WorldWideScience

Sample records for complex membrane structure

  1. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    Science.gov (United States)

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides

    International Nuclear Information System (INIS)

    Hunter, C.N.; Pennoyer, J.D.; Niederman, R.A.

    1982-01-01

    The B875 and B800-850 light-harvesting pigment-protein complexes of Rhodopseudomonas sphaeroides are characterized further by lithium dodecyl sulfate/polyacrylamide gel electrophoresis at 4 degrees C. Bacteriochlorophyll a was shown in reconstruction studies to remain complexed with its respective binding proteins during this procedure. From distributions in these gels, a quantitative description for the arrangement of the complexes is proposed. Assembly of the complexes was examined in delta-aminolevulinate-requiring mutant H-5 after a shift from high- to low-light intensity. After 10 h of delta-[ 3 H]aminolevulinate labeling, the specific radioactivity of bacteriochlorophyll in a fraction containing putative membrane invaginations reached the maximal level, while that of the mature photosynthetic membrane was at only one-third this level. This suggests that membrane invaginations are sites of preferential bacteriochlorophyll synthesis in which completed pigment-proteins exist transiently. Analysis of the 3 H distribution after electrophoretic separation further suggests that photosynthetic membranes grow mainly by addition of B800-850 to preformed membrane consisting largely of B875 and photochemical reaction centers. These results corroborate the above model for the structural organization of the light-harvesting system and indicate that the structurally and functionally discrete B800-850 pool is not completely assembled until all B875 sites for B800-850 interactions are occupied

  3. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    Directory of Open Access Journals (Sweden)

    Tzviya Zeev-Ben-Mordehai

    2015-12-01

    Full Text Available Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC, which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.

  4. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  5. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes.

    Science.gov (United States)

    Caracciolo, Giulio; Amenitsch, Heinz

    2012-10-01

    Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

  6. Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions.

    Science.gov (United States)

    Suárez, Diego F; Consuegra, Jessika; Trajano, Vivianne C; Gontijo, Sávio M L; Guimarães, Pedro P G; Cortés, Maria E; Denadai, Ângelo L; Sinisterra, Rubén D

    2014-06-01

    Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/βCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and βCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/βCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of βCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/βCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/βCD compared with free DOX. These promising findings demonstrate the potential for DOX/βCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations. Copyright © 2014. Published by Elsevier B.V.

  7. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes.

    Science.gov (United States)

    Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej

    2012-05-25

    The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested

  8. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.

    2017-01-01

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  9. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  10. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    Science.gov (United States)

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  11. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed. Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT-3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment

  12. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion.

    Science.gov (United States)

    Zick, Michael; Stroupe, Christopher; Orr, Amy; Douville, Deborah; Wickner, William T

    2014-01-01

    Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.

  13. A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins.

    Directory of Open Access Journals (Sweden)

    Yun-Shiang Chang

    Full Text Available BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus, is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.

  14. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  15. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    NARCIS (Netherlands)

    Zeev-Ben-Mordehai, Tzviya; Weberruss, Marion; Lorenz, Michael; Cheleski, Juliana; Hellberg, Teresa; Whittle, Cathy; El Omari, Kamel; Vasishtan, Daven; Dent, Kyle C.; Harlos, Karl; Franzke, Kati; Hagen, Christoph; Klupp, Barbara G.; Antonin, Wolfram; Mettenleiter, Thomas C.; Gruenewald, Kay

    2015-01-01

    Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC), which, in turn, mediates

  16. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  17. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  18. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture.

    Science.gov (United States)

    Zerbes, Ralf M; van der Klei, Ida J; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-11-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.

  19. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  20. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  1. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  2. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  3. Membrane Tethering Complexes in the Endosomal System

    OpenAIRE

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is...

  4. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    Science.gov (United States)

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  5. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  6. Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5b6 and sC5b9

    Directory of Open Access Journals (Sweden)

    Michael A. Hadders

    2012-03-01

    Full Text Available Activation of the complement system results in formation of membrane attack complexes (MACs, pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

  7. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  8. Molecular Structure of Membrane Tethers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains

  9. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mitofilin complexes : conserved organizers of mitochondrial membrane architecture

    NARCIS (Netherlands)

    Zerbes, Ralf M.; van der Klei, Ida J.; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-01-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner

  11. Cardiolipin effects on membrane structure and dynamics.

    Science.gov (United States)

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.

  12. Complex photonic structures

    International Nuclear Information System (INIS)

    Wiersma, D.S.

    2013-01-01

    We discuss in detail the optical properties of complex photonic structures, in particular those with a dominating disorder component. We will focus on their general transport properties, as well as on their use as light sources (random lasers). The basis for the theory of multiple light scattering in random systems will be explained as a tutorial introduction to the topic, including the explicit calculation of the effect of coherent backscattering. We will discuss various structures that go beyond regular disordered ones, in particular Levy glasses, liquid crystals, and quasicrystals, and show examples of their optical properties both from a conceptual and practical point of view.

  13. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  14. Study on low level radioactive wastewater treatment by inorganic membrane permeation combined with complexation

    International Nuclear Information System (INIS)

    Li Junfeng; Wang Jianlong; Bai Qinzhong

    2007-01-01

    Inorganic membranes exhibit greater mechanical durability in some operations than polymeric membranes. They do not suffer from the performance degradation that was resulted from compaction of the membrane structure under pressure or ageing. Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. Sodium poly-acrylic acid was selected as the complexing agent, the efficiency of inorganic membrane with cut-off 1kD, 3kD, 8kD assisted by sodium poly-acrylic acid of different molecular weight were compared. The removal efficiencies of nuclides such as strontium, cesium and cobalt by were compared. The flux and retention factors of different membrane system were compared. The impacts of complexation agent concentration on permeate flux retention factors were studied. The long term behaviours of the membrane system were also studied. Diatomite filter was selected as the pretreatment method, and the efficiency of diatomite filter for pretreatment was investigated also. (author)

  15. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  16. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  17. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  18. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism.

    Science.gov (United States)

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan

    2014-06-01

    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  19. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  20. Overcoming barriers to membrane protein structure determination.

    Science.gov (United States)

    Bill, Roslyn M; Henderson, Peter J F; Iwata, So; Kunji, Edmund R S; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G; Vogel, Horst

    2011-04-01

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

  1. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong

    2017-08-03

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced on a large-scale approach. The unique HNDCM holds great promise as components in separation and advanced carbon devices because they could offer unconventional fluidic transport phenomena on the nanoscale. Overall, the invention set forth herein covers a hierarchically structured, nitrogen-doped carbon membranes and methods of making and using such a membranes.

  2. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  3. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  4. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  5. Assembly factors for the membrane arm of human complex I.

    Science.gov (United States)

    Andrews, Byron; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2013-11-19

    Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron-sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I.

  6. Structure Biology of Membrane Bound Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dax [Johns Hopkins Univ., Baltimore, MD (United States). School of Medicine. Dept. of Physiology

    2016-11-30

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  7. Plant membranes a biophysical approach to structure, development and senescence

    CERN Document Server

    Leshem, Ya’Acov Y

    1992-01-01

    The plasma membrane is at once the window through which the cell senses the environment and the portal through which the environment influences the structure and activities of the cell. Its importance in cellular physiology can thus hardly be overestimated, since constant flow of materials between cell and environment is essential to the well-being of any biological system. The nature of the materials mov­ ing into the cell is also critical, since some substances are required for maintenance and growth, while others, because of their toxicity, must either be rigorously excluded or permitted to enter only after chemical alteration. Such alteration frequently permits the compounds to be sequestered in special cellular compartments having different types of membranes. This type of homogeneity, plus the fact that the wear and tear of transmembrane molecular traffic compels the system to be constantly monitored and repaired, means that the membrane system of any organism must be both structurally complex and dy­...

  8. Overcoming barriers to membrane protein structure determination

    NARCIS (Netherlands)

    Bill, Roslyn M.; Henderson, Peter J. F.; Iwata, So; Kunji, Edmund R. S.; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G.; Vogel, Horst

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new

  9. Still more complexity in mammalian basement membranes

    DEFF Research Database (Denmark)

    Erickson, A C; Couchman, J R

    2000-01-01

    laminins, entactin-1/nidogen-1, Type IV collagen, and proteoglycans. However, within the past few years this complexity has increased as new components are described. The entactin/nidogen (E/N) family has expanded with the recent description of a new isoform, E/N-2/osteonidogen. Agrin and Type XVIII...... to be regulated through multiple, mostly domain-specific mechanisms. Understanding the functions of individual BM components and their assembly into macromolecular complexes is a considerable challenge that may increase as further BM and cell surface ligands are discovered for these proteins....

  10. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  11. Membrane targeting of the yeast exocyst complex

    Czech Academy of Sciences Publication Activity Database

    Pleskot, Roman; Cwiklik, Lukasz; Jungwirth, Pavel; Žárský, Viktor; Potocký, Martin

    2015-01-01

    Roč. 1848, č. 7 (2015), s. 1481-1489 ISSN 0005-2736 R&D Projects: GA ČR GA13-19073S; GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) LO1417 Institutional support: RVO:61389030 ; RVO:61388955 ; RVO:61388963 Keywords : The exocyst complex * Exo70p * Sec3p Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.687, year: 2015

  12. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  13. Environmental behaviour of tensile membrane structures

    OpenAIRE

    Elnokaly, Amira; Chilton, John; Wilson, Robin

    2002-01-01

    This paper considers the environmental properties of spaces enclosed by tensile membrane structures (TMS). Limitations in the understanding of the environmental and thermal performance of TMS have to some extent hindered their acceptance by building clients and the building industry. A review of the early attempts to model the thermal environment of spaces enclosed by TMS is given and their environmental and thermal properties are discussed. The lack of appropriate tools for the investigation...

  14. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  15. Complexity of Curved Glass Structures

    Science.gov (United States)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  16. Microwave-Driven Multifunctional Capability of Membrane Structures

    Science.gov (United States)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  17. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  18. The restoration of DNA-membrane complex of Bacillus subtilis after γ-irradiation

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    It is shown that structural damages arising in DNA-membrane complexes (DMA) of Bacillus subtillis after γ-irradiation are reversible in the postradiation period. The ability of bacteria to restore radiation damage of DMA correlates with their radiosensitivity. DMA restoration process is supposed to depend on the products of PoIA and rec A genes

  19. Recognition of GPCRs by peptide ligands and membrane compartments theory: structural studies of endogenous peptide hormones in membrane environment.

    Science.gov (United States)

    Sankararamakrishnan, Ramasubbu

    2006-04-01

    One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor-ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to "Membrane Compartments Theory", the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.

  20. Structure and organization of nanosized-inclusion-containing bilayer membranes

    Science.gov (United States)

    Ren, Chun-Lai; Ma, Yu-Qiang

    2009-07-01

    Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.

  1. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-López, Belén [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Vieira, Rodrigo Silveira [Chemical Engineering Department, Universidade Federal do Ceará, UFC, 60455-760 Fortaleza, CE (Brazil); Rabelo, Rodrigo Balloni; Beppu, Marisa Masumi [School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13081-970 Campinas, SP (Brazil); Casado, Juan [Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Rodríguez-Castellón, Enrique, E-mail: castellon@uma.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2017-01-01

    Chitosan is a biopolymer with potential applications in various fields. Recently, it has been used for heavy metals removal like copper, due to the presence of amino and hydroxyl groups in its structure. Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents, such as iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. These membranes were used for copper adsorption and the formed complexes were characterized. Thermal and crystalline properties of chitosan membranes were studied by TG-DCS and X-ray diffraction. Raman, XPS and FT-IR data confirmed that copper is linked to the modified chitosan membranes by the amino groups. The oxidation state of copper-chitosan membranes were also studied by angle resolved XPS, and by UV–Vis diffuse reflectance spectroscopy. - Highlights: • Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents. • The chelating agent were iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. • The functionalized membranes were used for copper adsorption and studied by ARXPS, Raman, TG-DCS, FT-IR and XRD. • Spectroscopic data confirmed that copper is linked to the modified chitosan membranes by the amino groups.

  2. Structure modification of particle track membranes

    International Nuclear Information System (INIS)

    Lueck, H.B.; Gemende, B.; Heinrich, B.

    1991-01-01

    Three different structure modifications were studied in order to improve the flux and dirt loading capacity of particle track membranes without affecting their retention characteristic. Divergent irradiation is a very effective tool for decreasing the number of multiple pores and increasing the porosity up to 20 per cent. The technique leads to a remarkable but not efficient enhancement of the surface porosity. Improved surface porosity produced by a double irradiation technique turns out to be very effective with respect to the filtration performance. (author)

  3. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    Science.gov (United States)

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  5. Polyamide membranes with nanoscale Turing structures for water purification

    Science.gov (United States)

    Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie

    2018-05-01

    The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

  6. Membrane structure in disease and drug therapy

    National Research Council Canada - National Science Library

    Zimmer, G

    2000-01-01

    ...) interaction with membranous transport systems (opening or closing of ion or substrate channels); (2) reaction with receptors; (3) activation or inhibition of membrane enzymes; or (4) cytosolic membranous signaling and exchange. These consequences within the membrane influence intracellular wellbeing: life is possible only if a bala...

  7. Complex DNA structures and structures of DNA complexes

    International Nuclear Information System (INIS)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-01-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe 1 H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful

  8. Complex DNA structures and structures of DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  9. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  10. Subunit Organisation of In Vitro Reconstituted HOPS and CORVET Multisubunit Membrane Tethering Complexes

    Science.gov (United States)

    Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill

    2013-01-01

    Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556

  11. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  12. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  13. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  14. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  15. Changes in plasma membrane structure upon irradiation on thymocytes

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1993-01-01

    Thymocytes were irradiated with doses of 4 to 10 4 Gy. The binding of 1-anilinonaphtalene-8-sulphonate and Ca 2+ to plasma membranes; viscosity and lipid peroxidation; Stern-Folmer constant; and the number of Sh-groups of membrane proteins were determined. The structural changes in plasma membranes after irradiation of thymocytes were found to be cooperative

  16. Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes

    Czech Academy of Sciences Publication Activity Database

    Schwarz, H. H.; Lukáš, Jaromír; Richau, K.

    2003-01-01

    Roč. 218, 1-2 (2003), s. 1-9 ISSN 0376-7388 R&D Projects: GA AV ČR KSK4050111 Keywords : polyelectrolyte complex membranes * pervaporation * dehydration of organics Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.081, year: 2003

  17. Membrane transporters and drought resistance – a complex issue

    Directory of Open Access Journals (Sweden)

    Karolina Maria Jarzyniak

    2014-12-01

    Full Text Available Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.

  18. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  19. Structural studies of Ca2+-ATPase ligand and regulatory complexes

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring

    2015-01-01

    , the surrounding membrane itself has a huge influence on SERCA structure and function. Changes in the membrane thickness can alter the activity of the ATPase significantly, and even cause changes in the stoichiometry of ion transport. Structural studies on SERCA in the presence of four different phosphatidyl...... choline lipids with different aliphatic chain length and saturation show three specific lipid binding sites. The four different lipids analysed bind to the same binding sites with varying degrees of disorder. The study contributes to understanding the complex interplay between the surrounding membrane...... to explore the possibilities for an efficient screening of ligand-bound SERCA structures, serial femtosecond crystallography experiments of microcrystals of SERCA1a in the Ca2+ bound state and in a vanadate stabilised E2 state was conducted. A structure obtained at 2.8 Å maximum resolution of the proof...

  20. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    OpenAIRE

    Choe Senyon; Riek Roland; Johnson Casey; Kefala Georgia; Maslennikov Innokentiy; Kwiatkowski Witek

    2007-01-01

    Abstract Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characteriza...

  1. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    if higher operating temperature is enabled. One approach to obtain improved membranes in the aspects of applicable operating temperature and methanol permeability, which has attracted considerable attention, is the formation of composites by distributing inorganic fillers into Nafion or alternative polymers...... temperature and high relative humidity can cause excessive swelling of the membranes, yielding insufficient mechanical properties and breakdown of membrane function. Moreover, in the case of the Direct Methanol Fuel Cell (DMFC), their significant methanol permeability causes loss of efficiency. Higher...

  2. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  3. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  4. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  5. Integrative structure and functional anatomy of a nuclear pore complex.

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  6. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  7. Membrane Structure Studies by Means of Small-Angle Neutron Scattering (SANS)

    International Nuclear Information System (INIS)

    Knott, R. B.

    2008-01-01

    The basic model for membrane structure--a lipid bilayer with imbedded proteins--was formulated 35 years ago, however the detailed structure is still under active investigation using a variety of physical, chemical and computational techniques. Every biologically active cell is encapsulated by a plasma membrane with most cells also equipped with an extensive intracellular membrane system. The plasma membrane is an important boundary between the cytoplasm of the cell and the external environment, and selectively isolates the cell from that environment. Passive diffusion and/or active transport mechanisms are provided for water, ions, substrates etc. which are vital for cell metabolism and viability. Membranes also facilitate excretion of substances either as useful cellular products or as waste. Despite their complexity and diverse function, plasma membranes from quite different cells have surprisingly similar compositions. A typical membrane structure consists of a phospholipid bilayer with a number of proteins scattered throughout, along with carbohydrates (glycoproteins), glycolipids and sterols. The plasma membranes of most eukaryotic cells contain approximately equal weights of lipid and protein, which corresponds to about 100 lipid molecules per protein molecule. Clearly, lipids are a major constituent and the study of their structure and function in isolation provides valuable insight into the more complex intact multicomponent membrane. The membrane bound protein is the other major constituent and is a very active area of research for a number of reasons including the fact that over 60% of modern drugs act on their receptor sites. The interaction between the protein and the supporting lipid bilayer is clearly of major importance. Neutron scattering is a powerful technique for exploring the structure of membranes, either as reconstituted membranes formed from well characterised lipids, or as intact membranes isolated from selected biological systems. A brief

  8. Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes

    Science.gov (United States)

    Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.

    2014-01-01

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333

  9. Influence of ionizing radiation on the spatial structure of erythrocyte membranes

    International Nuclear Information System (INIS)

    Dreval', V.Yi.; Syichevs'ka, L.V.; Doroshenko, A.O.; Roshal', O.D.

    1998-01-01

    Influence of gamma-radiation of doses of 10, 10 2 , 5 centre dot 10 2 , and 10 3 Gy on the structure of the protein-lipid complexes of erythrocyte membranes is investigated. The allotment of fluorescence of protein in the donor-acceptor pair of tryptophan-pyrene and the distance of protein from the surface of the lipid bilayer of a membrane are determined by the method of inductive-resonance transfer of energy. The pair is localized at the distance of above 3.2 nm from lipids. We find that the action of irradiation changes the space structure of proteins and lipids of the erythrocyte membrane

  10. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    Science.gov (United States)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  11. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  12. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  13. Complex descemet′s membrane tears and detachment during phacoemulsification

    Directory of Open Access Journals (Sweden)

    Faik Orucoglu

    2015-01-01

    Full Text Available Purpose: To report a case of complex Descemet′s membrane detachment (DMD and tears during phacoemulsification cataract surgery. Case Report: A 64-year-old woman underwent phacoemulsification surgery in her right eye and developed tears and partial loss of Descemet′s membrane (DM while the aspiration port was inserted through the main incision. Massive corneal edema obscured the view and the anterior chamber was barely visible the following day. Scheimpflug imaging was used to complement slit lamp examination in the postoperative period. Frequent topical corticosteroid drops were initiated. After 5 days of treatment, multiple tears and detachment of DM were visible and the anterior chamber was filled with air. After 5 weeks, the cornea regained much of its clarity despite large DM tears and focal loss of DM. Conclusion: Despite partial loss of DM, the corneal edema mostly disappeared after 5 weeks of air bubble injection. Scheimpflug imaging was beneficial in the diagnosis and monitoring of DM tears and detachments.

  14. A conserved endoplasmic reticulum membrane protein complex (EMC facilitates phospholipid transfer from the ER to mitochondria.

    Directory of Open Access Journals (Sweden)

    Sujoy Lahiri

    2014-10-01

    Full Text Available Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC has decreased phosphatidylserine (PS transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE. Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.

  15. Wrinkling reduction of membrane structure by trimming edges

    Directory of Open Access Journals (Sweden)

    Mingjun Liu

    2017-05-01

    Full Text Available Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.

  16. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liyan, E-mail: wanglykmmc@163.co [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Xu Yun [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China); Lin Zhu [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Zhao Ning [Department of Orthodontics, School of Stomatology, West China College, SiChuan University, ChengDu (China); Xu Yanhua [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China)

    2011-07-15

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF{sub 4}, where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f]1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF{sub 4} is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: {yields} Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. {yields} Resulted sample exhibit good linearity and short response time. {yields} PS is an excellent matrix for oxygen sensing material for probe molecules. {yields} Molecular structure of diamine ligand is critical for sensitivity.

  17. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    International Nuclear Information System (INIS)

    Wang Liyan; Xu Yun; Lin Zhu; Zhao Ning; Xu Yanhua

    2011-01-01

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF 4 , where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f] 1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF 4 is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: → Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. → Resulted sample exhibit good linearity and short response time. → PS is an excellent matrix for oxygen sensing material for probe molecules. → Molecular structure of diamine ligand is critical for sensitivity.

  18. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes

    KAUST Repository

    Chakrabarty, Tina

    2017-04-27

    Bio-polyphenols that are present in tea, date fruits, chockolate and many other plants have been recognized as scaffold material for the manufacture of composite filtration membranes. These phenolic biomolecules possess abundant gallol (1,2,3-trihydroxyphenyl) and catechol (1,2-dihydroxyphenyl) functional groups, which allow the spontaneous formation of a thin polymerized layer at the right pH conditions. Here, we report a facile and cost-effective method to coat porous membranes via the complexation of tannic acid (TA) and cupric acetate (mono hydrate) through co-deposition. The modified membranes were investigated by XPS, ATR/FTIR, water contact angle, SEM and water permeance for a structural and morphological analysis. The obtained results reveal that the modified membranes with TA and cupric acetate (CuII) developed a thin skin layer, which showed excellent hydrophilicity with good water permeance. These membranes were tested with different molecular weight polyethylene glycols (PEG) in aqueous solution; the MWCO was around 600 Daltons.

  19. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevant...... form. This is most typically achieved through the use of detergent based reconstitution systems. However, time and again such systems fail to provide a suitable environment causing aggregation and inactivation. Nanodiscs are self-assembled lipoproteins containing two membrane scaffold proteins...... and a lipid bilayer in defined nanometer size, which can act as a stabiliser for membrane proteins. This enables both functional and structural investigation of membrane proteins in a detergent free environment which is closer to the native situation. Understanding the self-assembly of nanodiscs is important...

  20. Complexation-tailored morphology of asymmetric block copolymer membranes

    KAUST Repository

    Madhavan, Poornima

    2013-08-14

    Hydrogen-bond formation between polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) and -OH/-COOH functionalized organic molecules was used to tune morphology of asymmetric nanoporous membranes prepared by simultaneous self-assembly and nonsolvent induced phase separation. The morphologies were characterized by field emmision scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Hydrogen bonds were confirmed by infrared (IR), and the results were correlated to rheology characterization. The OH-functionalized organic molecules direct the morphology into hexagonal order. COOH-functionalized molecules led to both lamellar and hexagonal structures. Micelle formation in solutions and their sizes were determined using dynamic light scattering (DLS) measurements and water fluxes of 600-3200 L/m 2·h·bar were obtained. The pore size of the plain BCP membrane was smaller than with additives. The following series of additives led to pores with hexagonal order with increasing pore size: terephthalic acid (COOH-bifunctionalized) < rutin (OH-multifunctionalized) < 9-anthracenemethanol (OH-monofunctionalized) < 3,5-dihydroxybenzyl alcohol (OH-trifunctionalized). © 2013 American Chemical Society.

  1. Complexation-tailored morphology of asymmetric block copolymer membranes

    KAUST Repository

    Madhavan, Poornima; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2013-01-01

    Hydrogen-bond formation between polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) and -OH/-COOH functionalized organic molecules was used to tune morphology of asymmetric nanoporous membranes prepared by simultaneous self-assembly and nonsolvent induced phase separation. The morphologies were characterized by field emmision scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Hydrogen bonds were confirmed by infrared (IR), and the results were correlated to rheology characterization. The OH-functionalized organic molecules direct the morphology into hexagonal order. COOH-functionalized molecules led to both lamellar and hexagonal structures. Micelle formation in solutions and their sizes were determined using dynamic light scattering (DLS) measurements and water fluxes of 600-3200 L/m 2·h·bar were obtained. The pore size of the plain BCP membrane was smaller than with additives. The following series of additives led to pores with hexagonal order with increasing pore size: terephthalic acid (COOH-bifunctionalized) < rutin (OH-multifunctionalized) < 9-anthracenemethanol (OH-monofunctionalized) < 3,5-dihydroxybenzyl alcohol (OH-trifunctionalized). © 2013 American Chemical Society.

  2. Effect of UV-irradiation on DNA-membrane complex of Bacillus subtilis

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    The UV radiation effect on DNA membrane complex of Bacillus subtilis has been studied. Increase of DNA content in the DNA membrane complex in two strains of 168 and recA - and its decrease in the polA - strain are shown. The above effect in the first two stamms is suppressed with caffeine and correlates with the change in protein content in the DNA membrane complex, determined by a radioactive label, but not lipids in other words, fixation of DNA and membrane goes through proteins. Capability of DNA content increase in the DNA membrane complex after UV irradiation and subsequent bacteria incubation in a total medium correlates with the relative sensitivity of stamm UV sensitivity. It is suggested, that the reparation synthesis goes in cells on the membrane and that binding of DNA and the membrane is necessary for the normal DNA reparation process

  3. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  4. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  5. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  6. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  7. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  8. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  10. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  11. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  12. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  13. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  14. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  15. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  16. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    Science.gov (United States)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the

  17. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.

  18. Toward the Structure of Dynamic Membrane-Anchored Actin Networks

    Science.gov (United States)

    Weber, Igor

    2007-01-01

    In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod's tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces. PMID:19262130

  19. Magnetic apatite for structural insights on the plasma membrane

    International Nuclear Information System (INIS)

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications. (paper)

  20. Magnetic apatite for structural insights on the plasma membrane

    Science.gov (United States)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  1. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  2. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  3. Identification and characterization of stable membrane protein complexes

    NARCIS (Netherlands)

    Spelbrink, R.E.J.

    2007-01-01

    Many membrane proteins exist as oligomers. Such oligomers play an important role in a broad variety of cellular processes such as ion transport, energy transduction, osmosensing and cell wall synthesis. We developed an electrophoresis-based method of identifying oligomeric membrane proteins that are

  4. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    Science.gov (United States)

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l -1 and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  6. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  7. Development of topologically structured membranes of aluminum oxide

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.

    2014-05-01

    In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.

  8. Development of topologically structured membranes of aluminum oxide

    International Nuclear Information System (INIS)

    Bankova, A; Videkov, V; Tzaneva, B

    2014-01-01

    In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.

  9. Plant cell plasma membrane structure and properties under clinostatting

    Science.gov (United States)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  10. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein...... structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches......-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012....

  11. Correct use of Membrane Elements in Structural Analysis

    Directory of Open Access Journals (Sweden)

    Rothman Timothy

    2016-01-01

    Full Text Available Structural analysis of consumer electronic devices such as phones and tablets involves Finite Element Analysis (FEA. Dynamic loading conditions such as device dropping and bending dictate accurate FEA models to reduce design risk in many areas. The solid elements typically used in structural analysis do not have integration points on the surface. The outer surface is of most interest because that is where the cracks start. Analysts employ a post processing trick through using membranes to bring accurate stress/strain results to the surface. This paper explains numerical issues with implementation of membranes and recommends a methodology for accurate structural analysis.

  12. Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Ko

    2017-04-01

    Full Text Available This study develops a micro-structured hydrophobic alumina hollow fiber with a high permeate flux of 60 Lm−2h−1 and salt rejection over 99.9% in a vacuum membrane distillation process. The fiber is fabricated by phase inversion and sintering, and then modified with fluoroalkylsilanes to render it hydrophobic. The influence of the sintering temperature and feeding temperature in membrane distillation (MD on the characteristics of the fiber and MD performance are investigated. The vacuum membrane distillation uses 3.5 wt % NaCl aqueous solution at 70 °C at 0.03 bar. The permeate flux of 60 Lm−2h−1 is the highest, compared with reported data and is higher than that for polymeric hollow fiber membranes.

  13. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells.

    Science.gov (United States)

    Deng, Zhiqin; Gao, Pan; Yu, Lianling; Ma, Bin; You, Yuanyuan; Chan, Leung; Mei, Chaoming; Chen, Tianfeng

    2017-06-01

    Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Discovery of novel membrane binding structures and functions

    Science.gov (United States)

    Kufareva, Irina; Lenoir, Marc; Dancea, Felician; Sridhar, Pooja; Raush, Eugene; Bissig, Christin; Gruenberg, Jean; Abagyan, Ruben; Overduin, Michael

    2014-01-01

    The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms, and could uncover novel sites for therapeutic intervention. Here we present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH) and PX domains bind membranes, the resulting Membrane Optimal Docking Area (MODA) method yields predictions for a given protein of known three dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain and Neisseria gonorrhoeae MsrB protein, and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR) which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible, and provides a new tool for functional annotation of the proteome. PMID:25394204

  15. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I

    2014-01-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  16. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Science.gov (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  17. Visualizing Membranes : 3D Electron Microscopic Imaging of Cellular Structures

    NARCIS (Netherlands)

    Lebbink, M.N.

    2009-01-01

    Cells are organized in a highly complex manner. And while there are many different types of cells - each organized in a different manner according to their function - they do share certain commonalities. Among these commonalities are membranes that functions not only as a barrier between the extra-

  18. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    Science.gov (United States)

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  19. Structure-based characterization of multiprotein complexes.

    Science.gov (United States)

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J

    2014-07-08

    Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Rigidity of invariant complex structures

    International Nuclear Information System (INIS)

    Miatello, I.D.

    1991-03-01

    A Kaehler solvmanifold is a connected Kaehler manifold (M,j, ) which admits a transition solvable group R of automorphisms. The problem considered in this paper is related to the number of isomorphism classes of Kaehler structures (j, ) on M turning it into a Kaehler solvmanifold. 8 refs

  1. Modification of track membranes structure by gas discharge etching method

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Kravets, L.I.

    1996-01-01

    An investigation of the properties of polyethyleneterephthalate track membranes (PET TM) treated with the plasma RF-discharge in air has been performed. The influence of the plasma treatment conditions on the basic properties of the membranes, namely pore size and pore shape, porosity and mechanical strength has been studied. It was arranged that the effect of air plasma on the PET TM results to etching a membrane's surface layer. The membranes' pore size and the form in this case change. It is shown that it is possible to change the structure of track membranes directly by the gas discharge etching method. Depending on the choice of discharge parameters, it is possible to make etching either in a part of the channel or along the whole length of the pore channels. In both cases the membranes with an asymmetric pore shape are formed which possess higher porosity and flow rate. The use of the membranes of such a type allows one to increase drastically the efficiency of the filtration processes. 12 refs., 5 figs., 1 tab

  2. DNA nanotubes for NMR structure determination of membrane proteins.

    Science.gov (United States)

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  3. The structure of complex Lie groups

    CERN Document Server

    Lee, Dong Hoon

    2001-01-01

    Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects.The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups.The differences between complex algebraic groups and complex Lie groups are sometimes subtle ...

  4. Overcoming bottlenecks in the membrane protein structural biology pipeline.

    Science.gov (United States)

    Hardy, David; Bill, Roslyn M; Jawhari, Anass; Rothnie, Alice J

    2016-06-15

    Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    Science.gov (United States)

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  6. The organization of LH2 complexes in membranes from Rhodobacter sphaeroides.

    Science.gov (United States)

    Olsen, John D; Tucker, Jaimey D; Timney, John A; Qian, Pu; Vassilev, Cvetelin; Hunter, C Neil

    2008-11-07

    The mapping of the photosynthetic membrane of Rhodobacter sphaeroides by atomic force microscopy (AFM) revealed a unique organization of arrays of dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) core complexes surrounded and interconnected by light-harvesting LH2 complexes (Bahatyrova, S., Frese, R. N., Siebert, C. A., Olsen, J. D., van der Werf, K. O., van Grondelle, R., Niederman, R. A., Bullough, P. A., Otto, C., and Hunter, C. N. (2004) Nature 430, 1058-1062). However, membrane regions consisting solely of LH2 complexes were under-represented in these images because these small, highly curved areas of membrane rendered them difficult to image even using gentle tapping mode AFM and impossible with contact mode AFM. We report AFM imaging of membranes prepared from a mutant of R. sphaeroides, DPF2G, that synthesizes only the LH2 complexes, which assembles spherical intracytoplasmic membrane vesicles of approximately 53 nm diameter in vivo. By opening these vesicles and adsorbing them onto mica to form small, LH2-only membranes for the first time. The transition from highly curved vesicle to the planar sheet is accompanied by a change in the packing of the LH2 complexes such that approximately half of the complexes are raised off the mica surface by approximately 1 nm relative to the rest. This vertical displacement produces a very regular corrugated appearance of the planar membrane sheets. Analysis of the topographs was used to measure the distances and angles between the complexes. These data are used to model the organization of LH2 complexes in the original, curved membrane. The implications of this architecture for the light harvesting function and diffusion of quinones in native membranes of R. sphaeroides are discussed.

  7. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  8. Characterization of a structural intermediate of flavivirus membrane fusion.

    Directory of Open Access Journals (Sweden)

    Karin Stiasny

    2007-02-01

    Full Text Available Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.

  9. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  10. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    Science.gov (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  11. Synthesis and structure of cerium nitrosocarbonylcyanmethanid complex

    International Nuclear Information System (INIS)

    Gerasimenko, H.; Scopenko, V.V.; Kapshuk, A.A.

    1998-01-01

    Full text: The complex compound [CeL 4 Dy 2 ]Na*2Ac (where L- nitrosocarbonylcyanmethanid, Dy -- dipyridile, Ac - acetone) were synthesised by interaction of cerium chloride and sodium nitrosocarbonylcyanmethanid from acetone solution. After two hours of mixing the dipyridil solution in acetone was added for complex stabilization. After filtration solution was put to desiccator for crystallisation. The complex was studied using IR- and UV-spectroscopy. The structure of the complex was determined using X-ray structure analysis. It was found that the structure of the complex belongs to orthorhombic Pna2(1) syngony with the unit cell parameters 17.010, 16.280 and 16.340Angstroms, respectively. It was found that cerium in the compound was eight co-ordinated. Four nitroso ligands were co-ordinated by bidentate bridge method and two dipyridiles by bidentate-cycle method

  12. Structural constraints in complex networks

    International Nuclear Information System (INIS)

    Zhou, S; Mondragon, R J

    2007-01-01

    We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich-club connectivity are preserved. We consider three real networks, the autonomous system (AS)-Internet, protein interaction and scientific collaboration. We show that for a given degree distribution, the rich-club connectivity is sensitive to the degree-degree correlation, and on the other hand the degree-degree correlation is constrained by the rich-club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich-club structure completely; while fixing the degree distribution and the rich-club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich-club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich-club connectivity in real networks

  13. Structure of Complex Verb Forms in Meiteilon

    Directory of Open Access Journals (Sweden)

    Lourembam Surjit Singh

    2016-12-01

    Full Text Available This piece of work proposes to descriptively investigate the structures of complex verbs in Meiteilon. The categorization of such verbs is based on the nature of semantic and syntactic functions of a lexeme or verbal lexeme. A lexeme or verbal lexeme in Meiteilon may have multifunctional properties in the nature of occurrence. Such lexical items can be co-occurred together in a phrase as single functional word. Specifically, in the co-occurrences of two lexical items, the first component of lexical items has different semantic and syntactic functions in comparison to semantic and syntactic functions of the second component of lexical items. Such co-occurrences of two lexical items are the forms of complex verb that are covered with the term complex predicate in this work. The investigation in constructing complex predicate is thoroughly presenting in this work. Keywords: Structures, complex verb, conjunct verb, compound verb, complex predicate

  14. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn P.; Buch-Pedersen, Morten Jeppe; Morth, J. Preben

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H1-ATPase (the proton pump) in plants and fungi1......-3, and Na1,K1-ATPase (the sodium-potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5.The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na1,K1-ATPase and Ca21......- ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define...

  15. FATE OF REVERSE OSMOSIS (RO) MEMBRANES DURING OXIDATION BY DISINFECTANTS USED IN WATER TREATMENT: IMPACT ON MEMBRANE STRUCTURE AND PERFORMANCES

    KAUST Repository

    Maugin, Thomas

    2013-12-01

    Providing pretreatment prior RO filtration is essential to avoid biofouling and subsequent loss of membrane performances. Chlorine is known to degrade polymeric membrane, improving or reducing membrane efficiency depending on oxidation conditions. This study aimed to assess the impact of alternative disinfectant, NH2Cl, as well as secondary oxidants formed during chloramination of seawater, e.g. HOBr, HOI, or used in water treatment e.g. ClO2, O3, on membrane structure and performances. Permeability, total and specific rejection (Cl-, SO4 2-, Br-, Boron), FTIR profile, elemental composition were analyzed. Results showed that each oxidant seems to react differently with the membrane. HOCl, HOBr, ClO2 and O3 improved membrane permeability but decreased rejection in different extent. In comparison, chloramines resulted in identical trends but oxidized membrane very slowly. On the contrary, iodine improved membrane rejection e.g. boron, but decreased permeability. Reaction conducted with chlorine, bromine, iodine and chloramines resulted in the incorporation of halogen in the membrane structure. All oxidant except iodine were able to break amide bonds of the membrane structure in our condition. In addition, chloramine seemed to react with membrane differently, involving a potential addition of nitrogen. Chloramination of seawater amplified membrane performances evolutions due to generation of bromochloramine. Moreover, chloramines reacted both with NOM and membrane during oxidation in natural seawater, leading to additional rejection drop.

  16. Chemistry and structure of technetium complexes

    International Nuclear Information System (INIS)

    Baldas, J.; Boas, J.F.; Bonnyman, J.; Williams, G.A.

    1983-01-01

    The structures of tris(2-aminobenzenethiolato) technetium(VI) and dichlorobis(diethyldithiocarbamato) thionitrosyltechnetium(V) have been determined by single crystal x-ray diffraction analysis. The preparation and chemistry of thiocyanato complexes of technetium have been investigated

  17. Fish skin as a model membrane: structure and characteristics.

    Science.gov (United States)

    Konrádsdóttir, Fífa; Loftsson, Thorsteinn; Sigfússon, Sigurdur Dadi

    2009-01-01

    Synthetic and cell-based membranes are frequently used during drug formulation development for the assessment of drug availability. However, most of the currently used membranes do not mimic mucosal membranes well, especially the aqueous mucous layer of the membranes. In this study we evaluated catfish (Anarichas lupus L) skin as a model membrane. Permeation of hydrocortisone, lidocaine hydrochloride, benzocaine, diethylstilbestrol, naproxen, picric acid and sodium nitrate through skin from a freshly caught catfish was determined in Franz diffusion cells. Both lipophilic and hydrophilic molecules permeate through catfish skin via hydrated channels or aqueous pores. No correlation was observed between the octanol/water partition coefficient of the permeating molecules and their permeability coefficient through the skin. Permeation through catfish skin was found to be diffusion controlled. The results suggest that permeation through the fish skin proceeds via a diffusion-controlled process, a process that is similar to drug permeation through the aqueous mucous layer of a mucosal membrane. In addition, the fish skin, with its collagen matrix structure, appears to possess similar properties to the eye sclera.

  18. Amyloid and membrane complexity: The toxic interplay revealed by AFM.

    Science.gov (United States)

    Canale, Claudio; Oropesa-Nuñez, Reinier; Diaspro, Alberto; Dante, Silvia

    2018-01-01

    Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  20. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  1. Modern structure of marketing communications complex

    Directory of Open Access Journals (Sweden)

    Hrebenyukova Elena

    2015-08-01

    Full Text Available The article presents the results of the desk research, in which the current structure of the marketing communications complex was analyzed. According to the results of the content analysis of scientific and educational literature in marketing it was proved that there is a certain structural asymmetry in today's complex of marketing communication: the rejection of impersonal tools and actualization of those which make possible personalized communication with the consumer.

  2. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  3. Integrating complex functions: coordination of nuclear pore complex assembly and membrane expansion of the nuclear envelope requires a family of integral membrane proteins.

    Science.gov (United States)

    Schneiter, Roger; Cole, Charles N

    2010-01-01

    The nuclear envelope harbors numerous large proteinaceous channels, the nuclear pore complexes (NPCs), through which macromolecular exchange between the cytosol and the nucleoplasm occurs. This double-membrane nuclear envelope is continuous with the endoplasmic reticulum and thus functionally connected to such diverse processes as vesicular transport, protein maturation and lipid synthesis. Recent results obtained from studies in Saccharomyces cerevisiae indicate that assembly of the nuclear pore complex is functionally dependent upon maintenance of lipid homeostasis of the ER membrane. Previous work from one of our laboratories has revealed that an integral membrane protein Apq12 is important for the assembly of functional nuclear pores. Cells lacking APQ12 are viable but cannot grow at low temperatures, have aberrant NPCs and a defect in mRNA export. Remarkably, these defects in NPC assembly can be overcome by supplementing cells with a membrane fluidizing agent, benzyl alcohol, suggesting that Apq12 impacts the flexibility of the nuclear membrane, possibly by adjusting its lipid composition when cells are shifted to a reduced temperature. Our new study now expands these findings and reveals that an essential membrane protein, Brr6, shares at least partially overlapping functions with Apq12 and is also required for assembly of functional NPCs. A third nuclear envelope membrane protein, Brl1, is related to Brr6, and is also required for NPC assembly. Because maintenance of membrane homeostasis is essential for cellular survival, the fact that these three proteins are conserved in fungi that undergo closed mitoses, but are not found in metazoans or plants, may indicate that their functions are performed by proteins unrelated at the primary sequence level to Brr6, Brl1 and Apq12 in cells that disassemble their nuclear envelopes during mitosis.

  4. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-01-01

    polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures

  5. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  6. Synchrotron small-angle x-ray scattering investigation on integral membrane protein light-harvesting complex LH2 from photosynthetic bacterium rhodopseudomonas acidophila

    International Nuclear Information System (INIS)

    Du Luchao; Weng Yuxiang; Hong Xinguo; Xian Dingchang; Kobayashi Katsumi

    2006-01-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2. (authors)

  7. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  8. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  9. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    bilayer via structural characterizations of TMD representatives. To enable structural studies of these domains, an organic-extraction based strategy for efficient production of isotope-labeled TMDs with or without short intrinsically disordered regions was developed. This strategy successfully provided...... of these challenging domains. Supplemented by a review of the current collection of TMD structures from single-pass transmembrane receptors, the thesis as a whole provides important insights on the structure and function in the membrane as well as highlight the open questions to be addressed in the years to come.......Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...

  10. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  12. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  13. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II.

    Science.gov (United States)

    Voxeur, Aline; Fry, Stephen C

    2014-07-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  14. Stochastic transport through complex comb structures

    International Nuclear Information System (INIS)

    Zaburdaev, V. Yu.; Popov, P. V.; Romanov, A. S.; Chukbar, K. V.

    2008-01-01

    A unified rigorous approach is used to derive fractional differential equations describing subdiffusive transport through comb structures of various geometrical complexity. A general nontrivial effect of the initial particle distribution on the subsequent evolution is exposed. Solutions having qualitative features of practical importance are given for joined structures with widely different fractional exponents

  15. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.

    Directory of Open Access Journals (Sweden)

    Chengliang Zhang

    Full Text Available Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4 and Endophilin B1 (Endo B1 that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H⁺-ATPases (V-ATPases to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA, producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.

  16. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  17. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    Science.gov (United States)

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment

  18. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  19. Structural basis for catalysis at the membrane-water interface.

    Science.gov (United States)

    Dufrisne, Meagan Belcher; Petrou, Vasileios I; Clarke, Oliver B; Mancia, Filippo

    2017-11-01

    The membrane-water interface forms a uniquely heterogeneous and geometrically constrained environment for enzymatic catalysis. Integral membrane enzymes sample three environments - the uniformly hydrophobic interior of the membrane, the aqueous extramembrane region, and the fuzzy, amphipathic interfacial region formed by the tightly packed headgroups of the components of the lipid bilayer. Depending on the nature of the substrates and the location of the site of chemical modification, catalysis may occur in each of these environments. The availability of structural information for alpha-helical enzyme families from each of these classes, as well as several beta-barrel enzymes from the bacterial outer membrane, has allowed us to review here the different ways in which each enzyme fold has adapted to the nature of the substrates, products, and the unique environment of the membrane. Our focus here is on enzymes that process lipidic substrates. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Iron-complexed adsorptive membrane for As(V) species in water

    International Nuclear Information System (INIS)

    Shinde, Rakesh N.; Das, Sadananda; Acharya, R.; Rajurkar, N.S.; Pandey, Ashok K.

    2012-01-01

    Highlights: ► Functionalized membrane was prepared by graft polymerization in host membrane. ► Fe 3+ ions fixed in membrane made it selective for As(V) ions. ► As(V) preconcentrated selectively in membrane samples was quantified by INAA. ► As(V) in ground water sample was easily quantified in 2–3 ppb using membrane. ► Total inorganic arsenic could be quantified by oxidation of As(III) to As(V). - Abstract: Selective preconcentration of a target analyte in the solid phase is an effective route not only to enhance detection limit of the conventional analytical method but also for elimination of interfering matrix. An adsorptive membrane was developed for selective preconcentration and quantification of ultra-trace (ppb) amounts of As(V) present in a variety of aqueous samples. The precursor membrane was prepared by UV-initiator induced graft polymerization of sulphate and phosphate bearing monomers (1:1 mol proportion) in pores of the host microporous poly(propylene) membrane. Fe 3+ ions were loaded in the precursor membrane to make it selective for As(V) ions. The presence of phosphate functional groups prevent leaching of Fe 3+ ions from the membrane when it comes in contact with solution like seawater having high ionic strength. The optimized membrane was characterized in terms of its physical structure, chemical structure and experimental conditions affecting As(V) uptake in the membrane. The possibility of quantifying total preconcentration of As content was also explored by converting As(III) to As(V). To quantify As(V), the membrane samples were subjected to instrumental neutron activation analysis (INAA). The studies carried in the present work showed that quantification of inorganic arsenic species in natural water samples is easily possible in 2–3 ppb concentration range.

  1. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  2. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  3. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  4. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  5. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  6. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  7. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok

    2011-01-01

    of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially...

  8. Structure and formation of egg membranes in Aedes aegypti. (L. ) (Diptera:Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G; Rai, K S

    1975-01-01

    An ultrastructural study of mosquito ovarioles reveals that both the vitelline membrane and the endochorion are secreted by the follicular epithelium. The presecretory phase is characterized by the hypertrophy of endoplasmic reticulum and Golgi complex in the follicle cells. Synthesis of vitelline membrane precursors begins immediately after yolk protein uptake by micropinocytosis. Secretory droplets are budded off Golgi cisternae and released into the follicle cell--oocyte interface by exocytosis. The vitelline membrane first appears as dense plaques which eventually fuse to form a single homogeneous layer. Two types of secretory material are identified in the follicle cells prior to the formation of the endochorion. Golgi cisternae bud off small droplets similar in size and appearance to the precursors of the vitelline membrane. These migrate to the apical surface and accumulate between surface folds in the plasma membrane. The second type is a fibrous material formed in endoplasmic reticulum. When fully secreted, the endochorion is a 2-layered structure. The lower layer is comprised of pillar-like structures alternating with fibrous mesh-like areas. The pillars are formed by the coalescence of droplets released from Golgi, while the mesh-like areas presumably arise from the fibrous material. The outer layer is also fibrous. The follicle cells degenerate once the endochorion is laid down. endochorion is laid down.

  9. Three-dimensional structure of the γ-secretase complex

    International Nuclear Information System (INIS)

    Ogura, Toshihiko; Mio, Kazuhiro; Hayashi, Ikuo; Miyashita, Hiroyuki; Fukuda, Rie; Kopan, Raphael; Kodama, Tatsuhiko; Hamakubo, Takao; Iwastubo, Takeshi; Tomita, Taisuke; Sato, Chikara

    2006-01-01

    γ-Secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-β precursor protein and Notch. γ-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional γ-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of γ-secretase at a resolution of 48 A. The structure occupies a volume of 560 x 320 x 240 A and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that γ-secretase activity resides within a high molecular weight complex

  10. Investigation of the utility of selective methyl protonation for determination of membrane protein structures

    International Nuclear Information System (INIS)

    Shih, Steve C. C.; Stoica, Ileana; Goto, Natalie K.

    2008-01-01

    Polytopic α-helical membrane proteins present one of the final frontiers for protein structural biology, with significant challenges causing severe under-representation in the protein structure databank. However, with the advent of hardware and methodology geared to the study of large molecular weight complexes, solution NMR is being increasingly considered as a tool for structural studies of these types of membrane proteins. One method that has the potential to facilitate these studies utilizes uniformly deuterated samples with protons reintroduced at one or two methyl groups of leucine, valine and isoleucine. In this work we demonstrate that in spite of the increased proportion of these amino acids in membrane proteins, the quality of structures that can be obtained from this strategy is similar to that obtained for all α-helical water soluble proteins. This is partly attributed to the observation that NOEs between residues within the transmembrane helix did not have an impact on structure quality. Instead the most important factors controlling structure accuracy were the strength of dihedral angle restraints imposed and the number of unique inter-helical pairs of residues constrained by NOEs. Overall these results suggest that the most accurate structures will arise from accurate identification of helical segments and utilization of inter-helical distance restraints from various sources to maximize the distribution of long-range restraints

  11. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  12. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  13. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  14. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    Science.gov (United States)

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  15. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  16. Membrane Transporters: Structure, Function and Targets for Drug Design

    Science.gov (United States)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  17. Structural and Topology Optimization of Complex Civil Engineering Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    This paper shows the use of topology optimization for finding an optimized form for civil engineering structures. Today topology optimization and shape optimization have been integrated in several commercial finite element codes. Here, the topology of two complex civil engineering structures...

  18. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  19. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  20. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments.

    Science.gov (United States)

    Sezgin, Erdinc; Azbazdar, Yagmur; Ng, Xue W; Teh, Cathleen; Simons, Kai; Weidinger, Gilbert; Wohland, Thorsten; Eggeling, Christian; Ozhan, Gunes

    2017-08-01

    While the cytosolic events of Wnt/β-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/β-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. Membrane binding properties of EBV gp110 C-terminal domain; evidences for structural transition in the membrane environment

    International Nuclear Information System (INIS)

    Park, Sung Jean; Seo, Min-Duk; Lee, Suk Kyeong; Lee, Bong Jin

    2008-01-01

    Gp110 of Epstein-Barr virus (EBV) mainly localizes on nuclear/ER membranes and plays a role in the assembly of EBV nucleocapsid. The C-terminal tail domain (gp110 CTD) is essential for the function of gp110 and the nuclear/ER membranes localization of gp110 is ruled by its C-terminal unique nuclear localization signal (NLS), consecutive four arginines. In the present study, the structural properties of gp110 CTD in membrane mimics were investigated using CD, size-exclusion chromatography, and NMR, to elucidate the effect of membrane environment on the structural transition and to compare the structural feature of the protein in the solution state with that of the membrane-bound form. CD and NMR analysis showed that gp110 CTD in a buffer solution appears to adopt a stable folding intermediate which lacks compactness, and a highly helical structure is formed only in membrane environments. The helical content of gp110 CTD was significantly affected by the negative charge as well as the size of membrane mimics. Based on the elution profiles of the size-exclusion chromatography, we found that gp110 CTD intrinsically forms a trimer, revealing that a trimerization region may exist in the C-terminal domain of gp110 like the ectodomain of gp110. The mutation of NLS (RRRR) to RTTR does not affect the overall structure of gp110 CTD in membrane mimics, while the helical propensity in a buffer solution was slightly different between the wild-type and the mutant proteins. This result suggests that not only the helicity induced in membrane environment but also the local structure around NLS may be related to trafficking to the nuclear membrane. More detailed structural difference between the wild-type and the mutant in membrane environment was examined using synthetic two peptides including the wild-type NLS and the mutant NLS

  2. Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

    Science.gov (United States)

    Yeoman, Jeffrey A; Hanssen, Eric; Maier, Alexander G; Klonis, Nectarios; Maco, Bohumil; Baum, Jake; Turnbull, Lynne; Whitchurch, Cynthia B; Dixon, Matthew W A; Tilley, Leann

    2011-04-01

    The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.

  3. Wave propagation in complex structures with LEGO

    NARCIS (Netherlands)

    Lancellotti, V.; Hon, de B.P.; Tijhuis, A.G.

    2012-01-01

    We present the extension of the linear embedding via Green's operators (LEGO) scheme to problems that involve elementary sources localized inside complex structures made of different dielectric media with inclusions. We show how this new feature allows solving problems of wave propagation within,

  4. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  5. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a...

  6. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  7. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes.

    Directory of Open Access Journals (Sweden)

    Bartosz Różycki

    Full Text Available The formation of vesicles is essential for many biological processes, in particular for the trafficking of membrane proteins within cells. The Endosomal Sorting Complex Required for Transport (ESCRT directs membrane budding away from the cytosol. Unlike other vesicle formation pathways, the ESCRT-mediated budding occurs without a protein coat. Here, we propose a minimal model of ESCRT-induced vesicle budding. Our model is based on recent experimental observations from direct fluorescence microscopy imaging that show ESCRT proteins colocalized only in the neck region of membrane buds. The model, cast in the framework of membrane elasticity theory, reproduces the experimentally observed vesicle morphologies with physically meaningful parameters. In this parameter range, the minimum energy configurations of the membrane are coatless buds with ESCRTs localized in the bud neck, consistent with experiment. The minimum energy configurations agree with those seen in the fluorescence images, with respect to both bud shapes and ESCRT protein localization. On the basis of our model, we identify distinct mechanistic pathways for the ESCRT-mediated budding process. The bud size is determined by membrane material parameters, explaining the narrow yet different bud size distributions in vitro and in vivo. Our membrane elasticity model thus sheds light on the energetics and possible mechanisms of ESCRT-induced membrane budding.

  8. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  9. UV inactivation of enzymes in supramolecular complexes of biological membranes. The phenomenon of photochemical allotropy

    International Nuclear Information System (INIS)

    Konev, S.V.; Volotovskij, I.D.; Sheiko, L.M.

    1978-01-01

    The photosensitivity of erythrocyte acetylcholinesterase (AChE) is different in its free and membrane-bound states. The modification of the structure of membraneous lipids by phospholipases A 2 , C and D or by cholesterol depletion is accompanied by a change in AChE photosensitivity. UV light was demonstrated to induce cooperative structural transitions in the erythrocyte membrane. This follows from the data obtained by circular dichroism and solubilization in detergents. In contrast to free AChE, UV light acts on the membraneous enzyme as a mixed inhibitor (simultaneous change in Vsub(max) and Ksub(m)). The anomalous behaviour of membrane-bound enzyme, termed the phenomenon of photochemical allotropy, is associated with a modification of the structure within the microenvironment of the residual AChE. The phenomenon depends on membrane integrity, and disappears after treatment of erythrocyte ghosts with ultrasound, trypsin, phospholipases and neuraminidase and remains unchanged in cholesterol-depleted membranes. The nature and localization of events responsible for this phenomenon are discussed. (author)

  10. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion

    Science.gov (United States)

    D'Agostino, Massimo; Risselada, Herre Jelger; Lürick, Anna; Ungermann, Christian; Mayer, Andreas

    2017-11-01

    Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.

  11. Structure-based membrane dome mechanism for Piezo mechanosensitivity.

    Science.gov (United States)

    Guo, Yusong R; MacKinnon, Roderick

    2017-12-12

    Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore. © 2017, Guo et al.

  12. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  13. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  14. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-04-01

    Full Text Available The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis.

  15. Structural basis for energy transduction by respiratory alternative complex III.

    Science.gov (United States)

    Sousa, Joana S; Calisto, Filipa; Langer, Julian D; Mills, Deryck J; Refojo, Patrícia N; Teixeira, Miguel; Kühlbrandt, Werner; Vonck, Janet; Pereira, Manuela M

    2018-04-30

    Electron transfer in respiratory chains generates the electrochemical potential that serves as energy source for the cell. Prokaryotes can use a wide range of electron donors and acceptors and may have alternative complexes performing the same catalytic reactions as the mitochondrial complexes. This is the case for the alternative complex III (ACIII), a quinol:cytochrome c/HiPIP oxidoreductase. In order to understand the catalytic mechanism of this respiratory enzyme, we determined the structure of ACIII from Rhodothermus marinus at 3.9 Å resolution by single-particle cryo-electron microscopy. ACIII presents a so-far unique structure, for which we establish the arrangement of the cofactors (four iron-sulfur clusters and six c-type hemes) and propose the location of the quinol-binding site and the presence of two putative proton pathways in the membrane. Altogether, this structure provides insights into a mechanism for energy transduction and introduces ACIII as a redox-driven proton pump.

  16. Structure of the Deactive State of Mammalian Respiratory Complex I.

    Science.gov (United States)

    Blaza, James N; Vinothkumar, Kutti R; Hirst, Judy

    2018-02-06

    Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sunhwan Jo

    2007-09-01

    Full Text Available Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC and two types of system shapes (rectangular and hexagonal are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.

  18. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.

    Science.gov (United States)

    Akisaka, Toshitaka; Yoshida, Hisaho; Suzuki, Reiko; Takama, Keiko

    2008-03-01

    The organization of the cytoskeleton in the podosomes of osteoclasts was studied by use of cell shearing, rotary replication, and fluorescence cytochemical techniques. After shearing, clathrin plaques and particles associated with the cytoskeleton were left behind on the exposed cytoplasmic side of the membrane. The cytoskeleton of the podosomes was characterized by two types of actin filaments: relatively long filaments in the portion surrounding the podosome core, and highly branched short filaments in the core. Individual actin filaments radiating from the podosomes interacted with several membrane particles along the length of the filaments. Many lateral contacts with the membrane surface by the particles were made along the length of individual actin filaments. The polarity of actin filaments in podosomes became oriented such that their barbed ends were directed toward the core of podosomes. The actin cytoskeletons terminated or branched at the podosomes, where the membrane tightly adhered to the substratum. Microtubules were not usually present in the podosome structures; however, certain microtubules appeared to be morphologically in direct contact with the podosome core. Most of the larger clathrin plaques consisted of flat sheets of clathrin lattices that interconnected neighboring clathrin lattices to form an extensive clathrin area. However, the small deeply invaginated clathrin plaques and the podosomal cytoskeleton were located close together. Thus, the clathrin plaques on the ventral membrane of osteoclasts might be involved in both cell adhesion and the formation of receptor-ligand complexes, i.e., endocytosis.

  19. Post-structuralism, Complexity and Poetics.

    OpenAIRE

    Dillon, Michael

    2000-01-01

    Post-structuralism and complexity are plural and diverse modes of thought that share a common subscription to the �anteriority of radical relationality�. They nonetheless subscribe to a different ethic of life because they address the anteriority of radical relationality in different ways. Complexity remains strategic in its bid to become a power-knowledge of the laws of becoming. It derives that strategic ethic from its scientific interest in the implicate order of non-linearity that is ...

  20. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  1. The structure of the COPII transport-vesicle coat assembled on membranes.

    Science.gov (United States)

    Zanetti, Giulia; Prinz, Simone; Daum, Sebastian; Meister, Annette; Schekman, Randy; Bacia, Kirsten; Briggs, John A G

    2013-09-17

    Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.

  2. Structure of valinomycin and its complexes

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Makrlík, E.; Dušek, Michal; Císařová, I.; Dohnálek, Jan; Dušková, Jarmila; Skálová, Tereza

    2009-01-01

    Roč. 16, 2a (2009), s. 30-31 ISSN 1211-5894. [Struktura - Colloquium of Czech and Slovak Crystallographic Association. Hluboká nad Vltavou, 22.06.2009-25.06.2009] R&D Projects: GA ČR GA305/07/1073; GA AV ČR IAA500500701 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100521 Keywords : valinomycin * complex * structure 8 hydration Subject RIV: CD - Macromolecular Chemistry

  3. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

    Science.gov (United States)

    Gasanov, Sardar E; Kim, Aleksandr A; Yaguzhinsky, Lev S; Dagda, Ruben K

    2018-02-01

    Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1 H NMR and 31 P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F 0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F 0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F 0 sector, and thereby increase ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Piston-assisted proton pumping in Complex I of mitochondria membranes

    Science.gov (United States)

    Mourokh, Lev; Filonenko, Ilan

    2014-03-01

    Proton-pumping mechanism of Complex I remains mysterious because its electron and proton paths are well separated and the direct Coulomb interaction seems to be negligible. The structure of this enzyme was resolved very recently and its functionality was connected the shift of the helix HL. We model the helix as a piston oscillating between the protons and electrons. We assume that positive charges are accumulated near the edges of the helix. In the oxidized state, the piston is attracted to electrons, so its distance to the proton sites increases, the energy of these sites decreases and the sites can be populated. When electrons proceed to the drain, elastic forces return the piston to the original position and the energies of populated proton sites increase, so the protons can be transferred to the positive site of the membrane. In this work, we explore a simplified model when the interaction of the piston with electrons is replaced by a periodic force. We derive quantum Heisenberg equations for the proton operators and solve them jointly with the Langevin equation for the piston position. We show that the proton pumping is possible in such structure with parameters closely resembling the real system. We also address the feasibility of using such mechanism in nanoelectronics.

  6. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-01-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural

  7. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy

    2000-01-01

    Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft......-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking....

  8. Measuring excess free energies of self-assembled membrane structures.

    Science.gov (United States)

    Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus

    2010-01-01

    Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.

  9. The membrane attack complex of the complement system is essential for rapid wallerian degeneration

    NARCIS (Netherlands)

    Ramaglia, Valeria; King, Rosalind Helen Mary; Nourallah, Michelle; Wolterman, Ruud; de Jonge, Rosalein; Ramkema, Marja; Vigar, Miriam Ann; van der Wetering, Sandra; Morgan, Brian Paul; Troost, Dirk; Baas, Frank

    2007-01-01

    The complement (C) system plays an important role in myelin breakdown during Wallerian degeneration (WD). The pathway and mechanism involved are, however, not clear. In a crush injury model of the sciatic nerve, we show that C6, necessary for the assembly of the membrane attack complex (MAC), is

  10. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon

    NARCIS (Netherlands)

    Rep, M; van Dijl, J M; Suda, K; Schatz, G; Grivell, L A; Suzuki, C K

    1996-01-01

    Afg3p and Rca1p are adenosine triphosphate (ATP)-dependent metalloproteases in yeast mitochondria. Cells lacking both proteins exhibit defects in respiration-dependent growth, degradation of mitochondrially synthesized proteins, and assembly of inner-membrane complexes. Defects in growth and protein

  11. Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex

    DEFF Research Database (Denmark)

    Coudroy, Gwénaëlle; Gburek, Jakub; Kozyraki, Renata

    2005-01-01

    Cubilin is a peripheral apical membrane receptor for multiple ligands that are taken up in several absorptive epithelia. Recently, amnionless (AMN) was identified to form a functional receptor complex with cubilin. By expression in transfected polarized MDCK cells of AMN and several cubilin fragm...

  12. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  13. Glycan structures contain information for the spatial arrangement of glycoproteins in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available Glycoconjugates at the cell surface are crucial for cells to communicate with each other and the extracellular microenvironment. While it is generally accepted that glycans are vectorial biopolymers, their information content is unclear. This report provides evidence that distinct N-glycan structures influence the spatial arrangement of two integral membrane glycoproteins, Kv3.1 and E-cadherin, at the adherent membrane which in turn alter cellular properties. Distinct N-glycan structures were generated by heterologous expression of these glycoproteins in parental and glycosylation mutant Chinese hamster ovary cell lines. Unlike the N-linked glycans, the O-linked glycans of the mutant cell lines are similar to those of the parental cell line. Western and lectin blots of total membranes and GFP immunopurified samples, combined with glycosidase digestion reactions, were employed to verify the glycoproteins had predominantly complex, oligomannose, and bisecting type N-glycans from Pro(-5, Lec1, and Lec10B cell lines, respectively. Based on total internal reflection fluorescence and differential interference contrast microscopy techniques, and cellular assays of live parental and glycosylation mutant CHO cells, we propose that glycoproteins with complex, oligomannose or bisecting type N-glycans relay information for localization of glycoproteins to various regions of the plasma membrane in both a glycan-specific and protein-specific manner, and furthermore cell-cell interactions are required for deciphering much of this information. These distinct spatial arrangements also impact cell adhesion and migration. Our findings provide direct evidence that N-glycan structures of glycoproteins contribute significantly to the information content of cells.

  14. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System

    DEFF Research Database (Denmark)

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte

    2016-01-01

    . Cryo-transmission electron microscopy (cryo-TEM) revealed multilamellar, onion-like spherical vesicles, and small-angle X-ray scattering (SAXS) analysis confirmed that the majority of the lipids in the nanocarriers were organized in lamellar structures, yet coexisted with a hexagonal phase, which...

  15. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  16. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells.

    Science.gov (United States)

    Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

  17. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  18. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  19. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  20. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  1. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  2. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-01-01

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  3. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  4. A Linear Time Complexity of Breadth-First Search Using P System with Membrane Division

    Directory of Open Access Journals (Sweden)

    Einallah Salehi

    2013-01-01

    Full Text Available One of the known methods for solving the problems with exponential time complexity such as NP-complete problems is using the brute force algorithms. Recently, a new parallel computational framework called Membrane Computing is introduced which can be applied in brute force algorithms. The usual way to find a solution for the problems with exponential time complexity with Membrane Computing techniques is by P System with active membrane using division rule. It makes an exponential workspace and solves the problems with exponential complexity in a polynomial (even linear time. On the other hand, searching is currently one of the most used methods for finding solution for problems in real life, that the blind search algorithms are accurate, but their time complexity is exponential such as breadth-first search (BFS algorithm. In this paper, we proposed a new approach for implementation of BFS by using P system with division rule technique for first time. The theorem shows time complexity of BSF in this framework on randomly binary trees reduced from O(2d to O(d.

  5. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering......, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  6. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  7. Molecular simulations of hydrated proton exchange membranes. The structure

    Energy Technology Data Exchange (ETDEWEB)

    Marcharnd, Gabriel [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie; Bordeaux Univ., Talence (France). Dept. of Chemistry; Bopp, Philippe A. [Bordeaux Univ., Talence (France). Dept. of Chemistry; Spohr, Eckhard [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Theoretische Chemie

    2013-01-15

    The structure of two hydrated proton exchange membranes for fuel cells (PEMFC), Nafion {sup registered} (Dupont) and Hyflon {sup registered} (Solvay), is studied by all-atom molecular dynamics (MD) computer simulations. Since the characteristic times of these systems are long compared to the times for which they can be simulated, several different, but equivalent, initial configurations with a large degree of randomness are generated for different water contents and then equilibrated and simulated in parallel. A more constrained structure, analog to the newest model proposed in the literature based on scattering experiments, is investigated in the same way. One might speculate that a limited degree of entanglement of the polymer chains is a key feature of the structures showing the best agreement with experiment. Nevertheless, the overall conclusion remains that the scattering experiments cannot distinguish between the several, in our view equally plausible, structural models. We thus find that the characteristic features of experimental scattering curves are, after equilibration, fairly well reproduced by all systems prepared with our method. We thus study in more detail some structural details. We attempt to characterize the spatial and size distribution of the water rich domains, which is where the proton diffusion mostly takes place, using several clustering algorithms. (orig.)

  8. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Directory of Open Access Journals (Sweden)

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  9. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    Science.gov (United States)

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin

  10. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes.

    Science.gov (United States)

    Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron

    2004-03-01

    Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.

  11. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    Science.gov (United States)

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  12. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  13. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The higher level of complexity of K-Ras4B activation at the membrane

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S.; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-01-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5′-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.—Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. PMID:26718888

  15. The higher level of complexity of K-Ras4B activation at the membrane.

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-04-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5'-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.-Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. © FASEB.

  16. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    Science.gov (United States)

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    Science.gov (United States)

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  19. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  20. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  1. Structure and spectroscopy of uranyl salicylaldiminate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tamasi, A.L.; Barnes, C.L.; Walensky, J.R. [Missouri Univ., Columbia, MO (United States). Dept. of Chemistry

    2013-07-01

    The synthesis of uranyl complexes coordinated to tridentate, monoanionic salicylaldiminate (Schiff base) ligands was achieved by the reaction of UO{sub 2}Cl{sub 2}(THF){sub 3}, 1, with one equivalent of the corresponding sodium salicylaldiminate salts affording [(C{sub 9}H{sub 6}N)N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 2, [(NC{sub 5}H{sub 4})N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 3, and [(C{sub 6}H{sub 4}SCH{sub 3})N=C(H)C{sub 6}H{sub 2}'Bu{sub 2}O]UO{sub 2}Cl(THF), 4. These are uncommon examples of uranyl complexes with a monoanionic ancillary ligand to stabilize the coordination sphere and one chloride ligand. Compounds 2-4 have been characterized by {sup 1}H and {sup 13}C NMR spectroscopy as well as IR and UVVis spectroscopy and their structures determined by X-ray crystallography. (orig.)

  2. Transcription initiation complex structures elucidate DNA opening.

    Science.gov (United States)

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  3. The Model of Complex Structure of Quark

    Science.gov (United States)

    Liu, Rongwu

    2017-09-01

    In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.

  4. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N. Yu.; Kiselev, M. A.; Balagurov, A. M.

    2010-01-01

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of ∼30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  5. Selective laser melting-enabled electrospinning: Introducing complexity within electrospun membranes.

    Science.gov (United States)

    Paterson, Thomas E; Beal, Selina N; Santocildes-Romero, Martin E; Sidambe, Alfred T; Hatton, Paul V; Asencio, Ilida Ortega

    2017-06-01

    Additive manufacturing technologies enable the creation of very precise and well-defined structures that can mimic hierarchical features of natural tissues. In this article, we describe the development of a manufacturing technology platform to produce innovative biodegradable membranes that are enhanced with controlled microenvironments produced via a combination of selective laser melting techniques and conventional electrospinning. This work underpins the manufacture of a new generation of biomaterial devices that have significant potential for use as both basic research tools and components of therapeutic implants. The membranes were successfully manufactured and a total of three microenvironment designs (niches) were chosen for thorough characterisation. Scanning electron microscopy analysis demonstrated differences in fibre diameters within different areas of the niche structures as well as differences in fibre density. We also showed the potential of using the microfabricated membranes for supporting mesenchymal stromal cell culture and proliferation. We demonstrated that mesenchymal stromal cells grow and populate the membranes penetrating within the niche-like structures. These findings demonstrate the creation of a very versatile tool that can be used in a variety of tissue regeneration applications including bone healing.

  6. Thermodynamic and structural properties in complexing media

    International Nuclear Information System (INIS)

    Di Giandomenico, M.V.

    2007-10-01

    Protactinium is experiencing a renewal of interest in the frame of long-term energy production. Modelling the behaviour of this element in the geosphere requires thermodynamic and structural data relevant to environmental conditions. Now deep clayey formation are considered for the disposal of radioactive waste and high values of natural sulphate contents have been determined in pore water in equilibrium with clay surface. Because of its tendency to polymerisation, hydrolysis and sorption on all solid supports, the equilibria constants relative to monomer species were determined at tracer scale (ca. 10 - 12 M) with 233 Pa. The complexation constants of Pa(V) and sulphate ions were calculated starting from a systematic study of the apparent distribution coefficient D in the system TTA/Toluene/H 2 O/Na 2 SO 4 /HClO 4 /NaClO 4 and as a function of ionic strength, temperature, free sulphate, protons and chelatant concentration. First of all, the interaction between free species H + , SO 4 - , Na + leads to the formation of HSO 4 - and NaSO 4 - , for which concentrations depend upon the related thermodynamic constants. For this purpose a computer code was developed in order to determine all free species concentration. This iterative code takes into account the influence of temperature and ionic strength (SIT modelling) on thermodynamic constants. The direct measure of Pa(V) in the organic and aqueous phase by g-spectrometry had conducted to estimate the apparent distribution coefficient D as function of free sulphate ions. Complexation constants have been determined after a mathematical treatment of D. The extrapolation of these constants at zero ionic strength have been realized by SIT modelling at different temperatures. Besides, enthalpy and entropy values were calculated. Parallelly, the structural study of Pa(V) was performed using 231 Pa. XANES and EXAFS spectra show unambiguously the absence of the trans di-oxo bond that characterizes the other early actinide

  7. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    Science.gov (United States)

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Gamma-irradiation and neutron effect on DNA-membrane complexes of mammalian cells

    International Nuclear Information System (INIS)

    Lapidus, I.L.; Nazarov, V.M.; Ehrtsgreber, G.

    1984-01-01

    The first results of radiobiological investigations in the biophysical channel of the JINR reactor IBR-2 are presented. Sedimentation behaviour of DNA-membrane complexes has been studied at irradiation of the Chinese hamster cells (VT9-4) in a wide dose range of 137 Cs γ-irradiation and neutrons. An earlier assumption of the authors on the role of DNA double-strand breaks in changing the relative sedimentation velocity of complexes at irradiation of cells with doses over 50 Gy has been confirmed

  9. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  10. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. V. Semenihin

    2015-06-01

    Full Text Available Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1 within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1. Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase.

  11. Stimulation of DNA synthesis in bacterial DNA-membrane complexes after low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D K [Hammersmith Hospital, London (UK). M.R.C. Experimental Radiopathology Unit

    1980-09-01

    DNA-membrane complexes from three strains of E. coli were irradiated and changes in the rates of DNA synthesis were observed. Doses from 1-10 krad to complexes from W3110 and pol A1 strains gave up to a 100 per cent increase in DNA synthesis; under the same conditions, no change was observed in Bsub(s-1). The degree of stimulation did not depend on the presence of oxygen during irradiation, and a post-irradiation incubation was necessary to achieve activation. The properties of all three complexes were similar when unirradiated. Irradiation of intact organisms under conditions which produced marked, oxygen-dependent inhibition of the Bsub(s-1) complex had no significant effect on those from W3110 and pol A1. Enhanced DNA synthesis is concluded to be due wholly to repair of pre-existing DNA. It is further postulated that DNA synthesis in untreated complexes (E.coli B's,W3110 and pol A1) is mainly of the repair-type and does not necessarily take place at the site of DNA-membrane attachment.

  12. Low-Resolution Structure of Detergent-Solubilized Membrane Proteins from Small-Angle Scattering Data.

    Science.gov (United States)

    Koutsioubas, Alexandros

    2017-12-05

    Despite the ever-increasing usage of small-angle scattering as a valuable complementary method in the field of structural biology, applications concerning membrane proteins remain elusive mainly due to experimental challenges and the relative lack of theoretical tools for the treatment of scattering data. This fact adds up to general difficulties encountered also by other established methods (crystallography, NMR) for the study of membrane proteins. Following the general paradigm of ab initio methods for low-resolution restoration of soluble protein structure from small-angle scattering data, we construct a general multiphase model with a set of physical constraints, which, together with an appropriate minimization procedure, gives direct structural information concerning the different components (protein, detergent molecules) of detergent-solubilized membrane protein complexes. Assessment of the method's precision and robustness is evaluated by performing shape restorations from simulated data of a tetrameric α-helical membrane channel (Aquaporin-0) solubilized by n-Dodecyl β-D-Maltoside and from previously published small-angle neutron scattering experimental data of the filamentous hemagglutinin adhesin β-barrel protein transporter solubilized by n-Octyl β-D-glucopyranoside. It is shown that the acquisition of small-angle neutron scattering data at two different solvent contrasts, together with an estimation of detergent aggregation number around the protein, permits the reliable reconstruction of the shape of membrane proteins without the need for any prior structural information. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Organization structures for dealing with complexity

    NARCIS (Netherlands)

    Meijer, B.R.

    2006-01-01

    "Complexity is in the eye of the beholder" is a well known quote in the research field of complexity. In the world of managers the word complex is often a synonym for difficult, complicated, involving many factors and highly uncertain. A complex business decision requires careful preparation and

  14. Dependency of {gamma}-secretase complex activity on the structural integrity of the bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua, E-mail: hzhou2@lbl.gov [Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zhou, Shuxia; Walian, Peter J.; Jap, Bing K. [Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2010-11-12

    Research highlights: {yields} Partial solubilization of membranes with CHAPSO can increase {gamma}-secretase activity. {yields} Completely solubilized {gamma}-secretase is inactive. {yields} Purified {gamma}-secretase regains activity after reconstitution into lipid bilayers. {yields} A broad range of detergents can be used to successfully reconstitute {gamma}-secretase. -- Abstract: {gamma}-secretase is a membrane protein complex associated with the production of A{beta} peptides that are pathogenic in Alzheimer's disease. We have characterized the activity of {gamma}-secretase complexes under a variety of detergent solubilization and reconstitution conditions, and the structural state of proteoliposomes by electron microscopy. We found that {gamma}-secretase activity is highly dependent on the physical state or integrity of the membrane bilayer - partial solubilization may increase activity while complete solubilization will abolish it. The activity of well-solubilized {gamma}-secretase can be restored to near native levels when properly reconstituted into a lipid bilayer environment.

  15. Nitrosonium complexes of organic compounds. Structure and reactivity

    International Nuclear Information System (INIS)

    Borodkin, Gennady I; Shubin, Vyacheslav G

    2001-01-01

    Data on the structures and reactivities of nitrosonium complexes of organic compounds are systematised and generalised. The characteristic features of the electronic structure of the NO + cation are responsible for a wide structural variety of nitrosonium complexes. Reactions of nitrosonium complexes are described. The bibliography includes 172 references.

  16. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    Science.gov (United States)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  17. Structure and function of complex I in animals and plants - a comparative view.

    Science.gov (United States)

    Senkler, Jennifer; Senkler, Michael; Braun, Hans-Peter

    2017-09-01

    The mitochondrial NADH dehydrogenase complex (complex I) has a molecular mass of about 1000 kDa and includes 40-50 subunits in animals, fungi and plants. It is composed of a membrane arm and a peripheral arm and has a conserved L-like shape in all species investigated. However, in plants and possibly some protists it has a second peripheral domain which is attached to the membrane arm on its matrix exposed side at a central position. The extra domain includes proteins resembling prokaryotic gamma-type carbonic anhydrases. We here present a detailed comparison of complex I from mammals and flowering plants. Forty homologous subunits are present in complex I of both groups of species. In addition, five subunits are present in mammalian complex I, which are absent in plants, and eight to nine subunits are present in plant complex I which do not occur in mammals. Based on the atomic structure of mammalian complex I and biochemical insights into complex I architecture from plants we mapped the species-specific subunits. Interestingly, four of the five animal-specific and five of the eight to nine plant-specific subunits are localized at the inner surface of the membrane arm of complex I in close proximity. We propose that the inner surface of the membrane arm represents a workbench for attaching proteins to complex I, which are not directly related to respiratory electron transport, like nucleoside kinases, acyl-carrier proteins or carbonic anhydrases. We speculate that further enzyme activities might be bound to this micro-location in other groups of organisms. © 2017 Scandinavian Plant Physiology Society.

  18. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    Ounjai, Puey; Unger, Vinzenz M.; Sigworth, Fred J.; Angsuthanasombat, Chanan

    2007-01-01

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  19. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    Science.gov (United States)

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  20. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  1. Short length transmembrane domains having voluminous exoplasmic halves determine retention of Type II membrane proteins in the Golgi complex

    OpenAIRE

    Quiroga, Rodrigo; Trenchi, Alejandra; Gonzalez Montoro, Ayelén; Valdez, Javier Esteban; Maccioni, Hugo Jose Fernando

    2017-01-01

    It is still unclear why some proteins that travel along the secretory pathway are retained in the Golgi complex whereas others make their way to the plasma membrane. Recent bioinformatic analyses on a large number of single-spanning membrane proteins support the hypothesis that specific features of the transmembrane domain (TMD) are relevant to the sorting of these proteins to particular organelles. Here we experimentally test this hypothesis for Golgi and plasma membrane proteins. Using the ...

  2. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  3. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  4. Invisible detergents for structure determination of membrane proteins by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Darwish, Tamim A.; Pedersen, Martin Cramer

    2018-01-01

    A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron sca...... solution structure determination of membrane proteins by SANS and subsequent data analysis available to non-specialists. This article is protected by copyright. All rights reserved....

  5. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  6. The big and intricate dreams of little organelles: Embracing complexity in the study of membrane traffic.

    Science.gov (United States)

    Liu, Allen P; Botelho, Roberto J; Antonescu, Costin N

    2017-09-01

    Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  8. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  9. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  10. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  11. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.; Qiu, Xiaoyan; Behzad, Ali Reza; Musteata, Valentina-Elena; Smilgies, D.-M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  12. Wrapping up : nidovirus membrane structures and innate immunity

    NARCIS (Netherlands)

    Oudshoorn, D.

    2017-01-01

    The replication of all positive-stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles. One of the most prominent types of viral ROs induced by a number of these viruses, including coronaviruses and arteriviruses, are double-membrane vesicles

  13. Patterning of super-hydrophobic structures on permeable sensor membranes

    NARCIS (Netherlands)

    Pelt, van S.; Eggermont, J.; Frijns, A.J.H.; Dietzel, A.H.; Colin, S; Morini, GL; Brandner, JJ

    2012-01-01

    For a disposable smart food monitoring system, a gas sensor membrane is needed that isolates the sensor surface from (dust) particles water droplets. At the same time, this membrane must have a high permeability, a sufficiently fast response times and should be water repellent to avoid blocking of

  14. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    International Nuclear Information System (INIS)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-01-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T 1 -resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized 32 P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor

  15. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    Science.gov (United States)

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  16. The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory

    2015-01-01

    The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined her...

  17. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  18. Antibacterial Membrane with a Bone-Like Structure for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    YuYuan Zhang

    2015-01-01

    Full Text Available An antibacterial membrane with a bone-like structure was developed for guided bone regeneration (GBR by mineralising acellular bovine pericardium (ABP and loading it with the antibiotic minocycline. The bovine pericardium (BP membrane was processed using physical and chemical methods to remove the cellular components and obtain ABP membranes. Then, the ABP membranes were biomimetically mineralised using a calcium phosphate-loaded agarose hydrogel system aided by electrophoresis. Minocycline was adsorbed to the mineralised ABP membrane, and the release profile in vitro was studied. The membranes were characterised through scanning electron microscopy, diffuse reflectance-Fourier transform infrared spectroscopy, and X-ray diffraction. Results showed that the ABP membrane had an asymmetric structure with a layer of densely arranged and irregularly aligned collagen fibrils. Collagen fibrils were calcified with the formation of intrafibrillar and interfibrillar hydroxyapatites similar to the bone structure. Minocycline was incorporated into the mineralised collagen membrane and could be released in vitro. This process endowed the membrane with an antibacterial property. This novel composite membrane offers promising applications in bioactive GBR.

  19. Modeling the Structure and Complexity of Engineering Routine Design Problems

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.

    2011-01-01

    This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development

  20. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane

    International Nuclear Information System (INIS)

    Li, Weili; Xing, Yujin; Wu, Yuhui; Wang, Jiawei; Chen, Lizhuang; Yang, Gang; Tang, Benzhong

    2015-01-01

    In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO 2 -PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure, physical and electrochemical performances of the nanofibrous membranes and the corresponding CGPEs were studied by various measurements such as Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Stress-strain test, Linear Sweep Voltammetry (LSV), AC impedance measurement and Charge/discharge cycle test. As to the ion-complex doped nanofibrous membranes, PVdF can provide mechanical support with network structure composed of fully interconnection; while the ion-complexes are absorbed onto the surface of the PVdF nanofibers evenly instead of being aggregated. With the help of doped ion-complex, the prepared nanofibrous membranes present good liquid electrolyte absorbability, excellent mechanical performance, and high decomposition temperature. For the corresponding CGPEs, they possess high ionic conductivity, wide electrochemical window, and good charge/discharge cycle performance

  1. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  2. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  3. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  4. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  5. Native proteomic analysis of protein complexes in murine intestinal brush border membranes

    Czech Academy of Sciences Publication Activity Database

    Babušiak, M.; Man, Petr; Petrák, J.; Vyoral, D.

    2007-01-01

    Roč. 7, č. 1 (2007), s. 121-129 ISSN 1615-9853 R&D Projects: GA ČR(CZ) GD204/03/H066; GA AV ČR KJB500200612; GA MŠk LC545 Grant - others:GA ČR(CZ) GA303/04/0003; GA MZd(CZ) NR8930; GA MŠk(CZ) LC06044; CZ(CZ) 023736; GA MZd(CZ) NR8317 Program:NR Institutional research plan: CEZ:AV0Z50200510 Keywords : blue native electrophoresis * brush border membranes * protein complexes Subject RIV: EE - Microbiology, Virology Impact factor: 5.479, year: 2007

  6. The membrane attack complex as an indicator of complement hyperactivation in type 2 diabetes mellitus

    OpenAIRE

    Elina Aleksandrovna Arakelova; Meri Robertovna Ovsepyan; Anna Surenovna Boyadzhyan; Arsen Artashesovich Arakelyan; Astkhik Artavazdovna Gevorkyan; Ashot Andreevich Mamikonyan

    2011-01-01

    Aim. Comparative analysis of the levels of the membrane attack complex (MAC) - an end product of complement activation, and of hemolytic activities of C1 and C3 complement components in sera of patients with diabetes mellitus 2 (DM2) and healthy subjects. Materials and methods. 37 DM2 patients (7 men, 26 women, mean age 58±9 years (M±б) and 37 healthy subjects without a family history of hereditary diabetes (17 men, 20 women, mean age 52±12 years). Serum MAC levels were measured by E...

  7. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  8. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    Science.gov (United States)

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The structure and singularities of arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    A classical combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex Arc(F) consisting of suitable equivalence classes of arcs in F connecting its bou...

  10. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    Science.gov (United States)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  11. Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins

    Science.gov (United States)

    Pownall, Henry J.; Homan, Reynold; Massey, John B.

    1987-01-01

    Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.

  12. The structure and function of cell membranes studied by atomic force microscopy.

    Science.gov (United States)

    Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda

    2018-01-01

    The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  14. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins

    International Nuclear Information System (INIS)

    Roosild, Tarmo P.; Castronovo, Samantha; Choe, Senyon

    2006-01-01

    The X-ray crystallographic analysis of anti-FLAG M2 Fab is reported and the implications of the structure on FLAG epitope binding are described as a first step in the development of a tool for the structural and biophysical study of membrane proteins. The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ‘soluble’ portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K + channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 Å resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments

  15. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  16. Choosing the Best Enzyme Complex Structure Made Easy.

    Science.gov (United States)

    Das, Sayoni; Orengo, Christine

    2018-04-03

    In this issue of Structure, Tyzack et al. (2018) present a study of enzyme-ligand complexes in the PDB and show that the molecular similarity of bound and cognate ligands can be used to choose the most biologically appropriate complex structure for analysis when multiple structures are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Deformation mechanisms of a porous structure of the poly(ethylene terephthalate) nuclear track membrane

    International Nuclear Information System (INIS)

    Ovchinnikov, V.V.

    1989-01-01

    The deformation mechanisms of a porous structure of the nuclear track membrane made of poly(ethylene terephthalate) are investigated in the temperature range from 333 to 473 K. It is shown that the pore size of the membrane can both decrease and increase. The analytical equation based on the Alfrey mechanical approach to the relaxation deformation of polymers describes the experimental data satisfactorily over the whole range of temperatures and pore radii of the membranes. 21 refs.; 5 figs.; 3 tabs

  18. Deformation analysis of a film-overlapped micro-pump membrane structure

    International Nuclear Information System (INIS)

    Lee, Fu-Shin; Wang, Pi-Wen; Chen, Chih-Hsiung

    2008-01-01

    A novel approach is developed to study a film-overlapped membrane structure. Meanwhile, the established model is employed to design the micro-pump membrane structure and to evaluate its pumping efficiency. Two-dimensional coupling effects between the overlapping actuator films and the deformable membrane are thoroughly investigated, including the influences on the membrane from the overlapping films' elongation effects, Poisson's ratio effects and shear strain effects. Overall deformations and interactions for the three-layer membrane structures are accurately calculated through exercising the developed model, in contrast to what difficulties are usually encountered in carrying out FEM methods with very thin elements meshed for the actuator films. Furthermore, this study demonstrates that the high stiffness of the actuating metal films needs to be reflected in the equivalent stiffness of the membrane structures, especially when the sizes of the actuator films become compatible with the sizes of the membranes. Hence, the optimal micro-pumping efficiency of a membrane structure is acquired upon exercising the developed model, and larger sizes of the actuating films do not definitely obtain larger pumping efficiencies for the electromagnetically actuated micro-pumps

  19. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    International Nuclear Information System (INIS)

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-01-01

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 (angstrom) resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  1. Selective transport of metal ions through cation exchange membrane in the presence of a complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tingchia Huang; Jaukai Wang (National Cheng Kung Univ., Tainan (Taiwan, Province of China))

    1993-01-01

    Selective transport of metal ions through a cation exchange membrane was studied in stirred batch dialyzer for the systems Ni[sup 2+]-Cu[sup 2+] and Cu[sup 2+]-Fe[sup 3+]. Oxalic acid, malonic acid, citric acid, glycine, and ethylenediaminetetraacetic acid were employed as the complexing agents added in the feed solution in order to increase the permselectivity of metal ions. The experimental results show that the selective transport behavior of metal ions depends on the valence and the concentration of metal ions, the stoichiometric ratio of complexing agent to metal ions, and the pH value of the feed solution, but is independent of the concentration of counterion in the stripping phase. A theoretical approach was formulated on the basis of the Nernst-Planck equation and interface quasi-equilibrium. Theoretical solutions obtained from numerical calculation were in agreement with the experimental data.

  2. Structure and dynamics of weakly bound complexes

    International Nuclear Information System (INIS)

    Skouteris, D.

    1998-01-01

    The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of

  3. Is Phenomenal Consciousness a Complex Structure?

    OpenAIRE

    Stieg, Chuck

    2004-01-01

    Evolutionary explanations of psychological phenomena have become widespread. This paper examines a recent attempt by Nichols and Grantham (2000) to circumvent the problem of epiphenomenalism in establishing the selective status of consciousness. Nichols and Grantham (2000) argue that a case can be made for the view that consciousness is an adaptation based on its complexity. I set out this argument and argue that it fails to establish that phenomenal consciousness is a complex system. It ...

  4. Structure of rhenium (5) complexes with petroleum organic sulfur compounds

    International Nuclear Information System (INIS)

    Akhmadieva, R.G.; Yusupova, N.A.; Numanov, N.U.; Basitova, S.M.

    1985-01-01

    Structure of Re(5) complexes with petroleum sulfides (L) of ReOCl 3 (L) 2 composition is studied by the UV- and IR-spectroscopy method in a short-wave and long-wave ranges. It is shown that Re(5) complex with L are of the form of flattened octahedron,where three Cl atoms and one L molecule are arranged in the plane around Re atom. The structure is analogous to structure of Re complexes with synthetic cyclic sulfides

  5. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  6. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  7. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Pérez-Gil, Jesús

    2014-06-01

    Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  9. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.; Martinez, Kristina; Ramon, Guy Z.; Hoek, Eric M.V.

    2012-01-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane's water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane's structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  10. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  11. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.

    Science.gov (United States)

    Isabet, Tatiana; Montagnac, Guillaume; Regazzoni, Karine; Raynal, Bertrand; El Khadali, Fatima; England, Patrick; Franco, Michel; Chavrier, Philippe; Houdusse, Anne; Ménétrey, Julie

    2009-09-16

    The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.

  12. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    Science.gov (United States)

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2018-03-05

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  13. Membrane structure: neutron diffraction and small angle scattering studies

    International Nuclear Information System (INIS)

    Zaccai, G.

    1985-01-01

    The author considers a molecule in a beam of radiation of wavelength lambda. Two extreme ways are shown in which on can have many identical molecules in a sample: a crystal in which they are related to each other by the symmetry of a lattice, and complete disorder in which there is no correlation between molecules. The detailed crystallographic analysis of isomorphous replacement is examined. Neutron diffraction experiments with specific deuteration are performed to characterize interactions of cholesterol with lipid bilayers. Retinal rod outer segment disk membranes and the purple membrane of H. halobium are examined

  14. Complex photonic structures for energy efficiency

    Directory of Open Access Journals (Sweden)

    Wiersma D. S.

    2013-06-01

    Full Text Available Photonic structures are playing an increasingly important role in energy efficiency. In particular, they can help to control the flow of light and improve the optical properties of photovoltaic solar cells. We will explain the physics of light transport in such structures with a special focus on disordered materials.

  15. New Possibilities of the FLNR Accelerator Complex for the Production of Track Membranes

    CERN Document Server

    Oganessian, Yu T; Didyk, A Yu; Gulbekyan, G G; Kutner, V B

    2000-01-01

    The description of the main systems of modified heavy ion accelerator U-400 of the Flerov Laboratory of Nuclear Reactions is presented including the ECR ion source, system of external injection of low energy ions onto median plane. The characteristic parameters for obtaining of accelerated heavy ions from krypton ions to more heavier ones also are presented. The structure and parameters of new beam line and vacuum chamber for irradiation of polymeric and other materials on modified cyclotron U-400 are presented too. The new possibilities for the production of unique track membrane are discussed.

  16. The performance of double layer structure membrane prepared from flowing coagulant

    Science.gov (United States)

    Mieow Kee, Chan; Xeng, Anthony Leong Chan; Regal, Sasiskala; Singh, Balvinder; Raoo, Preeshaath; Koon Eu, Yap; Sok Choo, Ng

    2017-12-01

    Membrane with double layer structure is favourable as it exhibits smooth surface and macrovoids free structure. However, its’ performance in terms of permeability, porosity and strength has not been studied thoroughly. Additionally, the effect of flowing coagulant on the formation of double layer membrane has not been reported. Thus, the objective of this study is to investigate the performance of double layer membranes, which were prepared using flowing coagulant. Results showed that when the coagulant flow changed from laminar to turbulent, the pure water permeation of the membrane increased. It was due to the higher porosity in the membrane, which prepared by turbulent flow (CA-Turbulent) compared to the membrane which fabricated under laminar condition (CA-Laminar). This can be explained by the rapid solvent-coagulant exchange rate between the polymer solution and the turbulent coagulant. In term of strength, the tensile strength of the CA-Turbulent was ~32 MPa, which was 100% higher compared to CA-Laminar. This may due to the presence of large amount of nodules on its surface, which reduced the surface integrity. In conclusion, flowing coagulant altered the membrane properties and adopting turbulent coagulant flow in membrane fabrication would improve the porosity, surface roughness and the strength of the membrane.

  17. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  18. Ab initio lattice dynamics of complex structures

    DEFF Research Database (Denmark)

    Voss, Johannes

    2008-01-01

    In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent ato...

  19. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    Science.gov (United States)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  20. The in vivo structure of biological membranes and evidence for lipid domains

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chatterjee, Sneha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stanley, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qian, Shuo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Myles, Dean A. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Standaert, Robert F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Elkins, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Katsaras, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Lopez, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-05-23

    Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments—performed under biologically relevant conditions—answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.

  1. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    Science.gov (United States)

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  2. Probing water structure and transport in proton exchange membranes

    NARCIS (Netherlands)

    Ling, X.

    2018-01-01

    Proton exchange membrane fuel cells (PEMFCs) have attracted tremendous attention as alternative energy sources because of their high energy density and practically zero greenhouse gas emission - water is their only direct by-product. Critical to the function of PEMFCs is fast proton and water

  3. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal

  4. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  5. Uniform Structure of Eukaryotic Plasma Membrane: Lateral Domains in Plants

    Czech Academy of Sciences Publication Activity Database

    Malínská, Kateřina; Zažímalová, Eva

    2011-01-01

    Roč. 12, č. 2 (2011), s. 148-155 ISSN 1389-2037 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Plasma membrane * microdomains * lateral segregation Subject RIV: ED - Physiology Impact factor: 2.886, year: 2011

  6. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  7. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    International Nuclear Information System (INIS)

    Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.

    2006-01-01

    Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described

  8. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...... and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality....

  9. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  10. Visualization of the structures of the hepatitis C virus replication complex

    International Nuclear Information System (INIS)

    Chan, Shih-Ching; Lo, Shih-Yen; Liou, Je-Wen; Lin, Min-Ching; Syu, Ciao-Ling; Lai, Meng-Jiun; Chen, Yi- Cheng; Li, Hui-Chun

    2011-01-01

    Research highlights: → Lipid rafts are known to play an important role in virus entry and virus assembly of many viruses. → However, HCV is the first example of the association of lipid raft with viral RNA replication. → Our results in this manuscript demonstrate that purified HCV RCs with associated lipid raft membrane appeared as distinct particles of around 0.7 um under EM and AFM. → Knockdown of proteins associated with lipid raft suppressed the HCV replication and reduced the number of these particles. → To our knowledge, structures of HCV RCs were demonstrated at its first time in this manuscript. -- Abstract: Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.

  11. Complex structures in the Nash-Moser category

    DEFF Research Database (Denmark)

    Gravesen, Jens

    1989-01-01

    Working in the Nash-Moser category, it is shown that the harmonic and holomorphic differentials and the Weierstrass points on a closed Riemann surface depend smoothly on the complex structure. It is also shown that the space of complex structures on any compact surface forms a principal bundle over...

  12. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses

  13. Complex decision making using a structured framework

    International Nuclear Information System (INIS)

    Anderson, S.A.; McKeown, T.J.; Jankousky, J.L.

    1994-01-01

    In response to regulatory requirements, Rocky Flats has developed and implemented a methodology to select primary treatment technologies for its mixed low-level (MLL) wastes. Several factors have contributed to the complexity of technology selection at Rocky Flats, including lack of detailed waste characterization data, lack of detailed information about the technologies under consideration, and the intense public scrutiny that the selection process is expected to generate. These three factors were the primary drivers for development of the selection methodology

  14. Structure of the haptoglobin-haemoglobin complex

    DEFF Research Database (Denmark)

    Andersen, Christian Brix Folsted; Torvund-Jensen, Morten; Nielsen, Marianne Jensby

    2012-01-01

    to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger...... that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4)....

  15. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  16. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    Science.gov (United States)

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development.

    Directory of Open Access Journals (Sweden)

    Molly Parkyn Schneider

    2017-10-01

    Full Text Available Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC. Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC.

  18. Aspectos estruturais da membrana eritrocitária Structural aspects of the erythrocyte membrane

    Directory of Open Access Journals (Sweden)

    Priscila Murador

    2007-06-01

    ócito e é ainda responsável pela estabilidade sob mecanismos de estresse. Essa revisão da membrana eritrocitária é importante para um melhor entendimento das reações transfusionais, onde a formação de anticorpos contra antígenos de alta freqüência dificulta a transfusão compatível. O estudo da diversidade antigênica, a caracterização bioquímica de diferentes proteínas trará uma contribuição para o estabelecimento da saúde, assim como para o diagnóstico, desenvolvimento de tecnologias, como a produção de anticorpos monoclonais e conduta terapêutica para muitas enfermidades.This article describes the structures and functions of the erythrocyte membrane and its importance in transfusional medicine. The erythrocyte membrane is one of the best known membranes in terms of structure, function and genetic disorders. As any other plasma membrane, it mediates transport functions. It also provides the erythrocytes with their resilience and deformability. According to the International Society of Blood Transfusion (ISBT, more than 500 antigens are expressed in the erythrocyte membrane, and around 270 are involved in transfusion reaction cases and hemolytic diseases of the fetus and newborn. In the ISBT classification, the high frequency series is represented by antigens in more than 99% of population (high prevalence antigen. In transfusion, the absence of these antigens determines severe problems as for example, one woman without the P antigen suffered 6 repetitive miscarriages due to placental insufficiency, which was caused by an antibody formed against the absent P antigen. Some important erythrocyte membrane proteins are described here including Band 3, Glycophorins and spectrin. The most abundant integral membrane protein is Band 3 and its main function is to mediate exchange of chloride and bicarbonate anions across the plasma membrane. The second most abundant integral membrane protein in the human erythrocyte is sialoglycoprotein glycophorin A (GPA

  19. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Shinoda, Satoshi; Tsukube, Hiroshi

    2008-01-01

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10 -1 to 1.0 x 10 -3 M, while the low detection limits of these electrodes were order of ∼10 -4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  20. Relationships between structural complexity, coral traits, and reef fish assemblages

    Science.gov (United States)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  1. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  2. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  3. Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching

    Science.gov (United States)

    2013-01-01

    REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy

  4. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    Science.gov (United States)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  6. Structural and electrical characterization of PZT on gold for micromachined piezoelectric membranes

    International Nuclear Information System (INIS)

    Robinson, M.C.; Morris, D.J.; Hayenga, P.D.; Cho, J.H.; Richards, C.D.; Richards, R.F.; Bahr, D.F.

    2006-01-01

    Piezoelectric membranes have been fabricated that incorporate a gold bottom electrode with an adhesion layer of titanium-tungsten (10:90 wt. %). For solution-deposited acetic acid based lead zirconate titanate (HoAc-PZT) with a Zr:Ti ratio of 40:60, the film's average piezoelectric coefficient, e 31 , is -5.31 C/m 2 , with a dielectric constant of 814 at 200 Hz, which is similar to values for platinum bottom electrodes. The PZT structure remains columnar on both types of bottom electrodes. Initial fabrication attempts resulted in cracking that initiated in the PZT layer of the structure. X-ray photoelectron spectroscopy was utilized to establish how processing affects diffusion throughout the composite membrane structure. Crack-free membranes were fabricated and tested. This paper discusses the performance properties and piezoelectric fatigue results for these membranes. (orig.)

  7. The synthesis of recombinant membrane proteins in yeast for structural studies.

    Science.gov (United States)

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    International Nuclear Information System (INIS)

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H + translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ ≅ 70,000 and ≅ 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-[ 14 C]ethylmaleimide and 7-chloro-4-nitro[ 14 C]benzo-2-oxa-1,3-diazole, labeled the M/sub r/ ≅ 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-[ 14 C]dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ ≅ 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10 5 , 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ ≅ 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F 0 F 1 ATPases

  9. Porous rod-like MgO complex membrane with good anti-bacterial activity directed by conjugated linolenic acid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Chen, Meng [Henan Normal University, College of Chemistry and Chemical Engineering (China); Mi, Li-Wei, E-mail: mlwzzu@163.com [Zhongyuan University of Technology, Center for Advanced Materials Research (China); Shi, Li-Hua [Anyang 101 Education Center (China); Cao, Ying, E-mail: caoying1130@sina.com [Zhongyuan University of Technology, Center for Advanced Materials Research (China)

    2016-02-15

    The problem of infection in the tissue engineering substitutes is driving us to seek new coating materials. We previously found that conjugated linolenic acid (CLnA) has well biocompatibility and excellent membrane-forming property. The objective of this study is to endow the anti-bacterial activity to CLnA membra ne by linking with MgO. The results showed that the CLnA polymer membrane can be loaded with porous rod-like MgO and such complex membrane showed anti-bacterial sensitivity against gram-positive bacteria (Staphylococcus aureus) even at the low concentration (0.15 μg/mm{sup 2}). In the present study, the best zone of inhibition got to 18.2 ± 0.8 mm when the amount of MgO reach 2.42 ± 0.58 μg/mm{sup 2}. It was deduced that the porous rod-like structure of MgO was directed by CLnA in its polymerization process. Such CLnA/MgO complex membrane can be helpful in the tissue engineering, medicine, food engineering, food preservation, etc. on the basis of its good anti-bacterial activity.

  10. Elongated membrane tethers, individually anchored by high affinity α4β1/VCAM-1 complexes, are the quantal units of monocyte arrests.

    Directory of Open Access Journals (Sweden)

    Calvin Chu

    Full Text Available The α4β1 integrin facilitates both monocyte rolling and adhesion to the vascular endothelium and is physiologically activated by monocyte chemoattractant protein (MCP-1. The current study investigated the initial events in the adhesion of THP-1 cells to immobilized Vascular Cell Adhesion Molecule 1 (VCAM-1. Using AFM force measurements, cell adhesion was shown to be mediated by two populations of α4β1/VCAM-1 complexes. A low affinity form of α4β1 was anchored to the elastic elements of the cytoskeleton, while a higher affinity conformer was coupled to the viscous elements of the cell membrane. Within 100 ms of contact, THP-1 cells, stimulated by co-immobilized MCP-1, exhibited a tremendous increase in adhesion to VCAM-1. Enhanced cell adhesion was accompanied by a local decoupling of the cell membrane from the cytoskeleton and the formation of long membrane tethers. The tethers were individually anchored by multiple α4β1/VCAM-1 complexes that prolonged the extension of the viscous tethers. In vivo, the formation of these membrane tethers may provide the quantal structural units for the arrest of rolling monocytes within the blood vessels.

  11. Supramolecular structure of glibenclamide and β-cyclodextrins complexes.

    Science.gov (United States)

    Lucio, David; Irache, Juan Manuel; Font, María; Martínez-Ohárriz, María Cristina

    2017-09-15

    Glibenclamide is an antidiabetic drug showing low bioavailability as consequence of its low solubility. To solve this drawback, the interaction with cyclodextrins has been proposed. The formation of GB-βCDs inclusion complexes was carried out using different methods, βCD derivatives and drug-to-cyclodextrin ratios. The structures of the corresponding complexes have been studied by molecular modelling, X-ray diffraction and differential thermal analysis. The dissolution behavior of inclusion complexes has been compared to that of pure GB. Dimeric inclusion complexes were obtained with different CD disposals, head-to-head for βCD and head-to-tail for HPβCD and RMβCD. Amorphous inclusion complexes were obtained by employing methods of freeze-drying or coevaporation in ammonia-water. However, crystalline structures were formed by kneading and coevaporation in ethanol/water in the case of GB-βCD complexes. The arrangement of these structures depended on the GB:βCD ratio, yielding cage type structures for 1:3 and 1:5 ratios and channel-type structures for higher GB contents. The amount of GB released and its dissolution rate was considerably increased by the use of amorphous inclusion complexes; whereas, slower GB release rates were found from crystalline inclusion complexes formed by kneading or coevaporation in ethanol/water. In addition, it was found that the porous structure strongly conditioned the GB dissolution rate from crystalline products. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  13. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  14. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  15. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Science.gov (United States)

    Zhang, Yihao; Abiraman, Krithika; Li, He; Pierce, David M; Tzingounis, Anastasios V; Lykotrafitis, George

    2017-02-01

    Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM) to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav), which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  16. Critical Structure for Telescopic Movement of Honey bee (Insecta: Apidae) Abdomen: Folded Intersegmental Membrane.

    Science.gov (United States)

    Zhao, Jieliang; Yan, Shaoze; Wu, Jianing

    2016-01-01

    The folded intersegmental membrane is a structure that interconnects two adjacent abdominal segments; this structure is distributed in the segments of the honey bee abdomen. The morphology of the folded intersegmental membrane has already been documented. However, the ultrastructure of the intersegmental membrane and its assistive role in the telescopic movements of the honey bee abdomen are poorly understood. To explore the morphology and ultrastructure of the folded intersegmental membrane in the honey bee abdomen, frozen sections were analyzed under a scanning electron microscope. The intersegmental membrane between two adjacent terga has a Z-S configuration that greatly influences the daily physical activities of the honey bee abdomen. The dorsal intersegmental membrane is 2 times thicker than the ventral one, leading to asymmetric abdominal motion. Honey bee abdominal movements were recorded using a high-speed camera and through phase-contrast computed tomography. These movements conformed to the structural features of the folded intersegmental membrane. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  17. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Hagn, Franz, E-mail: franz.hagn@tum.de; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly {sup 15}N-Phe and {sup 15}N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd{sup 3+}-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.

  18. Reinforcing Visual Grouping Cues to Communicate Complex Informational Structure.

    Science.gov (United States)

    Bae, Juhee; Watson, Benjamin

    2014-12-01

    In his book Multimedia Learning [7], Richard Mayer asserts that viewers learn best from imagery that provides them with cues to help them organize new information into the correct knowledge structures. Designers have long been exploiting the Gestalt laws of visual grouping to deliver viewers those cues using visual hierarchy, often communicating structures much more complex than the simple organizations studied in psychological research. Unfortunately, designers are largely practical in their work, and have not paused to build a complex theory of structural communication. If we are to build a tool to help novices create effective and well structured visuals, we need a better understanding of how to create them. Our work takes a first step toward addressing this lack, studying how five of the many grouping cues (proximity, color similarity, common region, connectivity, and alignment) can be effectively combined to communicate structured text and imagery from real world examples. To measure the effectiveness of this structural communication, we applied a digital version of card sorting, a method widely used in anthropology and cognitive science to extract cognitive structures. We then used tree edit distance to measure the difference between perceived and communicated structures. Our most significant findings are: 1) with careful design, complex structure can be communicated clearly; 2) communicating complex structure is best done with multiple reinforcing grouping cues; 3) common region (use of containers such as boxes) is particularly effective at communicating structure; and 4) alignment is a weak structural communicator.

  19. FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2009-01-01

    The nearest young stellar groups are associated with 'hubs' of column density exceeding 10 22 cm -2 , according to recent observations. These hubs radiate multiple 'filaments' of parsec length, having lower column density and fewer stars. Systems with many filaments tend to have parallel filaments with similar spacing. Such 'hub-filament structure' is associated with all of the nine young stellar groups within 300 pc, forming low-mass stars. Similar properties are seen in infrared dark clouds forming more massive stars. In a new model, an initial clump in a uniform medium is compressed into a self-gravitating, modulated layer. The outer layer resembles the modulated equilibrium of Schmid-Burgk with nearly parallel filaments. The filaments converge onto the compressed clump, which collapses to form stars with high efficiency. The initial medium and condensations have densities similar to those in nearby star-forming clouds and clumps. The predicted structures resemble observed hub-filament systems in their size, shape, and column density, and in the appearance of their filaments. These results suggest that HFS associated with young stellar groups may arise from compression of clumpy gas in molecular clouds.

  20. Solving complex band structure problems with the FEAST eigenvalue algorithm

    Science.gov (United States)

    Laux, S. E.

    2012-08-01

    With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.

  1. Structural and functional insights into the malaria parasite moving junction complex.

    Directory of Open Access Journals (Sweden)

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  2. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

    Science.gov (United States)

    Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

    2016-05-01

    Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

  3. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  4. Structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: freeze-fracture electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L; Mehard, C W; Meissner, G; Zahler, W L; Fleischer, S

    1974-01-01

    The role of phospholipid in the structure of the membranes of beef heart mitochondria and of the sarcoplasmic reticulum membranes from rabbit skeletal muscle has been investigated by freeze-fracture electron microscopy. Progressive removal of membrane phospholipids, by phospholipase A treatment or detergent treatment, or by organic solvent extraction, results in loss of the smooth background seen in membrane fracture faces and decreased ability of membrane to undergo freeze fracture to yield fracture faces. Instead cross-sections of vesicles or particle clusters are observed. Sarcoplasmic reticulum vesicles have a 9 to 1 asymmetry in the distribution of particles between the convex and concave fracture faces. There is also a wide range of particle size distribution in both of these fracture faces with 85-A particles in greatest number. The removal of membrane associated proteins by detergent extraction does not appreciably change the distribution in particle size. Sarcoplasmic reticulum vesicles were dissolved with detergent and reassembled to form membrane vesicles containing mainly one protein (approx. 90%), i.e., the Ca/sup 2 +/ pump protein, and with a ratio of lipid to protein similar to the original membrane. The reconstituted vesicles readily underwent freeze fracture but the asymmetric particle distribution between the fracture faces was no longer observed. The size distribution of particles in the reconstituted membrane, consisting mainly of Ca/sup 2 +/ pump protein, and phospholipid, was similar in heterogeneity to the original sarcoplasmic reticulum membrane. Thus the heterogeneity in particle size could reflect variation in the orientation of the Ca/sup 2 +/ pump protein within the membrane.

  5. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application

    Science.gov (United States)

    Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie

    2018-05-01

    In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.

  7. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  8. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    Science.gov (United States)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  9. Detection of inhomogeneities in membrane ohmic resistance in geometrically complex systems

    DEFF Research Database (Denmark)

    Svirskis, G; Hounsgaard, J; Gutman, A

    2000-01-01

    DC field-evoked transients in arbitrarily shaped neurons and syncytia were analyzed theoretically. In systems with homogeneous passive membrane properties, the transients develop much faster than the membrane discharges. Conductance of the proximal membrane could be larger due to the injury impos...

  10. Study of structural stability and damaging effect on membrane for four Aβ42 dimers.

    Directory of Open Access Journals (Sweden)

    Wei Feng

    Full Text Available Increasing evidence shows that Aβ oligomers are key pathogenic molecules in Alzheimer's disease. Among Aβ oligomers, dimer is the smallest aggregate and toxic unit. Therefore, understanding its structural and dynamic properties is quite useful to prevent the formation and toxicity of the Aβ oligomers. In this study, we performed molecular dynamic simulations on four Aβ42 dimers, 2NCb, CNNC, NCNC and NCCN, within the hydrated DPPC membrane. Four Aβ42 dimers differ in the arrangements of two Aβ42 peptides. This study aims to investigate the impact of aggregation pattern of two Aβ peptides on the structural stability of the Aβ42 dimer and its disruption to the biological membrane. The MD results demonstrate that the NCCN, CNNC and NCNC have the larger structural fluctuation at the N-terminus of Aβ42 peptide, where the β-strand structure converts into the coil structure. The loss of the N-terminal β-strand further impairs the aggregate ability of Aβ42 dimer. In addition, inserting Aβ42 dimer into the membrane can considerably decrease the average APL of DPPC membrane. Moreover this decrease effect is largely dependent on the distance to the location of Aβ42 dimer and its secondary structure forms. Based on the results, the 2NCb is considered as a stable dimeric unit for aggregating the larger Aβ42 oligomer, and has a potent ability to disrupt the membrane.

  11. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    chemically characterised using X-ray photoelectron spectroscopy (XPS) and time of flight-static secondary ion mass spectrometry (TOF-static SIMS). The filtration performance of irradiated/non-modified and irradiated/modified membranes was examined in a crossflow cell, using a dextran solution. The filtration...... in relation to dextran when compared to membranes modified by AAG and AAP. This work suggests that the structure of the presence of grafted chains seems to be responsible for the observed changes to filtration performance of the modified membrane. Surface analysis supports the claim that the specific surface...

  12. Thermodynamical properties and thermoelastic coupling of complex macroscopic structure

    International Nuclear Information System (INIS)

    Fabbri, M.; Sacripanti, A.

    1996-11-01

    Gross qualitative/quantitative analysis about thermodynamical properties and thermoelastic coupling (or elastocaloric effect) of complex macroscopic structure (running shoes) is performed by infrared camera. The experimental results showed the achievability of a n industrial research project

  13. Significance tests for functional data with complex dependence structure

    KAUST Repository

    Staicu, Ana-Maria; Lahiri, Soumen N.; Carroll, Raymond J.

    2015-01-01

    We propose an L (2)-norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a

  14. Metalophthalocyanine complexes as ion-carriers in membrane-selective electrodes for detection of thiosalicylic acid

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Souri, Ali

    2004-01-01

    The potentiometric response properties of several PVC-based membrane electrodes using phthalocyanine complexes of aluminum (AlPc), nickel (NiPc) and copper (CuPc) as anion carriers, toward thiosalicylic acid (TSA) were investigated. The influences of lipophilic ionic additives (cationic and anionic) and the pH of the buffered solutions were used for the interpretation of the mechanism of the potentiometric response of sensors. The sensitivity, linear range, detection limit, and potentiometric selectivity of the membrane sensors show a considerable dependence on the nature of central metal of the ionophore. The membrane electrodes based on AlPc demonstrate sub-Nernstian responses toward TSA over the range of 0.01 to 1x10 -5 M. In the case of NiPc and CuPc as ionophores and in the presence of trioctylmethyl ammonium (TOMA + ) as a cationic additive, a Nernstian response could be established in a range of 4 orders of magnitudes of TSA concentration (0.01 to 1x10 -6 M). The results of potentiometric investigations revealed that from thermodynamic point of view, the axial coordination of thiosalicylate with the central metal of NiPc and CuPc is more efficient with respect to AlPc. This preference in response to TSA was discussed on the basis of the softness nature of NiPc and CuPc and more affinity for coordination with the thiolate group of thiosalicylate as a soft anion. These potentiometric sensors manifest prominent advantages of high selectivity for TSA over the various inorganic and organic anions, fast response times and micromolar detection limits and can be used over a wide pH range of 4.0-8.0. The prepared electrodes based on NiPc and CuPc were successfully applied in the potentiometric titration of sub-milimolar quantities of Hg 2+ in aqueous solutions and very good recovery results were obtained in these measurements. The results of complexometric studies between Hg 2+ and TSA using electrodes based on NiPc and CuPc as indicator electrodes were compared with

  15. Information visualization for the Structural Complexity Management Approach

    OpenAIRE

    Maurer, Maik;Braun, Thomas;Lindemann, Udo

    2017-01-01

    The handling of complexity poses an important challenge and a success factor for product design. A considerable percentage of complexity results from dependencies between system elements – as adaptations to single system elements can cause far-reaching consequences. The Structural Complexity Management (SCM) approach provides a five-step procedure that supports users in the identification, acquisition, analysis and optimization of system dependencies. The approach covers the handling of multi...

  16. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  17. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    Science.gov (United States)

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  18. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    OpenAIRE

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient productio...

  19. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    Science.gov (United States)

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  20. Stability and structure of the membrane protein transporter Ffh is modulated by substrates and lipids

    DEFF Research Database (Denmark)

    Reinau, Marika Ejby; Otzen, Daniel

    2009-01-01

    the apoprotein. Escherichia coli lipid and DOPG (and to a smaller extent DOPC) increase Ffh's α-helical content, possibly related to Ffh's role in guiding membrane proteins to the membrane. Binding is largely mediated by electrostatic interactions but does not protect Ffh against trypsinolysis. We conclude...... that Ffh is a structurally flexible and dynamic protein whose stability is significantly modulated by the environment. © 2009 Elsevier Inc. All rights reserved....

  1. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  2. Tomographic Structural Changes of Retinal Layers after Internal Limiting Membrane Peeling for Macular Hole Surgery.

    Science.gov (United States)

    Faria, Mun Yueh; Ferreira, Nuno P; Cristóvao, Diana M; Mano, Sofia; Sousa, David Cordeiro; Monteiro-Grillo, Manuel

    2018-01-01

    To highlight tomographic structural changes of retinal layers after internal limiting membrane (ILM) peeling in macular hole surgery. Nonrandomized prospective, interventional study in 38 eyes (34 patients) subjected to pars plana vitrectomy and ILM peeling for idiopathic macular hole. Retinal layers were assessed in nasal and temporal regions before and 6 months after surgery using spectral domain optical coherence tomography. Total retinal thickness increased in the nasal region and decreased in the temporal region. The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) showed thinning on both nasal and temporal sides of the fovea. The thickness of the outer plexiform layer (OPL) increased. The outer nuclear layer (ONL) and outer retinal layers (ORL) increased in thickness after surgery in both nasal and temporal regions. ILM peeling is associated with important alterations in the inner retinal layer architecture, with thinning of the RNFL-GCL-IPL complex and thickening of OPL, ONL, and ORL. These structural alterations can help explain functional outcome and could give indications regarding the extent of ILM peeling, even though peeling seems important for higher rate of hole closure. © 2017 S. Karger AG, Basel.

  3. Microbial community structure characteristics associated membrane fouling in A/O-MBR system.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2014-02-01

    The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins

    NARCIS (Netherlands)

    Peden, A.A.; Oorschot, V.; Hesser, B.A.; Austin, C.D.; Scheller, R.H.; Klumperman, J.

    2004-01-01

    The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal

  5. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    van Raam, Bram J.; Sluiter, Wim; de Wit, Elly; Roos, Dirk; Verhoeven, Arthur J.; Kuijpers, Taco W.

    2008-01-01

    BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m)), which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m) in neutrophils, as compared to peripheral blood

  6. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-06-01

    Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought

  7. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Crystal structure of the Msx-1 homeodomain/DNA complex.

    Science.gov (United States)

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  9. Compact complex surfaces with geometric structures related to split quaternions

    International Nuclear Information System (INIS)

    Davidov, Johann; Grantcharov, Gueo; Mushkarov, Oleg; Yotov, Miroslav

    2012-01-01

    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkähler, are analogs of the hypercomplex, hyperhermitian and hyperkähler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkähler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkähler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S 0 and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  10. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  11. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Vibrational spectroscopy and structural analysis of complex uranium compounds (review)

    International Nuclear Information System (INIS)

    Umreiko, D.S.; Nikanovich, M.V.

    1985-01-01

    The paper reports on the combined application of experimental and theoretical methods of vibrational spectroscopy together with low-temperature luminescence data to determine the characteristic features of the formation and structure of complex systems, not only containing ligands directly coordinated to the CA uranium, but also associated with the extraspherical polyatomic electrically charged particles: organic cations. These include uranyl complexes and heterocyclical amines. Studied here were compounds of tetra-halouranylates with pyridine and its derivates, as well as dipyridyl, quinoline and phenanthroline. Structural schemes are also proposed for other uranyl complexes with protonated heterocyclical amines with a more complicated composition, which correctly reflect their spectroscopic properties

  14. The evolution of cerebellum structure correlates with nest complexity.

    Science.gov (United States)

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  15. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  16. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  17. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.

    Science.gov (United States)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2016-03-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.

  18. Structuring and assessing large and complex decision problems using MCDA

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    This paper presents an approach for the structuring and assessing of large and complex decision problems using multi-criteria decision analysis (MCDA). The MCDA problem is structured in a decision tree and assessed using the REMBRANDT technique featuring a procedure for limiting the number of pair...

  19. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  20. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome.

    Science.gov (United States)

    Jomaa, Ahmad; Fu, Yu-Hsien Hwang; Boehringer, Daniel; Leibundgut, Marc; Shan, Shu-Ou; Ban, Nenad

    2017-05-19

    During co-translational protein targeting, the signal recognition particle (SRP) binds to the translating ribosome displaying the signal sequence to deliver it to the SRP receptor (SR) on the membrane, where the signal peptide is transferred to the translocon. Using electron cryo-microscopy, we have determined the structure of a quaternary complex of the translating Escherichia coli ribosome, the SRP-SR in the 'activated' state and the translocon. Our structure, supported by biochemical experiments, reveals that the SRP RNA adopts a kinked and untwisted conformation to allow repositioning of the 'activated' SRP-SR complex on the ribosome. In addition, we observe the translocon positioned through interactions with the SR in the vicinity of the ribosome exit tunnel where the signal sequence is extending beyond its hydrophobic binding groove of the SRP M domain towards the translocon. Our study provides new insights into the mechanism of signal sequence transfer from the SRP to the translocon.

  1. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  2. Crystallinity and order of poly(ethylene oxide)/lithium triflate complex confined in nanoporous membranes

    International Nuclear Information System (INIS)

    Bishop, Christina; Teeters, Dale

    2009-01-01

    The confinement of poly(ethylene oxide), PEO, electrolyte in pores of 13, 35, 55 and 100 nm in diameter in nanoporous alumina membranes was seen to have effects on the ionic conduction properties. Specific conductivity values for the PEO/lithium triflate complex in the 13 and 35 nm pores, for temperatures below the melt temperatures, were increased by a factor of four compared to the non-confined polymer and the 55 and 100 nm pore systems. Thermal analysis data indicate the melting temperature for the PEO electrolyte in the pores is directly proportional to the pore size such that as the pore size of confinement is decreased, the T m decreases as well. The same behavior is seen for the amount of crystallinity, with less crystallinity being observed as the pores become smaller. Perhaps the observed conduction behavior could be attributed to less crystallinity. However, it is known that confinement of polyethers in pores results in stretching and ordering of the backbone and that such ordering can increase ion conduction. This ordering would seem to be the major factor involved in these results. The enhanced conduction only being seen in the 13 and 35 nm pores and not the 55 and 100 nm pores is attributed to the larger size for the latter which allows a more bulk-like behavior with less ordering.

  3. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Nietfeld Wilfried

    2010-03-01

    Full Text Available Abstract Background The complement system is a crucial mediator of inflammation and cell lysis after cerebral ischemia. However, there is little information about the exact contribution of the membrane attack complex (MAC and its inhibitor-protein CD59. Methods Transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO in young male and female CD59a knockout and wild-type mice. Two models of MCAO were applied: 60 min MCAO and 48 h reperfusion, as well as 30 min MCAO and 72 h reperfusion. CD59a knockout animals were compared to wild-type animals in terms of infarct size, edema, neurological deficit, and cell death. Results and Discussion CD59a-deficiency in male mice caused significantly increased infarct volumes and brain swelling when compared to wild-type mice at 72 h after 30 min-occlusion time, whereas no significant difference was observed after 1 h-MCAO. Moreover, CD59a-deficient mice had impaired neurological function when compared to wild-type mice after 30 min MCAO. Conclusion We conclude that CD59a protects against ischemic brain damage, but depending on the gender and the stroke model used.

  4. The Complex Relationship of Extracorporeal Membrane Oxygenation and Acute Kidney Injury: Causation or Association?

    Science.gov (United States)

    Kilburn, Daniel J; Shekar, Kiran; Fraser, John F

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass (CPB) circuit capable of providing prolonged cardiorespiratory support. Recent advancement in ECMO technology has resulted in increased utilisation and clinical application. It can be used as a bridge-to-recovery, bridge-to-bridge, bridge-to-transplant, or bridge-to-decision. ECMO can restitute physiology in critically ill patients, which may minimise the risk of progressive multiorgan dysfunction. Alternatively, iatrogenic complications of ECMO clearly contribute to worse outcomes. These factors affect the risk : benefit ratio of ECMO which ultimately influence commencement/timing of ECMO. The complex interplay of pre-ECMO, ECMO, and post-ECMO pathophysiological processes are responsible for the substantial increased incidence of ECMO-associated acute kidney injury (EAKI). The development of EAKI significantly contributes to morbidity and mortality; however, there is a lack of evidence defining a potential benefit or causative link between ECMO and AKI. This area warrants investigation as further research will delineate the mechanisms involved and subsequent strategies to minimise the risk of EAKI. This review summarizes the current literature of ECMO and AKI, considers the possible benefits and risks of ECMO on renal function, outlines the related pathophysiology, highlights relevant investigative tools, and ultimately suggests an approach for future research into this under investigated area of critical care.

  5. The Complex Relationship of Extracorporeal Membrane Oxygenation and Acute Kidney Injury: Causation or Association?

    Directory of Open Access Journals (Sweden)

    Daniel J. Kilburn

    2016-01-01

    Full Text Available Extracorporeal membrane oxygenation (ECMO is a modified cardiopulmonary bypass (CPB circuit capable of providing prolonged cardiorespiratory support. Recent advancement in ECMO technology has resulted in increased utilisation and clinical application. It can be used as a bridge-to-recovery, bridge-to-bridge, bridge-to-transplant, or bridge-to-decision. ECMO can restitute physiology in critically ill patients, which may minimise the risk of progressive multiorgan dysfunction. Alternatively, iatrogenic complications of ECMO clearly contribute to worse outcomes. These factors affect the risk : benefit ratio of ECMO which ultimately influence commencement/timing of ECMO. The complex interplay of pre-ECMO, ECMO, and post-ECMO pathophysiological processes are responsible for the substantial increased incidence of ECMO-associated acute kidney injury (EAKI. The development of EAKI significantly contributes to morbidity and mortality; however, there is a lack of evidence defining a potential benefit or causative link between ECMO and AKI. This area warrants investigation as further research will delineate the mechanisms involved and subsequent strategies to minimise the risk of EAKI. This review summarizes the current literature of ECMO and AKI, considers the possible benefits and risks of ECMO on renal function, outlines the related pathophysiology, highlights relevant investigative tools, and ultimately suggests an approach for future research into this under investigated area of critical care.

  6. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    Science.gov (United States)

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  7. Solution structure of the luzopeptin-DNA complex

    International Nuclear Information System (INIS)

    Zhang, Xiaolu; Patel, D.J.

    1991-01-01

    The luzopeptin-d(C-A-T-G) complex (1 drug/duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. Once equivalent of luzopeptin binds to the self-complementary tetranucleotide duplex with the 2-fold symmetry of the antitumor agent and the DNA oligomer retained on complex formation. The authors have assigned the exchangeable and nonexchangeable proton resonances of luzopeptin and the d(C-A-T-G) duplex in the complex and identified the intermolecular proton-proton NOEs that define the alignment of the antitumor agent at its binding site in duplex DNA. The analysis was greatly aided by a large number of intermolecular NOEs involving exchangeable protons on both the luzopeptin and the DNA in the complex. The formation of cis peptide bonds for luzopeptin in the complex results in an increased separation of the long sides of the rectangular cyclic depsipeptide backbone and reorients in the glycine amide proton so that it can form an intermolecular hydrogen bond with the 2-carbonyl of T3 in the complex. This observation explains, in part, the requirement for Watson-Crick A·T pairs to be sandwiched between the quinolines at the bisintercalation site in the luzopeptin-DNA complex. The NMR studies on the luzopeptin-d(C-A-T-G) complex unequivocally establish that antitumor agents can undergo conformational transitions on complex formation with DNA, and it is the conformation of the drug in the complex that should serve as the starting point for drug design studies. The above structural details on the solution structure of the luzopeptin-DNA complex also explain the sequence selectivity of luzopeptin for bisintercalation at d(C-A)·d(T-G) steps in the d(C-A-T-G) duplex in solution

  8. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  9. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    Science.gov (United States)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  10. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  11. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  12. A new entropy based method for computing software structural complexity

    CERN Document Server

    Roca, J L

    2002-01-01

    In this paper a new methodology for the evaluation of software structural complexity is described. It is based on the entropy evaluation of the random uniform response function associated with the so called software characteristic function SCF. The behavior of the SCF with the different software structures and their relationship with the number of inherent errors is investigated. It is also investigated how the entropy concept can be used to evaluate the complexity of a software structure considering the SCF as a canonical representation of the graph associated with the control flow diagram. The functions, parameters and algorithms that allow to carry out this evaluation are also introduced. After this analytic phase follows the experimental phase, verifying the consistency of the proposed metric and their boundary conditions. The conclusion is that the degree of software structural complexity can be measured as the entropy of the random uniform response function of the SCF. That entropy is in direct relation...

  13. The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection

    Science.gov (United States)

    Rossignol, Evan D.; Yang, Jie E.; Bullitt, Esther

    2015-01-01

    Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes. PMID:26473912

  14. Modeling membrane protein structure through site-directed ESR spectroscopy

    NARCIS (Netherlands)

    Kavalenka, A.A.

    2009-01-01

    Site-directed spin labeling (SDSL) electron spin resonance (ESR) spectroscopy is a
    relatively new biophysical tool for obtaining structural information about proteins. This
    thesis presents a novel approach, based on powerful spectral analysis techniques (multicomponent
    spectral

  15. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  16. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity

    DEFF Research Database (Denmark)

    Nielsen, Søren B; Otzen, Daniel Erik

    2010-01-01

    We have studied the impact of an 18-residue cationic antimicrobial peptide Novicidin (Nc) on the structure and integrity of partially anionic lipid membranes using oriented circular dichroism (OCD), quartz crystal microbalance with dissipation (QCM-D), dual polarization interferometry (DPI......), calcein dye leakage and fluorescence spectroscopy. OCD consistently showed that Nc is bound in an alpha-helical, surface bound state over a range of peptide to lipid (P/L) ratios up to approximately 1:15. Realignment of Nc at higher P/L ratios correlates to loss of membrane integrity as shown by Laurdan...... concentration, probably through formation of transient pores or transient disruption of the membrane integrity, followed by more extensive membrane disintegration at higher P/L ratios....

  17. Structure and electrochemical properties of the track membranes modified by tetrafluoroethane plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Goryacheva, T.A.; Satulu, V.; Mitu, B.; Dinescu, G.

    2010-01-01

    A structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by the 1,1,1,2-tetrafluoroethane plasma have been studied. It has been found that the polymer deposition on the surface of a track membrane via the plasma polymerization of 1,1,1,2-tetrafluoroethane results in the creation of bilayered composite membranes that possess a conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of p-n junction in semiconductors. This effect is caused by an important reduction of the pore diameter in the polymer layer that leads to changing the pore geometry as well as by existence of an interface between two layers with different concentrations of carboxyl groups. Information about the charge transport in the studied membranes has been obtained by the method of impedance spectroscopy

  18. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    Science.gov (United States)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  19. Complex-Dynamic Cosmology and Emergent World Structure

    OpenAIRE

    Kirilyuk, Andrei P.

    2004-01-01

    Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...

  20. Structure of a stacked anthraquinone–DNA complex

    Science.gov (United States)

    De Luchi, Daniela; Usón, Isabel; Wright, Glenford; Gouyette, Catherine; Subirana, Juan A.

    2010-01-01

    The crystal structure of the telomeric sequence d(UBrAGG) interacting with an anthraquinone derivative has been solved by MAD. In all previously studied complexes of intercalating drugs, the drug is usually sandwiched between two DNA base pairs. Instead, the present structure looks like a crystal of stacked anthraquinone molecules in which isolated base pairs are intercalated. Unusual base pairs are present in the structure, such as G·G and A·UBr reverse Watson–Crick base pairs. PMID:20823516

  1. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W; Cerione, Richard A; Skiniotis, Georgios; Ramachandran, Sekar

    2017-08-25

    The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G T ). This results in the dissociation of G T into its component α T -GTP and β 1 γ 1 subunit complex. Structural information for the Rho*-G T complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G T *) comprising a Gα T /Gα i1 chimera (α T *) and β 1 γ 1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα T * is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G T *. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β 2 -adrenergic receptor-G S complex, including a flexible α T * helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Super-resolution optical microscopy for studying membrane structure and dynamics.

    Science.gov (United States)

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  3. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...

  4. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    International Nuclear Information System (INIS)

    Tidow, Henning; Hein, Kim L.; Baekgaard, Lone; Palmgren, Michael G.; Nissen, Poul

    2010-01-01

    Plant plasma-membrane Ca 2+ -ATPase is regulated via binding of calmodulin to its autoinhibitory N-terminal domain. In this study, the expression, purification, crystallization and preliminary X-ray diffraction analysis of this protein complex from A. thaliana are reported. Plasma-membrane Ca 2+ -ATPases (PMCAs) are calcium pumps that expel Ca 2+ from eukaryotic cells to maintain overall Ca 2+ homoeostasis and to provide local control of intracellular Ca 2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca 2+ regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca 2+ -CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca 2+ -ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, β = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin

  5. Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang; Hoyano, Akira [Department of Environmental Science and Technology, Interdisciplinary Graduate School, Tokyo Institute of Technology, 4259-G5-2 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2010-01-15

    This study aims to clarify the summer microclimate in membrane structure buildings with semi-outdoor spaces and develop a computational simulation tool for designing a comfortable urban environment using membrane structures. Field measurements were conducted in a membrane structure building with a semi-outdoor space during a summer period. The present paper describes analysis results of measurement data for vertical distributions of air temperature and velocity under the membrane structure on clear sunny days. The following subjects were also discussed: (1) the effect of solar transmission on the warming of air temperature by the floor under the membrane structure; (2) the temperature reduction effect of ventilation by wind; (3) evaluation of thermal comfort in the living space under the membrane structure in terms of a thermal comfort index (new standard effective temperature: SET*). In order to demonstrate the capability to improve the thermal environment in the test membrane structure building, an evaporative cooling pavement was assumed to be applied to the ground under the membrane structure. The microclimatic modifying effect of this passive cooling strategy was evaluated using a numerical simulation method of coupling computational fluid dynamics (CFD) with a 3D-CAD-based thermal simulation tool developed by the authors' research group. Simulation results show that the proposed simulation method is capable of quantifying spatial distributions of surface temperature, air temperature, air velocity and moisture in the living space under the membrane structure. The thermal comfort index (SET*) can also be estimated using these simulated results. (author)

  6. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Directory of Open Access Journals (Sweden)

    Roberto P Stock

    Full Text Available The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1 ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2 the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3 in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  7. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  8. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    Science.gov (United States)

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  9. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  10. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant; Coulthurst, Sarah J.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2011-12-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide. The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.

  11. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    International Nuclear Information System (INIS)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant; Coulthurst, Sarah J.; Hunter, William N.

    2011-01-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide. The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners

  12. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane

    NARCIS (Netherlands)

    Schug, Z. T.; Gonzalvez, F.; Houtkooper, R. H.; Vaz, F. M.; Gottlieb, E.

    2011-01-01

    Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this

  13. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  14. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    International Nuclear Information System (INIS)

    Valpuesta, J.M.; Arrondo, J.L.; Barbero, M.C.; Pons, M.; Goni, F.M.

    1986-01-01

    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear

  15. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Adams, Peter G; Mothersole, David J; Ng, Irene W; Olsen, John D; Hunter, C Neil

    2011-09-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre-light-harvesting 1-PufX (RC-LH1-PufX) 'core' complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX(-)). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX(-) mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC-LH1-PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX(-) membranes, resulting in locally ordered clusters of monomeric RC-LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation. 2011 Elsevier B.V. All rights reserved.

  16. Information structure and reference tracking in complex sentences

    CERN Document Server

    Gijn, Rik van; Matic, Dejan

    2014-01-01

    This paper discusses argument marking and reference tracking in Mekens complex clauses and their correlation to information structure. The distribution of pronominal arguments in Mekens simple clauses follows an absolutive pattern with main verbs. Complex clauses maintain the morphological absolutive argument marking, but show a nominative pattern with respect to argument reference tracking, since transitive and intransitive subjects function as syntactic pivots. The language extends the use of argument-marking verb morphology to control the reference of discourse participants across clauses.

  17. A structurally characterized organometallic plutonium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Christos; Walter, Olaf [European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Karlsruhe (Germany); Vogt, Jochen; Liebing, Phil; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Maron, Laurent [Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Universite de Toulouse/INSA/CNRS (UMR5215), Toulouse (France)

    2017-04-24

    The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η{sup 8}-bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT''){sub 2}] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    Science.gov (United States)

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  19. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  20. Structural studies of the lipid membranes at the Siberia-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Kiselev, M. A.; Ermakova, E. V.; Ryabova, N. Yu.; Nayda, O. V.; Zabelin, A. V.; Pogorely, D. K.; Korneev, V. N.; Balagurov, A. M.

    2010-01-01

    Lipid membranes are a subject of contemporary interdisciplinary studies at the junction of biology, biophysics, pharmacology, and bionanotechnology. The results of the structural studies of several types of lipid membranes by the lamellar and lateral diffraction of X-ray synchrotron radiation are presented. The experiments were performed at the Mediana and DICSI stations of the Siberia-2 synchrotron radiation source at the Russian Research Center Kurchatov Institute. The data obtained are compared with the results of studying lipid membranes at the small-angle scattering beamlines D22 and D24 at LURE (France) and at the A2 beamline at DESY (Germany). The parameters of the DICSI station are shown to meet the basic requirements for the structural study of lipid systems, which are of fundamental and applied interest.

  1. Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films

    DEFF Research Database (Denmark)

    Mohammadi, Reza; Mohammadifar, Mohammad Amin; Rouhi, Milad

    2018-01-01

    This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p< 0.05), but r......This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p... interactions introduced by the addition of chitosan to eggshell membrane gelatin as new resources could improve the films’ functional properties....

  2. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate

    DEFF Research Database (Denmark)

    Stock, Roberto; Brewer, Jonathan R.; Wagner, Kerstin

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model...... membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy...... and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing...

  3. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations

    DEFF Research Database (Denmark)

    Vestergaard, Mikkel; Kraft, Johan Frederik; Vosegaard, Thomas

    2015-01-01

    present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane...... protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small......The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we...

  4. Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination

    KAUST Repository

    Wang, Peng; Cui, Yue; Ge, Qingchun; Fern Tew, Tjin; Chung, Neal Tai-Shung

    2015-01-01

    The incorporation of membrane distillation (MD) into forward osmosis (FO) provides process sustainability to regenerate the draw solution and to produce clean water simultaneously. However, the reverse salt flux is the major hurdle in the FO-MD system because it not only reduces the effective osmotic driving force across the membrane but also increases the replenishment cost and scaling issue. For the first time, a hydroacid complex with abundant hydrophilic groups and ionic species is evaluated as the draw solutes in the hybrid FO-MD system consisting of multi-bore PVDF MD membranes for seawater/brackish desalination. In order to evaluate the practicality of the hydroacid complex in the FO-MD system, FO and MD experiments were conducted at elevated temperatures and concentrations. The hydroacid complex has displayed desired properties such as high solubility, low viscosity, excellent thermal stability and minimal reverse salt flux suitable for FO and MD operations. FO-MD desalination process was demonstrated with a highest seawater desalination flux of 6/32 LMH (FO/MD). This study may open up the prospective of employing the hydroacid complex as the draw solute in FO-MD hybrid systems for seawater /brackish desalination. © 2015 Elsevier B.V.

  5. Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination

    KAUST Repository

    Wang, Peng

    2015-11-01

    The incorporation of membrane distillation (MD) into forward osmosis (FO) provides process sustainability to regenerate the draw solution and to produce clean water simultaneously. However, the reverse salt flux is the major hurdle in the FO-MD system because it not only reduces the effective osmotic driving force across the membrane but also increases the replenishment cost and scaling issue. For the first time, a hydroacid complex with abundant hydrophilic groups and ionic species is evaluated as the draw solutes in the hybrid FO-MD system consisting of multi-bore PVDF MD membranes for seawater/brackish desalination. In order to evaluate the practicality of the hydroacid complex in the FO-MD system, FO and MD experiments were conducted at elevated temperatures and concentrations. The hydroacid complex has displayed desired properties such as high solubility, low viscosity, excellent thermal stability and minimal reverse salt flux suitable for FO and MD operations. FO-MD desalination process was demonstrated with a highest seawater desalination flux of 6/32 LMH (FO/MD). This study may open up the prospective of employing the hydroacid complex as the draw solute in FO-MD hybrid systems for seawater /brackish desalination. © 2015 Elsevier B.V.

  6. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    Elbasyouny, A.

    1983-01-01

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1 H-NMR and 13 C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H 2 O molecules per formula unit. (orig./EF) [de

  7. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  8. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    Science.gov (United States)

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  9. Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Drolle, E [University of Waterloo, Canada; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Hoopes, M I [University of Waterloo, Canada; Choi, Y [University of Waterloo, Canada; Katsaras, John [ORNL; Karttunen, M [University of Waterloo, Canada; Leonenko, Z [University of Waterloo, Canada

    2013-01-01

    The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimer's disease. The membrane's chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterol's role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments andMolecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-snglycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken.

  10. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  11. Factors influencing efficient structure of fuel and energy complex

    Science.gov (United States)

    Sidorova, N. G.; Novikova, S. A.

    2017-10-01

    The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.

  12. Structural insights into the p97-Ufd1-Npl4 complex

    Science.gov (United States)

    Pye, Valerie E.; Beuron, Fabienne; Keetch, Catherine A.; McKeown, Ciaran; Robinson, Carol V.; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2007-01-01

    p97/VCP (Cdc48 in yeast) is an essential and abundant member of the AAA+ family of ATPases and is involved in a number of diverse cellular pathways through interactions with different adaptor proteins. The two most characterized adaptors for p97 are p47 and the Ufd1 (ubiquitin fusion degradation 1)-Npl4 (nuclear protein localization 4) complex. p47 directs p97 to membrane fusion events and has been shown to be involved in protein degradation. The Ufd1-Npl4 complex directs p97 to an essential role in endoplasmic reticulum-associated degradation and an important role in mitotic spindle disassembly postmitosis. Here we describe the structural features of the Ufd1-Npl4 complex and its interaction with p97 with the aid of EM and other biophysical techniques. The Ufd1-Npl4 heterodimer has an elongated bilobed structure that is ≈80 × 30 Å in dimension. One Ufd1-Npl4 heterodimer is shown to interact with one p97 hexamer to form the p97-Ufd1-Npl4 complex. The Ufd1-Npl4 heterodimer emanates from one region on the periphery of the N-D1 plane of the p97 hexamer. Intriguingly, the p97-p47 and the p97-Ufd1-Npl4 complexes are significantly different in stoichiometry, symmetry, and quaternary arrangement, reflecting their specific actions and their ability to interact with additional cofactors that cooperate with p97 in diverse cellular pathways. PMID:17202270

  13. Structural insight into the UNC-45–myosin complex

    DEFF Research Database (Denmark)

    Fratev, Filip; Jonsdottir, Svava Osk; Pajeva, Ilza

    2013-01-01

    The UNC-45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC-45–myosin complex using various...... is mainly stabilized by electrostatic interactions. Remarkably, the contact surface area is similar to that of the myosinactin complex. A significant interspecies difference in the myosin binding epitope is observed. Our results reveal the structural basis of MYH7 exons 15–16 hypertrophic cardiomyopathy...... mutations and provide directions for drug targeting. © 2013 Wiley Periodicals, Inc....

  14. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  15. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Complete flexural vibration band gaps in membrane-like lattice structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang

    2006-01-01

    The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates

  17. Dimensional and Structural Control of Silica Aerogel Membranes for Miniaturized Motionless Gas Pumps.

    Science.gov (United States)

    Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M

    2015-08-26

    With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in

  18. The complex band structure for armchair graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M − 1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes

  19. Nanoclay-Directed Structure and Morphology in PVDF Electrospun Membranes

    Directory of Open Access Journals (Sweden)

    Kyunghwan Yoon

    2014-01-01

    Full Text Available The incorporation of organically modified Lucentite nanoclay dramatically modifies the structure and morphology of the PVDF electrospun fibers. In a molecular level, the nanoclay preferentially stabilizes the all-trans conformation of the polymer chain, promoting an α to β transformation of the crystalline phase. The piezoelectric properties of the β-phase carry great promise for energy harvest applications. At a larger scale, the nanoclay facilitates the formation of highly uniform, bead-free fibers. Such an effect can be attributed to the enhanced conductivity and viscoelasticity of the PVDF-clay suspension. The homogenous distribution of the directionally aligned nanoclays imparts advanced mechanical properties to the nanofibers.

  20. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    Science.gov (United States)

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  1. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  2. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Mika Dorin, Rachel; Phillip, William A.; Wiesner, Ulrich; Hoek, Eric M.V.

    2013-01-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  3. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  4. Micropore structure stabilization in organosilica membranes by gaseous catalyst post-treatment

    NARCIS (Netherlands)

    Dral, A. Petra; van Eck, Ernst R.H.; Winnubst, Louis; ten Elshof, Johan E.

    2018-01-01

    A post-treatment involving repeated exposure to gaseous HCl alternated with heating is demonstrated to strongly accelerate the recently reported structural evolution in organically bridged silica networks. Films, powders and membranes derived from 1,2-bis(triethoxysilyl)ethane were exposed to

  5. Solution structure and elevator mechanism of the membrane electron transporter CcdA.

    Science.gov (United States)

    Zhou, Yunpeng; Bushweller, John H

    2018-02-01

    Membrane oxidoreductase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism that has not yet been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily, and thus its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights into membrane transporter architecture and mechanism.

  6. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Ghani, Lubna; Du, Yang

    2017-01-01

    of detergents, are available, purification and structural characterization of many membrane proteins remain challenging. In the current study, a new class of tripod amphiphiles bearing two different penta-saccharide head groups, designated TPSs, were developed and evaluated for their ability to extract...

  7. Kinetics of structural reorganizations in multilamellarphotosynthetic membranes monitored by small-angle neutronscattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Kovacs, Laszlo; Unnep, Renata

    2013-01-01

    and in unicellular organisms, we discuss the advantages and technical and methodological limitations of timeresolved SANS. We present a detailed and more systematical investigation of the kinetics of light-induced structural reorganizations in isolated spinach thylakoid membranes, which show how changes...

  8. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.

    Science.gov (United States)

    Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S

    2017-11-07

    The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biophysical study of resin acid effects on phospholipid membrane structure and properties

    DEFF Research Database (Denmark)

    Jagalski, Vivien; Barker, Robert; Topgaard, Daniel

    2016-01-01

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, ...

  10. Mitochondrial membranes with mono- and divalent salt: Changes induced by salt ions on structure and dynamics

    NARCIS (Netherlands)

    Pöyry, S.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl2) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering, and

  11. Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies

    Energy Technology Data Exchange (ETDEWEB)

    AhYoung, Andrew P.; Lu, Brian; Cascio, Duilio; Egea, Pascal F.

    2017-06-01

    Membrane contact sites between organelles serve as molecular hubs for the exchange of metabolites and signals. In yeast, the Endoplasmic Reticulum – Mitochondrion Encounter Structure (ERMES) tethers these two organelles likely to facilitate the non-vesicular exchange of essential phospholipids. Present in Fungi and Amoebas but not in Metazoans, ERMES is composed of five distinct subunits; among those, Mdm12, Mmm1 and Mdm34 each contain an SMP domain functioning as a lipid transfer module. We previously showed that the SMP domains of Mdm12 and Mmm1 form a hetero-tetramer. Here we describe our strategy to diversify the number of Mdm12/Mmm1 complexes suited for structural studies. We use sequence analysis of orthologues combined to protein engineering of disordered regions to guide the design of protein constructs and expand the repertoire of Mdm12/Mmm1 complexes more likely to crystallize. Using this combinatorial approach we report crystals of Mdm12/Mmm1 ERMES complexes currently diffracting to 4.5 Å resolution and a new structure of Mdm12 solved at 4.1 Å resolution. Our structure reveals a monomeric form of Mdm12 with a conformationally dynamic N-terminal β-strand; it differs from a previously reported homodimeric structure where the N-terminal β strands where swapped to promote dimerization. Based on our electron microscopy data, we propose a refined pseudo-atomic model of the Mdm12/Mmm1 complex that agrees with our crystallographic and small-angle X-ray scattering (SAXS) solution data.

  12. Kinetic and spectroscopic studies of cytochrome b-563 in isolated cytochrome b/f complex and in thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hind, G.; Clark, R.D.; Houchins, J.P.

    1983-01-01

    Extensive studies, performed principally by Hauska, Hurt and collaborators, have shown that a cytochrome (cyt) b/f complex isolated from photosynthetic membranes of spinach or Anabaena catalyzes electron transport from plastoquinol (PQH/sub 2/) to plastocyanin or algal cyt c-552. The complex from spinach thylakoids generated a membrane potential when reconstituted into liposomes, and although the electrogenic mechanism remains unknown, a key role for cyt b-563 is widely accepted. Electrogenesis by a Q-cycle mechanism requires a plastoquinone (PQ) reductase to be associated with the stromal side of the thylakoid b/f complex though this activity has yet to be demonstrated. It seemed possible that more gentle isolation of the complex might yield a form containing additional polypeptides, perhaps including a PQ reductase or a component involved in returning electrons from reduced ferredoxin to the complex in cyclic electron flow. Optimization of the isolation of cyt b/f complex for Hybrid 424 spinach from a growth room was also required. The procedure we devised is compared to the protocol of Hurt and Hauska (1982). 13 references.

  13. Computational Approaches for Revealing the Structure of Membrane Transporters: Case Study on Bilitranslocase

    Directory of Open Access Journals (Sweden)

    Katja Venko

    Full Text Available The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix–helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target. Keywords: Membrane proteins, Bilitranslocase, 3D protein structure, Transmembrane region predictors, Helix–helix interactions

  14. On dependence of stability of lanthanum complexes with aminopolycarboxylic acids on the complex structure

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Meshkova, S.B.; Danilkovich, M.M.; Topilova, Z.M.

    1985-01-01

    Regularities in changes of stability constants of lanthanum complexes with aminopolycarboxylic acids (APA) versus their structure are studied, The stability of lathanum-APA complexes depends mainly on the number of carboxyl groups in a ligand molecule. At that, the highest stability constant is characteristic of a complex with a ligand, containing 3 nitrogen atoms and 5 carboxyl groups, in the presenoe of which the lanthanum ion coordination sphere gets satupated. The oxyethy group introduction into a ligand molecule also improves the lanthanum complex stability but to a lesser degree than during the introduction of a carboxyl group. The number of nitrogen atoms in a ligand polecule affects insignificantly the complex stability constant value, and the elongation of a chain of CH 2 groups, separating nitrogen atoms, reduces the constant to a -0.6 power

  15. Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species

    DEFF Research Database (Denmark)

    Sancho-Vaello, Enea; François, Patrice; Bonetti, Eve-Julie

    2017-01-01

    Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts w...... that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics....

  16. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  17. Structural insights into SUN-KASH complexes across the nuclear envelope

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wang; Zhaocai Zhou; Zhubing Shi; Shi Jiao; Cuicui Chen; Huizhen Wang; Guoguang Liu; Qiang Wang; Yun Zhao; Mark I Greene

    2012-01-01

    Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domaincontaining proteins and bridge the inner and outer membranes of the nuclear envelope.LINC complexes play critical roles in nuclear positioning,cell polarization and cellular stiffness.Previously,we reported the homotrimeric structure of human SUN2.We have now determined the crystal structure of the human SUN2-KASH complex.In the complex structure,the SUN domain homotrimer binds to three independent "hook"-like KASH peptides.The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state.A major conformational change involves the AA'-loop of KASH-bound SUN domain,which rearranges to form a mini β-sheet that interacts with the KASH peptide.The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain,which we termed the BI-pocket.Moreover,two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding.Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro.In addition,transfection of wild-type,but not mutant,SUN2 promotes cell migration in Ovcar-3 cells.These results provide a structural model of the LINC complex,which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.

  18. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.