (Sweden)

    Carter Jonathan

    2011-01-01

    Full Text Available Abstract Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT and subsequently the amine groups (ACNT. All three CNTs (the as-synthesized and functionalized underwent reaction with an iron organometallic complex (FePcS, iron(III phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS.

  17. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    Science.gov (United States)

    Asedegbega-Nieto, Esther; Pérez-Cadenas, María; Carter, Jonathan; Anderson, James A.; Guerrero-Ruiz, Antonio

    2011-04-01

    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS.

  18. Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity.

    Science.gov (United States)

    Pardikes, Nicholas A; Lumpkin, Will; Hurtado, Paul J; Dyer, Lee A

    2018-01-01

    Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly; thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models. The results presented here will help develop realistic predictions of the relationships

  19. Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

    Science.gov (United States)

    Zhang, Yali; Wang, Jun

    2017-09-01

    In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

  20. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  1. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  2. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    Science.gov (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  3. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.

    Science.gov (United States)

    Krause, Christopher D; Izotova, Lara S; Pestka, Sidney

    2013-10-01

    Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Epithelial Cell-Neutrophil Interactions in the Alimentary Tract: A Complex Dialog in Mucosal Surveillance and Inflammation

    Directory of Open Access Journals (Sweden)

    Sean P. Colgan

    2002-01-01

    Full Text Available Inflammatory diseases of mucosal organs as diverse as the lung, kidney, and intestine, inevitably require the intimate interactions of neutrophils with columnar epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets for the treatment of mucosal inflammation. Elegant in vitro model systems incorporating purified human neutrophils and human epithelial cells grown in physiologic orientations have aided in discovery of new and insightful pathways to define basic inflammatory pathways. Here, we will review the recent literature regarding the interactions between columnar epithelial cells and neutrophils, with an emphasis on intestinal epithelial cells, structural aspects of neutrophil transepithelial migration, molecular determinants of neutrophil-epithelial cell interactions, as well as modulation of these pathways. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

  5. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan, E-mail: stefan.weger@charite.de

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  7. Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.

    2000-01-01

    The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope

  8. Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Kudryashev, Mikhail; Stahlberg, Henning; Boekema, Egbert J.

    2011-01-01

    The respirasome is a multisubunit supercomplex of the respiratory chain in mitochondria. Here we report the 3D reconstruction of the bovine heart respirasome, composed of dimeric complex III and single copies of complex I and IV, at about 2.2-nm resolution, determined by cryoelectron tomography and

  9. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giuliano Siligardi

    2018-01-01

    Full Text Available While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule and an asymmetric complex (Sgt11-Hsp902-Rar11. The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.

  10. In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction.

    Directory of Open Access Journals (Sweden)

    Sean H J Kim

    Full Text Available The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability.

  11. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.

    Directory of Open Access Journals (Sweden)

    Borbala Mifsud

    Full Text Available Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html.

  12. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.

    Science.gov (United States)

    Mifsud, Borbala; Martincorena, Inigo; Darbo, Elodie; Sugar, Robert; Schoenfelder, Stefan; Fraser, Peter; Luscombe, Nicholas M

    2017-01-01

    Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

  13. Complex interactions among host pines and fungi vectored by an invasive bark beetle

    Science.gov (United States)

    Min Lu; Michael J. Wingfield; Nancy E. Gillette; Sylvia R. Mori; Jian-Hua Sun

    2010-01-01

    Recent studies have investigated the relationships between pairs or groups of exotic species to illustrate invasive mechanisms, but most have focused on interactions at a single trophic level.Here, we conducted pathogenicity tests, analyses of host volatiles and fungal growth tests to elucidate an intricate network of interactions between the host...

  14. On the binding affinity of macromolecular complexes : daring to ask why proteins interact

    NARCIS (Netherlands)

    Kastritis, P.

    2012-01-01

    The last twenty years we have reached the conclusion that most of the cellular functions are orchestrated by interacting protein molecules. It has also become clear that modifying or preventing these protein-protein interactions may have great therapeutic potential, especially for curing diseases

  15. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  16. Modelling and executing complex and dynamic business processes by reification of agent interactions

    NARCIS (Netherlands)

    Stuit, Marco; Szirbik, Nick B.; O'Hare, GMP; Ricci, A; OGrady, MJ; Dirkenelli, O

    2007-01-01

    Interaction refers to an abstract and intangible concept. In modelling, intangible concepts can be embodied and made explicit. This allows to manipulate the abstractions and to build predictable designs. Business processes in organisations are in fact reducible to interactions, especially when

  17. Noncovalent Interactions in Specific Recognition Motifs of Protein-DNA Complexes

    Czech Academy of Sciences Publication Activity Database

    Stasyuk, Olga A.; Jakubec, Dávid; Vondrášek, Jiří; Hobza, Pavel

    2017-01-01

    Roč. 13, č. 2 (2017), s. 877-885 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * side chain interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.245, year: 2016

  18. Interaction of dinuclear cadmium(II) 5-Cl-salicylaldehyde complexes with calf-thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ristovic, Maja Sumar [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Faculty of Chemistry, University of Belgrade, Studenski Trg 12-16, Belgrade (Serbia); Zianna, Ariadni; Psomas, George; Hatzidimitriou, Antonios G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Coutouli-Argyropoulou, Evdoxia [Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lalia-Kantouri, Maria, E-mail: lalia@chem.auth.gr [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2016-04-01

    Five dinuclear Cd(II) complexes with the anion of 5-Cl-salicylaldehyde (5-Cl-saloH) were synthesized in the absence or presence of the α-diimines: 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc) or 2,2′-dipyridylamine (dpamH) and characterized as [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} (1), [Cd(5-Cl-salo){sub 2}(bipy)]{sub 2} (2), [Cd(5-Cl-salo){sub 2}(phen)]{sub 2} (3), [Cd(5-Cl-salo)(neoc)(ONO{sub 2})]{sub 2} (4) and [Cd(5-Cl-salo)(dpamΗ)(ONO{sub 2})]{sub 2} (5). The complexes were characterized by spectroscopic techniques (IR, UV‐vis, {sup 1}H-NMR and {sup 13}C–NMR), elemental analysis and molar conductivity measurements. The structures of four complexes (1–3 and 5) were determined by X-ray crystallography, providing all three possible coordination modes of the ligand 5-Cl-salicylaldehyde, i.e. bidentate or tridentate chelating and/or bridging mode. The complexes bind to calf-thymus (CT) DNA mainly by intercalation, as concluded by the viscosity measurements and present relatively high DNA-binding constants. The complexes exhibit significant ability to displace ethidium bromide (EB) from the EB-DNA complex, thus indirectly proving the intercalation as the most possible binding mode to CT DNA. - Graphical abstract: Cadmium complexes of the formulae [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} and [Cd(5-Cl-salo){sub 2}(α-diimine)]{sub 2} or [Cd(5-Cl-salo)(α-diimine)(ONO{sub 2})]{sub 2} have been synthesized and characterized. The complexes bind tightly to CT DNA probably by intercalation competing with ethidium bromide for the intercalation site of DNA. - Highlights: • Synthesis of a series of dinuclear Cd complexes • The complexes characterized by diverse techniques. • The crystal structures of four complexes have been determined. • Intercalation is the most possible binding mode of the complexes to DNA. • The complexes compete with ethidium bromide for the DNA-intercalating sites.

  19. Interaction between the G3 and L5 proteins of the vaccinia virus entry–fusion complex

    OpenAIRE

    Wolfe, Cindy L.; Moss, Bernard

    2011-01-01

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5....

  20. Investigation on biomolecular interactions of nickel(II) complexes with monoanionic bidentate ligands

    Science.gov (United States)

    Jayamani, Arumugam; Sethupathi, Murugan; Ojwach, Stephen O.; Sengottuvelan, Nallathambi

    2018-01-01

    Reactions of monoanionic bidentate ligands 5-methylsalicylaldehyde (5-msal), 5-bromosalicylaldehyde (5-brsal), 5-nitrosalicylaldehyde (5-nsal) and 2-hydroxy-1-naphthaldehyde (2-hnap) with nickel perchlorate hexahydrate produced nickel(II) complexes 1-4, respectively. Single crystal X-ray analyses of complexes 1 and 2 confirmed bidentate mode of the ligands with O˄O coordination to give square planar geometry around nickel atoms. Complexes 1-4 showed one quasi-reversible redox peak at cathodic region (-0.67 to -0.80 V) and one redox peak at anodic region (+1.08 to +1.44 V) assignable to the Ni(II)/Ni(I) and Ni(II)/Ni(III) redox couples, respectively. The complexes exhibited good bovine serum albumin (BSA) binding abilities with a maximum binding constant of 1.96 × 105 M-1. The binding of complexes with calf thymus DNA (ctDNA) showed that the binding affinity is consistent with an increase in steric bulk of the ligands. The nuclease activity of the complexes showed efficient oxidative cleavage in the presence of hydrogen peroxide as an oxidizing agent. The complexes showed higher zone of inhibition when screened for antimicrobial activity against bacteria and human pathogenic fungi.

  1. Interaction of Cr (III), Ni (II), Pb (II) with DTPA complexes of essential metal ions

    International Nuclear Information System (INIS)

    Gulzar, S.; Zahida; Maqsood, T.; Naqvi, R.R.

    2002-01-01

    With the increase of anthropogenic activities in the environment, heavy metal toxicity (Chromium, Nickel and Lead) is more common now. DTPA (diethylene triamine pentaacetic acid) a polyamino carboxylic acid is widely used to form hydrophilic and stable complexes with most of the metal ions. In this spectrophotometric study, concentration of Cr(III), Ni(II) and Pb(II) (toxic metal ions) exchanged with Fe(III), Zn(II) and Ca(II) from their DTPA complexes were estimated at pH 4,7 and 9. Concentration of added metal was varied from 1-4 times to that of complexed metal. (author)

  2. Catalysis with Gold Complexes Immobilised on Carbon Nanotubes by π-π Stacking Interactions: Heterogeneous Catalysis versus the Boomerang Effect.

    Science.gov (United States)

    Vriamont, Charles; Devillers, Michel; Riant, Olivier; Hermans, Sophie

    2013-09-02

    A new pyrene-tagged gold(I) complex has been synthesised and tested as a homogeneous catalyst. First, a simple 1,6-enyne was chosen as a model substrate for cyclisation by using different solvents to optimise the reaction conditions. The non-covalent immobilisation of our pyrene-tagged gold complex onto multi-walled carbon nanotubes through π-π stacking interactions was then explored to obtain a supported homogeneous catalyst. The heterogenised catalyst and its homogeneous counterpart exhibited similar activity in a range of enyne cyclisation reactions. Bearing in mind that π-π interactions are affected by temperature and solvent polarity, the reuse and robustness of the supported homogeneous catalyst was tested to explore the scope and limitations of the recyclability of this catalyst. Under the optimised conditions, recyclability was observed by using the concept of the boomerang effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. RECQ HELICASE RECQL4 PARTICIPATES IN NON-HOMOLOGOUS END JOINING AND INTERACTS WITH THE KU COMPLEX

    DEFF Research Database (Denmark)

    Shamanna, Raghavendra A; Singh, Dharmendra Kumar; Lu, Huiming

    2014-01-01

    -irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-dependent protein kinase (DNA-PK) complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding...... of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase...

  4. The cognitive impact of interactive design features for learning complex materials in medical education.

    Science.gov (United States)

    Song, Hyuksoon S; Pusic, Martin; Nick, Michael W; Sarpel, Umut; Plass, Jan L; Kalet, Adina L

    2014-02-01

    To identify the most effective way for medical students to interact with a browser-based learning module on the symptoms and neurological underpinnings of stroke syndromes, this study manipulated the way in which subjects interacted with a graphical model of the brain and examined the impact of functional changes on learning outcomes. It was hypothesized that behavioral interactions that were behaviorally more engaging and which required deeper consideration of the model would result in heightened cognitive interaction and better learning than those whose manipulation required less deliberate behavioral and cognitive processing. One hundred forty four students were randomly assigned to four conditions whose model controls incorporated features that required different levels of behavioral and cognitive interaction: Movie (low behavioral/low cognitive, n = 40), Slider (high behavioral/low cognitive, n = 36), Click (low behavioral/high cognitive, n = 30), and Drag (high behavioral/high cognitive, n = 38). Analysis of Covariates (ANCOVA) showed that students who received the treatments associated with lower cognitive interactivity (Movie and Slider) performed better on a transfer task than those receiving the module associated with high cognitive interactivity (Click and Drag, partial eta squared = .03). In addition, the students in the high cognitive interactivity conditions spent significantly more time on the stroke locator activity than other conditions (partial eta squared = .36). The results suggest that interaction with controls that were tightly coupled with the model and whose manipulation required deliberate consideration of the model's features may have overtaxed subjects' cognitive resources. Cognitive effort that facilitated manipulation of content, though directed at the model, may have resulted in extraneous cognitive load, impeding subjects in recognizing the deeper, global relationships in the materials. Instructional designers must, therefore, keep in

  5. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Ionov, Maksim [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, F-31077 Toulouse cedex 4 (France); Muñoz-Fernández, Maria Angeles [Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Bryszewska, Maria [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland)

    2014-04-15

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates.

  6. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    International Nuclear Information System (INIS)

    Ciepluch, Karol; Ionov, Maksim; Majoral, Jean-Pierre; Muñoz-Fernández, Maria Angeles; Bryszewska, Maria

    2014-01-01

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates

  7. Interaction between marihuana and altitude on a complex behavioral task in baboons.

    Science.gov (United States)

    1975-01-01

    Marihuana, or its principal active ingredient, delta-9-tetrahydrocannabinol (delta9-THC), impairs performance on complex behavioral tasks in animals and man. Although there exists some evidence that altitude-induced hypoxia potentiates the physiologi...

  8. Network-oriented modeling addressing complexity of cognitive, affective and social interactions

    CERN Document Server

    Treur, Jan

    2016-01-01

    This book presents a new approach that can be applied to complex, integrated individual and social human processes. It provides an alternative means of addressing complexity, better suited for its purpose than and effectively complementing traditional strategies involving isolation and separation assumptions. Network-oriented modeling allows high-level cognitive, affective and social models in the form of (cyclic) graphs to be constructed, which can be automatically transformed into executable simulation models. The modeling format used makes it easy to take into account theories and findings about complex cognitive and social processes, which often involve dynamics based on interrelating cycles. Accordingly, it makes it possible to address complex phenomena such as the integration of emotions within cognitive processes of all kinds, of internal simulations of the mental processes of others, and of social phenomena such as shared understandings and collective actions. A variety of sample models – including ...

  9. Interaction of Pyrrolobenzodiazepine (PBD) Ligands with Parallel Intermolecular G-Quadruplex Complex Using Spectroscopy and ESI-MS

    Science.gov (United States)

    Raju, Gajjela; Srinivas, Ragampeta; Santhosh Reddy, Vangala; Idris, Mohammed M.; Kamal, Ahmed; Nagesh, Narayana

    2012-01-01

    Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5′GGGGTTGGGG3′) designated as d(T2G8), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T2G8) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T2G8)2 and d(T2G8)4 forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T2G8) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex. PMID:22558271

  10. Interaction of pyrrolobenzodiazepine (PBD ligands with parallel intermolecular G-quadruplex complex using spectroscopy and ESI-MS.

    Directory of Open Access Journals (Sweden)

    Gajjela Raju

    Full Text Available Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1, mixed imine-amide pyrrolobenzodiazepine dimer (PBD2 and 5,10,15,20-tetrakis(N-methyl-4-pyridylporphyrin (TMPyP4 were studied. G-rich single-stranded oligonucleotide d(5'GGGGTTGGGG3' designated as d(T(2G(8, from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD, UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T(2G(8 sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T(2G(8(2 and d(T(2G(8(4 forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T(2G(8 quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex.

  11. Towards a reverse Newman’s theorem in interactive information complexity

    Czech Academy of Sciences Publication Activity Database

    Brody, J.; Buhrman, H.; Koucký, Michal; Loff, B.; Speelman, F.; Vereshchagin, N.K.

    2016-01-01

    Roč. 76, č. 3 (2016), s. 749-781 ISSN 0178-4617 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : communication complexity * information complexity * information theory Subject RIV: BA - General Mathematics Impact factor: 0.735, year: 2016 http ://link.springer.com/article/10.1007%2Fs00453-015-0112-9

  12. Towards a reverse Newman’s theorem in interactive information complexity

    Czech Academy of Sciences Publication Activity Database

    Brody, J.; Buhrman, H.; Koucký, Michal; Loff, B.; Speelman, F.; Vereshchagin, N.K.

    2016-01-01

    Roč. 76, č. 3 (2016), s. 749-781 ISSN 0178-4617 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : communication complexity * information complexity * information theory Subject RIV: BA - General Mathematics Impact factor: 0.735, year: 2016 http://link.springer.com/article/10.1007%2Fs00453-015-0112-9

  13. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  14. Ectopic protein interactions within BRD4–chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma

    OpenAIRE

    Alekseyenko, Artyom A.; Walsh, Erica M.; Zee, Barry M.; Pakozdi, Tibor; Hsi, Peter; Lemieux, Madeleine E.; Dal Cin, Paola; Ince, Tan A.; Kharchenko, Peter V.; Kuroda, Mitzi I.; French, Christopher A.

    2017-01-01

    Chromatin factors generally act within large, multisubunit complexes; thus, identifying both their normal and aberrant interactors in cancer should provide important information regarding potential targets for therapeutic intervention. Here, we apply this principle to analysis of BRD4–NUT, a fusion oncoprotein that drives an aggressive subtype of squamous cell cancer. We identify ZNF532 as a prominent BRD4–NUT–interacting protein in an established NUT midline carcinoma patient cell line, and ...

  15. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex.

    Science.gov (United States)

    Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl

    2018-01-15

    The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  16. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropylcyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2018-01-01

    Full Text Available The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8] was studied by 1H NMR spectroscopy, isothermal titration calorimetry (ITC, and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  17. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  18. Nearest neighbors EPR superhyperfine interaction in divalent iridium complexes in alkali halide host lattice

    International Nuclear Information System (INIS)

    Pinhal, N.M.; Vugman, N.V.

    1983-01-01

    Further splitting of chlorine superhyperfine lines on the EPR spectrum of the [Ir (CN) 4 Cl 2 ] 4 - molecular species in NaCl latice indicates a super-superhyperfine interaction with the nearest neighbors sodium atoms. (Author) [pt

  19. Complex tritrophic interactions in response to crop domestication: predictions from the wild

    NARCIS (Netherlands)

    Chen, Y.H.; Gols, R.; Stratton, C.A.; Brevik, K.A.; Benrey, B.

    2015-01-01

    Crop domestication is the process of artificially selecting plants to increase their suitability to human tastes and cultivated growing conditions. There is increasing evidence that crop domestication can profoundly alter interactions among plants, herbivores, and their natural enemies. However,

  20. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.

    Science.gov (United States)

    Sen, Sabyasachi; Sanyal, Sulagna; Srivastava, Dushyant Kumar; Dasgupta, Dipak; Roy, Siddhartha; Das, Chandrima

    2017-12-15

    Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic β cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Characterization of the interaction forces in a drug carrier complex of doxorubicin with a drug-binding peptide.

    Science.gov (United States)

    Gocheva, Gergana; Ilieva, Nina; Peneva, Kalina; Ivanova, Anela

    2018-04-01

    Polypeptide-based materials are used as building blocks for drug delivery systems aimed at toxicity decrease in chemotherapeutics. A molecular-level approach is adopted for investigating the non-covalent interactions between doxorubicin and a recently synthesized drug-binging peptide as a key part of a system for delivery to neoplastic cells. Molecular dynamics simulations in aqueous solution at room and body temperature are applied to investigate the structure and the binding modes within the drug-peptide complex. The tryptophans are outlined as the main chemotherapeutic adsorption sites, and the importance of their placement in the peptide sequence is highlighted. The drug-peptide binging energy is evaluated by density functional theory calculations. Principal component analysis reveals comparable importance of several types of interaction for the binding strength. π-Stacking is dominant, but other factors are also significant: intercalation, peptide backbone stacking, electrostatics, dispersion, and solvation. Intra- and intermolecular H-bonding also stabilizes the complexes. The influence of solvent molecules on the binding energy is mild. The obtained data characterize the drug-to-peptide attachment as a mainly attractive collective process with interactions spanning a broad range of values. These results explain with atomistic detail the experimentally registered doxorubicin-binging ability of the peptide and outline the complex as a prospective carrying unit that can be employed in design of drug delivery systems. © 2017 John Wiley & Sons A/S.

  2. Heteroleptic and Homoleptic Iron(III Spin-Crossover Complexes; Effects of Ligand Substituents and Intermolecular Interactions between Co-Cation/Anion and the Complex

    Directory of Open Access Journals (Sweden)

    Wasinee Phonsri

    2017-08-01

    Full Text Available The structural and magnetic properties of a range of new iron(III bis-tridentate Schiff base complexes are described with emphasis on how intermolecular structural interactions influence spin states and spin crossover (SCO in these d5 materials. Three pairs of complexes were investigated. The first pair are the neutral, heteroleptic complexes [Fe(3-OMe-SalEen(thsa] 1 and [Fe(3-MeOSalEen(3-EtOthsa] 2, where 3-R-HSalEen = (E-2-(((2-(ethylaminoethyliminomethyl-6-R-phenol and 3-R-H2thsa = thiosemicarbazone-3-R-salicylaldimine. They display spin transitions above room temperature. However, 2 shows incomplete and gradual change, while SCO in 1 is complete and more abrupt. Lower cooperativity in 2 is ascribed to the lack of π–π interactions, compared to 1. The second pair, cationic species [Fe(3-EtOSalEen2]NO3 3 and [Fe(3-EtOSalEen2]Cl 4 differ only in the counter-anion. They show partial SCO above room temperature with 3 displaying a sharp transition at 343 K. Weak hydrogen bonds from cation to Cl− probably lead to weaker cooperativity in 4. The last pair, CsH2O[Fe(3-MeO-thsa2] 5 and Cs(H2O2[Fe(5-NO2-thsa2] 6, are anionic homoleptic chelates that have different substituents on the salicylaldiminate rings of thsa2−. The Cs cations bond to O atoms of water and the ligands, in unusual ways thus forming attractive 1D and 3D networks in 5 and 6, respectively, and 5 remains HS (high spin at all temperatures while 6 remains LS (low spin. Comparisons are made to other literature examples of Cs salts of [Fe(5-R-thsa2]− (R = H and Br.

  3. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  4. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field.

    Science.gov (United States)

    Kerwin, Rachel E; Feusier, Julie; Muok, Alise; Lin, Catherine; Larson, Brandon; Copeland, Daniel; Corwin, Jason A; Rubin, Matthew J; Francisco, Marta; Li, Baohua; Joseph, Bindu; Weinig, Cynthia; Kliebenstein, Daniel J

    2017-08-01

    Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions. Epistasis × environment interactions accounted for up to 48% of the relative fitness variation in the field. At a single field site, the impact of epistasis on relative fitness varied significantly over 2 yr, showing that epistasis × environment interactions within a location can be temporally dynamic. These results suggest that the environmental dependency of epistasis can profoundly influence the response to selection, shaping the adaptive trajectories of natural populations in complex ways, and deserves further consideration in future evolutionary studies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. In Vitro Interactions between 17β-Estradiol and DNA Result in Formation of the Hormone-DNA Complexes

    Directory of Open Access Journals (Sweden)

    Zbynek Heger

    2014-07-01

    Full Text Available Beyond the role of 17β-estradiol (E2 in reproduction and during the menstrual cycle, it has been shown to modulate numerous physiological processes such as cell proliferation, apoptosis, inflammation and ion transport in many tissues. The pathways in which estrogens affect an organism have been partially described, although many questions still exist regarding estrogens’ interaction with biomacromolecules. Hence, the present study showed the interaction of four oligonucleotides (17, 20, 24 and/or 38-mer with E2. The strength of these interactions was evaluated using optical methods, showing that the interaction is influenced by three major factors, namely: oligonucleotide length, E2 concentration and interaction time. In addition, the denaturation phenomenon of DNA revealed that the binding of E2 leads to destabilization of hydrogen bonds between the nitrogenous bases of DNA strands resulting in a decrease of their melting temperatures (Tm. To obtain a more detailed insight into these interactions, MALDI-TOF mass spectrometry was employed. This study revealed that E2 with DNA forms non-covalent physical complexes, observed as the mass shifts for app. 270 Da (Mr of E2 to higher molecular masses. Taken together, our results indicate that E2 can affect biomacromolecules, as circulating oligonucleotides, which can trigger mutations, leading to various unwanted effects.

  6. HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A

    International Nuclear Information System (INIS)

    Van Rechem, Capucine; Boulay, Gaylor; Leprince, Dominique

    2009-01-01

    HIC1, a tumor suppressor gene epigenetically silenced in many human cancers encodes a transcriptional repressor involved in regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. HIC1 is also implicated in growth control since it recruits BRG1, one of the two alternative ATPases (BRM or BRG1) of SWI/SNF chromatin-remodeling complexes to repress transcription of E2F1 in quiescent fibroblasts. Here, through yeast two-hybrid screening, we identify ARID1A/BAF250A, as a new HIC1 partner. ARID1A/BAF250A is one of the two mutually exclusive ARID1-containing subunits of SWI/SNF complexes which define subsets of complexes endowed with anti-proliferative properties. Co-immunoprecipitation assays in WI38 fibroblasts and in BRG1-/- SW13 cells showed that endogenous HIC1 and ARID1A proteins interact in a BRG1-dependent manner. Furthermore, we demonstrate that HIC1 does not interact with BRM. Finally, sequential chromatin immunoprecipitation (ChIP-reChIP) experiments demonstrated that HIC1 represses E2F1 through the recruitment of anti-proliferative SWI/SNF complexes containing ARID1A.

  7. Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.

    Science.gov (United States)

    Qi, Shiqian; Kim, Do Jin; Stjepanovic, Goran; Hurley, James H

    2015-10-06

    The ULK1 complex, consisting of the ULK1 protein kinase itself, FIP200, Atg13, and Atg101, controls the initiation of autophagy in animals. We determined the structure of the complex of the human Atg13 HORMA (Hop1, Rev7, Mad2) domain in complex with the full-length HORMA domain-only protein Atg101. The two HORMA domains assemble with an architecture conserved in the Mad2 conformational heterodimer and the S. pombe Atg13-Atg101 HORMA complex. The WF finger motif that is essential for function in human Atg101 is sequestered in a hydrophobic pocket, suggesting that the exposure of this motif is regulated. Benzamidine molecules from the crystallization solution mark two hydrophobic pockets that are conserved in, and unique to, animals, and are suggestive of sites that could interact with other proteins. These features suggest that the activity of the animal Atg13-Atg101 subcomplex is regulated and that it is an interaction hub for multiple partners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    Science.gov (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  9. Dynamic effects of tank waste aging on radionuclide-complexant interactions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arterburn, J.B.; Chamberlin, R.

    1998-01-01

    'The overall objective of this project is to provide a scientific basis for safely processing complexant-containing high-level tank wastes for disposal. The key goals are to identify a means to prepare realistic complexant-containing tank waste simulants, and to use those simulants to determine the relative importance of organic complexants and their breakdown products on the partitioning of important radionuclides. These goals will be accomplished by artificially aging complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques. The simulants will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragmentation and the partitioning behavior of the important radionuclides 90 Sr, 99 Tc, and 239 Pu. Also, the authors will use their simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides from the waste. Using NMR-active labels in the chelators, they will use a combinatorial approach of generating multiple chelator fragments in a single experiment and then determining which fragments have a negative effect on the separations chemistry. The successful completion of this goal will specifically identify the most problematic organic fragments in complexant-containing waste and provide the basis for developing successful treatment strategies for these wastes. This report summarizes work carried out at Los Alamos during the first 8 months of a 3-year project.'

  10. Interaction between holo transferrin and HSA-PPIX complex in the presence of lomefloxacin: An evaluation of PPIX aggregation in protein-protein interactions

    Science.gov (United States)

    Sattar, Zohreh; Iranfar, Hediye; Asoodeh, Ahmad; Saberi, Mohammad Reza; Mazhari, Mahboobeh; Chamani, Jamshidkhan

    2012-11-01

    Human serum albumin (HSA) and holo transferrin (TF) are two serum carrier proteins that are able to interact with each other, thereby altering their binding behavior toward their ligands. During the course of this study, the interaction between HSA-PPIX and TF, in the presence and absence of lomefloxacin (LMF), was for the first time investigated using different spectroscopic and molecular modeling techniques. Fluorescence spectroscopy experiments were performed in order to study conformational changes of proteins. The RLS technique was utilized to investigate the effect of LMF on J-aggregation of PPIX, which is the first report of its kind. Our findings present clear-cut evidence for the alteration of interactions between HSA and TF in the presence of PPIX and changes in drug-binding to HSA and HSA-PPIX complex upon interaction with TF. Moreover, molecular modeling studies suggested that the binding site for LMF became switched in the presence of PPIX, and that LMF bound to the site IIA of HSA. The obtained results should give new insight into research in this field and may cast some light on the dynamics of drugs in biological systems.

  11. Noncovalent interaction of polyethylene glycol with copper complex of ethylenediaminetetraacetic acid and its application in constructing inorganic nanomaterials.

    Science.gov (United States)

    Pan, Shu Zhen; Song, Le Xin; Chen, Jie; Du, Fang Yun; Yang, Jing; Xia, Juan

    2011-10-21

    In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components. This journal is © The Royal Society of Chemistry 2011

  12. Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle.

    Science.gov (United States)

    Stillwell, R Craig; Wallin, William G; Hitchcock, Lisa J; Fox, Charles W

    2007-08-01

    Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.

  13. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Srivastava, Payal; Singh, Khushbu; Verma, Madhu; Sivakumar, Sri; Patra, Ashis K

    2018-01-20

    The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap) 2 ] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of Pt II -DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (K b  ∼ 10 4  M -1 , K app ∼ 10 5  M -1 ), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (K BSA ∼ 10 5  M -1 ). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen ( 1 O 2 ) and hydroxyl radical ( • OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC 50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. StudTest – A Platform Supporting Complex and Interactive Knowledge Assessment

    Directory of Open Access Journals (Sweden)

    Vlado Glavinić

    2008-12-01

    Full Text Available This paper describes the model and prototype implementation of a knowledge assessment framework based on problem management components. In order to support student testing with complex problem types and enable usage of rich graphical user interfaces for solution entry, we have developed an e-examination model in which the core concept is a component that can generate complex questions and evaluate students' solutions with additional explanation generation, which we named prlet. The respective system implementation is described, which can operate under heavy loads.

  15. Higher Order Inclusion Complexes and Secondary Interactions Studied by Global Analysis of Calorimetric Titrations

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Holm, René; Westh, Peter

    2012-01-01

    This paper investigates the use of isothermal titration calorimetry (ITC) as a tool for studying molecular systems in which weaker secondary interactions are present in addition to a dominant primary interaction. Such systems are challenging since the signal pertaining to the stronger primary......). The results are validated by a 13C NMR titration and negative controls with a bile salt with no secondary binding site (glycocholate) (K = 2.96 ± 0.01 × 103 M–1). The method proved useful for detailed analysis of ITC data and may strengthen its use as a tool for studying molecular systems by advanced binding...

  16. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  17. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    Science.gov (United States)

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  18. Song Walker Harmony Space: Embodied Interaction Design for Complex Musical Skills

    NARCIS (Netherlands)

    Bouwer, A.; Holland, S.; Dalgleish, M.; Holland, S.; Wilkie, K.; Mulholland, P.; Seago, A.

    2013-01-01

    Tonal Harmony is widely considered to be the most technical and complex part of music theory. Consequently harmonic skills can be hard to acquire. Furthermore, experience of the flexible manipulation of harmony in real time generally requires the ability to play an instrument. Even for those with

  19. Adaptation, interaction and urgency : a complex evolutionary economic geography approach to leisure

    NARCIS (Netherlands)

    Meekes, Jasper F.; Buda, Dorina M.; de Roo, Gert

    2017-01-01

    Local and regional governments in western European peripheral areas aim to spur leisure-led regional development. We explore planning for leisure by applying an evolutionary economic geography (EEG) approach from a complexity perspective. We identify conditions which enable and constrain leisure

  20. Non-covalent interactions in anisole-(CO2)(n) (n=1, 2) complexes

    Czech Academy of Sciences Publication Activity Database

    Becucci, M.; Mazzoni, F.; Pietraperzia, G.; Řezáč, Jan; Nachtigallová, Dana; Hobza, Pavel

    2017-01-01

    Roč. 19, č. 34 (2017), s. 22749-22758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * anisole-water complex * equation of state Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  1. A Real-Life Case Study of Audit Interactions--Resolving Messy, Complex Problems

    Science.gov (United States)

    Beattie, Vivien; Fearnley, Stella; Hines, Tony

    2012-01-01

    Real-life accounting and auditing problems are often complex and messy, requiring the synthesis of technical knowledge in addition to the application of generic skills. To help students acquire the necessary skills to deal with these problems effectively, educators have called for the use of case-based methods. Cases based on real situations (such…

  2. MOOC design analysis - Constructive alignment, interactions, task complexity, formative assessment & feedback

    NARCIS (Netherlands)

    Kasch, Julia; Van Rosmalen, Peter; Kalz, Marco

    2016-01-01

    Massive Open Online Courses (MOOCs) hold the potential of providing education at large scale. However, the challenge lies in the scalability of their educational design. It is unclear whether and to what extent MOOCs to provide active and complex learning activities, support and feedback to large

  3. Interaction of cesium ions with calix[2]furan[4]pyrrole and its fluoride complex

    Czech Academy of Sciences Publication Activity Database

    Kříž, Jaroslav; Dybal, Jiří; Makrlík, E.; Kohnke, F. H.

    2012-01-01

    Roč. 541, 10 July (2012), s. 27-31 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : calix[2]furan[4]pyrrole * Cs complex * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.145, year: 2012

  4. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    Science.gov (United States)

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin

    Directory of Open Access Journals (Sweden)

    David A. Brown

    2017-09-01

    Full Text Available Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3. CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome.

  6. Investigating Syntactical and Lexical Complexity in Gendered and Same-Sex Interactions

    Science.gov (United States)

    Long, Robert W., III.

    2018-01-01

    For many sociolinguists, the issue of shyness and hesitation phenomenon has been problematic for Japanese L1 and L2 speakers, particularly in gendered interactions. Over the past decade, more Japanese are shunning conversations, relationships, and isolating themselves, which is accelerating the demographic crisis in Japan. Thus, this paper focuses…

  7. Non-Covalent Interactions: Complexes of Guanidinium with DNA and RNA Nucleobases

    Czech Academy of Sciences Publication Activity Database

    Blanco, F.; Kelly, B.; Sanchez-Sanz, Goar; Trujillo, Cristina; Alkorta, I.; Elguero, J.; Rozas, I.

    2013-01-01

    Roč. 117, č. 39 (2013), s. 11608-11616 ISSN 1520-6106 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-274988 People Institutional support: RVO:61388963 Keywords : molecular -orbital methods * cation-pi interactions * minor-groove binders Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  8. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Hobza, Pavel

    2016-01-01

    Roč. 116, č. 9 (2016), s. 5038-5071 ISSN 0009-2665 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * coupled cluster theory * intermolecular interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 47.928, year: 2016

  9. Employees' and Managers' Accounts of Interactive Workplace Learning: A Grounded Theory of "Complex Integrative Learning"

    Science.gov (United States)

    Armson, Genevieve; Whiteley, Alma

    2010-01-01

    Purpose: The purpose of this paper is to investigate employees' and managers' accounts of interactive learning and what might encourage or inhibit emergent learning. Design/methodology/approach: The approach taken was a constructivist/social constructivist ontology, interpretive epistemology and qualitative methodology, using grounded theory…

  10. Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses

    NARCIS (Netherlands)

    M.T. de Graaf (Marieke); S. Herfst (Sander); E.J.A. Schrauwen (Eefje); Y. Choi (Ying); B.G. van den Hoogen (Bernadette); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractHuman metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely relaled to HMPV than other AMPVs. To investigate the specificity and functional interaction of

  11. Interaction between the G3 and L5 proteins of the vaccinia virus entry-fusion complex

    International Nuclear Information System (INIS)

    Wolfe, Cindy L.; Moss, Bernard

    2011-01-01

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5. These two proteins remained associated under several different EFC destabilization conditions and in each case were immunopurified together as demonstrated by Western blotting. Further evidence for the specific interaction of G3 and L5 was obtained by mass spectrometry. This interaction also occurred when G3 and L5 were expressed in uninfected cells, indicating that no other viral proteins were required. Thus, the present study extends our knowledge of the protein interactions important for EFC assembly and stability.

  12. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  13. Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation.

    Science.gov (United States)

    Tesco, G; Kim, T W; Diehlmann, A; Beyreuther, K; Tanzi, R E

    1998-12-18

    beta-Catenin has previously been shown to interact with presenilin 1 (PS1) in transfected cells. Here we report that beta-catenin co-immunoprecipitates with the endogenous C-terminal fragment of presenilin 1 (PS1-CTF) but not with the endogenous CTF of presenilin 2 (PS2-CTF) in H4 human neuroglioma cells. During staurosporine (STS)-induced cell death, beta-catenin and PS1-CTF undergo a caspase-mediated cleavage. After 12 h of STS treatment, the beta-catenin.PS1-CTF interaction is abrogated. While PS1-CTF immunoprecipitated with all caspase-cleaved species of beta-catenin, beta-catenin holoprotein did not co-immunoprecipitate with the "alternative" caspase-derived PS1-CTF (PS1-aCTF). Thus, the abrogation of the beta-catenin.PS1-CTF complex was due to caspase cleavage of PS1-CTF. beta-Catenin co-immunoprecipitated with PS1-NTF, but only when PS1-NTF was associated with PS1-CTF. Even though PS1-NTF.CTF complex stability was not altered by caspase cleavage, its ability to bind beta-catenin was abolished. Thus, while the PS1-NTF.CTF complex is preserved after caspase cleavage, it may no longer be fully functional.

  14. Structure dependent hydrophobic and hydrophilic interactions between nickel(II) Schiff base complexes and serum albumins: Spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Banerjee, Mousumi; Bhattacharyya, Teerna [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Bhattacharyya, Dhananjay [Computational Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-03-15

    A systematic and comparative binding study between serum-albumins (SA) and a series of monomeric nickel(II)-Schiff-base-complexes (NSCs), which might be imperative to investigate the function of SA behind nickel allergy, has been carried out through docking and different spectroscopic techniques. The initial docking studies indicate structure-dependent selective hydrophobic and hydrophilic interactions. The pyridine and phenyl containing NSCs, which are more aromatic, show better π–π staking compared to pyrrole one. Again all the NSCs bind with BSA though amino acid residues of IB domain affecting local environment of the Trp-134 surrounded by both hydrophobic and hydrophilic residues instead of the hydrophobically buried Trp-212. In HSA the hydophobically buried Trp-214 is influenced by NSCs. The experimental results nicely support the docking outcomes. The changes in Gibbs free energy, binding affinity and the nature of hydrophilic/hydrophobic interactions of NSC–SA systems indicate greater accessibility of N{sub 2}O{sub 2} donor set complex compared to N{sub 4} one towards SA. Quantum chemical structure optimizations support the better planarity of NSC with N{sub 2}O{sub 2} which provides better binding. Therefore the structural variation of N{sub 2}O{sub 2} donor set complexes becomes much more useful compared to N{sub 4} one to search out the most compatible NSC towards SAs.

  15. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  16. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.

    Science.gov (United States)

    Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M

    2000-10-01

    In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

  17. Interaction of natural complexing agents with soil bound heavy metals -geochemical and environmental technical aspects

    International Nuclear Information System (INIS)

    Fischer, K.

    1994-01-01

    The sanitation of heavy metal polluted soils requires the application of an adequate technology, which should be consistent in its ecological aims and methodology. Therefore a research programme has been developed at the 'Institute of Ecological Chemistry' of the 'GSF-Research Center', Neuherberg, which has its starting point in the study of influences of natural organic complexing agents on the chemical activity and dynamic of heavy metals in soils. The groundlaying idea is to elevate the concentration of complexing agents in the soil solution by additional application and possible stimulation of their microbial production to such an extent, that heavy metals will be enhanced solubilized, mobilized and removed together with the seepage water. Batch experiments in order to extract heavy metals from typical soil components (bentonite, peat) by amino acids demonstrate, that removal rates up to 95% can be obtained. (orig.) [de

  18. Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali; Mehri-Dehnavi, Hossein

    2009-01-01

    A curious feature of complex scattering potentials v(x) is the appearance of spectral singularities. We offer a quantitative description of spectral singularities that identifies them with an obstruction to the existence of a complete biorthonormal system consisting of the eigenfunctions of the Hamiltonian operator and its adjoint. We establish the equivalence of this description with the mathematicians' definition of spectral singularities for the potential v(x) = z - δ(x + a) + z + δ(x - a), where z ± and a are respectively complex and real parameters and δ(x) is the Dirac delta function. We offer a through analysis of the spectral properties of this potential and determine the regions in the space of the coupling constants z ± where it admits bound states and spectral singularities. In particular, we find an explicit bound on the size of certain regions in which the Hamiltonian is quasi-Hermitian and examine the consequences of imposing PT-symmetry

  19. Propagation and Interaction Properties of Successive Coronal Mass Ejections in Relation to a Complex Type II Radio Burst

    Science.gov (United States)

    Liu, Y. D.; Zhao, X.; Zhu, B.

    2017-12-01

    We examine the propagation and interaction properties of three successive coronal mass ejections (CMEs) from 2001 November 21-22, with a focus on their connection with the behaviors of the associated long-duration complex type II radio burst. In combination with coronagraph and multi-point in situ observations, the long-duration type II burst provides key features that help resolve the propagation and interaction complexities of the three CMEs. The two CMEs from November 22 interacted first and then overtook the November 21 CME at a distance of about 0.85 AU from the Sun. The time scale that the shock originally driven by the last CME spent inside the preceding two CMEs is estimated to be about 14 and 6 hr, respectively. We present a simple analytical model without any free parameters to characterize the whole Sun-to-Earth propagation of the shock, which shows a remarkable consistency with all the available data and MHD simulations even out to the distance of Ulysses (2.34 AU). The coordination of in situ measurements at the Earth and Ulysses, which were separated by 73o in latitude, gives important clues for the understanding of shock structure and the interpretation of in situ signatures. The results also indicate means to increase geo-effectiveness with three CMEs, similar to the the ``perfect storm" scenario proposed by te{liu14a} although the current case is not ``super" in the same sense as the 2012 July 23 event.

  20. Interaction Mode between Inclusion Complex of Vitamin K3 with γ- Cyclodextrin and Herring-Sperm DNA.

    Science.gov (United States)

    Tang, Yan; Cai, Li; Xue, Kang; Wang, Chunling; Xiong, Xiaoli

    2016-05-03

    Methods including spectroscopy, electronic chemistry and thermodynamics were used to study the inclusion effect between γ-cyclodextrin (CD) and vitamin K3(K3), as well as the interaction mode between herring-sperm DNA (hsDNA) and γ-CD-K3 inclusion complex. The results from ultraviolet spectroscopic method indicated that VK3 and γ-CD formed 1:1 inclusion complex, with the inclusion constant Kf = 1.02 × 10(4) L/mol, which is based on Benesi-Hildebrand's viewpoint. The outcomes from the probe method and Scatchard methods suggested that the interaction mode between γ-CD-K3 and DNA was a mixture mode, which included intercalation and electrostatic binding effects. The binding constants were K (θ)25°C = 2.16 × 10(4) L/mol, and K(θ)37°C = 1.06 × 10(4) L/mol. The thermodynamic functions of the interaction between γ-CD-K3 and DNA were ΔrHm(θ) = -2.74 × 10(4) J/mol, ΔrSm(θ) = 174.74 J·mol(-1)K(-1), therefore, both ΔrHm(θ) (enthalpy) and ΔrSm(θ) (entropy) worked as driven forces in this action.

  1. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    Science.gov (United States)

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  2. Analytic ab initio-based molecular interaction potential for the BrO⋅H{sub 2}O complex

    Energy Technology Data Exchange (ETDEWEB)

    Hoehn, Ross D.; Kais, Sabre [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, HBKU, Doha (Qatar); Yeole, Sachin D. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Francisco, Joseph S., E-mail: jfrancisco3@unl.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Departments of Chemistry, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-05-28

    Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O{sub 3}. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H{sub 2}O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H{sub 2}O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere.

  3. Inclusion of the strong interaction in low-energy hydrogen-antihydrogen scattering using a complex potential

    International Nuclear Information System (INIS)

    Armour, E A G; Liu, Y; Vigier, A

    2005-01-01

    The aim of experimentalists currently working on the preparation of antihydrogen is to trap it at very low temperatures so that its properties can be studied. Any process that can lead to loss of antihydrogen is thus of great concern to them. In view of this, we have carried out a calculation of the antiproton annihilation cross section in very low-energy hydrogen-antihydrogen scattering using a complex potential to represent the strong interaction that brings about the annihilation. The potential takes into account the isotopic spin state of the proton and the antiproton and the possibility that they may be in either a singlet or a triplet spin state. The results for the annihilation cross section and the percentage change in the elastic cross section due to the inclusion of the strong interaction are similar to those obtained in a recent calculation (Jonsell et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1195), using an effective range expansion. They are smaller by a factor of 2 and 3, respectively, than those obtained in an earlier calculation (Voronin and Carbonell 2001 Nucl. Phys. A 689 529c), using a coupled channel method and a complex strong interaction potential. (letter to the editor)

  4. Interaction of new butyltin citrate complex with lipid model membrane and DNA

    Czech Academy of Sciences Publication Activity Database

    Pruchnik, H.; Kral, Teresa; Hof, Martin

    2014-01-01

    Roč. 118, č. 2 (2014), s. 967-975 ISSN 1388-6150 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61388955 Keywords : Butyltin citrate complex * Phase transition * DSC Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.042, year: 2014

  5. Machine-Building for Fuel and Energy Complex: Perspective Forms of Interaction

    Science.gov (United States)

    Nikitenko, S. M.; Goosen, E. V.; Pakhomova, E. A.; Rozhkova, O. V.; Mesyats, M. A.

    2017-10-01

    The article is devoted to the study of the existing forms of cooperation between the authorities, business and science in the fuel and energy complex and the machine-building industry at the regional level. The possibilities of applying the concept of the “triple helix” and its multi-helix modifications for the implementation of the import substitution program for high- tech products have been considered.

  6. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  7. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage

    International Nuclear Information System (INIS)

    Lisal, Jiri; Kainov, Denis E.; Lam, TuKiet T.; Emmett, Mark R.; Wei Hui; Gottlieb, Paul; Marshall, Alan G.; Tuma, Roman

    2006-01-01

    Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading

  8. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    OpenAIRE

    Sahoo, Dipankar; Quesne, Matthew G; de?Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome?P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure ...

  9. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    OpenAIRE

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure ...

  10. Interaction and Binding Modes of bis-Ruthenium(II Complex to Synthetic DNAs

    Directory of Open Access Journals (Sweden)

    Hasi Rani Barai

    2016-06-01

    Full Text Available [μ-(linkerL2(dipyrido[3,2-a:2′,3′-c]phenazine2(phenanthroline2Ru(II2]2+ with linker: 1,3-bis-(4-pyridyl-propane, L: PF6 (bis-Ru-bpp was synthesized and their binding properties to a various polynucleotides were investigated by spectroscopy, including normal absorption, circular dichroism(CD, linear dichroism(LD, and luminescence techniques in this study. On binding to polynucleotides, the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] exhibited a negative LDr signal whose intensity was as large as that in the DNA absorption region, followed by a complicated LDr signal in the metal-to-ligand charge transfer region. Also, the emission intensity and equilibrium constant of the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] were enhanced. It was reported that both of dppz ligand of the bis-Ru-bpp complex intercalated between DNA base-pairs when bound to native, mixed sequence DNA. Observed spectral properties resemble to those observed for poly[d(A-T2] and poly[d(I-C2], led us to be concluded that both dppz ligands intercalate between alternated AT and IC bases-pairs In contrast when bis-Ru-bpp complex was bound to poly[d(G-C2], the magnitude of the LDr in the dppz absorption region, as well as the emission intensity, was half in comparison to that of bound to poly[d(A-T2], and poly[d(I-C2]. Therefore the spectral properties of the bis-Ru-bpp-poly[d(G-C2] complex suggested deviation from bis-intercalation model in the poly[d(G-C2] case. These results can be explained by a model whereby one of the dppz ligands is intercalated while the other is exposed to solvent or may exist near to phosphate. Also it is indicative that the amine group of guanine in the minor groove provides the steric hindrance for incoming intercalation binder and it also takes an important role in a difference in binding of bis-Ru-bpp bound to poly[d(A-T2] and poly[d(I-C2].

  11. Drug interactions in HIV patients treated in a high complexity hospital of Antofagasta city

    Directory of Open Access Journals (Sweden)

    Patricio R. Araya

    2017-11-01

    Full Text Available Context: From the beginning of the global HIV epidemic there has been a great concern about drug interactions (DI considering that up to 27% of all patients may be affected by at least one type of DI, this risk increases by receiving concomitant treatments. This DI leads to negative consequences such as adverse drug reactions (ADR, lack of treatment adherence and new hospital admissions. Aims: To determine the prevalence of DI of antiretroviral drugs and their clinical consequences in UNACESS-VIH-SIDA patients of Hospital Regional de Antofagasta. Methods: The study included a total of 100 HIV patients. To identify DI, Micromedex database was used. All data were gathered in a pharmaceutical datasheet, the theoretical DI were identified and real DI were detected by using hematologic tests and the patient’s clinical evolution. After the detection of any real DI, a pharmaceutical intervention took place. Results: A total of 106 DI were detected; 86% of DI found were related to drug’s pharmacokinetic properties, which were mostly metabolism related interactions (96.9%; the most commonly found associations were atazanavir with ritonavir, efavirenz with atorvastatin and efavirenz with gemfibrozil. The main clinical consequences associated with DI were ADR (49%. Conclusions: High prevalence of metabolism-related interactions was found and the antiretroviral drugs mostly associated with DI were found to be atazanavir, ritonavir y efavirenz. A high prevalence of ADR was found; however, they were mild or moderate.

  12. Hydrogen bonding interactions in PN...HX complexes: DFT and ab initio studies of structure, properties and topology.

    Science.gov (United States)

    Varadwaj, Pradeep Risikrishna

    2010-05-01

    Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) 0, nabla(2)rho(c) BD*(HX) delocalization.

  13. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    Science.gov (United States)

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-02

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.

  14. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  15. Interaction of Cosup(III) complexes with radiation on 'in vitro' mammalian cells and on molecular systems

    International Nuclear Information System (INIS)

    Alvarez, M.V.; Cabildo, P.; Lopez Zumel, M.C.

    1978-01-01

    Cosup(III) complexes could be considered as potential radiosensitizers in dependence of the electronic configuration of the metal. Due to the high redox state that causes its powerful electrophilia they possibly act through electron-affinic mechanisms. In this paper the effect of [Co(NH 3 ) 5 Cl]Cl 2 on TC.SV-40 hamster cells is reported, in aerobic and hypoxic conditions, and its action, at a non-toxic concentration, in a combined treatment with X-rays. Results show the small protection induced by the product in the survival curves. As a contribution to the knowledge of its possible mechanism of action some molecular proofs and the interaction test with -SHNP cellular groups are made. A high degree of reaction is observed as is the case with good radiosensitizers but at molecular level the behaviour of the complex formed between DNA and the product reveals mutual protection due to their corresponding radiodegradation. (orig.) [de

  16. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Directory of Open Access Journals (Sweden)

    Kjell Fuxe

    2016-01-01

    Full Text Available The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  17. The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA

    Science.gov (United States)

    Hadadzadeh, Hassan; Salimi, Mona; Weil, Matthias; Jannesari, Zahra; Darabi, Farivash; Abdi, Khatereh; Khalaji, Aliakbar Dehno; Sardari, Soroush; Ahangari, Reza

    2012-08-01

    The mononuclear Cu(II) complex, trans-[Cu(Pir)2(THF)2], where Pir is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been prepared and characterized by elemental analysis, spectroscopic methods (UV-Vis, IR, and 1H NMR) and single crystal X-ray structure analysis. The molecular structure of the centrosymmetric complex is made up of two monoanionic bidentate Pir ligands coordinated to the Cu(II) atom through the pyridyl N atom and the carbonyl O atom of the amide group in equatorial positions. The elongated rhombic octahedral (ERO) coordination of the CuNONOO2″ chromophore is completed by the O atoms of two THF molecules in axial positions. A strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom confirms the ZZZ conformation of piroxicam. In addition, CD spectroscopy and gel electrophoresis assays have been used to investigate the interaction of the complex with DNA. The results revealed that the binding of the complex with DNA led to DNA backbone distortion.

  18. HM{sup +}–RG complexes (M = group 2 metal; RG = rare gas): Physical vs. chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Joe P.; Dodson, Hannah; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Breckenridge, W. H. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-04-21

    Previous work on the HM{sup +}–He complexes (M = Be–Ra) has been extended to the cases of the heavier rare gas atoms, HM{sup +}–RG (RG = Ne–Rn). Optimized geometries and harmonic vibrational frequencies have been calculated using MP2 theory and quadruple-ζ quality basis sets. Dissociation energies for the loss of the rare gas atom have been calculated at these optimized geometries using coupled cluster with single and double excitations and perturbative triples, CCSD(T)theory, extrapolating interaction energies to the basis set limit. Comparisons are made between the present data and the previously obtained helium results, as well as to those of the bare HM{sup +} molecules; furthermore, comparisons are made to the related M{sup +}–RG and M{sup 2+}–RG complexes. Partial atomic charge analyses have also been undertaken, and these used to test a simple charge-induced dipole model. Molecular orbital diagrams are presented together with contour plots of the natural orbitals from the quadratic configuration with single and double excitations (QCISD) density. The conclusion is that the majority of these complexes are physically bound, with very little sharing of electron density; however, for M = Be, and to a lesser extent M = Mg, some evidence for chemical effects is seen in HM{sup +}–RG complexes involving RG atoms with the higher atomic numbers.

  19. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    Energy Technology Data Exchange (ETDEWEB)

    Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Department of Applied Physics, Stanford University (United States); Gaidukova, I.Yu.; Ruchkin, A.V. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Anokhin, A.O. [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Irkhin, V.Yu., E-mail: valentin.irkhin@imp.uran.ru [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Ryazanov, M.V.; Kuz’mina, N.P. [Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Nikiforov, V.N. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa){sub 2}cpo]{sub 2} (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa){sub 2}(cpo)]{sub 2} is simulated numerically by an extrapolation to spin S=5/2. The Mn–Mn exchange integral is evaluated.

  20. DNA interactions of dinuclear RuII arene antitumor complexes in cell-free media

    Czech Academy of Sciences Publication Activity Database

    Nováková, Olga; Nazarov, A.A.; Hartinger, Ch.G.; Keppler, B.K.; Brabec, Viktor

    2009-01-01

    Roč. 77, č. 3 (2009), s. 364-374 ISSN 0006-2952 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : dinuclear ruthenium complex * DNA * cross-links Subject RIV: BO - Biophysics Impact factor: 4.254, year: 2009

  1. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.

    Science.gov (United States)

    Lee, Yeonju; Geckeler, Kurt E

    2012-08-01

    Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A complex interaction of imprinted and maternal-effect genes modifies sex determination in Odd Sex (Ods) mice.

    Science.gov (United States)

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E

    2004-11-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.

  3. Test of complex effective interaction by folding analysis of 32S elastic scattering on s-d shell nuclei

    International Nuclear Information System (INIS)

    Bilwes, B.; Bilwes, R.; Diaz, J.; Ferrero, J.L.; Pacheco, J.C.; Ruiz, J.A.

    1988-01-01

    Experimental data of elastic scattering between nuclei of various structures on a large energy scale has been analyzed in the framework of the folding model by use of the complex effective interaction of Faessler et al (1981). A general good reproduction of the data is obtained if renormalization coefficients for the real and the imaginary parts of the optical potential are introduced. The application of the dispersion relation of Mahaux et al (1986) allows to reproduce the observed energy dependence of the real part of the potential

  4. Isolation and characterization of interacted heteropoly complexes of vanadium with molybdenum and tungsten

    International Nuclear Information System (INIS)

    Roy, S.K.; Jha, P.P.

    1980-01-01

    The nature and conditions of formation of two new interacted heteropoly vanadomolybdate and vanadotungstate of the compositions, (NH 4 ) 10 (MoV 12 O 38 ) 20H 2 O and (NH 4 ) 2 (WV 6 O 19 )11H 2 O, respectively, have been studied with the help of pH and thermometric titrations. From X-ray crystal diffraction studies, the unit cell dimensions and the number of unit cells have been determined. On the basis of these data the molecular weights of the compounds are found to be 1828 and 998 respectively. (author)

  5. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold...... substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition...

  6. Age of Onset in Schizophrenia Spectrum Disorders: Complex Interactions between Genetic and Environmental Factors.

    Science.gov (United States)

    Mandelli, Laura; Toscano, Elena; Porcelli, Stefano; Fabbri, Chiara; Serretti, Alessandro

    2016-03-01

    In this study we evaluated the role of a candidate gene for major psychosis, Sialyltransferase (ST8SIA2), in the risk to develop a schizophrenia spectrum disorders, taking into account exposure to stressful life events (SLEs). Eight polymorphisms (SNPs) were tested in 94 Schizophreniainpatients and 176 healthy controls. Schizophrenia patients were also evaluated for SLEs in different life periods. None of the SNPs showed association with schizophrenia. Nevertheless, when crossing genetic variants with childhood SLEs, we could observe trends of interaction with age of onset. Though several limitations, our results support a protective role of ST8SIA2 in individuals exposed to moderate childhood stress.

  7. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    Directory of Open Access Journals (Sweden)

    Dowling Damian K

    2011-07-01

    Full Text Available Abstract Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass, and each trait harboured significant additive genetic variance in the standard temperature (27°C only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass. Of the female traits measured, only ovary mass for crickets

  8. Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks.

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng

    2016-05-09

    Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results.

  9. Interactions between default mode and control networks as a function of increasing cognitive reasoning complexity.

    Science.gov (United States)

    Hearne, Luke; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2015-07-01

    Successful performance of challenging cognitive tasks depends on a consistent functional segregation of activity within the default-mode network, on the one hand, and control networks encompassing frontoparietal and cingulo-opercular areas on the other. Recent work, however, has suggested that in some cognitive control contexts nodes within the default-mode and control networks may actually cooperate to achieve optimal task performance. Here, we used functional magnetic resonance imaging to examine whether the ability to relate variables while solving a cognitive reasoning problem involves transient increases in connectivity between default-mode and control regions. Participants performed a modified version of the classic Wason selection task, in which the number of variables to be related is systematically varied across trials. As expected, areas within the default-mode network showed a parametric deactivation with increases in relational complexity, compared with neural activity in null trials. Critically, some of these areas also showed enhanced connectivity with task-positive control regions. Specifically, task-based connectivity between the striatum and the angular gyri, and between the thalamus and right temporal pole, increased as a function of relational complexity. These findings challenge the notion that functional segregation between regions within default-mode and control networks invariably support cognitive task performance, and reveal previously unknown roles for the striatum and thalamus in managing network dynamics during cognitive reasoning. © 2015 Wiley Periodicals, Inc.

  10. Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mostafazadeh, Ali [Department of Mathematics, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul (Turkey); Mehri-Dehnavi, Hossein [Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159 (Iran, Islamic Republic of)], E-mail: amostafazadeh@ku.edu.tr, E-mail: mehrideh@iasbs.ac.ir

    2009-03-27

    A curious feature of complex scattering potentials v(x) is the appearance of spectral singularities. We offer a quantitative description of spectral singularities that identifies them with an obstruction to the existence of a complete biorthonormal system consisting of the eigenfunctions of the Hamiltonian operator and its adjoint. We establish the equivalence of this description with the mathematicians' definition of spectral singularities for the potential v(x) = z{sub -}{delta}(x + a) + z{sub +}{delta}(x - a), where z{sub {+-}} and a are respectively complex and real parameters and {delta}(x) is the Dirac delta function. We offer a through analysis of the spectral properties of this potential and determine the regions in the space of the coupling constants z{sub {+-}} where it admits bound states and spectral singularities. In particular, we find an explicit bound on the size of certain regions in which the Hamiltonian is quasi-Hermitian and examine the consequences of imposing PT-symmetry.

  11. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  12. The niche construction of cultural complexity: interactions between innovations, population size and the environment.

    Science.gov (United States)

    Fogarty, Laurel; Creanza, Nicole

    2017-12-05

    Niche construction is a process through which organisms alter their environments and, in doing so, influence or change the selective pressures to which they are subject. 'Cultural niche construction' refers specifically to the effect of cultural traits on the selective environments of other biological or cultural traits and may be especially important in human evolution. In addition, the relationship between population size and cultural accumulation has been the subject of extensive debate, in part because anthropological studies have demonstrated a significant association between population size and toolkit complexity in only a subset of studied cultures. Here, we review the role of cultural innovation in constructing human evolutionary niches and introduce a new model to describe the accumulation of human cultural traits that incorporates the effects of cultural niche construction. We consider the results of this model in light of available data on human toolkit sizes across populations to help elucidate the important differences between food-gathering societies and food-producing societies, in which niche construction may be a more potent force. These results support the idea that a population's relationship with its environment, represented here by cultural niche construction, should be considered alongside population size in studies of cultural complexity.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  13. Thorium–phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions

    Science.gov (United States)

    Wildman, Elizabeth P.; Balázs, Gábor; Wooles, Ashley J.; Scheer, Manfred; Liddle, Stephen T.

    2016-01-01

    Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)–phosphanide (Th–PH2), a terminal thorium(IV)–phosphinidene (Th=PH), a parent dithorium(IV)–phosphinidiide (Th–P(H)-Th) and a discrete actinide–phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character. PMID:27682617

  14. Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex

    Directory of Open Access Journals (Sweden)

    Sujii Edison Ryoiti

    2002-01-01

    Full Text Available The objective of this research was to evaluate the parasitism behavior of Telenomus podisi Ashmead, Trissolcus basalis (Wollaston e Trissolcus urichi Crawford (Hymenoptera: Scelionidae on eggs of Nezara viridula L., Euschistus heros F., Piezodorus guildinii Westwood and Acrosternum aseadum Rolston (Heteroptera: Pentatomidae, in no choice and multiple choice experiments. For all parasitoid species, the results demonstrated the existence of a main host species that maximizes the reproductive success. The competitive interactions among the parasitoid species were investigated in experiments of sequential and simultaneous release of different combinations of parasitoid pairs on the hosts N. viridula, E. heros and A. aseadum. Exploitative competition was observed for egg batches at the genus level (Telenomus vs. Trissolcus and interference competition at the species level (T. basalis vs. T. urichi. Trissolcus urichi was the most aggressive species, interfering with the parasitism of T. basalis. Generally, T. basalis showed an opportunistic behavior trying to parasitise eggs after T. urichi had abandoned the egg batch. The selection of parasitoid species for use in augmentative biological control programs should take into account the diversity of pentatomids present in soybean in addition to the interactions among the different species of parasitoids.

  15. Ising-based model of opinion formation in a complex network of interpersonal interactions

    Science.gov (United States)

    Grabowski, A.; Kosiński, R. A.

    2006-03-01

    In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.

  16. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy.

    Science.gov (United States)

    Efferth, Thomas; Koch, Egon

    2011-01-01

    Drugs derived from natural resources represent a significant segment of the pharmaceutical market as compared to randomly synthesized compounds. It is a goal of drug development programs to design selective ligands that act on single disease targets to obtain highly effective and safe drugs with low side effects. Although this strategy was successful for many new therapies, there is a marked decline in the number of new drugs introduced into clinical practice over the past decades. One reason for this failure may be due to the fact that the pathogenesis of many diseases is rather multi-factorial in nature and not due to a single cause. Phytotherapy, whose therapeutic efficacy is based on the combined action of a mixture of constituents, offers new treatment opportunities. Because of their biological defence function, plant secondary metabolites act by targeting and disrupting the cell membrane, by binding and inhibiting specific proteins or they adhere to or intercalate into RNA or DNA. Phytotherapeutics may exhibit pharmacological effects by the synergistic or antagonistic interaction of many phytochemicals. Mechanistic reasons for interactions are bioavailability, interference with cellular transport processes, activation of pro-drugs or deactivation of active compounds to inactive metabolites, action of synergistic partners at different points of the same signalling cascade (multi-target effects) or inhibition of binding to target proteins. "-Omics" technologies and systems biology may facilitate unravelling synergistic effects of herbal mixtures.

  17. Mafic inclusions in Yosemite granites and Lassen Pk lavas: records of complex crust-mantle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.B. Jr.; Flinn, J.E.

    1985-01-01

    This study compares three small-scale magmatic systems dominated by mafic/felsic interaction that appear to be analogs to the evolution of their larger host systems: mafic inclusions from modern Lassen Pk lavas along with inclusions and related synplutonic dike materials from granitoids in the Tuolumne Intrusive Series. Each system represents quickly chilled mafic melt previously contaminated by digestion of rewarmed, super-solidus felsic hosts. Contaminants occur in part as megacrysts of reworked oligoclase with lesser hb and biot. Within each group MgO-variation diagrams for Fe, Ca, Ti, Si are strikingly linear (r>.96); alkalis are decidedly less regular, and many hybrid rocks show a curious, pronounced Na enrichment. Field data, petrography, and best fit modeling suggests this may result from flow concentration of oligoclase xenocrysts within contaminated synplutonic dikes, and is preserved in the inclusions when dike cores chill as pillows in their felsic host. Dissolution of mafic inclusions erases these anomalies and creates a more regular series of two-component mafic-felsic mixtures in the large host system. The inclusions and dikes thus appear to record a variety of late-stage mafic-felsic interactive processes that earlier and on a larger scale created much of the compositional variety of their intermediate host rocks.

  18. Interaction of particles with complex electrostatic structures and 3D clusters

    International Nuclear Information System (INIS)

    Antonova, Tetyana

    2007-01-01

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called ''adaptive electrode''. This electrode is segmented into 57 small ''pixels'' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, ''secondary plasma ball'', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this ''plasma ball'' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is experimentally determined for the first

  19. Interaction of particles with complex electrostatic structures and 3D clusters

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, Tetyana

    2007-10-16

    Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called 'adaptive electrode'. This electrode is segmented into 57 small 'pixels' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, 'secondary plasma ball', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this 'plasma ball' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is

  20. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    . The occurrence of alpha 2M/pMBP-28 complexes was further indicated by crossed immunoelectrophoresis and by use of an anti-alpha 2M affinity column and chelating Sepharose loaded with Zn2+. The eluates from these affinity columns showed alpha 2M subunits (94 and 180 kDa) and pMBP subunits (28kDa) in SDS-PAGE...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  1. Configuration color vision tests: the interaction between aging and the complexity of figure-ground segregation.

    Science.gov (United States)

    Stanford, T; Pollack, R H

    1984-09-01

    A cross-sectional study comparing response time and the percentage of items correctly identified in three color vision tests (Pflügertrident, HRR-AO pseudoisochromatic plates, and AO pseudoisochromatic plates) was carried out on 72 women (12 in each decade) ranging from ages 20 to 79 years. Overall, time scores increased across the age groups. Analysis of the correctness scores indicated that the AO pseudoisochromatic plates requiring the identification of numbers was more difficult than the other tests which consisted of geometric forms or the letter E. This differential difficulty increased as a function of age. There was no indication of color defect per se which led to the conclusion that figure complexity may be the key variable determining performance. The results were similar to those obtained by Lee and Pollack (1978) in their study of the Embedded Figures Test.

  2. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Bhatia, Navnina

    2016-01-01

    Cone tomography is a well established inspection technique for industrial inspection purposes. The generation of scattering noise is inherent to the physical phenomena involved, and occurs both inside the material and the detector. This leads to the apparition of various blurring effects in 2D projections and to reconstruction errors when this effect is not properly taken into account. This works proposes an evolution of the scattering kernel superposition method, aiming at correcting these scattering effect directly in the 2D projections, before the reconstruction process. It consists in fitting analytical kernels that are used to generate realistic scattering contributions, which are in turn subtracted from the 2D projections. The proposed method has been tested using experimental data in cases involving complex materials and different levels of energy. Finally, a joint use of simulated and experimental data is described in the last chapter, in order to enhance the scattering kernels estimation. (author) [fr

  3. Concept of the Interactive Platform for Real Time Energy Consumption Analysis in the Complex Urban Environment

    Directory of Open Access Journals (Sweden)

    Ales Podgornik

    2015-03-01

    Full Text Available This paper presents a concept of interactive and comprehensive platform based on advanced metering infrastructure for exchanging information on energy consumption and consequently on energy efficiency in urban and industrial environment which can serve as powerful tool for monitoring of progress in transition toward low carbon society. Proposed concept aims at supporting energy utilities in optimizing energy performance of both supply and demand side aspect of their work and have a potential to fill the gap and help in harmonization of interests between the energy utilities, energy service providers, local energy agencies and citizens. The proposed concept should be realized as a platform with the modular architecture, allowing future expansion of user’s portfolio and inventory management (new energy efficiency measures, technologies, different industries, urban districts and regions.

  4. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    Science.gov (United States)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  5. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  6. Software complex AS (automation of spectrometry). The spectrometer interactive control program

    International Nuclear Information System (INIS)

    Astakhova, N.V.; Beskrovnyj, A.I.; Butorin, P.E.; Vasilovskij, S.E.; Salamatin, I.M.; Shvetsov, V.N.; Maznyj, N.G.

    2004-01-01

    At the development of Experiment Automation System (EAS) important and complicated challenges are integration of components in the system and reliability of work. First of all it concerns the driver layer of the programs. For a solution of these tasks the special technique of the assembly EAS from ready modules is used. For the purpose of checking the technique of EAS integration in the actual experimental conditions the program MC is developed. And apart from it, MC is a convenient tool for diagnostics of the equipment and realization of experiments in an interactive mode. During experimental maintenance on the spectrometer DN2, properties of performance of the developed technique are confirmed. The program MC without a modification can be used on various spectrometers. (author)

  7. Software Complex AS (Automation of Spectrometry). The Spectrometer Interactive Control Program

    CERN Document Server

    Astakhova, N V; Bytorin, P E; Vasilivskii, S E; Maznyi, N G; Salamatin, I M; Shvetsov, V N

    2004-01-01

    At the development of Experiment Automation System (EAS) important and complicated challenges are integration of components in the system and reliability of work. First of all it concerns driver layer of the programs. For a solution of these tasks the special technique of assembly EAS from ready modules is used. For the purpose of checking the technique of EAS integration in the actual experimental conditions the program MC is developed. And apart from it, MC is a convenient tool for diagnostics of the equipment and realization of experiments in an interactive mode. During experimental maintenance on the spectrometer DN2, properties of performance of the developed technique are confirmed. The program MC without a modification can be used on various spectrometers.

  8. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  9. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ruthenium(II) 2,2'-bibenzimidazole complex as a second-sphere receptor for anions interaction and colorimeter.

    Science.gov (United States)

    Cui, Ying; Niu, Yan-Li; Cao, Man-Li; Wang, Ke; Mo, Hao-Jun; Zhong, Yong-Rui; Ye, Bao-Hui

    2008-07-07

    A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.

  11. A flexible object-based software framework for modeling complex systems with interacting natural and societal processes.

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J. H.

    2000-06-15

    The Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations. The DIAS infrastructure makes it feasible to build and manipulate complex simulation scenarios in which many thousands of objects can interact via dozens to hundreds of concurrent dynamic processes. The flexibility and extensibility of the DIAS software infrastructure stem mainly from (1) the abstraction of object behaviors, (2) the encapsulation and formalization of model functionality, and (3) the mutability of domain object contents. DIAS simulation objects are inherently capable of highly flexible and heterogeneous spatial realizations. Geospatial graphical representation of DIAS simulation objects is addressed via the GeoViewer, an object-based GIS toolkit application developed at ANL. DIAS simulation capabilities have been extended by inclusion of societal process models generated by the Framework for Addressing Cooperative Extended Transactions (FACET), another object-based framework developed at Argonne National Laboratory. By using FACET models to implement societal behaviors of individuals and organizations within larger DIAS-based natural systems simulations, it has become possible to conveniently address a broad range of issues involving interaction and feedback among natural and societal processes. Example DIAS application areas discussed in this paper include a dynamic virtual oceanic environment, detailed simulation of clinical, physiological, and logistical aspects of health care delivery, and studies of agricultural sustainability of urban centers under environmental stress in ancient Mesopotamia.

  12. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    Science.gov (United States)

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  13. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    Directory of Open Access Journals (Sweden)

    Rajani Rai

    2015-11-01

    Full Text Available Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR and Classification and Regression Tree Analysis (CRT to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634; FAS (rs2234767; FASL (rs763110; DCC (rs2229080, rs4078288, rs7504990, rs714; PSCA (rs2294008, rs2978974; ADRA2A (rs1801253; ADRB1 (rs1800544; ADRB3 (rs4994; CYP17 (rs2486758 involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634, DCC (rs714, rs2229080, rs4078288 and ADRB3 (rs4994 polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994 to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10 or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10. Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  14. Testing complex networks of interaction at the onset of the Near Eastern Neolithic using modelling of obsidian exchange.

    Science.gov (United States)

    Ibáñez, Juan José; Ortega, David; Campos, Daniel; Khalidi, Lamya; Méndez, Vicenç

    2015-06-06

    In this paper, we explore the conditions that led to the origins and development of the Near Eastern Neolithic using mathematical modelling of obsidian exchange. The analysis presented expands on previous research, which established that the down-the-line model could not explain long-distance obsidian distribution across the Near East during this period. Drawing from outcomes of new simulations and their comparison with archaeological data, we provide results that illuminate the presence of complex networks of interaction among the earliest farming societies. We explore a network prototype of obsidian exchange with distant links which replicates the long-distance movement of ideas, goods and people during the Early Neolithic. Our results support the idea that during the first (Pre-Pottery Neolithic A) and second (Pre-Pottery Neolithic B) phases of the Early Neolithic, the complexity of obsidian exchange networks gradually increased. We propose then a refined model (the optimized distant link model) whereby long-distance exchange was largely operated by certain interconnected villages, resulting in the appearance of a relatively homogeneous Neolithic cultural sphere. We hypothesize that the appearance of complex interaction and exchange networks reduced risks of isolation caused by restricted mobility as groups settled and argue that these networks partially triggered and were crucial for the success of the Neolithic Revolution. Communities became highly dynamic through the sharing of experiences and objects, while the networks that developed acted as a repository of innovations, limiting the risk of involution. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    Science.gov (United States)

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell

  16. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available BACKGROUND: Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS. In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST in comparison to an age and gender matched control group. METHODS: 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT, the heat and cold pain thresholds (HPT; CPT and the occurrence of paradoxical heat sensation (PHS were observed. RESULTS: In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. CONCLUSIONS: We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  18. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I).

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Förderreuther, Stefanie; Kaufhold, Wibke; Valet, Michael; Azad, Shahnaz Christina; Beyer, Antje; Magerl, Walter

    2008-07-23

    Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group. 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT), the heat and cold pain thresholds (HPT; CPT) and the occurrence of paradoxical heat sensation (PHS) were observed. In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  19. Targeting Synthetic Lethal Interactions between Myc and the eIF4F Complex Impedes Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Chen-Ju Lin

    2012-04-01

    Full Text Available The energetically demanding process of translation is linked to multiple signaling events through mTOR-mediated regulation of eukaryotic initiation factor (eIF4F complex assembly. Disrupting mTOR constraints on eIF4F activity can be oncogenic and alter chemotherapy response, making eIF4F an attractive antineoplastic target. Here, we combine a newly developed inducible RNAi platform and pharmacological targeting of eIF4F activity to define a critical role for endogenous eIF4F in Myc-dependent tumor initiation. We find elevated Myc levels are associated with deregulated eIF4F activity in the prelymphomatous stage of the Eμ-Myc lymphoma model. Inhibition of eIF4F is synthetic lethal with elevated Myc in premalignant pre-B/B cells resulting in reduced numbers of cycling pre-B/B cells and delayed tumor onset. At the organismal level, eIF4F suppression affected a subset of normal regenerating cells, but this was well tolerated and rapidly and completely reversible. Therefore, eIF4F is a key Myc client that represents a tumor-specific vulnerability.

  20. Intramolecular apical metal-H-Csp3 interaction in molybdenum and silver complexes.

    Science.gov (United States)

    Ciclosi, Marco; Lloret, Julio; Estevan, Francisco; Sanaú, Mercedes; Pérez-Prieto, Julia

    2009-07-14

    The reaction of HTIMP3 (HTIMP3=tris[1-diphenylphosphino)-3-methyl-1H-indol-2-yl]methane) with AgBF4 and Mo(CO)3(NCCH3)3 leads to Ag(HTIMP3)BF4 and Mo(CO)3(HTIMP3), respectively. The metal centre is coordinated to the three phosphorus atoms of the HTIMP3 ligand, which adopts a facial coordination mode, placing a H-Csp3 hydrogen atom at the apical position close to the metal centre. The solid-state structure of Mo(CO)3(HTIMP3) has been determined by X-ray crystallography, and the data have been used as input parameters for obtaining the optimised geometry of the complex using the B3PW91 functional. The silver structure has been modelled from the X-ray parameters of the molybdenum structure. In addition, theoretical calculations on the H-Csp3 downfield shift upon metal coordination has also been performed. They reproduce the experimental H-Csp3 chemical shifts well and supports that proton deshielding is mainly due to the presence of the metal, since the hydrogen is already located in the cone created by the aromatic-phosphino arms in the free ligand.

  1. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  2. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    Science.gov (United States)

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  3. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages

    Science.gov (United States)

    Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.

    2017-12-01

    Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.

  4. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  5. Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA Biogenesis in Bombyx Germ Cells

    Directory of Open Access Journals (Sweden)

    Kazumichi M. Nishida

    2015-01-01

    Full Text Available PIWI-interacting RNA (piRNA biogenesis consists of two sequential steps: primary piRNA processing and the ping-pong cycle that depends on reciprocal Slicer-mediated RNA cleavage by PIWI proteins. However, the molecular functions of the factors involved remain elusive. Here, we show that RNAs cleaved by a Bombyx mori PIWI, Siwi, remain bound to the protein upon cleavage but are released by a DEAD box protein BmVasa. BmVasa copurifies with Siwi but not another PIWI BmAgo3. A lack of BmVasa does not affect primary piRNA processing but abolishes the ping-pong cycle. Siwi also forms a complex with BmSpn-E and BmQin. This complex is physically separable from the Siwi/BmVasa complex. BmSpn-E, unlike BmVasa, is necessary for primary piRNA production. We propose a model for piRNA biogenesis, where the BmSpn-E/BmQin dimer binds Siwi to function in primary piRNA processing, whereas BmVasa, by associating with Siwi, ensures target RNA release upon cleavage to facilitate the ping-pong cycle.

  6. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    Science.gov (United States)

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  7. The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage

    Directory of Open Access Journals (Sweden)

    Arjan Jonker

    2016-05-01

    Full Text Available Alfalfa (Medicago sativa L. is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems.

  8. The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage.

    Science.gov (United States)

    Jonker, Arjan; Yu, Peiqiang

    2016-05-23

    Alfalfa (Medicago sativa L.) is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems.

  9. Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions

    Science.gov (United States)

    Bingham, Clifton O.; Moni, Malini

    2015-01-01

    Purpose of review This review was conducted to focus on the recent clinical and translational research related to the associations between periodontal disease and rheumatoid arthritis. Recent findings There is a growing interest in the associations between oral health and autoimmune and inflammatory diseases. A number of epidemiologic studies have described associations between rheumatoid arthritis and periodontal disease. Recent clinical studies continue to support these reports, and are increasingly linked with biological assessments to better understand the nature of these relationships. A number of recent studies have evaluated the periopathogenic roles of Porphyromonas gingivalis, the oral microbiome, and mechanisms of site-specific and substrate-specific citrullination. These are helping to further elucidate the interactions between these two inflammatory disease processes. Summary Studies of clinical oral health parameters, the gingival microenvironment, autoantibodies and biomarkers, and rheumatoid arthritis disease activity measures are providing a better understanding of the potential mechanisms responsible for rheumatoid arthritis and periodontal disease associations. The cumulative results and ongoing studies have the promise to identify novel mechanisms and interventional strategies to improve patient outcomes for both conditions. PMID:23455329

  10. Using video-based observation research methods in primary care health encounters to evaluate complex interactions.

    Science.gov (United States)

    Asan, Onur; Montague, Enid

    2014-01-01

    The purpose of this paper is to describe the use of video-based observation research methods in primary care environment and highlight important methodological considerations and provide practical guidance for primary care and human factors researchers conducting video studies to understand patient-clinician interaction in primary care settings. We reviewed studies in the literature which used video methods in health care research, and we also used our own experience based on the video studies we conducted in primary care settings. This paper highlighted the benefits of using video techniques, such as multi-channel recording and video coding, and compared "unmanned" video recording with the traditional observation method in primary care research. We proposed a list that can be followed step by step to conduct an effective video study in a primary care setting for a given problem. This paper also described obstacles, researchers should anticipate when using video recording methods in future studies. With the new technological improvements, video-based observation research is becoming a promising method in primary care and HFE research. Video recording has been under-utilised as a data collection tool because of confidentiality and privacy issues. However, it has many benefits as opposed to traditional observations, and recent studies using video recording methods have introduced new research areas and approaches.

  11. Complex interactions envolving a gall midge Myrciamyia maricaensis Maia (Diptera, Cecidomyiidae, phytophagous modifiers and parasitoids

    Directory of Open Access Journals (Sweden)

    Fernando Fortunato Faria Ferraz

    2003-09-01

    Full Text Available Myrciamyia maricaensis Maia, 1995 (Diptera, Cecidomyiidae induces a gall in lateral and apical shoots in the plant Myrcia lundiana Kiaersk (Myrtaceae which is used and modified by two eulophid wasps species. In both cases the gall former species suffer high rate of attack exceeding the importance of parasitoid species as mortality factors. In this study these interactions are described and their effects as mortality of gall former. The intensity of occurrence of the two eulophid species as modifiers and of microhymenopteran parasitoids, and the relative importance of these species as mortality agents of the M. maricaensis larvae is compared. This comparison reveals that two modifiers species found in the gall tissue modification causing the death of the M. maricaensis larva and it is a more important factor of mortality than the cecidomyiid larva parasitism. The fluctuation of the number of each type of gall along the year was monitored in the research field and confirmed in numerical and in synchronic terms of occurrence of the galls; the importance of the species of the gall modifier eulophids, particularly one of these species, as factors of mortality of the M. maricaensis larvae and justified our comparing the relationship between these species and M. maricaensis as similar to the parasitoid-host relationship. The gall shape modification by one of the eulophids allows the occurrence of other inquiline insect species, what means that this gall modification becomes it more heterogeneous and allows the increase of the species richness to the system.

  12. Enactive cinema paves way towards understanding complex real-time social interaction in neuroimaging experiments

    Directory of Open Access Journals (Sweden)

    Pia eTikka

    2012-11-01

    Full Text Available We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions - including brain responses - are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analysed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  13. Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments.

    Science.gov (United States)

    Tikka, Pia; Väljamäe, Aleksander; de Borst, Aline W; Pugliese, Roberto; Ravaja, Niklas; Kaipainen, Mauri; Takala, Tapio

    2012-01-01

    We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI) setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions-including brain responses-are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analyzed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  14. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2015-05-15

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  15. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    Directory of Open Access Journals (Sweden)

    Daryl Codron

    Full Text Available Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S distribution of carnivorous dinosaurs (as found in the theropod fossil record, in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora. Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods, in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey

  16. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    Science.gov (United States)

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals

  17. Complex T Cell Interactions Contribute to Helicobacter pylori Gastritis in Mice

    Science.gov (United States)

    Gray, Brian M.; Fontaine, Clinton A.; Poe, Sara A.

    2013-01-01

    Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4+ T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway. PMID:23264048

  18. Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants.

    Science.gov (United States)

    Paul, Anna-Lisa; Liu, Li; McClung, Scott; Laughner, Beth; Chen, Sixue; Ferl, Robert J

    2009-04-01

    As a first step in the broad characterization of plant 14-3-3 multiprotein complexes in vivo, stringent and specific antibody affinity purification was used to capture 14-3-3s together with their interacting proteins from extracts of Arabidopsis cell suspension cultures. Approximately 120 proteins were identified as potential in vivo 14-3-3 interacting proteins by mass spectrometry of the recovered complexes. Comparison of the proteins in this data set with the 14-3-3 interacting proteins from a similar study in human embryonic kidney cell cultures revealed eight interacting proteins that likely represent reasonably abundant, fundamental 14-3-3 interaction complexes that are highly conserved across all eukaryotes. The Arabidopsis 14-3-3 interaction data set was also compared to a yeast in vivo 14-3-3 interaction data set. Four 14-3-3 interacting proteins are conserved in yeast, humans, and Arabidopsis. Comparisons of the data sets based on biochemical function revealed many additional similarities in the human and Arabidopsis data sets that represent conserved functional interactions, while also leaving many proteins uniquely identified in either Arabidopsis or human cells. In particular, the Arabidopsis interaction data set is enriched for proteins involved in metabolism.

  19. Drug-protein interactions assessed by fluorescence measurements in the real complexes and in model dyads

    Science.gov (United States)

    Vayá, Ignacio; Pérez-Ruiz, Raúl; Lhiaubet-Vallet, Virginie; Jiménez, M. Consuelo; Miranda, Miguel A.

    2010-02-01

    In the present work, a systematic fluorescence study on supramolecular systems using two serum albumins (HSA or BSA) as hosts and the nonsteroidal antiinflammatory drugs carprofen (CPF) or naproxen (NPX) as guests has been undertaken. In parallel, model dyads containing Tyr or Trp covalently linked to CPF or NPX have also been investigated. In HSA/(S)-CPF and BSA/(S)-CPF ( λexc = 266 nm), at 1:1 M ratio, an important degree (more than 40%) of singlet-singlet energy transfer (SSET) was observed to take place. The distance ( r) calculated for energy transfer from the SAs to (S)-CPF through a FRET mechanism was found to be ca. 21 Å. In the case of HSA/(S)-NPX and BSA/(S)-NPX, energy transfer occurred to a lower extent (ca. 7%), and r was determined as ca. 24 Å. In order to investigate the possible excited state interactions between bound ligands and the relevant amino acids present in the protein binding sites, four pairs of model dyads were designed and synthesised, namely ( S, S)-TyrCPF, ( S, R)-TyrCPF, ( S, S)-TrpCPF, ( S, R)-TrpCPF, ( S, S)-TyrNPX, ( S, R)-TyrNPX, ( S, S)-TrpNPX and ( S, R)-TrpNPX. A complete SSET was observed from Tyr or Trp to CPF, since no contribution from the amino acids was present in the emission of the dyads. Likewise, a very efficient Tyr or Trp to NPX energy transfer was observed. Remarkably, in ( S, S)-TrpNPX and ( S, R)-TrpNPX a configuration-dependent reduction in the emission intensity was observed, revealing a strong and stereoselective intramolecular quenching. This effect can be attributed to exciplex formation and is dynamic in nature, as the fluorescence lifetimes were much shorter in ( S, R)- and ( S, S)-TrpNPX (1.5 and 3.1 ns, respectively) than in (S)-NPX (11 ns).

  20. Molecular insight into γ-γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)

    Science.gov (United States)

    Suri, Charu; Hendrickson, Triscia W.; Joshi, Harish C.; Naik, Pradeep Kumar

    2014-09-01

    γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ-γ homodimer for 10 ns and calculated the ensemble average of binding free energies of -107.76 kcal/mol by the MM-PBSA method and of -87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ-γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.

  1. Analyzing Katana referral hospital as a complex adaptive system: agents, interactions and adaptation to a changing environment.

    Science.gov (United States)

    Karemere, Hermès; Ribesse, Nathalie; Marchal, Bruno; Macq, Jean

    2015-01-01

    This study deals with the adaptation of Katana referral hospital in Eastern Democratic Republic of Congo in a changing environment that is affected for more than a decade by intermittent armed conflicts. His objective is to generate theoretical proposals for addressing differently the analysis of hospitals governance in the aims to assess their performance and how to improve that performance. The methodology applied approach uses a case study using mixed methods ( qualitative and quantitative) for data collection. It uses (1) hospital data to measure the output of hospitals, (2) literature review to identify among others, events and interventions recorded in the history of hospital during the study period and (3) information from individual interviews to validate the interpretation of the results of the previous two sources of data and understand the responsiveness of management team referral hospital during times of change. The study brings four theoretical propositions: (1) Interaction between key agents is a positive force driving adaptation if the actors share a same vision, (2) The strength of the interaction between agents is largely based on the nature of institutional arrangements, which in turn are shaped by the actors themselves, (3) The owner and the management team play a decisive role in the implementation of effective institutional arrangements and establishment of positive interactions between agents, (4) The analysis of recipient population's perception of health services provided allow to better tailor and adapt the health services offer to the population's needs and expectations. Research shows that it isn't enough just to provide support (financial and technical), to manage a hospital for operate and adapt to a changing environment but must still animate, considering that it is a complex adaptive system and that this animation is nothing other than the induction of a positive interaction between agents.

  2. The Ambiguity of Militarization : The complex interaction between the Congolese armed forces and civilians in the Kivu provinces, eastern DR Congo

    NARCIS (Netherlands)

    Verweijen, J.E.C.

    2015-01-01

    Drawing on extensive ethnographic field research, this dissertation explores the interaction between the Congolese armed forces (FARDC) and civilians in the eastern DR Congo’s conflict-ridden Kivu provinces. It uncovers the multidimensionality, reciprocity and complexities of this interaction, which

  3. Chick Hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex

    Directory of Open Access Journals (Sweden)

    Andrade Raquel P

    2007-07-01

    Full Text Available Abstract Background The vertebrate adult axial skeleton, trunk and limb skeletal muscles and dermis of the back all arise from early embryonic structures called somites. Somites are symmetrically positioned flanking the embryo axial structures (neural tube and notochord and are periodically formed in a anterior-posterior direction from the presomitic mesoderm. The time required to form a somite pair is constant and species-specific. This extraordinary periodicity is proposed to depend on an underlying somitogenesis molecular clock, firstly evidenced by the cyclic expression of the chick hairy1 gene in the unsegmented presomitic mesoderm with a 90 min periodicity, corresponding to the time required to form a somite pair in the chick embryo. The number of hairy1 oscillations at any given moment is proposed to provide the cell with both temporal and positional information along the embryo's anterior-posterior axis. Nevertheless, how this is accomplished and what biological processes are involved is still unknown. Aiming at understanding the molecular events triggered by the somitogenesis clock Hairy1 protein, we have employed the yeast two-hybrid system to identify Hairy1 interaction partners. Results Sap18, an adaptor molecule of the Sin3/HDAC transcriptional repressor complex, was found to interact with the C-terminal portion of the Hairy1 protein in a yeast two-hybrid assay and the Hairy1/Sap18 interaction was independently confirmed by co-immunoprecipitation experiments. We have characterized the expression patterns of both sap18 and sin3a genes during chick embryo development, using in situ hybridization experiments. We found that both sap18 and sin3a expression patterns co-localize in vivo with hairy1 expression domains in chick rostral presomitic mesoderm and caudal region of somites. Conclusion Hairy1 belongs to the hairy-enhancer-of-split family of transcriptional repressor proteins. Our results indicate that during chick somitogenesis

  4. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex.

    Science.gov (United States)

    Jefferson, Matthew; Donaszi-Ivanov, Andras; Pollen, Sean; Dalmay, Tamas; Saalbach, Gerhard; Powell, Penny P

    2014-09-01

    The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to

  5. Taking peer victimization research to the next level: complex interactions among genes, teacher attitudes/behaviors, peer ecologies, & classroom characteristics.

    Science.gov (United States)

    Espelage, Dorothy L

    2015-01-01

    This commentary reviews research findings of the five papers in the special entitled "School-related Factors in the Development of Bullying Perpetration and Victimization", which represent critical areas that are often overlooked in the literature. First, one paper points to the complex interaction between a genetic disposition for aggression and classroom norms toward aggression. Second, an intervention paper unpacks the underlying mechanisms of an efficacious school-wide bully prevention program by opening the "black box" and testing for mediators. Third, the remaining studies employ a wide range of rigorous designs to identify how teachers' attitudes, behaviors, and classroom practices play a critical role in the prevalence of victimization and bullying in the classroom. Further, teachers' attitudes and behaviors are shown to be predictive of youth's willingness to intervene to assist a peer who is being victimized. Results are situated in what is known about bullying prevention, and how the findings from these studies could maximize the sensitivity of future prevention efforts.

  6. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Makanjee, Chandra R.; Bergh, Anne-Marie; Hoffmann, Willem A.

    2014-01-01

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  7. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart.

    Science.gov (United States)

    Cervellin, Gianfranco; Lippi, Giuseppe

    2011-08-01

    Although the potential influence of music in eliciting organic reactions has been appreciated since the ancient Assyrian and Greek cultures, its relationship with body responses has been believed for long to belong to the field of magic. Growing experimental evidence now attests that some kind of music might indeed modulate several cardiac and neurological functions, as well as trigger biochemical measurable stress-reducing effects in certain individuals, mostly depending on their subjective musical education. On this basis, music has been increasingly used as a therapeutic tool in the treatment of different diseases in healthy and ill subjects over recent years (e.g., the so called "Mozart effect"), although the underlying scientific background is still poorly understood. The aim of this article is to review the current scientific evidences about the complex and multifaceted interactions between music and human biology. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  8. CLOUD-BASED INTERACTIVE EDUCATIONAL AND METHODICAL COMPLEX FOR THE COURSE “INFORMATICS” IN INDEPENDENT WORK OF STUDENTS

    Directory of Open Access Journals (Sweden)

    И Н Куринин

    2016-12-01

    Full Text Available This article concentrates on the basic materials of the educational and methodical complex of a modern format (cloud-based and interactive, used in the educational process of the course “Informatics”, which significantly expands the share of independent work of students according to the increased number of students’ practical work (laboratory work, educational projects, essays. This workshop focuses on mastering the methods of work with personal mobile and office computers, Office programs, Internet technologies by students and making students receive the competences to solve topical applied problems. Efficiency of students’ independent work is additionally ensured by educational and methodical tutorials (lecture notes and compilations of test tasks, excercises, models and examples of performing all tasks, developed by the authors of the article.

  9. The Natural Aging Effect on Hardenability in Al-Mg-Si: A Complex Interaction between Composition and Heat Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Alex Poznak

    2018-05-01

    Full Text Available The technological relevance of Al-Mg-Si alloys has been rapidly growing over the last decade. Of particular interest to current and future applications is the problematic negative effect of prior natural aging on subsequent artificial age hardening. The influence of natural aging is dependent on both processing and compositional variables and has origins that are far from well-understood. This work examines the hardenability of 6000 series alloys under a wide range of conditions, paying particular attention to the natural aging effect. Experimental variables include alloy composition (Mg + Si, Mg/Si, cooling rate after solutionization, and duration of prior natural aging. Hardenability was evaluated with full hardness and conductivity aging curves for each condition, as well as select Transmission Electron Microscopy (TEM. Results are discussed based on the actions of naturally aged solute clusters during artificial aging. In particular, a complex interaction between vacancy concentration, cluster stability, and precipitation driving force is suggested.

  10. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Anna Albisetti

    2017-11-01

    Full Text Available Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP but remains attached to the cell body via the flagellum attachment zone (FAZ. The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC circumvents the flagellum. Overlapping the FPC is the hook complex (HC (a sub-structure of the previously named bilobe that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

  11. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  12. The Interaction between Checkpoint Kinase 1 (Chk1) and the Minichromosome Maintenance (MCM) Complex Is Required for DNA Damage-induced Chk1 Phosphorylation*

    Science.gov (United States)

    Han, Xiangzi; Aslanian, Aaron; Fu, Kang; Tsuji, Toshiya; Zhang, Youwei

    2014-01-01

    Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. PMID:25049228

  13. Interaction of 2-aminopyrimidine with dichloro-[1-alkyl-2-(naphthylazo imidazole]palladium(II complexes : Kinetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Saha Sushanta

    2007-10-01

    Full Text Available Abstract Background The anticancer properties of cisplatin and palladium(II complexes stem from the ability of the cis-MCl2 fragment to bind to DNA bases. However, cisplatin also interacts with non-cancer cells, mainly through bonding molecules containing -SH groups, resulting in nephrotoxicity. This has aroused interest in the design of palladium(II complexes of improved activity and lower toxicity. The reaction of DNA bases with palladium(II complexes with chelating N,N/donors of the cis-MCl2 configuration constitutes a model system that may help explore the mechanism of cisplatin's anticancer activity. Heterocyclic compounds are found widely in nature and are essential to many biochemical processes. Amongst these naturally occurring compounds, the most thoroughly studied is that of pyrimidine. This was one of the factors that encouraged this study into the kinetics and mechanism of the interaction of 2-aminopyrimidine (2-NH2-Pym with dichloro-{1-alkyl-2-(α-naphthylazoimidazole}palladium(II [Pd(α-NaiRCl2, 1] and dichloro-{1-alkyl-2-(β-naphthylazoimidazole}palladium(II [Pd(β-NaiRCl2, 2] complexes where the alkyl R = Me (a, Et (b, or Bz (c. Results 2-NH2-Pym reacts with 1a, 1b, and 1c to yield [{1-alkyl-2-(α-naphthylazoimidazole}bis(2-aminopyrimidine]palladium(II (3a, 3b, 3c dichloride and with 2a, 2b, and 2c to yield [{1-alkyl-2-(β-naphthylazoimidazole}bis(2-aminopyrimidine]palladium(II (4a, 4b, 4c dichloride in an acetonitrile (MeCN medium. The products were characterized using spectroscopic techniques (FT-IR, UV-Vis, NMR. The ligand substitution reactions follow second order kinetics – first order dependence on the concentration of the Pd(II complex and 2-NH2-Pym. Addition of LiCl to the reaction does not influence its rate. The thermodynamic parameters (standard enthalpy of activation, Δ‡H° and standard entropy of activation, Δ‡S° were determined from variable temperature kinetic studies. The magnitude of the second order

  14. Processing complex pseudo-words in mild cognitive impairment: The interaction of preserved morphological rule knowledge with compromised cognitive ability.

    Science.gov (United States)

    Manouilidou, Christina; Dolenc, Barbara; Marvin, Tatjana; Pirtošek, Zvezdan

    2016-01-01

    Mild cognitive impairment (MCI) affects the cognitive performance of elderly adults. However, the level of severity is not high enough to be diagnosed with dementia. Previous research reports subtle language impairments in individuals with MCI specifically in domains related to lexical meaning. The present study used both off-line (grammaticality judgment) and on-line (lexical decision) tasks to examine aspects of lexical processing and how they are affected by MCI. 21 healthy older adults and 23 individuals with MCI saw complex pseudo-words that violated various principles of word formation in Slovenian and decided if each letter string was an actual word of their language. The pseudo-words ranged in their degree of violability. A task effect was found, with MCI performance to be similar to that of healthy controls in the off-line task but different in the on-line task. Overall, the MCI group responded slower than the elderly controls. No significant differences were observed in the off-line task, while the on-line task revealed a main effect of Violation type, a main effect of Group and a significant Violation × Group interaction reflecting a difficulty for the MCI group to process pseudo-words in real time. That is, while individuals with MCI seem to preserve morphological rule knowledge, they experience additional difficulties while processing complex pseudo-words. This was attributed to an executive dysfunction associated with MCI that delays the recognition of ungrammatical formations.

  15. Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium(III) Complex.

    Science.gov (United States)

    Inaba, Iku; Kuramitz, Hideki; Sugawara, Kazuharu

    2016-01-01

    A reaction to casein, along with β-lactoglobulin, is a main cause of milk allergies, and also is a useful indicator of protein in allergic analyses. In the present study, a simple casein sensor was developed based on the interaction between a phosphate group of casein and electroactive [Ru(NH3)6](3+). We evaluated the voltammetric behavior of a casein-[Ru(NH3)6](3+) complex using a glassy carbon electrode. When the ruthenium(III) complex was combined with the phosphate groups of casein, the structure of the casein was changed. Since the hydrophobicity of casein was increased due to the binding, the casein was adsorbed onto the electrode. Furthermore, we modified an electrode with a ruthenium(III) ions/collagen film. When the sensor was applied to the detection of the casein contained in milk, the values coincided with those indicated by the manufacturer. Accordingly, this electrode could be a powerful sensor for the determination of casein in several foods.

  16. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    Energy Technology Data Exchange (ETDEWEB)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

  17. Spectroscopic study of the interaction between adenosine disodium triphosphate and gatifloxacin-Al3+ complex and its analytical application.

    Science.gov (United States)

    Kamruzzaman, Mohammad; Faruqui, A Nayeem; Hossain, Mohammed Ifteker; Lee, Sang Hak

    2015-11-01

    A new and sensitive spectrofluorimetric method has been proposed to determine trace amount of adenosine disodium triphosphate (ATP). The method is based on the fluorimetric interaction between gatifloxacin (GFLX)-aluminium (III) (Al(3+) ) complex and ATP and studied using UV-visible and fluorescence spectroscopy. Weak luminescence spectra of Al(3+) were enhanced after complexation with GFLX at 423 nm upon excitation at 272 nm due to energy transfer from the ligand to the Al(3+) ion. It was observed that the FL emission spectrum of GFLX-Al(3+) was enhanced significantly by the addition of ATP. Under the optimal conditions, the enhancement of FL intensity at 423 nm was responded linearly with the concentration of ATP in the range 1.3 × 10(-10) - 1.0 × 10(-8) mol L(-1) with correlation coefficient (r) of 0.9981. The limit of detection (LOD) was found to be 1.1 × 10(-11) mol L(-1) for ATP with the standard deviation (RSD) of 1.21% for five repeated measurement of 2.3 × 10(-8) mol L(-1) ATP. The presented method is simple, sensitive, free from coexisting interferents and can be applied successfully to determine ATP in the real samples. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    Science.gov (United States)

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pHPECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  19. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  20. Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells.

    Science.gov (United States)

    Milochau, Alexandra; Lagrée, Valérie; Benassy, Marie-Noëlle; Chaignepain, Stéphane; Papin, Julien; Garcia-Arcos, Itsaso; Lajoix, Anne; Monterrat, Carole; Coudert, Laetitia; Schmitter, Jean-Marie; Ochoa, Begoña; Lang, Jochen

    2014-06-27

    Synaptotagmins are two C2 domain-containing transmembrane proteins. The function of calcium-sensitive members in the regulation of post-Golgi traffic has been well established whereas little is known about the calcium-insensitive isoforms constituting half of the protein family. Novel binding partners of synaptotagmin 11 were identified in β-cells. A number of them had been assigned previously to ER/Golgi derived-vesicles or linked to RNA synthesis, translation and processing. Whereas the C2A domain interacted with the Q-SNARE Vti1a, the C2B domain of syt11 interacted with the SND1, Ago2 and FMRP, components of the RNA-induced silencing complex (RISC). Binding to SND was direct via its N-terminal tandem repeats. Our data indicate that syt11 may provide a link between gene regulation by microRNAs and membrane traffic. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    Science.gov (United States)

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.

  2. Identification of five novel 14-3-3 isoforms interacting with the GPIb-IX complex in platelets.

    Science.gov (United States)

    Mangin, P H; Receveur, N; Wurtz, V; David, T; Gachet, C; Lanza, F

    2009-09-01

    Binding of von Willebrand factor to the platelet glycoprotein (GP)Ib-IX complex initiates a signaling cascade leading to integrin alpha(IIb)beta(3) activation, a key process in hemostasis and thrombosis. Interaction of 14-3-3zeta with the intracytoplasmic domain of GPIb appears to be a major effector of this activation pathway. The aim of our study was to determine whether other members of the 14-3-3 family bind to GPIb-IX. In this study, western blot analyses showed that platelets also contain the 14-3-3beta, 14-3-3gamma, 14-3-3epsilon, 14-3-3eta and 14-3-3theta isoforms, but lack 14-3-3sigma. Coimmunoprecipitation studies in platelets and CHO transfectants demonstrated that all six 14-3-3 isoforms expressed in platelets, including, as previously reported, 14-3-3zeta, bind to GPIb-IX. In addition, their interaction was found to critically require the same GPIbalpha domains (580-590 and 605-610) already identified as essential for 14-3-3zeta binding, in agreement with the conservation of the sequence of the I-helix among these different isoforms. Pull-down experiments indicated that all six 14-3-3 isoforms present in platelets bind to GPIbbeta. In contrast, deletion or mutation of the GPIbbeta intracytoplasmic tail did not affect the interaction of GPIb-IX with the 14-3-3 isoforms, questioning the importance of this domain. Our study suggests that, to inhibit GPIb-induced integrin alpha(IIb)beta(3) activation, a more appropriate strategy than inhibiting individual 14-3-3 isoforms would be to target the 14-3-3-binding motif on GPIb or, alternatively, the conserved 14-3-3 I-helix.

  3. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  4. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...

  5. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    Science.gov (United States)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and

  6. Dynamics of interaction between complement-fixing antibody/dsDNA immune complexes and erythrocytes. In vitro studies and potential general applications to clinical immune complex testing

    International Nuclear Information System (INIS)

    Taylor, R.P.; Horgan, C.; Hooper, M.; Burge, J.

    1985-01-01

    Soluble antibody/ 3 H-double-stranded PM2 DNA (dsDNA) immune complexes were briefly opsonized with complement and then allowed to bind to human erythrocytes (via complement receptors). The cells were washed and subsequently a volume of autologous blood in a variety of media was added, and the release of the bound immune complexes from the erythrocytes was studied as a function of temperature and time. After 1-2 h, the majority of the bound immune complexes were not released into the serum during blood clotting at either 37 degrees C or room temperature, but there was a considerably greater release of the immune complexes into the plasma of blood that was anticoagulated with EDTA. Similar results were obtained using various conditions of opsonization and also using complexes that contained lower molecular weight dsDNA. Thus, the kinetics of release of these antibody/dsDNA immune complexes differed substantially from the kinetics of release of antibody/bovine serum albumin complexes that was reported by others. Studies using the solution phase C1q immune complex binding assay confirmed that in approximately half of the SLE samples that were positive for immune complexes, there was a significantly higher level of detectable immune complexes in plasma vs. serum. Freshly drawn erythrocytes from some SLE patients exhibiting this plasma/serum discrepancy had IgG antigen on their surface that was released by incubation in EDTA plasma. Thus, the higher levels of immune complexes observed in EDTA plasma vs. serum using the C1q assay may often reflect the existence of immune complexes circulating in vivo bound to erythrocytes

  7. Synthesis, characterization and interaction of N,N'-dipyridoxyl (1,4-butanediamine) Co(III) salen complex with DNA and HSA

    Science.gov (United States)

    Janati Fard, F.; Mashhadi Khoshkhoo, Z.; Mirtabatabaei, H.; Housaindokht, M. R.; Jalal, R.; Eshtiagh Hosseini, H.; Bozorgmehr, M. R.; Esmaeili, A. A.; Javan Khoshkholgh, M.

    2012-11-01

    Co(III) salen complex with N,N'-dipyridoxyl (1,4-butanediamine) Schiff-base ligand as tetradentate ligand was synthesized and characterized by the elemental and spectroscopic analysis. The interaction of this complex with calf thymus DNA (ct DNA) has been investigated in vitro using UV absorption, fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The binding constant has been estimated to be 1 × 104 M-1 using UV absorption. The addition of ct DNA to Co(III) salen solution resulted in a fluorescence quenching. The binding constant and site size binding have been calculated in connection with other experimental observations show that the interactive model between Co(III) salen and ct DNA is an intercalative one. The interaction between plasmid DNA (pTZ57R DNA) and this complex is confirmed by gel electrophoresis studies. Furthermore, the interaction between HSA and Co(III) salen complex was investigated by UV absorption, fluorescence spectroscopy and molecular modeling. The binding constant for the interaction of this complex with HSA were found to be 3.854 × 104 M-1 using UV absorption, which was in good agreement with the binding constant obtained from fluorescence method (3.866 × 104 M-1). The binding distance between HSA and this complex was estimated to be 2.48 nm according to Förster theory of non-radioactive energy transfer. Molecular modeling studies suggested that hydrophobic interaction was the predominant intermolecular forces stabilizing Co(III) complex-HSA system.

  8. Roles of Bridging Ligand Topology and Conformation in Controlling Exchange Interactions