WorldWideScience

Sample records for complex i-depleted brain

  1. Cortical complexity in cetacean brains.

    Science.gov (United States)

    Hof, Patrick R; Chanis, Rebecca; Marino, Lori

    2005-11-01

    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55-60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin.

  2. Understanding complexity in the human brain.

    Science.gov (United States)

    Bassett, Danielle S; Gazzaniga, Michael S

    2011-05-01

    Although the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its workings relate to the mind, the majority of current efforts are largely focused on small questions using increasingly detailed data. However, it might be possible to successfully address the larger question of mind-brain mechanisms if the cumulative findings from these neuroscientific studies are coupled with complementary approaches from physics and philosophy. The brain, we argue, can be understood as a complex system or network, in which mental states emerge from the interaction between multiple physical and functional levels. Achieving further conceptual progress will crucially depend on broad-scale discussions regarding the properties of cognition and the tools that are currently available or must be developed in order to study mind-brain mechanisms.

  3. Defining nodes in complex brain networks

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Stanley

    2013-11-01

    Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that

  4. Identifying modular relations in complex brain networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig

    2012-01-01

    We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... are measured within the data driven NPAIRS split-half framework. Using synthetic data drawn from each of the generative models we show that the IRM model outperforms the two competing models when data contain relational structure. For data drawn from the other two simpler models the IRM does not overfit...... and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure...

  5. Defining nodes in complex brain networks.

    Science.gov (United States)

    Stanley, Matthew L; Moussa, Malaak N; Paolini, Brielle M; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2013-11-22

    Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel). The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter) spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the "correct" method to be used remains an open, possibly unsolvable question that deserves extensive

  6. Approach of Complex Networks for the Determination of Brain Death

    Science.gov (United States)

    Sun, Wei-Gang; Cao, Jian-Ting; Wang, Ru-Bin

    2011-06-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.

  7. Dynamic analysis of the human brain with complex cerebral sulci.

    Science.gov (United States)

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-03

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models.

  8. Approach of Complex Networks for the Determination of Brain Death

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Gang; CAO Jian-Ting; WANG Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our Sndings might provide valuable insights on the determination of brain death.%@@ In clinical practice, brain death is the irreversible end of all brain activity.Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination.Brain functional networks constructed by correlation analysis axe derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated.Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state.Our findings might provide valuable insights on the determination of brain death.

  9. Complex networks: new trends for the analysis of brain connectivity

    CERN Document Server

    Chavez, Mario; Latora, Vito; Martinerie, Jacques

    2010-01-01

    Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalography, or functional magnetic resonance imaging techniques provide functional connectivity patterns between different brain areas, and during different pathological and cognitive neuro-dynamical states. In this Tutorial we review novel complex networks approaches to unveil how brain networks can efficiently manage local processing and global integration for the transfer of information, while being at the same time capable of adapting to satisfy changing neural demands.

  10. Development and evaluation of vinpocetine inclusion complex for brain targeting

    Directory of Open Access Journals (Sweden)

    Jiaojiao Ding

    2015-04-01

    Full Text Available The objective of this paper is to prepare vinpocetine (VIN inclusion complex and evaluate its brain targeting effect after intranasal administration. In the present study, VIN inclusion complex was prepared in order to increase its solubility. Stability constant (Kc was used for host selection. Factors influencing properties of the inclusion complex was investigated. Formation of the inclusion complex was identified by solubility study and DSC analysis. The brain targeting effect of the complex after intranasal administration was studied in rats. It was demonstrated that properties of the inclusion complex was mainly influenced by cyclodextrin type, organic acids type, system pH and host/guest molar ratio. Multiple component complexes can be formed by the addition of citric acid, with solubility improved for more than 23 times. Furthermore, In vivo study revealed that after intranasal administration, the absolute bioavailability of vinpocetine inclusion complex was 88%. Compared with intravenous injection, significant brain targeting effect was achieved after intranasal delivery, with brain targeting index 1.67. In conclusion, by intranasal administration of VIN inclusion complex, a fast onset of action and good brain targeting effect can be achieved. Intranasal route is a promising approach for the treatment of CNS diseases.

  11. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  12. Manipulation complexity in primates coevolved with brain size and terrestriality.

    Science.gov (United States)

    Heldstab, Sandra A; Kosonen, Zaida K; Koski, Sonja E; Burkart, Judith M; van Schaik, Carel P; Isler, Karin

    2016-04-14

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits.

  13. Brain architecture and social complexity in modern and ancient birds.

    Science.gov (United States)

    Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H

    2004-01-01

    Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs.

  14. Building complex brains--missing pieces in an evolutionary puzzle.

    Science.gov (United States)

    Jaaro, Hanna; Fainzilber, Mike

    2006-01-01

    The mechanisms underlying evolution of complex nervous systems are not well understood. In recent years there have been a number of attempts to correlate specific gene families or evolutionary processes with increased brain complexity in the vertebrate lineage. Candidates for evocation of complexity include genes involved in regulating brain size, such as neurotrophic factors or microcephaly-related genes; or wider evolutionary processes, such as accelerated evolution of brain-expressed genes or enhanced RNA splicing or editing events in primates. An inherent weakness of these studies is that they are correlative by nature, and almost exclusively focused on the mammalian and specifically the primate lineage. Another problem with genomic analyses is that it is difficult to identify functionally similar yet non-homologous molecules such as different families of cysteine-rich neurotrophic factors in different phyla. As long as comprehensive experimental studies of these questions are not feasible, additional perspectives for evolutionary and genomic studies will be very helpful. Cephalopod mollusks represent the most complex nervous systems outside the vertebrate lineage, thus we suggest that genome sequencing of different mollusk models will provide useful insights into the evolution of complex brains.

  15. Getting a handle on how the brain generates complexity.

    Science.gov (United States)

    Riesenhuber, Maximilian

    2012-01-01

    Sensory processing in cortex across modalities appears to rely on a "simple-to-complex" hierarchical computational strategy in which neurons at later levels in the hierarchy combine inputs from earlier levels to create more complex neuronal selectivities. The specifics of this process are still poorly understood, however. In this issue of Network, Plebe shows how computational modeling of experimental data on neuronal tuning in secondary visual cortex can help us understand how the brain increases neuronal tuning complexity across the visual cortical hierarchy.

  16. Brain structural complexity and life course cognitive change.

    Science.gov (United States)

    Mustafa, Nazahah; Ahearn, Trevor S; Waiter, Gordon D; Murray, Alison D; Whalley, Lawrence J; Staff, Roger T

    2012-07-02

    Fractal measures such as fractal dimension (FD) can quantify the structural complexity of the brain. These have been used in clinical neuroscience to investigate brain development, ageing and in studies of psychiatric and neurological disorders. Here, we examined associations between the FD of white matter and cognitive changes across the life course in the absence of detectable brain disease. The FD was calculated from segmented cerebral white matter MR images in 217 subjects aged about 68years, in whom archived intelligence scores from age 11years were available. Cognitive test scores of fluid and crystallised intelligence were obtained at the time of MR imaging. Significant differences were found (intracranial volume, brain volume, white matter volume and Raven's Progressive Matrices score) between men and women at age 68years and novel associations were found between FD and measures of cognitive change over the life course from age 11 to 68years. Those with greater FD were found to have greater than expected fluid abilities at age 68years than predicted by their childhood intelligence and less cognitive decline from age 11 to 68years. These results are consistent with other reports that FD measures of cortical structural complexity increase across the early life course during maturation of the cerebral cortex and add new data to support an association between FD and cognitive ageing.

  17. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered.

  18. Lectures in Supercomputational Neurosciences Dynamics in Complex Brain Networks

    CERN Document Server

    Graben, Peter beim; Thiel, Marco; Kurths, Jürgen

    2008-01-01

    Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical co...

  19. The Nonrandom Brain: Efficiency, Economy, and Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Olaf eSporns

    2011-02-01

    Full Text Available Modern anatomical tracing and imaging techniques are beginning to reveal the structural anatomy of neural circuits at small and large scales in unprecedented detail. When examined with analytic tools from graph theory and network science, neural connectivity exhibits highly nonrandom features, including high clustering and short path length, as well as modules and highly central hub nodes. These characteristic topological features of neural connections shape nonrandom dynamic interactions that occur during spontaneous activity or in response to external stimulation. Disturbances of connectivity and thus of neural dynamics are thought to underlie a number of disease states of the brain, and some evidence suggests that degraded functional performance of brain networks may be the outcome of a process of randomization affecting their nodes and edges. This article provides a survey of the nonrandom structure of neural connectivity, primarily at the large-scale of regions and pathways in the mammalian cerebral cortex. In addition, we will discuss how nonrandom connections can give rise to differentiated and complex patterns of dynamics and information flow. Finally, we will explore the idea that at least some disorders of the nervous system are associated with increased randomness of neural connections.

  20. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates.

  1. ICGC PedBrain: Dissecting the genomic complexity underlying medulloblastoma

    Science.gov (United States)

    Jones, David TW; Jäger, Natalie; Kool, Marcel; Zichner, Thomas; Hutter, Barbara; Sultan, Marc; Cho, Yoon-Jae; Pugh, Trevor J; Hovestadt, Volker; Stütz, Adrian M; Rausch, Tobias; Warnatz, Hans-Jörg; Ryzhova, Marina; Bender, Sebastian; Sturm, Dominik; Pleier, Sabrina; Cin, Huriye; Pfaff, Elke; Sieber, Laura; Wittmann, Andrea; Remke, Marc; Witt, Hendrik; Hutter, Sonja; Tzaridis, Theophilos; Weischenfeldt, Joachim; Raeder, Benjamin; Avci, Meryem; Amstislavskiy, Vyacheslav; Zapatka, Marc; Weber, Ursula D; Wang, Qi; Lasitschka, Bärbel; Bartholomae, Cynthia C; Schmidt, Manfred; von Kalle, Christof; Ast, Volker; Lawerenz, Chris; Eils, Jürgen; Kabbe, Rolf; Benes, Vladimir; van Sluis, Peter; Koster, Jan; Volckmann, Richard; Shih, David; Betts, Matthew J; Russell, Robert B; Coco, Simona; Tonini, Gian Paolo; Schüller, Ulrich; Hans, Volkmar; Graf, Norbert; Kim, Yoo-Jin; Monoranu, Camelia; Roggendorf, Wolfgang; Unterberg, Andreas; Herold-Mende, Christel; Milde, Till; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Maass, Eberhard; Rössler, Jochen; Ebinger, Martin; Schuhmann, Martin U; Frühwald, Michael C; Hasselblatt, Martin; Jabado, Nada; Rutkowski, Stefan; von Bueren, André O; Williamson, Dan; Clifford, Steven C; McCabe, Martin G; Collins, V. Peter; Wolf, Stephan; Wiemann, Stefan; Lehrach, Hans; Brors, Benedikt; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Northcott, Paul A; Taylor, Michael D; Meyerson, Matthew; Pomeroy, Scott L; Yaspo, Marie-Laure; Korbel, Jan O; Korshunov, Andrey; Eils, Roland; Pfister, Stefan M; Lichter, Peter

    2013-01-01

    Summary Medulloblastoma is an aggressively-growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and displays tremendous biological and clinical heterogeneity1. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently discriminated2,3. WNT tumours, displaying activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens4. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis2. Group 3 & 4 tumours are molecularly less well-characterised, and also present the greatest clinical challenges2,3,5. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs. Tetraploidy was identified as a frequent early event in Group 3 & 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA-sequencing confirmed these alterations, and revealed the expression of the first medulloblastoma fusion genes. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 & 4 patients. PMID:22832583

  2. An evolving view of epigenetic complexity in the brain.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-09-26

    Recent scientific advances have revolutionized our understanding of classical epigenetic mechanisms and the broader landscape of molecular interactions and cellular functions that are inextricably linked to these processes. Our current view of epigenetics includes an increasing appreciation for the dynamic nature of DNA methylation, active mechanisms for DNA demethylation, differential functions of 5-methylcytosine and its oxidized derivatives, the intricate regulatory logic of histone post-translational modifications, the incorporation of histone variants into chromatin, nucleosome occupancy and dynamics, and direct links between cellular signalling pathways and the actions of chromatin 'reader', 'writer' and 'eraser' molecules. We also have an increasing awareness of the seemingly ubiquitous roles played by diverse classes of selectively expressed non-coding RNAs in transcriptional, post-transcriptional, post-translational and local and higher order chromatin modulatory processes. These perspectives are still evolving with novel insights continuing to emerge rapidly (e.g. those related to epigenetic regulation of mobile genetic elements, epigenetic mechanisms in mitochondria, roles in nuclear architecture and 'RNA epigenetics'). The precise functions of these epigenetic factors/phenomena are largely unknown. However, it is unequivocal that they serve as key mediators of brain complexity and flexibility, including neural development and aging, cellular differentiation, homeostasis, stress responses, and synaptic and neural network connectivity and plasticity.

  3. Emergence Of Consciousness And Qualia From A Complex Brain

    Directory of Open Access Journals (Sweden)

    Korf Jakob

    2014-12-01

    Full Text Available Qualia are private conscious experiences of which the associated feelings can be reported to other people. Whether qualia are amenable to scientific exploration has often been questioned, which is challenged by the present article. The following arguments are given: 1. the configuration of the brain changes continuously and irreversibly, because of genetic and environmental influences and interhuman communication; 2. qualia and consciousness are processes, rather than states; 3. private feelings, including those associated with qualia, should be positioned in the context of a personal brain as being developed during life; 4. consciousness and qualia should be understood in the context of general system theory, thus concluding that isolated, in vitro, properties of neurons and other brain constituents might marginally contribute to the understanding of higher brain functions, mind or qualia; 5. current in vivo approaches have too little resolution power - in terms of space and time - to delineate individual and subjective brain processes.

  4. Sleeping of a Complex Brain Networks with Hierarchical Organization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; YANG Qiu-Ying; CHEN Tian-Lun

    2009-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.

  5. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    OpenAIRE

    Guan, Jian; Guillermo, Rosamond B.; Yang, Panzao; Vickers, Mark H.; McJarrow, Paul

    2015-01-01

    Background: Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats.Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory.Design: The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistoche...

  6. On the Complexity of Brain Disorders: A symptom-based approach

    Directory of Open Access Journals (Sweden)

    Ahmed A. Moustafa

    2016-02-01

    Full Text Available Mounting evidence shows that brain disorders involve multiple and different neural dysfunctions, including regional brain damage, change to cell structure, chemical imbalance, and/or connectivity loss among different brain regions. Understanding the complexity of brain disorders can help us map these neural dysfunctions to different symptom clusters as well as understand subcategories of different brain disorders. Here, we discuss data on the mapping of symptom clusters to different neural dysfunctions using examples from brain disorders such as major depressive disorder, Parkinson’s disease, schizophrenia, PTSD and Alzheimer’s disease. In addition, we discuss data on the similarities of symptoms in different disorders. Importantly, computational modeling work may be able to shed light on plausible links between various symptoms and neural damage in brain disorders.

  7. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body.

  8. The relation between structural and functional connectivity patterns in complex brain networks

    NARCIS (Netherlands)

    Stam, C. J.; van Straaten, E. C W; Van Dellen, E.; Tewarie, P.; Gong, G.; Hillebrand, A.; Meier, J.; Van Mieghem, P.

    2016-01-01

    Objective An important problem in systems neuroscience is the relation between complex structural and functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible–infected–susceptible (SIS) model of infection dynamics on an empirical structural brain netw

  9. Opaque for the reader but transparent for the brain: neural signatures of morphological complexity.

    Science.gov (United States)

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-07-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived words while keeping the external surface structure constant as well as controlling relevant parameters that could affect word recognition. This allowed us to tease apart brain activations specifically related to morphological processing from those related to possible confounds of perceptual cues like word length or affix type. Increased task-related activity in left inferior frontal, bilateral temporo-occipital and right parietal areas was specifically related to the processing of derivations with high complex internal structure relative to those with low complex internal structure. Our results show, that morphologically complex words are decomposed and that the brain processes the degree of internal complexity of word derivations.

  10. Complex brain networks: From topological communities to clustered dynamics

    Indian Academy of Sciences (India)

    Lucia Zemanová; Gorka Zamora-López; Changsong Zhou; Jürgen Kurths

    2008-06-01

    Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. A challenging task is to understand the implications of such network structures on the functional organisation of the brain activities. We investigate synchronisation dynamics on the corticocortical network of the cat by modelling each node of the network (cortical area) with a subnetwork of interacting excitable neurons. We find that this network of networks displays clustered synchronisation behaviour and the dynamical clusters closely coincide with the topological community structures observed in the anatomical network. The correlation between the firing rate of the areas and the areal intensity is additionally examined. Our results provide insights into the relationship between the global organisation and the functional specialisation of the brain cortex.

  11. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    Science.gov (United States)

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-07

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.

  12. The influence of complex and threatening environments in early life on brain size and behaviour.

    Science.gov (United States)

    DePasquale, C; Neuberger, T; Hirrlinger, A M; Braithwaite, V A

    2016-01-27

    The ways in which challenging environments during development shape the brain and behaviour are increasingly being addressed. To date, studies typically consider only single variables, but the real world is more complex. Many factors simultaneously affect the brain and behaviour, and whether these work independently or interact remains untested. To address this, zebrafish (Danio rerio) were reared in a two-by-two design in housing that varied in structural complexity and/or exposure to a stressor. Fish experiencing both complexity (enrichment objects changed over time) and mild stress (daily net chasing) exhibited enhanced learning and were less anxious when tested as juveniles (between 77 and 90 days). Adults tested (aged 1 year) were also less anxious even though fish were kept in standard housing after three months of age (i.e. no chasing or enrichment). Volumetric measures of the brain using magnetic resonance imaging (MRI) showed that complexity alone generated fish with a larger brain, but this increase in size was not seen in fish that experienced both complexity and chasing, or chasing alone. The results highlight the importance of looking at multiple variables simultaneously, and reveal differential effects of complexity and stressful experiences during development of the brain and behaviour.

  13. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    Science.gov (United States)

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  14. A Topological Criterion for Filtering Information in Complex Brain Networks

    Science.gov (United States)

    Latora, Vito; Chavez, Mario

    2017-01-01

    In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353

  15. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    Science.gov (United States)

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators.

  16. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  17. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    Science.gov (United States)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  18. Prothrombin complex concentrate use in coagulopathy of lethal brain injuries increases organ donation.

    Science.gov (United States)

    Joseph, Bellal; Aziz, Hassan; Pandit, Viraj; Hays, Daniel; Kulvatunyou, Narong; Tang, Andrew; Wynne, Julie; O' Keeffe, Terence; Green, Donald J; Friese, Randall S; Gruessner, Rainer; Rhee, Peter

    2014-04-01

    Coagulopathy is a defined barrier for organ donation in patients with lethal traumatic brain injuries. The purpose of this study was to document our experience with the use of prothrombin complex concentrate (PCC) to facilitate organ donation in patients with lethal traumatic brain injuries. We performed a 4-year retrospective analysis of all patients with devastating gunshot wounds to the brain. The data were analyzed for demographics, change in international normalized ratio (INR), and subsequent organ donation. The primary end point was organ donation. Eighty-eight patients with lethal traumatic brain injury were identified from the trauma registry of whom 13 were coagulopathic at the time of admission (mean INR 2.2 ± 0.8). Of these 13 patients, 10 patients received PCC in an effort to reverse their coagulopathy. Mean INR before PCC administration was 2.01 ± 0.7 and 1.1 ± 0.7 after administration (P brain injuries.

  19. Dystrophins, Utrophins, and Associated Scaffolding Complexes: Role in Mammalian Brain and Implications for Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Caroline Perronnet

    2010-01-01

    Full Text Available Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD, which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.

  20. Complex Dynamics in Physiological Systems: From Heart to Brain

    CERN Document Server

    Dana, Syamal K; Kurths, Jürgen

    2009-01-01

    Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas...

  1. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    Science.gov (United States)

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme.

  2. Vitamin B-complex initiates growth and development of human embryonic brain cells in vitro.

    Science.gov (United States)

    Danielyan, K E; Abramyan, R A; Galoyan, A A; Kevorkian, G A

    2011-09-01

    We studied a combined effect of subcomponents of vitamin B complex on the growth, development, and death of human embryonic brain-derived cells (E90) cultured using a modified method of Matson. Cell death was detected by trypan blue staining. According to our results, vitamin B-complex in low-doses promote the development, maturation, and enlargement of human embryonic brain cells, on the one hand, and increases the percent of cell death, which attests to accelerated maturation and metabolism, on the other.

  3. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  4. On the Non-Uniform Complexity of Brain Connectivity (PREPRINT)

    Science.gov (United States)

    2007-12-01

    cluster diffusion MRI datasets by considering them as point clouds in Rm (m ≥ 6 depends on the order of the SH approximation of ODFs), without any spatial...SH series coefficients of the ODFs. They respectively correspond to point clouds in R30, R6 and R(l+1)(l+2)/2, for SH series of order l. The k-NN...labeled known neuro-anatomical areas by examining the complexity of the point clouds obtained from a set of Orientational Dis- tribution Functions

  5. The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity.

    Science.gov (United States)

    Weisbecker, Vera; Blomberg, Simon; Goldizen, Anne W; Brown, Meredeth; Fisher, Diana

    2015-01-01

    Evolutionary increases in mammalian brain size relative to body size are energetically costly but are also thought to confer selective advantages by permitting the evolution of cognitively complex behaviors. However, many suggested associations between brain size and specific behaviors - particularly related to social complexity - are possibly confounded by the reproductive diversity of placental mammals, whose brain size evolution is the most frequently studied. Based on a phylogenetic generalized least squares analysis of a data set on the reproductively homogenous clade of marsupials, we provide the first quantitative comparison of two hypotheses based on energetic constraints (maternal investment and seasonality) with two hypotheses that posit behavioral selection on relative brain size (social complexity and environmental interactions). We show that the two behavioral hypotheses have far less support than the constraint hypotheses. The only unambiguous associates of brain size are the constraint variables of litter size and seasonality. We also found no association between brain size and specific behavioral complexity categories within kangaroos, dasyurids, and possums. The largest-brained marsupials after phylogenetic correction are from low-seasonality New Guinea, supporting the notion that low seasonality represents greater nutrition safety for brain maintenance. Alternatively, low seasonality might improve the maternal support of offspring brain growth. The lack of behavioral brain size associates, found here and elsewhere, supports the general 'cognitive buffer hypothesis' as the best explanatory framework of mammalian brain size evolution. However, it is possible that brain size alone simply does not provide sufficient resolution on the question of how brain morphology and cognitive capacities coevolve.

  6. Reelin and its complex involvement in brain development and function.

    Science.gov (United States)

    Lakatosova, Silvia; Ostatnikova, Daniela

    2012-09-01

    Reelin is a neuroprotein with crucial role during neurodevelopment and also in postnatal period. It regulates neuronal migration and positioning in developing neocortex and cerebellar cortex. Postnatally it participates in regulation of dendritic and axonal growth, synaptogenesis, neurotransmission and it contribute to synaptic plasticity necessary for learning and memory functions. Role of Reelin seems to be rather complex, profound research gradually uncovers its further functions. Deficits of Reelin were detected in neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism. Pathogenesis of these disorders is far from being clearly understood. Reelin contribution to these diseases seems to be vital, since genetic variants of Reelin were associated with these diseases and often influence symptom severity. Reelin is a promising candidate molecule with potential future use in diagnostics and therapy, however further detailed research is essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Differential maturation of brain signal complexity in the human auditory and visual system

    Directory of Open Access Journals (Sweden)

    Sarah Lippe

    2009-11-01

    Full Text Available Brain development carries with it a large number of structural changes at the local level which impact on the functional interactions of distributed neuronal networks for perceptual processing. Such changes enhance information processing capacity, which can be indexed by estimation of neural signal complexity. Here, we show that during development, EEG signal complexity increases from one month to 5 years of age in response to auditory and visual stimulation. However, the rates of change in complexity were not equivalent for the two responses. Infants’ signal complexity for the visual condition was greater than auditory signal complexity, whereas adults showed the same level of complexity to both types of stimuli. The differential rates of complexity change may reflect a combination of innate and experiential factors on the structure and function of the two sensory systems.

  8. Paving the way towards complex blood-brain barrier models using pluripotent stem cells

    DEFF Research Database (Denmark)

    Lauschke, Karin; Frederiksen, Lise; Hall, Vanessa Jane

    2017-01-01

    to the unique tightness and selective permeability of the BBB and has been shown to be disrupted in many diseases and brain disorders, such as, vascular dementia, stroke, multiple sclerosis and Alzheimer's disease. Given the progress that pluripotent stem cells (PSCs) have made in the last two decades......A tissue with great need to be modelled in vitro is the blood-brain barrier (BBB). The BBB is a tight barrier that covers all blood vessels in the brain and separates the brain microenvironment from the blood system. It consists of three cell types (neurovascular unit (NVU)) that contribute......, it is now possible to produce many cell types from the BBB and even partially recapitulate this complex tissue in vitro. In this review, we summarize the most recent developments in PSC differentiation and modelling of the BBB. We also suggest how patient-specific human induced PSCs could be used to model...

  9. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    Energy Technology Data Exchange (ETDEWEB)

    Kohandel, M [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Sivaloganathan, S [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Tenti, G [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Darvish, K [Center for Applied Biomechanics, University of Virginia, Charlottesville, VA (United States)

    2005-06-21

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters.

  10. Pink noise: effect on complexity synchronization of brain activity and sleep consolidation.

    Science.gov (United States)

    Zhou, Junhong; Liu, Dongdong; Li, Xin; Ma, Jing; Zhang, Jue; Fang, Jing

    2012-08-07

    In this study, we hypothesized that steady pink noise is able to change the complexity of brain activities into a characteristic level and it might have significant effect on improving sleep stability. First, we carried out the brain synchronization test in which electroencephalogram (EEG) signals of 6 subjects were recorded. The whole experiment procedure was divided into 5 blocks in the alternative feeding process of 10-min quiet and 10-min noise. After the complexity analysis of fractal dimension, we found that the complexity of the EEG signals decreased with the introduction of the pink noise exposure, showing the brain waves tended to synchronize with the pink noise induction to reach a low level. For the sleep quality experiment, 40 subjects were recruited the group of nocturnal sleep experiment and 10 participants were chosen for nap test. Each subjects slept for two consecutive experimental periods, of which one is pink noise exposed and the other is quiet. For both nocturnal sleep and nap tests, the results in the noise exposure group showed significant enhancement in the percentage of stable sleep time compared to the control group based on the analysis of electrocardiography (ECG) signal with cardiopulmonary coupling approach. This study demonstrates that steady pink noise has significant effect on reducing brain wave complexity and inducing more stable sleep time to improve sleep quality of individuals.

  11. Preparation of new technetium-99m NNS/X complexes and selection for brain imaging agent

    Institute of Scientific and Technical Information of China (English)

    HE Qiange; CHEN Xiangji; MIAO Yubin; LIU Boli

    2004-01-01

    Based on excellent experiment results of 99mTcO-MPBDA-Cl, two new ligands MPTDA and MPDAA are synthesized. Then series of 99mTcO3+ complexes are prepared through adding different halide anions, followed by tests of physical chemistry qualities and biodistribution experiments. And results of these experiments show that complexes formed with MPTDA and MPDAA have better lipophilicity than those formed with MPBDA, still maintain the good brain retention ability of this type of compounds, but radioactivity uptake in blood is higher than that of 99mTcO-MPBDA and ratios of brain/blood are reduced. Obvious affections are fetched out on brain uptake and retention if fluoride, bromide or iodide anions are added. Results of experiments can be explained in reason with theoretic computation. It is confirmed that 99mTcO-MPBDA-Cl has potential to develop a new type of brain imaging agent considering integrated factors such as brain uptake, retention and toxicity.

  12. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Science.gov (United States)

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  13. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders.

  14. The evolution of the complex sensory and motor systems of the human brain.

    Science.gov (United States)

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  15. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    Science.gov (United States)

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management.

  16. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys.

    Science.gov (United States)

    Gonzales, Lauren A; Benefit, Brenda R; McCrossin, Monte L; Spoor, Fred

    2015-07-03

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently.

  17. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  18. Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes.

    Science.gov (United States)

    Mohamed, Tarek Mostafa; Ghaffar, Hamdy M Abdel; El Husseiny, Rabee M R

    2015-12-01

    The present study is an unsubstantiated qualitative assessment of the abused drugs-tramadol and clonazepam. The aim of this study is to evaluate whether the effects of tramadol, clonazepam, and their combination on mitochondrial electron transport chain (ETC) complexes were influential at therapeutic or at progressively increasing doses. The study comprised of a total of 70 healthy male rats, aged 3 months. According to the drug intake regimen, animals were divided into seven groups: control, tramadol therapeutic, clonazepam therapeutic, combination therapeutic, tramadol abuse, clonazepam abuse, and combination abuse group. At the end of the experiment, brain mitochondrial ETC complexes (I, II, III, and IV) were evaluated. Histopathological examinations were also performed on brain tissues. The results showed that groups that received tramadol (therapeutic and abuse) suffered from weight loss. Tramadol abuse group and combination abuse group showed significant decrease in the activities of I, III, and IV complexes but not in the activity of complex II. In conclusion, tramadol but not clonazepam has been found to partially inhibit the activities of respiratory chain complexes I, III, and IV but not the activity of complex II and such inhibition occurred only at doses that exceeded the maximum recommended adult human daily therapeutic doses. This result explains the clinical and histopathological effects of tramadol, such as seizures and red neurons (marker for apoptosis), respectively. © The Author(s) 2012.

  19. The organization of thinking: what functional brain imaging reveals about the neuroarchitecture of complex cognition.

    Science.gov (United States)

    Just, Marcel Adam; Varma, Sashank

    2007-09-01

    Recent findings in brain imaging, particularly in fMRI, are beginning to reveal some of the fundamental properties of the organization of the cortical systems that underpin complex cognition. We propose an emerging set of operating principles that govern this organization, characterizing the system as a set of collaborating cortical centers that operate as a large-scale cortical network. Two of the network's critical features are that it is resource constrained and dynamically configured, with resource constraints and demands dynamically shaping the network topology. The operating principles are embodied in a cognitive neuroarchitecture, 4CAPS, consisting of a number of interacting computational centers that correspond to activating cortical areas. Each 4CAPS center is a hybrid production system, possessing both symbolic and connectionist attributes. We describe 4CAPS models of sentence comprehension, spatial problem solving, and complex multitasking and compare the accounts of these models with brain activation and behavioral results. Finally, we compare 4CAPS with other proposed neuroarchitectures.

  20. Large-scale modeling - a tool for conquering the complexity of the brain

    Directory of Open Access Journals (Sweden)

    Mikael Djurfeldt

    2008-04-01

    Full Text Available Is there any hope of achieving a thorough understanding of higher functions such as perception, memory, thought and emotion or is the stunning complexity of the brain a barrier which will limit such efforts for the foreseeable future? In this perspective we discuss methods to handle complexity, approaches to model building, and point to detailed large-scale models as a new contribution to the toolbox of the computational neuroscientist. We elucidate some aspects which distinguishes large-scale models and some of the technological challenges which they entail.

  1. A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System

    Science.gov (United States)

    Tononi, Giulio; Sporns, Olaf; Edelman, Gerald M.

    1994-05-01

    In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (C_N), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. C_N is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. C_N is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of C_N. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.

  2. Adaptation of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera).

    Science.gov (United States)

    Safi, Kamran; Dechmann, Dina K N

    2005-01-22

    Vertebrate brains are organized in modules which process information from sensory inputs selectively. Therefore they are probably under different evolutionary pressures. We investigated the impact of environmental influences on specific brain centres in bats. We showed in a phylogenetically independent contrast analysis that the wing area of a species corrected for body size correlated with estimates of habitat complexity. We subsequently compared wing area, as an indirect measure of habitat complexity, with the size of regions associated with hearing, olfaction and spatial memory, while controlling for phylogeny and body mass. The inferior colliculi, the largest sub-cortical auditory centre, showed a strong positive correlation with wing area in echolocating bats. The size of the main olfactory bulb did not increase with wing area, suggesting that the need for olfaction may not increase during the localization of food and orientation in denser habitat. As expected, a larger wing area was linked to a larger hippocampus in all bats. Our results suggest that morphological adaptations related to flight and neuronal capabilities as reflected by the sizes of brain regions coevolved under similar ecological pressures. Thus, habitat complexity presumably influenced and shaped sensory abilities in this mammalian order independently of each other.

  3. Structure function relationship in complex brain networks expressed by hierarchical synchronization

    Science.gov (United States)

    Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2007-06-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  4. Organization and functional roles of the central complex in the insect brain.

    Science.gov (United States)

    Pfeiffer, Keram; Homberg, Uwe

    2014-01-01

    The central complex is a group of modular neuropils across the midline of the insect brain. Hallmarks of its anatomical organization are discrete layers, an organization into arrays of 16 slices along the right-left axis, and precise inter-hemispheric connections via chiasmata. The central complex is connected most prominently with the adjacent lateral complex and the superior protocerebrum. Its developmental appearance corresponds with the appearance of compound eyes and walking legs. Distinct dopaminergic neurons control various forms of arousal. Electrophysiological studies provide evidence for roles in polarized light vision, sky compass orientation, and integration of spatial information for locomotor control. Behavioral studies on mutant and transgenic flies indicate roles in spatial representation of visual cues, spatial visual memory, directional control of walking and flight, and place learning. The data suggest that spatial azimuthal directions (i.e., where) are represented in the slices, and cue information (i.e., what) are represented in different layers of the central complex.

  5. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  6. Deep Brain Stimulation: In Search of Reliable Instruments for Assessing Complex Personality-Related Changes

    Directory of Open Access Journals (Sweden)

    Christian Ineichen

    2016-09-01

    Full Text Available During the last 25 years, more than 100,000 patients have been treated with Deep Brain Stimulation (DBS. While human clinical and animal preclinical research has shed light on the complex brain-signaling disturbances that underpin e.g., Parkinson’s disease (PD, less information is available when it comes to complex psychosocial changes following DBS interventions. In this contribution, we propose to more thoroughly investigate complex personality-related changes following deep brain stimulation through refined and reliable instruments in order to help patients and their relatives in the post-surgery phase. By pursuing this goal, we first outline the clinical importance DBS has attained followed by discussing problematic and undesired non-motor problems that accompany some DBS interventions. After providing a brief definition of complex changes, we move on by outlining the measurement problem complex changes relating to non-motor symptoms currently are associated with. The latter circumstance substantiates the need for refined instruments that are able to validly assess personality-related changes. After providing a brief paragraph with regard to conceptions of personality, we argue that the latter is significantly influenced by certain competencies which themselves currently play only a tangential role in the clinical DBS-discourse. Increasing awareness of the latter circumstance is crucial in the context of DBS because it could illuminate a link between competencies and the emergence of personality-related changes, such as new-onset impulse control disorders that have relevance for patients and their relatives. Finally, we elaborate on the field of application of instruments that are able to measure personality-related changes.

  7. EXPRESSION OF SV40 Tag AND FORMATION Tag-p53 AND Tag-Rb COMPLEXES IN CHINESE BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the expression of SV40 Tag andformation of Tag-p53 and Tag-Rb complexes in Chinese brain tumors. Methods: SV40 large tumor antigen (Tag) were investigated by immunoprecipitation, silver staining and Western blot in 65 cases of Chinese brain tumors and 8 cases of normal brain tissues. Tag-p53 and Tag-Rb complexes were screened by the same way in 20 and 15 Tag positive tumor tissues respectively. Results: Tag was found in all of 8 ependymomas and 2 choroid plexus papillomas, 90% (9/10) of pituitary adenomas, 73% (11/15) of astrocytomas, 70% (7/10) of meningiomas, 50% (4/8) of glioblastoma multiform, 33% (2/6) of medulloblastomas, 5 oligodendrogliomas, 1 pineocytoma and 8 normal brain tissues were negative for Tag. Tag-p53 complex was detected in all of 20 Tag positive tumors as well as Tag-Rb complex in all of 15 Tag positive tumors. Conclusion: SV40 Tag is not only expressed in human brain tumors, but also it can form specific complexes with tumor suppressors p53 and Rb. SV40 is correlated to human brain tumorigenesis. The inactivation of p53 and Rb due to the formation of Tag-p53 and Tag-Rb complexes is possibly an important mechanism in the etiopathogenesis of human brain tumors.

  8. Peptidomic Analysis of the Brain and Corpora Cardiaca-Corpora Allata Complex in the Bombyx mori

    Directory of Open Access Journals (Sweden)

    Xiaoguang Liu

    2012-01-01

    Full Text Available The silkworm, Bombyx mori, is an important economic insect for silk production. However, many of the mature peptides relevant to its various life stages remain unknown. Using RP-HPLC, MALDI-TOF MS, and previously identified peptides from B. mori and other insects in the transcriptome database, we created peptide profiles showing a total of 6 ion masses that could be assigned to peptides in eggs, including one previously unidentified peptide. A further 49 peptides were assigned to larval brains. 17 new mature peptides were identified in isolated masses. 39 peptides were found in pupal brains with 8 unidentified peptides. 48 were found in adult brains with 12 unidentified peptides. These new unidentified peptides showed highly significant matches in all MS analysis. These matches were then searched against the National Center for Biotechnology Information (NCBI database to provide new annotations for these mature peptides. In total, 59 mature peptides in 19 categories were found in the brains of silkworms at the larval, pupal, and adult stages. These results demonstrate that peptidomic variation across different developmental stages can be dramatic. Moreover, the corpora cardiaca-corpora allata (CC-CA complex was examined during the fifth larval instar. A total of 41 ion masses were assigned to peptides.

  9. Peptidomic Analysis of the Brain and Corpora Cardiaca-Corpora Allata Complex in the Bombyx mori.

    Science.gov (United States)

    Liu, Xiaoguang; Ning, Xia; Zhang, Yan; Chen, Wenfeng; Zhao, Zhangwu; Zhang, Qingwen

    2012-01-01

    The silkworm, Bombyx mori, is an important economic insect for silk production. However, many of the mature peptides relevant to its various life stages remain unknown. Using RP-HPLC, MALDI-TOF MS, and previously identified peptides from B. mori and other insects in the transcriptome database, we created peptide profiles showing a total of 6 ion masses that could be assigned to peptides in eggs, including one previously unidentified peptide. A further 49 peptides were assigned to larval brains. 17 new mature peptides were identified in isolated masses. 39 peptides were found in pupal brains with 8 unidentified peptides. 48 were found in adult brains with 12 unidentified peptides. These new unidentified peptides showed highly significant matches in all MS analysis. These matches were then searched against the National Center for Biotechnology Information (NCBI) database to provide new annotations for these mature peptides. In total, 59 mature peptides in 19 categories were found in the brains of silkworms at the larval, pupal, and adult stages. These results demonstrate that peptidomic variation across different developmental stages can be dramatic. Moreover, the corpora cardiaca-corpora allata (CC-CA) complex was examined during the fifth larval instar. A total of 41 ion masses were assigned to peptides.

  10. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  11. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  12. Processing of audiovisual associations in the human brain: dependency on expectations and rule complexity

    Directory of Open Access Journals (Sweden)

    Riikka eLindström

    2012-05-01

    Full Text Available In order to respond to environmental changes appropriately, the human brain must not only be able to detect environmental changes but also to form expectations of forthcoming events. The events in the external environment often have a number of multisensory features such as pitch and form. For integrated percepts of objects and events, crossmodal processing and crossmodally induced expectations of forthcoming events are needed. The aim of the present study was to determine whether the expectations created by visual stimuli can modulate the deviance detection in the auditory modality, as reflected by auditory event-related potentials (ERPs. Additionally, it was studied whether the complexity of the rules linking auditory and visual stimuli together affects this process. The N2 deflection of the ERP was observed in response to violations in the subjects' expectation of a forthcoming tone. Both temporal aspects and cognitive demands during the audiovisual deviance detection task modulated the brain processes involved.

  13. Persistency and flexibility of complex brain networks underlie dual-task interference.

    Science.gov (United States)

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley

  14. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  15. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  16. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease

    Science.gov (United States)

    Borroto-Escuela, Dasiel O.; Carlsson, Jens; Ambrogini, Patricia; Narváez, Manuel; Wydra, Karolina; Tarakanov, Alexander O.; Li, Xiang; Millón, Carmelo; Ferraro, Luca; Cuppini, Riccardo; Tanganelli, Sergio; Liu, Fang; Filip, Malgorzata; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2017-01-01

    The introduction of allosteric receptor–receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor–receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and

  17. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Carlsson, Jens; Ambrogini, Patricia; Narváez, Manuel; Wydra, Karolina; Tarakanov, Alexander O; Li, Xiang; Millón, Carmelo; Ferraro, Luca; Cuppini, Riccardo; Tanganelli, Sergio; Liu, Fang; Filip, Malgorzata; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2017-01-01

    The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and

  18. [Application of nootropic agents in complex treatment of patients with concussion of the brain].

    Science.gov (United States)

    Tkachev, A V

    2007-01-01

    65 patients with a mild craniocereberal trauma have been observed. Medical examination included among general clinical methods the following methods: KT (MRT) of the brain, oculist examination including the observation of eye fundus. For objectification of a patient' complaints the authors used orientation and Galvestona's amnesia tests, feeling scale (psychological test), the table to determine the level of memory. Tests have been carried out on the first, tenth and thirty day of the treatment. Patients of the first group received in a complex treatment -pramistar, patients of the second group - piracetam. Patients of both groups noted considerable improvement during a complex treatment (disappearance of headache, dizziness and nausea) and at the same time patients receiving pramistar had better restoration of orientation and feeling. Pramistar was also more effective in patients with amnesia.

  19. Pollutants increase song complexity and the volume of the brain area HVC in a songbird.

    Directory of Open Access Journals (Sweden)

    Shai Markman

    Full Text Available Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds.

  20. Mitochondrial proteome analysis reveals depression of the Ndufs3 subunit and activity of complex I in diabetic rat brain.

    Science.gov (United States)

    Taurino, Federica; Stanca, Eleonora; Siculella, Luisa; Trentadue, Raffaella; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2012-04-18

    Type-1 diabetes resulting from defective insulin secretion and consequent hyperglycemia, is associated with "diabetic encephalopathy." This is characterized by brain neurophysiological and structural changes resulting in impairment of cognitive function. The present proteomic analysis of brain mitochondrial proteins from streptozotocin-induced type-1 diabetic rats, shows a large decrement of the Ndufs3 protein subunit of complex I, decreased level of the mRNA and impaired catalytic activity of the complex in the diabetic rats as compared to controls. The severe depression of the expression and enzymatic activity of complex I can represent a critical contributing factor to the onset of the diabetic encephalopathy in type-1 diabetes.

  1. Complex brain network properties in late L2 learners and native speakers.

    Science.gov (United States)

    Pérez, Alejandro; Gillon Dowens, Margaret; Molinaro, Nicola; Iturria-Medina, Yasser; Barraza, Paulo; García-Pentón, Lorna; Carreiras, Manuel

    2015-02-01

    Whether the neural mechanisms that underlie the processing of a second language in highly proficient late bilinguals (L2 late learners) are similar or not to those that underlie the processing of the first language (L1) is still an issue under debate. In this study, a group of late learners of Spanish whose native language is English and a group of Spanish monolinguals were compared while they read sentences, some of which contained syntactic violations. A brain complex network analysis approach was used to assess the time-varying topological properties of the functional networks extracted from the electroencephalography (EEG) recording. Late L2 learners showed a lower degree of parallel information transfer and a slower propagation between regions of the brain functional networks while processing sentences containing a gender mismatch condition as compared with a standard sentence configuration. In contrast, no such differences between these conditions were detected in the Spanish monolinguals. This indicates that when a morphosyntactic language incongruence that does not exist in the native language is presented in the second language, the neural activation pattern is configured differently in highly proficient late bilinguals than in monolinguals.

  2. Structural bases for neurophysiological investigations of amygdaloid complex of the brain

    Science.gov (United States)

    Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.

    2015-11-01

    Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.

  3. Abstracting meaning from complex information (gist reasoning) in adult traumatic brain injury.

    Science.gov (United States)

    Vas, Asha Kuppachi; Spence, Jeffrey; Chapman, Sandra Bond

    2015-01-01

    Gist reasoning (abstracting meaning from complex information) was compared between adults with moderate-to-severe traumatic brain injury (TBI, n = 30) at least one year post injury and healthy adults (n = 40). The study also examined the contribution of executive functions (working memory, inhibition, and switching) and memory (immediate recall and memory for facts) to gist reasoning. The correspondence between gist reasoning and daily function was also examined in the TBI group. Results indicated that the TBI group performed significantly lower than the control group on gist reasoning, even after adjusting for executive functions and memory. Executive function composite was positively associated with gist reasoning (p reasoning significantly predicted daily function in the TBI group beyond the predictive ability of executive function alone (p = .011). Synthesizing and abstracting meaning(s) from information (i.e., gist reasoning) could provide an informative index into higher order cognition and daily functionality.

  4. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  5. The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis

    Directory of Open Access Journals (Sweden)

    Basil El Jundi

    2010-02-01

    Full Text Available Many insects use the pattern of polarized light in the sky for spatial orientation and navigation. We have investigated the polarization vision system in the desert locust. To create a common platform for anatomical studies on polarization vision pathways, Kurylas et al. (2008 have generated a three-dimensional (3D standard brain from confocal microscopy image stacks of 10 male brains, using two different standardization methods, the Iterative Shape Averaging (ISA procedure and the Virtual Insect Brain (VIB protocol. Comparison of both standardization methods showed that the VIB standard is ideal for comparative volume analysis of neuropils, whereas the ISA standard is the method of choice to analyze the morphology and connectivity of neurons. The central complex is a key processing stage for polarization information in the locust brain. To investigate neuronal connections between diverse central-complex neurons, we generated a higher-resolution standard atlas of the central complex and surrounding areas, using the ISA method based on brain sections from 20 individual central complexes. To explore the usefulness of this atlas, two central-complex neurons, a polarization-sensitive columnar neuron (type CPU1a and a tangential neuron that is activated during flight, the giant-fan shaped (GFS neuron, were reconstructed three-dimensionally from brain sections. To examine whether the GFS neuron is a candidate to contribute to synaptic input to the CPU1a neuron, we registered both neurons into the standardized central complex. Visualization of both neurons revealed a potential connection of the CPU1a and GFS neurons in layer II of the upper division of the central body.

  6. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  7. NONINVASIVE DETECTION OF BRAIN ACTIVITY VARIATION UNDER DIFFERENT DEPTH OF ANESTHESIA BY EEG COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    Xu Jin; Li Wenwen; Zheng Chongxun; Jing Guixia; Liu Xueliang

    2006-01-01

    Objective To detect the change of brain activity under different depth of anesthesia (DOA)noninvasively. Methods The Lempel-Ziv complexity C(n) was used to analyze EEG and its four components (delta,theta, alpha, beta), which was recorded from SD rats under different DOA. The relationship between C(n) and DOA was studied. Results The C(n) of EEG will decrease while the depth of anesthesia increasing and vice versa. It can be used to detect the change of DOA sensitively. Compared with power spectrum, the change of C(n) is opposite to that of power spectru,. Only the C(n) of delta rhythm has obvious variations induced by the change of DOA, and the variations of delta is as similar as the EEG's. Conclusion The study shows that the desynchronized EEG is replaced by the synchronized EEG when rat goes into anesthesia state from awake, that is just the reason why complexity and power spectrum appear corresponding changes under different DOA. C(n) of delta rhythm dynamic change leads to the change of EEG, and the delta rhythm is the dominant rhythm during anesthesia for rats.

  8. The brain as a complex system: plasticity at multiple scales and criticality

    Science.gov (United States)

    Ng, Tony; Miller, Paul

    2015-03-01

    As a complex system, a successful organism is one that can react effectively to environmental fluctuations. Not only should its response repertoire be commensurate with the number of independent conditions that it encounters, behavioral and environmental variations need to be matched at the appropriate scales. In the cortex, neuronal clusters, not individual cells, operate at the proper scale that is necessary to generate appropriate responses to external states of the world. Single neurons, however, serve on a finer scale to mediate interactions between neuronal assemblies. The distinction of scales is significant, as plasticity mechanisms can operate on various spatial and temporal scales. The brain has apparently evolved complex-system strategies to calibrate its own dynamics at multiple scales. This makes the joint study of local balance and global homeostasis fundamentally important, where criticality emerges as a signature of a computationally powerful system. We show via simulations how plasticity mechanisms at multiple scales are inextricably tied to spike-based neuronal avalanches, which are microscopic in origin and poorly predictive of animal behavior, and cluster-based avalanches, which are manifest macroscopically and are relevant to cognition and behavior.

  9. Nonessential Role for the NLRP1 Inflammasome Complex in a Murine Model of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thomas Brickler

    2016-01-01

    Full Text Available Traumatic brain injury (TBI elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β. The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR, caspase-1, and apoptosis-associated speck-like protein (ASC. ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1β cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1β, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1−/−, Asc−/−, and wild type mice after moderate controlled cortical impact (CCI injury. Although IL-1β expression is significantly attenuated in the cortex of Nlrp1−/− and Asc−/− mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury.

  10. Acute and chronic administration of cannabidiol increases mitochondrial complex and creatine kinase activity in the rat brain

    Directory of Open Access Journals (Sweden)

    Samira S. Valvassori

    2013-12-01

    Full Text Available Objective: To investigate the effects of cannabidiol (CBD on mitochondrial complex and creatine kinase (CK activity in the rat brain using spectrophotometry. Method: Male adult Wistar rats were given intraperitoneal injections of vehicle or CBD (15, 30, or 60 mg/kg in an acute (single dose or chronic (once daily for 14 consecutive days regimen. The activities of mitochondrial complexes and CK were measured in the hippocampus, striatum, and prefrontal cortex. Results: Both acute and chronic injection of CBD increased the activity of the mitochondrial complexes (I, II, II-III, and IV and CK in the rat brain. Conclusions: Considering that metabolism impairment is certainly involved in the pathophysiology of mood disorders, the modulation of energy metabolism (e.g., by increased mitochondrial complex and CK activity by CBD could be an important mechanism implicated in the action of CBD.

  11. Content of endoplasmic reticulum and Golgi complex membranes positively correlates with the proliferative status of brain cells.

    Science.gov (United States)

    Silvestre, David C; Maccioni, Hugo J F; Caputto, Beatriz L

    2009-03-01

    Although the molecular and cellular basis of particular events that lead to the biogenesis of membranes in eukaryotic cells has been described in detail, understanding of the intrinsic complexity of the pleiotropic response by which a cell adjusts the overall activity of its endomembrane system to accomplish these requirements is limited. Here we carried out an immunocytochemical and biochemical examination of the content and quality of the endoplasmic reticulum (ER) and Golgi apparatus membranes in two in vivo situations characterized by a phase of active cell proliferation followed by a phase of declination in proliferation (rat brain tissue at early and late developmental stages) or by permanent active proliferation (gliomas and their most malignant manifestation, glioblastomas multiforme). It was found that, in highly proliferative phases of brain development (early embryo brain cells), the content of ER and Golgi apparatus membranes, measured as total lipid phosphorous content, is higher than in adult brain cells. In addition, the concentration of protein markers of ER and Golgi is also higher in early embryo brain cells and in human glioblastoma multiforme cells than in adult rat brain or in nonpathological human brain cells. Results suggest that the amount of endomembranes and the concentration of constituent functional proteins diminish as cells decline in their proliferative activity.

  12. Resting and Task-Modulated High-Frequency Brain Rhythms Measured by Scalp Encephalography in Infants with Tuberous Sclerosis Complex

    Science.gov (United States)

    Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.

    2015-01-01

    The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…

  13. Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study

    Science.gov (United States)

    Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.

    2007-01-01

    Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…

  14. Chronic pain and evoked responses in the brain: A magnetoencephalographic study in Complex Regional Pain Syndrome I and II

    NARCIS (Netherlands)

    Theuvenet, P.J.

    2012-01-01

    Complex Regional Pain Syndrome (CRPS) type I and II are chronic pain syndromes with comparable symptoms, only in CRPS II a peripheral nerve injury is present. No objective tests are currently available to differentiate the two types which hampers diagnosis and treatment. Non-invasive brain imaging t

  15. Resting and Task-Modulated High-Frequency Brain Rhythms Measured by Scalp Encephalography in Infants with Tuberous Sclerosis Complex

    Science.gov (United States)

    Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.

    2015-01-01

    The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…

  16. A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice.

    Science.gov (United States)

    Aksenov, Vadim; Long, Jiangang; Liu, Jiankang; Szechtman, Henry; Khanna, Parul; Matravadia, Sarthak; Rollo, C David

    2013-02-01

    We developed a complex dietary supplement designed to offset five key mechanisms of aging and tested its effectiveness in ameliorating age-related cognitive decline using a visually cued Morris water maze test. All younger mice (1 year) were unable to learn the maze even after 5 days, indicative of strong cognitive decline at older ages. In contrast, no cognitive decline was evident in older supplemented mice, even when ∼2 years old. Supplemented older mice were nearly 50% better at locating the platform than age-matched controls. Brain weights of supplemented mice were significantly greater than controls, even at younger ages. Reversal of cognitive decline in activity of complexes III and IV by supplementation was significantly associated with cognitive improvement, implicating energy supply as one possible mechanism. These results represent proof of principle that complex dietary supplements can provide powerful benefits for cognitive function and brain aging.

  17. Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds.

    Science.gov (United States)

    Rattenborg, Niels C; Martinez-Gonzalez, Dolores; Lesku, John A

    2009-03-01

    Birds are the only taxonomic group other than mammals that exhibit high-amplitude slow-waves in the electroencephalogram (EEG) during sleep. This defining feature of slow-wave sleep (SWS) apparently evolved independently in mammals and birds, as reptiles do not exhibit similar EEG activity during sleep. In mammals, the level of slow-wave activity (SWA) (low-frequency spectral power density) during SWS increases and decreases as a function of prior time spent awake and asleep, respectively, and therefore reflects homeostatically regulated sleep processes potentially tied to the function of SWS. Although birds also exhibit SWS, previous sleep deprivation studies in birds did not detect a compensatory increase in SWS-related SWA during recovery, as observed in similarly sleep-deprived mammals. This suggested that, unlike mammalian SWS, avian SWS is not homeostatically regulated, and therefore might serve a different function. However, we recently demonstrated that SWA during SWS increases in pigeons following short-term sleep deprivation. Herein we summarize research on avian sleep homeostasis, and cast our evidence for this phenomenon within the context of theories for the function of SWS in mammals. We propose that the convergent evolution of homeostatically regulated SWS in mammals and birds was directly linked to the convergent evolution of large, heavily interconnected brains capable of performing complex cognitive processes in each group. Specifically, as has been proposed for mammals, the interconnectivity that forms the basis of complex cognition in birds may also instantiate slow, synchronous network oscillations during SWS that in turn maintain interconnectivity and cognition at an optimal level.

  18. Functional brain imaging of a complex navigation task following one night of total sleep deprivation

    Science.gov (United States)

    Strangman, Gary; Thompson, John H.; Strauss, Monica M.; Marshburn, Thomas H.; Sutton, Jeffrey P.

    2006-01-01

    Study Objectives: To assess the cerebral effects associated with sleep deprivation in a simulation of a complex, real-world, high-risk task. Design and Interventions: A two-week, repeated measures, cross-over experimental protocol, with counterbalanced orders of normal sleep (NS) and total sleep deprivation (TSD). Setting: Each subject underwent functional magnetic resonance imaging (fMRI) while performing a dual-joystick, 3D sensorimotor navigation task (simulated orbital docking). Scanning was performed twice per subject, once following a night of normal sleep (NS), and once following a single night of total sleep deprivation (TSD). Five runs (eight 24s docking trials each) were performed during each scanning session. Participants: Six healthy, young, right-handed volunteers (2 women; mean age 20) participated. Measurements and Results: Behavioral performance on multiple measures was comparable in the two sleep conditions. Neuroimaging results within sleep conditions revealed similar locations of peak activity for NS and TSD, including left sensorimotor cortex, left precuneus (BA 7), and right visual areas (BA 18/19). However, cerebral activation following TSD was substantially larger and exhibited higher amplitude modulations from baseline. When directly comparing NS and TSD, most regions exhibited TSD>NS activity, including multiple prefrontal cortical areas (BA 8/9,44/45,47), lateral parieto-occipital areas (BA 19/39, 40), superior temporal cortex (BA 22), and bilateral thalamus and amygdala. Only left parietal cortex (BA 7) demonstrated NS>TSD activity. Conclusions: The large network of cerebral differences between the two conditions, even with comparable behavioral performance, suggests the possibility of detecting TSD-induced stress via functional brain imaging techniques on complex tasks before stress-induced failures.

  19. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    Science.gov (United States)

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-12-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.

  20. On the matter of mind: neural complexity and functional dynamics of the human brain.

    NARCIS (Netherlands)

    Hofman, M.A.; Watanabe, Shigeru; Hofman, Michel; Shimizu, Toru

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of anthropoid primates. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The object of this review is to present

  1. Optic atrophy 1 mediates coenzyme Q-responsive regulation of respiratory complex IV activity in brain mitochondria.

    Science.gov (United States)

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2017-11-01

    The oxygen consumption rate (OCR) in brain mitochondria is significantly lower in aged mice than in young mice, and the reduced OCR is rescued by administration of water-solubilized CoQ10 to aged mice via drinking water. However, the mechanism behind this remains unclear. Here, we show that the activity of respiratory complex IV (CIV) in brain mitochondria declined in aged mice than in young mice, with no significant change in individual respiratory complex levels and their supercomplex assembly. Reduced CIV activity in the aged mice coincided with reduced binding of optic atrophy 1 (OPA1) to CIV. Both reduced activity and OPA1 binding of CIV were rescued by water-solubilized CoQ10 administration to aged mice via drinking water. OCR and the activity and OPA1 binding of CIV in isolated brain mitochondria from aged mice were restored by incubation with CoQ10, but not in the presence of 15-deoxy-prostaglandin J2, an inhibitor of a GTPase effector domain-containing GTPase such as OPA1 and DRP1. By contrast, the CoQ10-responsive restoration of OCR in the isolated mitochondria was not inhibited by Mdivi-1, a selective inhibitor of DRP1. Thus, we propose a novel function of OPA1 in regulating the CIV activity in brain mitochondria in response to CoQ10. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems.

    Science.gov (United States)

    Andrew, David R; Brown, Sheena M; Strausfeld, Nicholas J

    2012-10-15

    Copepods are a diverse and ecologically crucial group of minute crustaceans that are relatively neglected in terms of studies on nervous system organization. Recently, morphological neural characters have helped clarify evolutionary relationships within Arthropoda, particularly among Tetraconata (i.e., crustaceans and hexapods), and indicate that copepods occupy an important phylogenetic position relating to both Malacostraca and Hexapoda. This taxon therefore provides the opportunity to evaluate those neural characters common to these two clades likely to be results of shared ancestry (homology) versus convergence (homoplasy). Here we present an anatomical characterization of the brain and central nervous system of the well-studied harpacticoid copepod species Tigriopus californicus. We show that this species is endowed with a complex brain possessing a central complex comprising a protocerebral bridge and central body. Deutocerebral glomeruli are supplied by the antennular nerves, and a lateral protocerebral olfactory neuropil corresponds to the malacostracan hemiellipsoid body. Glomeruli contain synaptic specializations comparable to the presynaptic "T-bars" typical of dipterous insects, including Drosophila melanogaster. Serotonin-like immunoreactivity pervades the brain and ventral nervous system, with distinctive deutocerebral distributions. The present observations suggest that a suite of morphological characters typifying the Tigriopus brain reflect a ground pattern organization of an ancestral Tetraconata, which possessed an elaborate and structurally differentiated nervous system.

  3. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Science.gov (United States)

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses. PMID:27651759

  4. Volume transmission and receptor-receptor interactions in heteroreceptor complexes:understanding the role of new concepts for brain communication

    Institute of Scientific and Technical Information of China (English)

    Kjell Fuxe; Dasiel O Borroto-Escuela

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neu-rons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular lfuid and the cerebral spinal lfuid through diffusion and lfow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume trans-mission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  5. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Directory of Open Access Journals (Sweden)

    Kjell Fuxe

    2016-01-01

    Full Text Available The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  6. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication.

    Science.gov (United States)

    Fuxe, Kjell; Borroto-Escuela, Dasiel O

    2016-08-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  7. Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain.

    Directory of Open Access Journals (Sweden)

    Sasidharan Shashikala

    Full Text Available Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.

  8. ADP-regulation of mitochondrial free radical production is different with complex I- or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism.

    Science.gov (United States)

    Herrero, A; Barja, G

    1997-06-01

    In agreement with classic studies, succinate-supplemented rat and pigeon heart and nonsynaptic brain mitochondrial free radical production is stopped by ADP additions causing the stimulation of respiration from State 4 to State 3. Nevertheless, with Complex I-linked substrates, mitochondria produce free radicals in State 3 at rates similar or somewhat higher than during resting respiration. The absence of sharp increases in free radical production during intense respiration is possible due to strong decreases of free radical leak in State 3. The results indicate that Complex I is the main mitochondrial free radical generator in State 3, adding to its already known important generation of active oxygen species in State 4. The observed rate of mitochondrial free radical production with Complex I-linked substrates in the active State 3 can help to explain two paradoxes: (a) the lack of massive muscle oxidative damage and shortening of life span due to exercise, in spite of up to 23-fold increases of oxygen consumption together with the very low levels of antioxidants present in heart, skeletal muscle, and brain; (b) the presence of some degree of oxidative stress during exercise and hyperactivity in spite of the stop of mitochondrial free radical production by ADP with succinate as substrate.

  9. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility.

    Science.gov (United States)

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J; Pastor, María A

    2013-12-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the gray matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9-0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease

  10. [Asthenic syndrome in clinical course of acute period of brain concussion during complex treatment using nootropic agents].

    Science.gov (United States)

    Tkachov, A V

    2008-01-01

    The comparative analysis of a complex examination of 108 persons aged from 16 till 60 years in acute period of closed craniocerebral injury (CCCT) has been done. Every participants have been divided into 2 groups depending on a nootrop medication they receive in a complex treatment. A control group consisted of 30 practically healthy people. Objective examination by means of tests was done on the 1-st, 10-th that 30-th day of treatment. Patients of 1-st (37 persons) group received piracetam in complex treatment and patients of the 2-nd group (71 persons) pramistar. Patients of the first group received a base treatment (analgetics, tranquilizers, vitamins of group B, magnesium sulfate, diuretic preparations) as well as piracetam at dosage 0.2, two tablets three times per day. The Patients of the 2-nd group received a base treatment as well as pramistar at dosage 0.6, one tablet 2 times per day. Specially developed multiaspects scales and questionnaires, MRT of the brain and EEG have been used for objectification of patient, complaints. During a complex clinico-neuropsychological examination it was found that all cases of concussion of the brain are accompanied by those or other asthenic disorders.

  11. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.

    Directory of Open Access Journals (Sweden)

    Takeshi Hashimoto

    Full Text Available To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS in neurons, we attempted to determine if monocarboxylate (e.g. lactate transporter isoforms (MCT1 and -2 and lactate dehydrogenase (LDH are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain.

  12. Dysbindin-Containing Complexes and their Proposed Functions in Brain: From Zero to (too Many in a Decade

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-04-01

    Full Text Available Dysbindin (also known as dysbindin–1 or dystrobrevin-binding protein 1 was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC–1 (biogenesis of lysosome-related organelles complex–1, which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal–lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.

  13. Volume of discrete brain structures in complex dissociative disorders : preliminary findings

    NARCIS (Netherlands)

    Ehling, T.; Nijenhuis, E. R. S.; Krikke, A. P.; DeKloet, ER; Vermetten, E

    2007-01-01

    Based on findings in traumatized animals and patients with posttraumatic stress disorder, and on traumatogenic models of complex dissociative disorders, it was hypothesized that (1) patients with complex dissociative disorders have smaller volumes of hippocampus, parahippocampal gyrus, and amygdala

  14. Volume of discrete brain structures in complex dissociative disorders : preliminary findings

    NARCIS (Netherlands)

    Ehling, T.; Nijenhuis, E. R. S.; Krikke, A. P.; DeKloet, ER; Vermetten, E

    2007-01-01

    Based on findings in traumatized animals and patients with posttraumatic stress disorder, and on traumatogenic models of complex dissociative disorders, it was hypothesized that (1) patients with complex dissociative disorders have smaller volumes of hippocampus, parahippocampal gyrus, and amygdala

  15. [Complex partial status epilepticus with recurrent episodes of complex visual hallucinations: study by using 123I-IMP-SPECT, brain MRI and EEG].

    Science.gov (United States)

    Sakai, Toshiyuki; Kondo, Masahide; Tomimoto, Hidekazu

    2015-01-01

    We report a 72-year-old woman with complex partial status epilepticus who showed recurrent episodes of complex visual hallucinations (CVH). Brain diffusion-weighted magnetic resonance images revealed gyriform cortical hyperintensity in the right parietal, occipital and temporal lobes, and brain magnetic resonance angiograhy revealed a hyperintensity in the right dilated middle cerebral artery during ictal period. Ictal N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography (123I-IMP-SPECT) with three-dimensional stereotactic surface projection (3D-SSP) 14 days after the onset of the first CVH revealed hyperperfusion in the right latero-inferior occipito-temporal region with relation to motion. CVH spontaneously subsided 17 days after the onset of the first CVH. CVH recurred one year after the first CVH. Ictal 123I-IMP-SPECT with 3D-SSP revealed marked hyperperfusion in the right lateral parietal region probably with relation to face and figure hallucinations. Ictal scalp EEGs revealed rhythmic polyspikes at 12 Hz with high amplitude (100-200 μV) in bilateral posterior occipital and temporal region with the right side dominance for 20 seconds and more in several occasions. Interictal 123I-IMP-SPECT with 3D-SSP 28 days after recurrence of CVH revealed marked hypoperfusion in the right lateral parietal region, and recovery of hypoperfusion in the right latero-inferior occipito-temporal region. These findings suggest that ictal CVH might be induced by the spread of epileptic discharges from the right parieto-occipito-temporal region with the old brain contusion (epileptogenic region) to the right latero-inferior occipito-temporal region and the right lateral parietal region (symptomatogenic regions).

  16. Deep brain stimulation for Tourette’s syndrome: the case for targeting the thalamic centromedian-parafascicular complex.

    Directory of Open Access Journals (Sweden)

    Paola Testini

    2016-11-01

    Full Text Available Tourette syndrome is a neurologic condition characterized by both motor and phonic tics and is typically associated with psychiatric comorbidities, including obsessive-compulsive disorder/behavior and attention deficit hyperactivity disorder and can be psychologically and socially debilitating. It is considered a disorder of the cortico-striato-thalamo-cortical circuitry, as suggested by pathophysiology studies and therapeutic options. Among these, deep brain stimulation of the centromedian-parafascicular nuclear complex (CM-Pf of the thalamus is emerging as a valuable treatment modality for patients affected by severe, treatment resistant TS. Here we review the most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology of Tourette syndrome, discuss potential mechanisms of action that may mediate the effects of CM-Pf deep brain stimulation in Tourette syndrome, and summarize its clinical efficacy.

  17. NONINVASIVE DETECTION OF BRAIN ACTIVITY VARIATION UNDER DIFFERENT DEPTH OF ANESTHESIA BY EEG COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For a principal action of general anestheticagents takes place inthe brain,it wouldinduce EEGchange.It is reasonable to monitor the brain activityand esti mate the depth of anesthesia(DOA)byEEG[1].EEG signal was used to detect DOA since1940.Up to now,numerous efforts have beenmade to develop and test various EEG-derived pa-rameters in ti me-domain,frequency-domain,bis-pectral-domain etc.[2-3],but none of these methodshas beenshownto be sufficiently reliable for gener-al use for assessing DOAaccurately.Compl...

  18. 复杂脑网络研究:现状与挑战%Complex Brain Networks:Progresses and Challenges

    Institute of Scientific and Technical Information of China (English)

    张方风; 郑志刚

    2012-01-01

    Progresses in studies of complex networks and its applications in brain network were retrospected, including the research on topology structure features of anatomical and functional brain networks, as well as on the relationship between brain structures and functions. Based on complex networks theory, some important topology features of anatomical and functional brain networks were reported, such as small world,scale free,modular and hub regions; then some new findings were presented about the relationship between cognitive function and neuropsychiatry disorder with abnormalities in functional connectivity and changes in topological structure changes. Several challenges and key issues that should be addressed in the future were further raised.%以大脑网络研究为例,详细介绍了大脑网络的构建、结构网络、功能网络以及结构与功能的联系等方面的研究进展.基于复杂网络理论,对大脑结构网络和功能网络的分析得到很多重要的拓扑性质,如“小世界”、“无标度”、模块化以及核心脑区的分布等;另外发现认知功能、神经精神疾病与大脑结构和功能网络的拓扑结构变化或异常有关;总结了国内外在此领域的研究成果,提出了大脑网络研究工作面临的挑战,并展望了将来发展方向.

  19. Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data

    Energy Technology Data Exchange (ETDEWEB)

    Salami, Alireza

    2012-07-01

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks. Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed. Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality. This thesis focuses on multivariate and multimodal methods of image analysis applied to

  20. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria.

    Science.gov (United States)

    Boyan, George; Liu, Yu

    2014-02-01

    This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.

  1. Perception of acoustically complex phonological features in vowels is reflected in the induced brain-magnetic activity

    Directory of Open Access Journals (Sweden)

    Obleser Jonas

    2007-06-01

    Full Text Available Abstract A central issue in speech recognition is which basic units of speech are extracted by the auditory system and used for lexical access. One suggestion is that complex acoustic-phonetic information is mapped onto abstract phonological representations of speech and that a finite set of phonological features is used to guide speech perception. Previous studies analyzing the N1m component of the auditory evoked field have shown that this holds for the acoustically simple feature place of articulation. Brain magnetic correlates indexing the extraction of acoustically more complex features, such as lip rounding (ROUND in vowels, have not been unraveled yet. The present study uses magnetoencephalography (MEG to describe the spatial-temporal neural dynamics underlying the extraction of phonological features. We examined the induced electromagnetic brain response to German vowels and found the event-related desynchronization in the upper beta-band to be prolonged for those vowels that exhibit the lip rounding feature (ROUND. It was the presence of that feature rather than circumscribed single acoustic parameters, such as their formant frequencies, which explained the differences between the experimental conditions. We conclude that the prolonged event-related desynchronization in the upper beta-band correlates with the computational effort for the extraction of acoustically complex phonological features from the speech signal. The results provide an additional biomagnetic parameter to study mechanisms of speech perception.

  2. Brain and ventricular volume in patients with syndromic and complex craniosynostosis

    NARCIS (Netherlands)

    T. de Jong (Tim); B.F.M. Rijken (Bianca); M. Leguin (Maarten); M.L.C. van Veelen; I.M.J. Mathijssen (Irene)

    2012-01-01

    textabstractPurpose: Brain abnormalities in patients with syndromic craniosynostosis can either be a direct result of the genetic defect or develop secondary to compression due to craniosynostosis, raised ICP or hydrocephalus. Today it is unknown whether children with syndromic craniosynostosis have

  3. Personality and complex brain networks: The role of openness to experience in default network efficiency.

    Science.gov (United States)

    Beaty, Roger E; Kaufman, Scott Barry; Benedek, Mathias; Jung, Rex E; Kenett, Yoed N; Jauk, Emanuel; Neubauer, Aljoscha C; Silvia, Paul J

    2016-02-01

    The brain's default network (DN) has been a topic of considerable empirical interest. In fMRI research, DN activity is associated with spontaneous and self-generated cognition, such as mind-wandering, episodic memory retrieval, future thinking, mental simulation, theory of mind reasoning, and creative cognition. Despite large literatures on developmental and disease-related influences on the DN, surprisingly little is known about the factors that impact normal variation in DN functioning. Using structural equation modeling and graph theoretical analysis of resting-state fMRI data, we provide evidence that Openness to Experience-a normally distributed personality trait reflecting a tendency to engage in imaginative, creative, and abstract cognitive processes-underlies efficiency of information processing within the DN. Across two studies, Openness predicted the global efficiency of a functional network comprised of DN nodes and corresponding edges. In Study 2, Openness remained a robust predictor-even after controlling for intelligence, age, gender, and other personality variables-explaining 18% of the variance in DN functioning. These findings point to a biological basis of Openness to Experience, and suggest that normally distributed personality traits affect the intrinsic architecture of large-scale brain systems. Hum Brain Mapp 37:773-779, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO

    DEFF Research Database (Denmark)

    Holm, S; Andersen, A R; Vorstrup, S;

    1985-01-01

    The lipophilic 99mTc-labeled oxime propylene amine oxime (PnAO) should, according to recent reports behave like 133Xe in the human brain. This study compares SPECT images of the two tracers in six subjects: four stroke cases, one transitory ischemic attack case and one normal subject. Technetium-99...

  5. Self-organized Critical Model Based on Complex Brain Networks with Hierarchical Organization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; ZHANG Gui-Qing; YANG Qiu-Ying; CHEN Tian-Lun

    2008-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical area with a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibits power-law.Furthermore the power-law exponent of the distribution and the average avalanche Size are affected by the topology of the network.

  6. The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex.

    Science.gov (United States)

    Tatarkova, Zuzana; Kovalska, Maria; Timkova, Veronika; Racay, Peter; Lehotsky, Jan; Kaplan, Peter

    2016-08-01

    One of the characteristic features of the aging is dysfunction of mitochondria. Its role in the regulation of metabolism and apoptosis suggests a possible link between these cellular processes. This study investigates the relationship of respiratory complex I with aging-related oxidative stress in the cerebral mitochondria. Deterioration of complex I seen in senescent (26-months old) mitochondria was accompanied by decline in total thiol group content, increase of HNE and HNE-protein adducts as well as decreased content of complex I subunits, GRIM-19 and NDUFV2. On the other hand, decline of complex I might be related with the mitochondrial apoptosis through increased Bax/Bcl-2 cascade in 15-month old animal brains. Higher amount of Bcl-2, Bcl-xL with the lower content of GRIM-19 could maintain to some extent elevated oxidative stress in mitochondria as seen in the senescent group. In the cortical M1 region increased presence of TUNEL+ cells and more than 20-times higher density of Fluoro-Jade C+ cells in 26-months old was observed, suggesting significant neurodegenerative effect of aging in the neuronal cells. Our study supports a scenario in which the age-related decline of complex I might sensitize neurons to the action of death agonists, such as Bax through lipid and protein oxidative stimuli in mitochondria. Although aging is associated with oxidative stress, these changes did not increase progressively with age, as similar extent of lesions was observed in oxidative stress markers of the both aged groups.

  7. Complex oligosaccharides are N-linked to Kv3 voltage-gated K+ channels in rat brain.

    Science.gov (United States)

    Cartwright, Tara A; Corey, Melissa J; Schwalbe, Ruth A

    2007-04-01

    Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.

  8. Living longer living happier: My journey from clinical neurology to complexities of brain

    Directory of Open Access Journals (Sweden)

    Ashok Panagariya

    2011-01-01

    Full Text Available The present article is a treatise on the illuminating voyage of a Neurophysician along the fascinating horizons and frontiers of neurosciences. During the career as a clinical neurologist, some very interesting and intriguing cases and issues were dealt with and documented scientifically. The working of the brain and its operational architectonics came up for critical analysis, opening up new vistas in the appreciation and management of various neurological disorders. Issues regarding the working of the mind and the guidelines for health and happiness became apparent, and some very interesting generalizations with far-reaching consequences on the general well-being and health have been formulated and put forward for a healthy and happy future for mankind. A paradigm shift is warranted for a closer and better appreciation of neural dynamics at all levels of the brain, namely microscopic, mesoscopic and macroscopic levels!

  9. Living longer living happier: My journey from clinical neurology to complexities of brain.

    Science.gov (United States)

    Panagariya, Ashok

    2011-10-01

    The present article is a treatise on the illuminating voyage of a Neurophysician along the fascinating horizons and frontiers of neurosciences. During the career as a clinical neurologist, some very interesting and intriguing cases and issues were dealt with and documented scientifically. The working of the brain and its operational architectonics came up for critical analysis, opening up new vistas in the appreciation and management of various neurological disorders. Issues regarding the working of the mind and the guidelines for health and happiness became apparent, and some very interesting generalizations with far-reaching consequences on the general well-being and health have been formulated and put forward for a healthy and happy future for mankind. A paradigm shift is warranted for a closer and better appreciation of neural dynamics at all levels of the brain, namely microscopic, mesoscopic and macroscopic levels!

  10. Brain Networks during Free Viewing of Complex Erotic Movie: New Insights on Psychogenic Erectile Dysfunction

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other’s actions. Moreover, the between group differences in the SN nodes suggested a

  11. Personality and complex brain networks: The role of openness to experience in default network efficiency

    OpenAIRE

    2015-01-01

    Abstract The brain's default network (DN) has been a topic of considerable empirical interest. In fMRI research, DN activity is associated with spontaneous and self‐generated cognition, such as mind‐wandering, episodic memory retrieval, future thinking, mental simulation, theory of mind reasoning, and creative cognition. Despite large literatures on developmental and disease‐related influences on the DN, surprisingly little is known about the factors that impact normal variation in DN functio...

  12. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Directory of Open Access Journals (Sweden)

    Nicoletta Cera

    Full Text Available Psychogenic erectile dysfunction (ED is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp. Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC, using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN, default-mode network (DMN, fronto-parietal network (FPN and salience network (SN were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes

  13. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  14. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    OpenAIRE

    Gonzales, L.; Benefit, B.; McCrossin, M.; Spoor, F.

    2015-01-01

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopi...

  15. Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach.

    Science.gov (United States)

    Rosner, Ronny; von Hadeln, Joss; Salden, Tobias; Homberg, Uwe

    2017-07-01

    The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three-dimensionally reconstructed from synapsin-immunostained whole mount brains. The neuropil organization and the pattern of γ-aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  16. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    Science.gov (United States)

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods.

  17. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  18. L-dihydroxyphenylalanine and complex I deficiency in Parkinson's disease brain.

    Science.gov (United States)

    Cooper, J M; Daniel, S E; Marsden, C D; Schapira, A H

    1995-05-01

    There is evidence for a 37% deficiency of complex I activity in Parkinson's disease (PD), which appears to be specific for PD amongst parkinsonian syndromes and selective for the substantia nigra within the central nervous system. Rat studies have shown that, in the context of a normal nigrostriatal dopaminergic cell population, L-dihydroxyphenylalanine (L-dopa) causes a reversible 25% defect of complex I activity in nigral and striatal tissue. Analysis of striatal tissue from PD patients after prolonged exposure to high-dose L-dopa does not show such a defect. Results of these and other studies suggest that L-dopa therapy does not cause complex I deficiency in PD striatum. However, it cannot be excluded that, in the particular environment of the PD substantia nigra, L-dopa may enhance a preexisting complex I defect.

  19. Rules rule! Brain activity dissociates the representations of stimulus contingencies with varying levels of complexity.

    Science.gov (United States)

    Tse, Chun-Yu; Low, Kathy A; Fabiani, Monica; Gratton, Gabriele

    2012-09-01

    The significance of stimuli is linked not only to their nature but also to the sequential structure in which they are embedded, which gives rise to contingency rules. Humans have an extraordinary ability to extract and exploit these rules, as exemplified by the role of grammar and syntax in language. To study the brain representations of contingency rules, we recorded ERPs and event-related optical signal (EROS; which uses near-infrared light to measure the optical changes associated with neuronal responses). We used sequences of high- and low-frequency tones varying according to three contingency rules, which were orthogonally manipulated and differed in processing requirements: A Single Repetition rule required only template matching, a Local Probability rule required relating a stimulus to its context, and a Global Probability rule could be derived through template matching or with reference to the global sequence context. ERP activity at 200-300 msec was related to the Single Repetition and Global Probability rules (reflecting access to representations based on template matching), whereas longer-latency activity (300-450 msec) was related to the Local Probability and Global Probability rules (reflecting access to representations incorporating contextual information). EROS responses with corresponding latencies indicated that the earlier activity involved the superior temporal gyrus, whereas later responses involved a fronto-parietal network. This suggests that the brain can simultaneously hold different models of stimulus contingencies at different levels of the information processing system according to their processing requirements, as indicated by the latency and location of the corresponding brain activity.

  20. Evaluating the complexity of online patient education materials about brain aneurysms published by major academic institutions.

    Science.gov (United States)

    Gupta, Raghav; Adeeb, Nimer; Griessenauer, Christoph J; Moore, Justin M; Patel, Apar S; Kim, Christopher; Thomas, Ajith J; Ogilvy, Christopher S

    2017-08-01

    OBJECTIVE Health care education resources are increasingly available on the Internet. A majority of people reference these resources at one point or another. A threshold literacy level is needed to comprehend the information presented within these materials. A key component of health literacy is the readability of educational resources. The National Institutes of Health (NIH) and the American Medical Association have recommended that patient education materials be written between a 4th- and a 6th-grade education level. The authors assessed the readability of online patient education materials about brain aneurysms that have been published by several academic institutions across the US. METHODS Online patient education materials about brain aneurysms were downloaded from the websites of 20 academic institutions. The materials were assessed via 8 readability scales using Readability Studio software (Oleander Software Solutions), and then were statistically analyzed. RESULTS None of the patient education materials were written at or below the NIH's recommended 6th-grade reading level. The average educational level required to comprehend the texts across all institutions, as assessed by 7 of the readability scales, was 12.4 ± 2.5 (mean ± SD). The Flesch Reading Ease Scale classified the materials as "difficult" to understand, correlating with a college-level education or higher. An ANOVA test found that there were no significant differences in readability among the materials from the institutions (p = 0.215). CONCLUSIONS Brain aneurysms affect 3.2% of adults 50 years or older across the world and can cause significant patient anxiety and uncertainty. Current patient education materials are not written at or below the NIH's recommended 4th- to 6th-grade education level.

  1. Restoration of thalamo-cortical connectivity after brain injury: recovery of consciousness, complex behavior, or passage of time?

    Science.gov (United States)

    Crone, Julia S; Bio, Branden J; Vespa, Paul M; Lutkenhoff, Evan S; Monti, Martin M

    2017-08-12

    In 2000, a landmark case report described the concurrent restoration of consciousness and thalamo-frontal connectivity after severe brain injury (Laureys et al., 2000). Being a single case however, this study could not disambiguate whether the result was specific to the restoration of consciousness per se as opposed to the return of complex cognitive function in general or simply the temporal evolution of post-injury pathophysiological events. To test whether the restoration of thalamo-cortical connectivity is specific to consciousness, 20 moderate-to-severe brain injury patients (from a recruited sample of 42) underwent resting-state functional magnetic resonance imaging within a week after injury and again six months later. As described in the single case report, we find thalamo-frontal connectivity to be increased at the chronic, compared with the acute, time-point. The increased connectivity was independent of whether patients had already recovered consciousness prior to the first assessment or whether they recovered consciousness in-between the two. Conversely, we did find an association between restoration of thalamo-frontal connectivity and the return of complex cognitive function. While we did replicate the findings of Laureys et al. (2000), our data suggests that the restoration of thalamo-frontal connectivity is not as tightly linked to the reemergence of consciousness per se. However, the degree to which the return of connectivity is linked to the return of complex cognitive function, or to the evolution of other time-dependent post-injury mechanisms, remains to be understood. © 2017 Wiley Periodicals, Inc.

  2. Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator-based treatments.

    Science.gov (United States)

    Dong, Peng; Pérez-Andújar, Angélica; Pinnaduwage, Dilini; Braunstein, Steve; Theodosopoulos, Philip; McDermott, Michael; Sneed, Penny; Ma, Lijun

    2016-12-01

    OBJECTIVE Noninvasive Gamma Knife (GK) platforms, such as the relocatable frame and on-board imaging, have enabled hypofractionated GK radiosurgery of large or complex brain lesions. This study aimed to characterize the dosimetric quality of such treatments against linear accelerator-based delivery systems that include the CyberKnife (CK) and volumetric modulated arc therapy (VMAT). METHODS Ten patients treated with VMAT at the authors' institution for large brain tumors (> 3 cm in maximum diameter) were selected for the study. The median prescription dose was 25 Gy (range 20-30 Gy) in 5 fractions. The median planning target volume (PTV) was 9.57 cm(3) (range 1.94-24.81 cm(3)). Treatment planning was performed using Eclipse External Beam Planning V11 for VMAT on the Varian TrueBeam system, Multiplan V4.5 for the CyberKnife VSI System, and Leksell GammaPlan V10.2 for the Gamma Knife Perfexion system. The percentage of the PTV receiving at least the prescription dose was normalized to be identical across all platforms for individual cases. The prescription isodose value for the PTV, conformity index, Paddick gradient index, mean and maximum doses for organs at risk, and normal brain dose at variable isodose volumes ranging from the 5-Gy isodose volume (V5) to the 15-Gy isodose volume (V15) were compared for all of the cases. RESULTS The mean Paddick gradient index was 2.6 ± 0.2, 3.2 ± 0.5, and 4.3 ± 1.0 for GK, CK, and VMAT, respectively (p 0.06). The average prescription isodose values were 52% (range 47%-69%), 60% (range 46%-68%), and 88% (range 70%-94%) for GK, CK, and VMAT, respectively, thus producing significant variations in dose hot spots among the 3 platforms. Furthermore, the mean V5 values for GK and CK were similar (p > 0.79) at 71.9 ± 36.2 cm(3) and 73.3 ± 31.8 cm(3), respectively, both of which were statistically lower (p < 0.01) than the mean V5 value of 124.6 ± 67.1 cm(3) for VMAT. CONCLUSIONS Significantly better near-target normal brain

  3. Volume of discrete brain structures in complex dissociative disorders: preliminary findings.

    Science.gov (United States)

    Ehling, T; Nijenhuis, E R S; Krikke, A P

    2008-01-01

    Based on findings in traumatized animals and patients with posttraumatic stress disorder, and on traumatogenic models of complex dissociative disorders, it was hypothesized that (1) patients with complex dissociative disorders have smaller volumes of hippocampus, parahippocampal gyrus, and amygdala than normal controls, (2) these volumes are associated with severity of psychoform and somatoform dissociative symptoms, and (3) patients who recovered from dissociative identity disorder (DID) have more hippocampal volume that patients with florid DID. The preliminary findings of the study are supportive of these hypotheses. Psychotherapy for dissociative disorders may affect hippocampal volume, but longitudinal studies are required to document this potential causal relationship.

  4. 99mTc complex conjugated to insulin: CNS radio-pharmaceuticals design based on principles of blood-brain barrier transport vector

    Institute of Scientific and Technical Information of China (English)

    LIU Fei; FAN Caiyun; ZHANG Jinming; WANG Wushang; LIU Boli

    2005-01-01

    Hydrophilic 99mTc-EC and nonlipophilic 99mTc- MAMA′-BA complexes, owing to the existing of intact blood-brain barrier (BBB) in vivo, cannot cross from blood to brain. Previous studies showed that insulin is selectively transported by receptor-mediated transcytosis through the brain capillary endothelial wall that makes up the BBB. In this paper, based on the characteristic of the insulin receptor enriched in brain capillary, the complexes of hydrophilic 99mTc-EC and nonlipophilic 99mTc-MAMA′-BA are conjugated to insulin respectively. After purification, the radiochemical purity of 99mTc-EC-insulin and 99mTc-MAMA′- BA-insulin was > 90% and the stability in vitro was good. Expectation for the special formulation can be internalized and endocytosed into the capillary membrane by the vector-mediated brain delivery system, and transported 99mTc-labeled conjugate through the BBB in vivo, thus enhancing brain uptake in mice. The biodistribution results of 99mTc-EC-insulin and 99mTc-MAMA′-BA-insulin in mice indicated that the brain uptake was higher than 99mTc-EC and 99mTc-MAMA′-BA to some extent. The ratios of brain uptake of 99mTc-EC-insulin to 99mTc-EC, 99mTc-MAMA′-BA-insulin to 99mTc-MAMA′-BA were 4―6 at 2 and 3 h post-injection respectively. In conclusion, the given results have illustrated a new way of brain uptake enhancing for nonlipophilic like complexes that have BBB delivery problems. It has a potential value for the ongoing development of 99mTc-labeled radiopharmaceuticals for CNS receptors imaging.

  5. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex.

    Science.gov (United States)

    Frenzel, Monika; Rommelspacher, Hans; Sugawa, Michiru D; Dencher, Norbert A

    2010-08-01

    Activity and stability of life-supporting proteins are determined not only by their abundance and by post-translational modifications, but also by specific protein-protein interactions. This holds true both for signal-transduction and energy-converting cascades. For vital processes such as life-span control and senescence, to date predominantly age-dependent alterations in abundance and to lesser extent in post-translational modifications of proteins are examined to elucidate the cause of ageing at the molecular level. In mitochondria of rat cortex, we quantified profound changes in the proportion of supramolecular assemblies (supercomplexes) of the respiratory chain complexes I, III(2), IV as well as of the MF(o)F(1) ATP synthase (complex V) by 2D-native/SDS electrophoresis and fluorescent staining. Complex I was present solely in supercomplexes and those lacking complex IV were least stable in aged animals (2.4-fold decline). The ATP synthase was confirmed as a prominent target of age-associated degradation by an overall decline in abundance of 1.5-fold for the monomer and an 2.8-fold increase of unbound F(1). Oligomerisation of the ATP synthase increases during ageing and might modulate the cristae architecture. These data could explain the link between ageing and respiratory control as well as ROS generation.

  6. Planning and Realization of Complex Intentions in Traumatic Brain Injury and Normal Aging

    Science.gov (United States)

    Kliegel, Matthias; Eschen, Anne; Thone-Otto, Angelika I. T.

    2004-01-01

    The realization of delayed intentions (i.e., prospective memory) is a highly complex process composed of four phases: intention formation, retention, re-instantiation, and execution. The aim of this study was to investigate if executive functioning impairments are related to problems in the formation, re-instantiation, and execution of a delayed…

  7. Using Complexity Measure to Characterize Information Transmission of Human Brain Cortex

    Institute of Scientific and Technical Information of China (English)

    徐京华; 吴祥宝

    1994-01-01

    The information transmission among various parts of the cortex are computed with the the-ory of mutual information from the data of the electroencephalogram(EEG)time series of normal humansubjects.The intensities of these transmissions are characterized by the"complexity"measures.These mea-sures have revealed to be sensitively related to the functional conditions of human beings.

  8. Potentiometric and DFT studies of Cu(II) complexes with glycylglycine and methionine of interest for the brain chemistry

    Science.gov (United States)

    Vilhena, Felipe S.; Felcman, Judith; Szpoganicz, Bruno; Miranda, Fabio S.

    2017-01-01

    A large number of copper (II) complexes have been used as mimetic models for metalloproteins and metalloenzymes. Due to the lack of structural information about copper (II) complexes in aqueous solution, the coordination environment of this metal is not well established. In this work, pKa values of the complexes in the Cu:GlyGly, Cu:Met and Cu:GlyGly:Met systems were calculated by potentiometric titration at 25 °C and ionic strength of 0.1 mol L-1. The coordination modes of the ligands were explored for the main hydrolytic species throught RI-PBE/def2-SVP/COSMO level. In the Cu:GlyGly system, DFT results indicated that the NamineNpept coordination of dipeptide is 2.1 kcal mol-1 more stable than the tridentate NamineNpeptOcarboxy coordination moiety. The deprotonation of the peptide nitrogen is 13.7 kcal mol-1 more favorable than the hydrolysis of the water molecule coordinated to the metal. In the Cu:GlyGly:Met system, the sulfur atom does not belong to the copper (II) coordination sphere. Once the copper ion is incorporated into peptides, another ligand as methionine could bind to this system and carry an antioxidant site to different brain regions.

  9. Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Shinichiro Teramoto

    Full Text Available Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27 is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27 from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27, which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.

  10. The Relationship Between Relative Hydration Free Energies of 99mTcON2S2 Complexes and Their Brain Uptakes

    Institute of Scientific and Technical Information of China (English)

    SONG Wei; XUE Ying; CHEN Wei-zu; WANG Cun-xin; JIA Hong-mei; LIU Bo-li

    2003-01-01

    A thermodynamic integration dual-transform method was firstly applied to calculating the relative hydration free energies of 99mTcO-N2S2 complexes. The relationship between the brain uptakes(B.U.) of 99mTcO-N2S2 complexes with different substituted functional groups and their relative hydration free energies was investigated. The simulation results show that the experiment brain uptake(B.U.) data are strongly influenced by the relative hydration free energies of 99mTcO-N2S2 complexes, thus the simulations can provide the useful information for the medicine design of 99mTc brain imaging agents.

  11. Brain imaging genetics in ADHD and beyond - mapping pathways from gene to disorder at different levels of complexity.

    Science.gov (United States)

    Klein, Marieke; Onnink, Marten; van Donkelaar, Marjolein; Wolfers, Thomas; Harich, Benjamin; Shi, Yan; Dammers, Janneke; Arias-Va Squez, Alejandro; Hoogman, Martine; Franke, Barbara

    2017-01-31

    Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.

  12. Identification of myotropic neuropeptides from the brain and corpus cardiacum-corpus allatum complex of the beetle, Zophobas atratus.

    Science.gov (United States)

    Marciniak, Pawel; Audsley, Neil; Kuczer, Mariola; Rosinski, Grzegorz

    2010-01-01

    The neuropeptide profiles of the two major neuro-endocrinological organs, brain and retrocerebral complex corpus cardiacum-corpus allatum (CC/CA) of adult beetles, Zophobas atratus Fabricius (Coleoptera:Tenebrionidae) were analyzed by a combination of high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time of flight tandem mass spectrometry (MALDI TOF/TOF MS). The homological semi-isolated heart bioassay was used to screen HPLC fractions for myotropic activity in tissues, revealing several cardiostimulatory and cardioinhibitory factors from both the brain and CC/CA. Analysis of HPLC fractions by MALDI-TOF MS identified seven mass ions that could be assigned to other known peptides: leucomyosuppressin (LMS), Tribolium castaneum pyrokinin 2, sulfakinin 1, myoinhibitory peptide 4, a truncated NVP-like peptide, Tenebrio molitor AKH and crustacean cardioactive peptide. In addition, two novel peptides, myosuppressin (pEDVEHVFLRFa), which differs from LMS by one amino acid (E for D at position 4) and pyrokinin-like peptide (LPHYTPRLa) were also identified. To establish cardioactive properties of some of the identified peptides, chemical synthesis was carried out and their activities were tested using the heart bioassay.

  13. Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices.

    Science.gov (United States)

    Ciarlone, Geoffrey E; Dean, Jay B

    2016-12-01

    Central CO2-chemosensitive neurons in the caudal solitary complex (cSC) are stimulated not only by hypercapnic acidosis, but by hyperoxia as well. While a cellular mechanism for the CO2 response has yet to be isolated, previous data show that a redox-sensitive mechanism underlies neuronal excitability to hyperoxia. However, it remains unknown how changes in Po2 affect the production of reactive oxygen and nitrogen species (RONS) in the cSC that can lead to increased cellular excitability and, with larger doses, to cellular dysfunction and death. To this end, we used fluorescence microscopy in real time to determine how normobaric hyperoxia increases the production of key RONS in the cSC. Because neurons in the region are CO2 sensitive, we also examined the potential effects of CO2 narcosis, used during euthanasia before brain slice harvesting, on RONS production. Our findings show that normobaric hyperoxia (0.4 → 0.95 atmospheres absolute O2) increases the fluorescence rates of fluorogenic dyes specific to both superoxide and nitric oxide. Interestingly, different results were seen for superoxide fluorescence when CO2 narcosis was used during euthanasia, suggesting long-lasting changes in superoxide production and/or antioxidant activity subsequent to CO2 narcosis before brain slicing. Further research needs to distinguish whether the increased levels of RONS reported here are merely increases in oxidative and nitrosative signaling or, alternatively, evidence of redox and nitrosative stress.

  14. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    Science.gov (United States)

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  15. Effect of electroacupuncturein Weijing points on gastroin testinal interdigestive migrating motor complex and brain gut peptides release in dogs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Interdigestive gastrointestinal migratingmotor complex (MMC) activities were recorded by strain gauge implanted on the serosa in 7 conscious dogs. We studied theffects of electroacupuncture (EAP) Weijing points Zusanli (S36), Tianshu (S25), Liangmen (S21) on MMC and release of motilin and gastrin, and compared them with that of EAP Pangguangjing points. The results indicated that EAP Weijing points could not only strengthen MMC contractions in antrum, duodenum and proximal jejunum, but also increase plasma concentration of motilin and gastrin. Anti-motilin serum, proglumide, atropine, or hexamethonium could markedly block the effect of EAP on reinforcing MMC contraction and release of motilin and gastrin. We could get the conclusions that such enhancing effect of EAP Weijing points on MMC and brain-gut peptides release is mediated by motilin and gastrin, on which both cholinergic nerve and sympathetic nerve play important roles.

  16. Visual task complexity modulates the brain's response to unattended auditory novelty.

    Science.gov (United States)

    Yucel, Gunes; Petty, Christopher; McCarthy, Gregory; Belger, Aysenil

    2005-07-13

    New, unusual, and changing events are important environmental cues, and the ability to detect these types of stimuli in the environment constitutes a biologically significant survival skill. We used event-related potentials to examine whether sensory and cognitive neural responses to unattended novel events are modulated by the complexity of a primary visuomotor task. Event-related potentials were elicited by unattended task-irrelevant pitch-deviant tones and novel environmental sounds while study participants performed a continuous visuomotor tracking task at two levels of difficulty, achieved by manipulating the control dynamics of a joystick. The results revealed that increased task complexity modulated evoked sensory and cognitive event-related potential components, indicating that detection of change and novelty in the unattended auditory channel is resource-limited.

  17. Measures of metabolism and complexity in the brain of patients with disorders of consciousness.

    Science.gov (United States)

    Bodart, Olivier; Gosseries, Olivia; Wannez, Sarah; Thibaut, Aurore; Annen, Jitka; Boly, Melanie; Rosanova, Mario; Casali, Adenauer G; Casarotto, Silvia; Tononi, Giulio; Massimini, Marcello; Laureys, Steven

    2017-01-01

    Making an accurate diagnosis in patients with disorders of consciousness remains challenging. (18)F-fluorodeoxyglucose (FDG)-PET has been validated as a diagnostic tool in this population, and allows identifying unresponsive patients with a capacity for consciousness. In parallel, the perturbational complexity index (PCI), a new measure based on the analysis of the electroencephalographic response to transcranial magnetic stimulation, has also been suggested as a tool to distinguish between unconscious and conscious states. The aim of the study was to cross-validate FDG-PET and PCI, and to identify signs of consciousness in otherwise unresponsive patients. We jointly applied the Coma Recovery Scale-Revised, FDG-PET and PCI to assess 24 patients with non-acute disorders of consciousness or locked-in syndrome (13 male; 19-54 years old; 12 traumatic; 9 unresponsive wakefulness syndrome, 11 minimally conscious state; 2 emergence from the minimally conscious state, and 2 locked-in syndrome). FDG-PET and PCI provided congruent results in 22 patients, regardless of their behavioural diagnosis. Notably, FDG-PET and PCI revealed preserved metabolic rates and high complexity levels in four patients who were behaviourally unresponsive. We propose that jointly measuring the metabolic activity and the electrophysiological complexity of cortical circuits is a useful complement to the diagnosis and stratification of patients with disorders of consciousness.

  18. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-01-01

    suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders. PMID:27983596

  19. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.

  20. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain.

    Science.gov (United States)

    Martin, David A; Nichols, Charles D

    2016-09-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research.

  1. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain

    Directory of Open Access Journals (Sweden)

    David A. Martin

    2016-09-01

    Full Text Available There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research.

  2. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain.

    Science.gov (United States)

    Hoekzema, Elseline; Rojas, Santiago; Herance, Raúl; Pareto, Deborah; Abad, Sergio; Jiménez, Xavier; Figueiras, Francisca P; Popota, Foteini; Ruiz, Alba; Flotats, Núria; Fernández, Francisco J; Rocha, Milagros; Rovira, Mariana; Víctor, Víctor M; Gispert, Juan D

    2012-07-01

    The GABA-ergic system, known to regulate neural tissue genesis during cortical development, has been postulated to play a role in cerebral aging processes. Using in vivo molecular imaging and voxel-wise quantification, we aimed to assess the effects of aging on the benzodiazepine (BDZ) recognition site of the GABA(A) receptor. To visualize BDZ site availability, [(11)C]-flumazenil microPET acquisitions were conducted in young and old rats. The data were analyzed and region of interest analyses were applied to validate the voxel-wise approach. We observed decreased [(11)C]-flumazenil binding in the aged rat brains in comparison with the young control group. More specifically, clusters of reduced radioligand uptake were detected in the bilateral hippocampus, cerebellum, midbrain, and bilateral frontal and parieto-occipital cortex. Our results support the pertinence of voxel-wise quantification in the analysis of microPET data. Moreover, these findings indicate that the aging process involves declines in neural BDZ recognition site availability, proposed to reflect alterations in GABA(A) receptor subunit polypeptide expression.

  3. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.

    Science.gov (United States)

    Bachelard, H S

    1971-11-01

    1. Substrate-saturation curves of brain hexokinase for MgATP(2-) were sigmoidal at sub-saturating concentrations of glucose when the Mg(2+)/ATP ratio was maintained at 1:1. Under identical conditions, except that Mg(2+) was present in excess, hyperbolic curves were observed. 2. The number of binding sites (calculated from Hill plots) is 1.8 at a Mg(2+)/ATP ratio 1:1, and 1.0 with excess of Mg(2+). The apparent K(m) for MgATP(2-) is 6.5x10(-4)m at a Mg(2+)/ATP ratio 1:1, and 3.5x10(-4)m with excess of Mg(2+). 3. Interdependence between substrate-binding sites was indicated by the effects of varying the concentration of glucose. The sigmoidality and deviation from Michaelis-Menten kinetics at a Mg(2+)/ATP ratio 1:1 became less pronounced with increasing glucose concentration. Also, although substrate-saturation curves for glucose were hyperbolic when the Mg(2+)/ATP ratio was 1:1, reciprocal plots were non-linear. These were linear with excess of Mg(2+). 4. High concentrations of Mg(2+) (Mg(2+)/ATP ratios above 5:1) were inhibitory. 5. The results are taken to indicate homotropic co-operative binding of MgATP(2-) and that Mg(2+) is an allosteric activator. Possible implications in regulation are discussed.

  4. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  5. Non-auditory Effect of Noise Pollution and Its Risk on Human Brain Activity in Different Audio Frequency Using Electroencephalogram Complexity.

    Science.gov (United States)

    Allahverdy, Armin; Jafari, Amir Homayoun

    2016-10-01

    Noise pollution is one of the most harmful ambiance disturbances. It may cause many deficits in ability and activity of persons in the urban and industrial areas. It also may cause many kinds of psychopathies. Therefore, it is very important to measure the risk of this pollution in different area. This study was conducted in the Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences from June to September of 2015, in which, different frequencies of noise pollution were played for volunteers. 16-channel EEG signal was recorded synchronously, then by using fractal dimension and relative power of Beta sub-band of EEG, the complexity of EEG signals was measured. As the results, it is observed that the average complexity of brain activity is increased in the middle of audio frequency range and the complexity map of brain activity changes in different frequencies, which can show the effects of frequency changes on human brain activity. The complexity of EEG is a good measure for ranking the annoyance and non-auditory risk of noise pollution on human brain activity.

  6. High level HIV-1 DNA concentrations in brain tissues differentiate patients with post-HAART AIDS dementia complex or cardiovascular disease from those with AIDS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li; GALLIGAN Derek C.; LAMERS Susanna L.; YU Stephanie; SHAGRUN Lamia; SALEMI Marco; MCGRATH Michael S.

    2009-01-01

    Highly active antiretroviral treatment (HAART) has had a significant Impact on survival of individuals with acquired immunodeficiency syndrome (AIDS); however, with the longer life-span of patients with AIDS, there is increasing prevalence of AIDS dementia complex (ADC) and other non-AIDS-defining illness, and cardiovascular diseases (CVD) are also common. The influence of these varied disease processes on HIV-1 DNA concentration in brain tissues has not been thoroughly assessed in the post-HAART era. The purpose of the current study is to clarify the impacts of ADC and other complications of HIV disease on the viral load in the brains in AIDS patients with post-HARRT. We examined autopsy specimens from the brains of thirteen patients who died from complications of AIDS with quantitative poiymerase chain reaction (QPCR). All but one patient had HAART prior to death since 1995. Two patients died with severe CVD, multiple cerebrovascular atherosclerosis (CVA)throughout the brain and five patients died with ADC. Six patients had no ADC/CVA. A QPCR was used to measure the presence of HIV-1 DNA in six brain tissues (meninges, frontal grey matter, frontal white matter, temporal subcortex, cerebellum and basal ganglia). In the post-HARRT era, for non-ADC/CVA patients, HIV-1 DNA concentration in brain tissues was statistically higher than that in patients with ADC. in a new finding, two patients who suffered from severe CVD, especially CVA, also had high concentrations of HIV-1 in brain compartments not showing ADC related changes. To our knowledge,this is the first report of a relationship between the CVA and HIV-1 viral burden in brain. The current observations suggest that HAART-resistant HIV reservoirs may survive within ADC lesions of the brain as well as the macrophage rich atherosclerosis, which needs to be confirmed by more AIDS cases with CVA.

  7. Complex

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  8. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS. Recent studies have established the significance of atypical protein kinase C (aPKC and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.

  9. Complex behavior of marine animal tissue extracts in the competitive binding assay of brevetoxins with rat brain synaptosomes.

    Science.gov (United States)

    Whitney, P L; Delgado, J A; Baden, D G

    1997-01-01

    Brevetoxins are produced by the marine dinoflagellate Ptychodiscus brevis, an organism linked to red tide outbreaks, and the accompanying toxicity to marine animals and to neurotoxic shellfish poisoning in humans. Brevetoxins bind with high affinity to voltage-sensitive sodium channels and cause increased sodium ion conductance and nerve cell depolarization. The brevetoxin competitive binding assay with tritium-labeled brevetoxin 3 (3H-PbTx-3) and rat brain synaptosomes is a sensitive and specific assay for pure brevetoxins. Here we report that extracts of manatee, turtle, fish, and clam tissues contain components that interfere with the assay by cooperative, noncompetitive inhibition of 3H-PbTx-3 specific binding and increased nonspecific binding to synaptosomes. By determining the "apparent" toxin concentration ("[Toxin]") in the extract at several assay concentrations, a reasonable correction for the complex inhibition could be made using a semilog plot to extrapolate [Toxin] to zero extract concentration to obtain [Toxin]0. Spiking 4 extracts with 60 nM PbTx-3 caused [Toxin]0 to increase by 41 +/- 8 nM, indicating that the noncompetitive components did not prevent the assay of toxin but did reduce the accuracy of the result. Fourfold repetition of the assay of 4 samples gave standard deviations of 25 to 60% of the value of [Toxin]0, so the error can be fairly large, especially for samples with little toxin. Purification of an extract with a 1 g sample prep column of C-18 decreased the complex inhibition by about 3-fold but did not eliminate interference in the assay.

  10. Restricted occurrence of Locusta migratoria ovary maturing parsin in the brain-corpora cardiaca complex of various insect species.

    Science.gov (United States)

    Richard, O; Tamarelle, M; Geoffre, S; Girardie, J

    1994-09-01

    Ovary maturing parsin (OMP) is a gonadotrophic molecule previously isolated from the neurosecretory lobes of the corpora cardiaca of Locusta migratoria (acridian Orthoptera). A polyclonal antiserum directed against the two biologically active domains of the L. migratoria (Lom) OMP was used to investigate the occurrence of Lom OMP-like substances in brain-corpora cardiaca complexes of other insect species. Using immunohistochemistry, specimens of 40 different insect species belonging to 13 insect orders were tested. The Lom OMP-like substance was strictly limited to specimens of insect species belonging to the Acridae. It occurred in non-basophilic cells of the pars intercerebralis that project to the corpora cardiaca, as in Locusta. Although the antiserum only detected Lom OMP-like material in the Acridae, it is possible that related molecules exist in other insects. The antiserum may be very specific for domains of the Lom OMP molecule that have not been highly conserved during evolution or possibly these domains are not accessible to the antiserum in other insects.

  11. Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain.

    Science.gov (United States)

    Williams, J L D; Boyan, G S

    2008-03-01

    The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.

  12. Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry.

    Science.gov (United States)

    Homberg, U

    1991-01-08

    The central complex is a prominent structure in the insect brain, yet its anatomical organization and functional role is still poorly understood. To facilitate investigations on the physiology of the central complex, this study describes its anatomical organization in the brain of locusts (Schistocerca gregaria and Schistocerca americana) based on an investigation of serotonin immunocytochemistry. Most subdivisions of the central complex including the protocerebral bridge, several layers in the upper division of the central body, and the noduli of the central body are innervated by serotonin-immunoreactive neurons, while the lower division of the central body does not exhibit serotonin-like immunoreactivity. Several types of serotonin-immunoreactive neurons can be distinguished. A system of about 60 columnar neurons innervates the protocerebral bridge, layer III of the upper division of the central body, and the noduli. A group of 15-20 bilateral pairs of serotonin-immunoreactive neurons connects the posterior optic tubercles with the protocerebral bridge. About ten pairs of neurons with somata in the inferior protocerebrum innervate layer Ia of the upper division of the central body. In addition, large-field neurons arborize in layers Ia and Ib of the upper division of the central body and in the lateral accessory lobes. The detailed mapping of serotonin immunoreactivity provides further insight into the anatomical organization of the central complex and suggests that serotonin is a major neuroactive substance within this brain structure.

  13. Brain Basics

    Medline Plus

    Full Text Available ... control specific body functions such as sleep and speech. The brain continues maturing well into a person's ... as sleep, diet, or stress. These factors may act alone or together in complex ways, to change ...

  14. Cl- conduction of GABA(A)-receptor complex of synaptic membranes of rat brain cortex after development of chronic epileptization of the brain (pharmacological kindling).

    Science.gov (United States)

    Rebrov, I G; Karpova, M N; Andreev, A A; Klishina, N Y; Kalinina, M V; Kusnetzova, L V

    2008-03-01

    Experiments on Wistar rats showed that basal and muscimol-induced 36Cl- entry into synaptoneurosomes isolated from the brain cortex decreased after kindling (30 mg/kg pentylenetetrazole intraperitoneally for 30 days) in animals with seizure severity score 4-5. Changes in Cl- conduction during kindling are discussed.

  15. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world

    Directory of Open Access Journals (Sweden)

    Marina Vladimirovna Zueva

    2015-07-01

    Full Text Available The theory that ties normal functioning and pathology of the brain and visual system with the spatial-temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Nonlinear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a nonlinear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult's neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author's theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered.

  16. Brain single-photon emission tomography using technetium-99m bicisate (ECD) in a case of complex partial seizure

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, C. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Gruenwald, F. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Pavics, L. [Dept. of Nuclear Medicine, Univ. of Szeged (Hungary); Hufnagel, A. [Dept. of Epileptology, Univ. of Bonn (Germany); Stawovy, B. [Dept. of Epileptology, Univ. of Bonn (Germany); Reichmann, K. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Elger, C.E. [Dept. of Epileptology, Univ. of Bonn (Germany); Biersack, H.J. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany)

    1994-11-01

    The clinical application of technetium-99m bicisate (ethyl cysteinate dimer, ECD) for ictal and interictal studies of regional cerebral blood flow (rCBF) in a patient suffering from medically intractable simple and complex partial seizures is reported. The interictal study was performed 60 min p.i. and the ictal studies were performed at 60 min p.i. using an annular crystal single-photon emission tomography (SPET) system dedicated for high-resolution brain SPET imaging. Visual evaluation of the studies was carried out, as well as semiquantitative measurement of regional tracer uptake. Magnetic resonance imaging (MRI) scans revealed atrophy of almost the complete left frontal lobe and the ventral parts of the left temporal lobe, including in part the temporomesial structures. The left parietal and occipital structures and the right hemisphere were normal. The interictal study showed a large perfusion defect involving the whole left frontal lobe as well as the left temporal lobe with remaining small areas of normal cortical tracer uptake. The ictal studies detected circumscribed hyperperfusion within the left mesial temporal lobe (ventral part of the hippocampus). Additionally an increase in perfusion could be seen within the entire remaining left temporal lobe. Semiquantitative evaluation of tracer uptake comparing both studies detected markedly increased uptake within the focus compared to the remaining left temporal lobe. On this basis the newly available tracer for studies of rCBF, {sup 99m}Tc-bicisate, seems to be of value for the detection of epileptogenic foci. Additionally, the value of ictal rCBF studies in the presurgical evaluation of those patients presenting severe morphological alterations on MRI is clearly underlined by this case. (orig.)

  17. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  18. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  19. Associations between Performance on the Rey-Osterrieth Complex Figure and Regional Brain Volumes in Children with and without Velocardiofacial Syndrome

    Science.gov (United States)

    Antshel, Kevin M.; Peebles, Jena; AbdulSabur, Nuria; Higgins, Anne Marie; Roizen, Nancy; Shprintzen, Robert; Fremont, Wanda P.; Nastasi, Robert; Kates, Wendy R.

    2009-01-01

    Ninety-two children with velocardiofacial syndrome (VCFS), a genetic disorder caused by a microdeletion of chromosome 22q11.2 and an age, race and gender-ratio comparable sample of 59 control participants were included in the project. Participants received a MRI as well as a comprehensive neuropsychological battery; the primary outcome measure in the current report is the Rey-Osterrieth Complex Figure (ROCF). Children with VCFS performed less well on the ROCF and have lower whole brain volume compared to controls. After controlling for whole brain volume differences, children with VCFS have bilaterally less parietal lobe gray and white matter yet more frontal lobe white matter. Brain - behavior relationships include: (a) for both groups, parietal volumes (both gray and white matter) predicted ROCF Copy Organization performance and frontal volumes (both gray and white matter) predicted ROCF Copy Accuracy performance; (b) for controls, frontal white matter also predicted ROCF Copy Organization performance; (c) ROCF Recall Organization performance was best predicted by frontal gray matter volume only in our controls; ROCF Recall Accuracy performance was best predicted by frontal gray matter volume in both groups; and (d) in children with VCFS, performance on the ROCF-Copy Structural Elements Accuracy scale was predicted by right hemisphere white matter volume. Our hypotheses were also retested using IQ-matched and whole brain volume-matched subsamples. Identical results were obtained in these analyses. Assumptions about the organization of and the localization of the brain structures that subserve specific cognitive functions in the typically developing brain may not apply in the abnormally developing brain. PMID:18788013

  20. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice

    Science.gov (United States)

    Niatsetskaya, Zoya V.; Sosunov, Sergei A.; Matsiukevich, Dzmitry; Utkina-Sosunova, Irina V.; Ratner, Veniamin I.; Starkov, Anatoly A.; Ten, Vadim S.

    2012-01-01

    Oxidative stress and Ca++ toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI-brain by limiting generation of oxidative radicals during reperfusion. HI-insult was produced in p10 mice treated with complex-I (C-I) inhibitor, pyridaben (P), or vehicle. Administration of P significantly decreased extent of HI injury. Mitochondria isolated from the ischemic hemisphere in P-treated animals showed reduced H2O2 emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to Ca++ triggered opening of permeability transition pore. Protective effect of P administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O2 which exacerbated brain injury only in V-treated mice. In vitro, intact brain mitochondria dramatically increased H2O2 emission in response to hyperoxia, resulting in substantial loss of Ca++ buffering capacity. However, in the presence of C-I inhibitor, rotenone, or antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I dependent mitochondrial respiration contributes not only to the cellular survival, but also causes an oxidative damage to the mitochondria, potentiating a loss of Ca++ buffering capacity. This highlights a novel neuroprotective strategy against HI-brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion. PMID:22378894

  1. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice.

    Science.gov (United States)

    Niatsetskaya, Zoya V; Sosunov, Sergei A; Matsiukevich, Dzmitry; Utkina-Sosunova, Irina V; Ratner, Veniamin I; Starkov, Anatoly A; Ten, Vadim S

    2012-02-29

    Oxidative stress and Ca(2+) toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI brain by limiting a generation of oxidative radicals during reperfusion. HI insult was produced in p10 mice treated with complex I (C-I) inhibitor, pyridaben, or vehicle. Administration of P significantly decreased the extent of HI injury. Mitochondria isolated from the ischemic hemisphere in pyridaben-treated animals showed reduced H(2)O(2) emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to the Ca(2+)-triggered opening of the permeability transition pore. A protective effect of pyridaben administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O(2) which exacerbated brain injury only in vehicle-treated mice. In vitro, intact brain mitochondria dramatically increased H(2)O(2) emission in response to hyperoxia, resulting in substantial loss of Ca(2+) buffering capacity. However, in the presence of the C-I inhibitor, rotenone, or the antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I-dependent mitochondrial respiration contributes not only to the cellular survival, but also causes oxidative damage to the mitochondria, potentiating a loss of Ca(2+) buffering capacity. This highlights a novel neuroprotective strategy against HI brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion.

  2. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Directory of Open Access Journals (Sweden)

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  3. Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers.

    Science.gov (United States)

    Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter

    2016-05-01

    When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.

  4. Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung-Hsin [Chung Shan Medical University, Department of Medical Imaging and Radiological Sciences, Taichung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Chen, Chia-Lin [Chung Shan Medical University, Department of Medical Imaging and Radiological Sciences, Taichung (China); Huang, Yung-Hui [I-Shou University, Department of Medical Imaging and Radiological Sciences, Kaohsiung County (China); Liu, Ren-Shyan [National Yang-Ming University, Department of Nuclear Medicine, Faculty of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Hsieh, Jen-Chuen [National Yang-Ming University, Brain Research Center and Institute of Brain Science, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Lee, Jason J.S. [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2009-03-15

    The aim of this study was to examine the neural bases for the exceptional mental calculation ability possessed by Chinese abacus experts through PET imaging. We compared the different regional cerebral blood flow (rCBF) patterns using {sup 15}O-water PET in 10 abacus experts and 12 non-experts while they were performing each of the following three tasks: covert reading, simple addition, and complex contiguous addition. All data collected were analyzed using SPM2 and MNI templates. For non-experts during the tasks of simple addition, the observed activation of brain regions were associated with coordination of language (inferior frontal network) and visuospatial processing (left parietal/frontal network). Similar activation patterns but with a larger visuospatial processing involvement were observed during complex contiguous addition tasks, suggesting the recruitment of more visuospatial memory for solving the complex problems. For abacus experts, however, the brain activation patterns showed slight differences when they were performing simple and complex addition tasks, both of which involve visuospatial processing (bilateral parietal/frontal network). These findings supported the notion that the experts were completing all the calculation process on a virtual mental abacus and relying on this same computational strategy in both simple and complex tasks, which required almost no increasing brain workload for solving the latter. In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability. (orig.)

  5. High level HIV-1 DNA concentrations in brain tissues differentiate patients with post-HAART AIDS dementia complex or cardiovascular disease from those with AIDS

    Institute of Scientific and Technical Information of China (English)

    GALLIGAN; Derek; C.; LAMERS; Susanna; L.; YU; Stephanie; SHAGRUN; Lamia; SALEMI; Marco; MCGRATH; Michael; S.

    2009-01-01

    Highly active antiretroviral treatment(HAART) has had a significant impact on survival of individuals with acquired immunodeficiency syndrome(AIDS);however,with the longer life-span of patients with AIDS,there is increasing prevalence of AIDS dementia complex(ADC) and other non-AIDS-defining illness,and cardiovascular diseases(CVD) are also common.The influence of these varied disease processes on HIV-1 DNA concentration in brain tissues has not been thoroughly assessed in the post-HAART era.The purpose of the current study is to clarify the impacts of ADC and other complications of HIV disease on the viral load in the brains in AIDS patients with post-HARRT.We examined autopsy specimens from the brains of thirteen patients who died from complications of AIDS with quantitative polymerase chain reaction(QPCR).All but one patient had received HAART prior to death since 1995.Two patients died with severe CVD,multiple cerebrovascular atherosclerosis(CVA) throughout the brain and five patients died with ADC.Six patients had no ADC/CVA.A QPCR was used to measure the presence of HIV-1 DNA in six brain tissues(meninges,frontal grey matter,frontal white matter,temporal subcortex,cerebellum and basal ganglia).In the post-HARRT era,for non-ADC/CVA patients,HIV-1 DNA concentration in brain tissues was statistically higher than that in patients with ADC.In a new finding,two patients who suffered from severe CVD,especially CVA,also had high concentrations of HIV-1 in brain compartments not showing ADC related changes.To our knowledge,this is the first report of a relationship between the CVA and HIV-1 viral burden in brain.The current observations suggest that HAART-resistant HIV reservoirs may survive within ADC lesions of the brain as well as the macrophage rich atherosclerosis,which needs to be confirmed by more AIDS cases with CVA.

  6. The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis

    OpenAIRE

    2013-01-01

    Researchers and clinicians have been challenged with the development of therapies for the treatment of cancer patients whose tumors metastasized to the brain. Among the most lethal weapons known today, current management of brain metastases involves multiple therapeutic modalities that provide little, if any, for improving the quality of life and overall survival. Recently the role of cancer stem cells (CSCs) in the development of cancer has been studied extensively, and thus its role in the ...

  7. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test

    Directory of Open Access Journals (Sweden)

    Sharma Pushpa

    2009-01-01

    Full Text Available Objectives: The present study was designed to investigate the role of a mitochondrial enzyme pyruvate dehydrogenase (PDH on the severity of brain injury, and the effects of pyruvate treatment in rats with traumatic brain injury (TBI. Materials and Methods: We examined rats subjected to closed head injury using a fluid percussion device, and treated with sodium pyruvate (antioxidant and substrate for PDH enzyme. At 72 h post injury, blood was analyzed for blood gases, acid-base status, total PDH enzyme using a dipstick test and malondialdehyde (MDA levels as a marker of oxidative stress. Brain homogenates from right hippocampus (injured area were analyzed for PDH content, and immunostained hippocampus sections were used to determine the severity of gliosis and PDH E1-∞ subunit. Results: Our data demonstrate that TBI causes a significant reduction in PDH enzyme, disrupt-acid-base balance and increase oxidative stress in blood. Also, lower PDH enzyme in blood is related to the increased gliosis and loss of its PDH E1-∞ subunit PDH in brain tissue, and these effects of TBI were prevented by pyruvate treatment. Conclusion: Lower PDH enzyme levels in blood are related to the global oxidative stress, increased gliosis in brain, and severity of brain injury following TBI. These effects can be prevented by pyruvate through the protection of PDH enzyme and its subunit E-1.

  8. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  9. Characterization of sodium-dependent (3H)GBR-12935 binding in brain: a radioligand for selective labelling of the dopamine transport complex

    Energy Technology Data Exchange (ETDEWEB)

    Janowsky, A.; Berger, P.; Vocci, F.; Labarca, R.; Skolnick, P.; Paul, S.M.

    1986-04-01

    High-affinity and saturable binding sites for the diphenyl-substituted piperazine derivative (3H)GBR-12935 have been characterized in crude synaptosomal membranes prepared from rat brain. The specific binding of (3H)GBR-12935 is sodium-dependent and is unevenly distributed among various brain regions, with the highest concentration of binding sites being found in the corpus striatum and nucleus accumbens. Sodium-dependent (3H)GBR-12935 binding in all other brain areas was 10% or less of the binding found in the striatum. The affinity of (3H)GBR-12935 for binding sites in the striatum is increased in the presence of Na+ but other cations, including K+, Ca2+, or Mg2+, inhibit specific binding. There is an excellent correlation (r = 0.96, p less than 0.01) between the potencies of a series of drugs in inhibiting (3H)GBR-12935 binding to striatal membranes and their potencies in inhibiting (3H)3,4-dihydroxyphenylethylamine ((3H)dopamine) uptake in synaptosomes. Agonists and antagonists of other neurotransmitter receptor or drug recognition sites have little or no effect on specific (3H)GBR-12935 binding to striatal membranes. In addition, prior intracerebroventricular administration of 6-hydroxydopamine results in a decrease in the number of specific (3H)GBR-12935 binding sites in the striatum. These data indicate that (3H)GBR-12935 is a selective radioligand of the presynaptic dopamine transport complex in brain.

  10. Different distributions of the 5-HT reuptake complex and the postsynaptic 5-HT(2A) receptors in Brodmann areas and brain hemispheres.

    Science.gov (United States)

    Rosel, Pilar; Arranz, Belén; Urretavizcaya, Mikel; Oros, Miguel; San, Luis; Vallejo, Julio; Navarro, Miguel Angel

    2002-08-30

    The aim of the present study was to determine the distribution of the presynaptic 5-HT reuptake complex and the 5-HT(2A) receptors through Brodmann areas from two control subjects, together with the possible existence of laterality between both brain hemispheres. A left laterality was observed in the postsynaptic 5-HT(2A) binding sites, with significantly higher B(max) values in the left frontal and cingulate cortex. In frontal cortex, [3H]imipramine and [3H]paroxetine binding showed the highest B(max) values in areas 25, 10 and 11. In cingulate cortex, the highest [3H]imipramine and [3H]paroxetine B(max) values were noted in Brodmann area 33 followed by area 24, while postsynaptic 5-HT(2A) receptors were mainly distributed through Brodmann areas 23 and 29. In temporal cortex, the highest [3H]imipramine and [3H]paroxetine B(max) was noted in Brodmann areas 28 and 34, followed by areas 35 and 38. All Brodmann areas from parietal cortex (1, 2, 3, 4, 5, 6, 7, 39, 40 and 43) showed similar presynaptic and postsynaptic binding values. In occipital cortex no differences were observed with regard to the brain hemisphere or to the Brodmann area (17, 18 and 19). These results suggest the need to carefully define the brain hemisphere and the Brodmann areas studied, as well to avoid comparisons between studies including different Brodmann areas or brain hemispheres.

  11. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations

    DEFF Research Database (Denmark)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-01-01

    Among bilaterian invertebrates, cephalopod molluscs (e.g., squids, cuttlefish and octopuses) have a central nervous system (CNS) that rivals in complexity that of the phylogenetically distant vertebrates (e.g., mouse and human). However, this prime example of convergent evolution has rarely been...... the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined...... with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling...

  12. Functional organization of complex brain networks modulated by acupuncture at different acupoints belonging to the same anatomic segment

    Institute of Scientific and Technical Information of China (English)

    CHEN Shang-jie; MENG Lan; YAN Hao; BAI Li-jun; WANG Fang; HUANG Yong; LI Jian-ping; PENG Xu-ming; SHI Xue-min

    2012-01-01

    Background Noninvasive functional magnetic resonance imaging (fMRI) techniques have opened a “window” into the brain.allowing us to investigate the anatomical and physiological function involving acupuncture needling.Imaging its sustained effect rather than acute effect on the brain networks may further help elucidate the mechanisms by which acupuncture achieves its therapeutic effects.In this study,we aimed to investigate the functional brain networks during the post-resting state following acupuncture at KI3 in comparison with acupuncture at GB40.Methods Needling at acupoints GB40 and KI3 was performed in twelve subjects.Six minutes of scanning at rest were adopted before and after acupuncture at different acupoints.Then we divided the whole brain into 39 regions and constructed functional brain networks during the post-acupuncture resting states (PARS).Results For direct comparisons.increased correlations during post-resting state following acupuncture at KI3compared to resting state (RS) were primarily located between the dorsolateral prefrontal cortex (DLPFC) and post temporal cortex,ventromedial prefrontal cortex (vmPFC) and post temporal cortex.These brain regions were all cognitive-related functions.In contrast.the increased connections between the anterior insula and temporal cortex mainly emerged following acupuncture at GB40 compared with the RS.Conclusions The present study demonstrates that acupuncture at different acupoints belonging to the same anatomic segment can exert different modulatory effects on the reorganizations of post-acupuncture RS networks.The heterogeneous modulation patterns between two conditions may relate to the functional specific modulatory effects of acupuncture.

  13. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate.

    Science.gov (United States)

    Pamplona, Reinald; Portero-Otín, Manuel; Sanz, Alberto; Ayala, Victoria; Vasileva, Ekaterina; Barja, Gustavo

    2005-12-01

    What are the mechanisms determining the rate of animal aging? Of the two major classes of endothermic animals, bird species are strikingly long-lived compared to mammals of similar body size and metabolic rate. Thus, they are ideal models to identify longevity-related characteristics not linked to body size or low metabolic rates. Since oxidative stress seems to be related to the basic aging process, we measured specific markers of different kinds of oxidative damage to proteins, like glutamic and aminoadipic semialdehydes (GSA and AASA, specific protein carbonyls), Nɛ-(carboxyethyl)lysine (CEL), Nɛ-(carboxymethyl)lysine (CML), and Nɛ-(malondialdehyde)lysine (MDAL), as well as mitochondrial Complex I content and amino acid and membrane fatty acyl composition, in the brain of short-lived mice (maximum life span [MLSP] 3.5 years) compared with those of long-lived budgerigar 'parakeets' (MLSP, 21 years) and canaries (MLSP, 24 years). The brains of both bird species had significantly lower levels of compounds formed as a result of oxidative (GSA and AASA), glycoxidative (CEL and CML), and lipoxidative (CML and MDAL) protein modifications, as well as a lower levels of mitochondrial complex I protein. Although it is known that fatty acid unsaturation is lower in many tissues of long-lived compared to short-lived mammals, this is not true in the particular case of brain. In agreement with this, we also found that the brain tissue of bugerigars and canaries contains no fewer double bonds than that of mice. Amino acid composition analyses revealed that bird proteins have a significantly lower content of His, Leu and Phe, as well as, interestingly, of methionine, whereas Asp, Glu, Ala, Val, and Lys contents were higher than in the mammals. These results, together with those previously described in other tissues of pigeons (MLSP, 35 years) compared to rats (MLSP, 4 years), indicate that oxidative damage to proteins, lipids and mitochondrial DNA are lower in birds (very

  14. Functional Status after Blast-Plus-Impact Complex Concussive Traumatic Brain Injury in Evacuated United States Military Personnel

    Science.gov (United States)

    2014-01-01

    vulnerability to PTSD and depression, blast-related hormonal abnormalities,51 and blast-related injuries to specific parts of the brain causing impaired emotional ...Homaifar, B.Y., Gutierrez, P.M., Staves, P.J., Harwood, J.E., Reeves , D., Adler, L.E., Ivins, B.J., Helmick, K., and Warden, D. (2010

  15. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells.

    Science.gov (United States)

    Park, See-Hyoung; Yoon, Young Ii; Moon, Hyoungwon; Lee, Ga-Hyun; Lee, Byung-Heon; Yoon, Tae-Jong; Lee, Hak Jong

    2016-07-01

    Gas (SF6)-filled microbubbles (MBs) were prepared by emulsion and solvent-evaporation method. The prepared MBs were further conjugated with doxorubicin (Dox)-loaded nano-sized liposome and peptide ligands to interleukin-4 receptor (IL4R) for targeting brain tumor cells. The final MB-liposome (Dox)-IL4R targeting peptide ligand [MB-Lipo (Dox)-IL4RTP] had a spherical structure with the mean size of 1,500 nm. The MB-Lipo (Dox)‑IL4RTP exhibited cellular uptake in U87MG brain tumor cells (a brain tumor cell line expressing strongly IL4R) with frequency ultrasound energy suggesting that MB-Lipo (Dox)‑IL4RTP provided effective targeting ability for brain tumor cells. In addition, WST-1 assay results showed that MB-Lipo (Dox)‑IL4RTP inhibited the proliferation of U87MG cells IL4R‑dependently. This was confirmed by western blotting of γH2AX, phospho (Ser15)-p53, p53 and p21 which are signal transduction proteins involved in DNA damage response and cell cycle arrest. Taken together, these results indicate that MB-Lipo (Dox)-IL4RTP represents a promising ultrasonic contrast agent for tumor-targeting ultrasonic imaging.

  16. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms.

    Directory of Open Access Journals (Sweden)

    Amy eCourtney

    2015-10-01

    Full Text Available Primary blast induced traumatic brain injury (bTBI is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs which isolate a single injury mechanism.

  17. A clinical study to identify the possible etiology of complex partial seizures using magnetic resonance imaging brain findings and its implications on treatment

    Directory of Open Access Journals (Sweden)

    V Nancy Jeniffer

    2015-01-01

    Full Text Available Context: Epilepsy is one of the common neurological disorders worldwide. Fundamentally, there are two types of epilepsy—primary generalized epilepsy and localization-related epilepsy. Partial seizures account for about 40% of childhood seizures in some series and can be classified as simple or complex.[1] Partial seizures, more so the complex partial seizures (CPSs, are presumed to have a structural etiology. Aims: (1 To study the magnetic resonance imaging (MRI brain findings in CPSs in children aged 1–18 years. (2 To identify treatable causes of CPSs based on MRI findings and institute appropriate treatment. Statistical Analysis: Statistical analysis was performed using percentages and proportions. Methods: Hospital based prospective study in which MRI brain was done on all newly diagnosed children with complex partial seizures, aged 1 to 18 yrs, during the study period. Final diagnosis was made correlating clinical features, radiological features and other supportive evidences, and appropriate treatment instituted. Follow up of cases was done until the completion of treatment (maximum 6 months. Results: Among the 64 children who were clinically diagnosed to have CPSs and subjected to MRI study of the brain, 40(62.5% children were detected to have structural lesions, of which neurocysticercosis (NCC was noted in 17 (42.5%, tuberculoma in 12 (30%, hippocampal sclerosis (HS in 6 (15%, gliosis in 4 (10%, and tumor in 1 (2.5% patient. Sixty-two (96.8% children were treated medically, and 2 (3.2% children underwent surgery. Conclusions: Etiology of CPS based on MRI findings showed a substantial number of medically- and surgically-treatable pathologies. This study done on South Indian children showed neuro infections to be the most common cause of CPS, followed by HS, with NCC being the most common lesion noted. MRI not only identifies specific epileptogenic substrates, but also determines the specific treatment and predicts prognosis and should

  18. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain.

    Science.gov (United States)

    Hanafy, Amira S; Farid, Ragwa M; ElGamal, Safaa S

    2015-01-01

    Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer's disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined. Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25 °C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1 h after administration using fluorescence microscopy and software-aided image processing. Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190 nm, and a zeta potential of +40.4 and +31.6 mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07% ± 6.67 after 72 h), improved formulation stability at 4 °C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p > 0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices. Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully

  19. Antidiuretic effects of a factor in brain/corpora cardiaca/corpora allata extract on fluid reabsorption across the cryptonephric complex of Manduca sexta.

    Science.gov (United States)

    Liao, S; Audsley, N; Schooley, D A

    2000-02-01

    Extracts of the brain/corpora cardiaca/corpora allata (Br/CC/CA) complex of Manduca sexta larvae elicit an antidiuretic effect, measured by an increase in fluid reabsorption across the cryptonephric complex of larval M. sexta. Separation of the extract by reversed-phase liquid chromatography gave two fractions with antidiuretic effects. The more potent of these two factors was further characterized for its effects on the cryptonephric complex. Its antidiuretic effect is not inhibited by bumetanide, a drug that inhibits M. sexta diuretic hormone (Mas-DH)-stimulated fluid reabsorption. These data indicate that the mechanism of the antidiuretic effect of the factor is different from that of Mas-DH on the cryptonephric complex. The basal reabsorption of the cryptonephric complex is blocked when treated on the lumen side with bafilomycin A(1), an inhibitor of the H(+)-ATPase, or with amiloride, an inhibitor of the H(+)/K(+) antiporter. However, the antidiuretic-factor-stimulated fluid reabsorption is not affected by either bafilomycin A(1) or amiloride. The increase in reabsorption triggered by the semi-purified factor can be inhibited by Cl(-) channel blockers or by removing Cl(-) from the lumen side of the cryptonephric complex. It appears that this factor activates a Cl(-) pump associated with the cryptonephric complex. Forskolin mimics the effect of this factor on fluid reabsorption, and the effect of forskolin is not inhibited by bumetanide. A selective and potent inhibitor of protein kinase A, H-89, also inhibits antidiuretic-factor-stimulated fluid reabsorption. Addition of the factor to cryptonephric complexes maintained in vitro caused a significant increase in cyclic AMP levels extracted from these tissues compared with values for controls. These data suggest that the antidiuretic effect of the factor in Br/CC/CA extract is mediated by cyclic AMP.

  20. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals.

    Science.gov (United States)

    Connor, Richard C

    2007-04-29

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.

  1. Feynman Clocks, Casual Networks, and the Origin of Hierarchical "Arrows of Time" in Complex Systems from the Big Bang to the Brain

    CERN Document Server

    Hitchcock, S M

    2000-01-01

    A theory of 'time' as a form of 'information' is proposed. New tools such as Feynman Clocks, Collective Excitation Networks, Sequential Excitation Networks, Plateaus of Complexity, Causal Networks, and Quantum Computation methods are used to unify previously separate 'arrows of time'. The 'direction' and 'dimension' of 'time' are found to be secondary information structures created by the 'processing' of the information carried by signals connecting 'clocks' together in networks. The 'problem of time' may be solved by identification of a fundamental 'irreversible' Quantum Arrow of Time and 'reversible' Classical Arrows of Time. These 'arrows' can used to map information flow through complex causal networks from the Big Bang to the Brain. Keywords; unification of the fundamental interactions of matter, consciousness, entangled states, time reversal, time travel, and FTL or superluminal signals

  2. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab

    Science.gov (United States)

    2012-01-01

    Background In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal’s first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins) integrate into this system, a large family of neuropeptides that share the C-terminal motif –YXFGLamide. Results We used an antiserum that was raised against the A-type Diploptera punctata (Dip)-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae). Allatostatin A-like immunoreactivity (ASTir) was widely distributed in the animal’s brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory glomeruli are also mostly

  3. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab

    Directory of Open Access Journals (Sweden)

    Polanska Marta A

    2012-09-01

    Full Text Available Abstract Background In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal’s first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins integrate into this system, a large family of neuropeptides that share the C-terminal motif –YXFGLamide. Results We used an antiserum that was raised against the A-type Diploptera punctata (Dip-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae. Allatostatin A-like immunoreactivity (ASTir was widely distributed in the animal’s brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory

  4. Identifying diagnostically-relevant resting state brain functional connectivity in the ventral posterior complex via genetic data mining in autism spectrum disorder.

    Science.gov (United States)

    Baldwin, Philip R; Curtis, Kaylah N; Patriquin, Michelle A; Wolf, Varina; Viswanath, Humsini; Shaw, Chad; Sakai, Yasunari; Salas, Ramiro

    2016-05-01

    Exome sequencing and copy number variation analyses continue to provide novel insight to the biological bases of autism spectrum disorder (ASD). The growing speed at which massive genetic data are produced causes serious lags in analysis and interpretation of the data. Thus, there is a need to develop systematic genetic data mining processes that facilitate efficient analysis of large datasets. We report a new genetic data mining system, ProcessGeneLists and integrated a list of ASD-related genes with currently available resources in gene expression and functional connectivity of the human brain. Our data-mining program successfully identified three primary regions of interest (ROIs) in the mouse brain: inferior colliculus, ventral posterior complex of the thalamus (VPC), and parafascicular nucleus (PFn). To understand its pathogenic relevance in ASD, we examined the resting state functional connectivity (RSFC) of the homologous ROIs in human brain with other brain regions that were previously implicated in the neuro-psychiatric features of ASD. Among them, the RSFC of the VPC with the medial frontal gyrus (MFG) was significantly more anticorrelated, whereas the RSFC of the PN with the globus pallidus was significantly increased in children with ASD compared with healthy children. Moreover, greater values of RSFC between VPC and MFG were correlated with severity index and repetitive behaviors in children with ASD. No significant RSFC differences were detected in adults with ASD. Together, these data demonstrate the utility of our data-mining program through identifying the aberrant connectivity of thalamo-cortical circuits in children with ASD. Autism Res 2016, 9: 553-562. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents.

    Science.gov (United States)

    Lv, Yan; Chen, Cao; Zhang, Bao-Yun; Xiao, Kang; Wang, Jing; Chen, Li-Na; Sun, Jing; Gao, Chen; Shi, Qi; Dong, Xiao-Ping

    2015-12-01

    As an integral part of the innate immunity, the complement system has been reported to involve in the pathogenesis of prion diseases (PrD). However, the states of expression and activity of complement proteins in experimental models of scrapie infection are still not fully understood. Herein, the state of complement activation, the presence, and distribution as well as localization of C3 and membrane attack complex (MAC) in the brains of several scrapie-infected rodents were comparatively assessed through various methodologies. Our data illustrated a significant increase in the total complement activity (CH50, U/ml) in several scrapie-infected rodent brains at the terminal stage and a time-dependent upregulation of C1q in 263K-infected hamsters during the incubation period, intimating the sustained and progressive activation of the classical pathway during PrD progression. Confocal microscopy revealed robust activation of C3 and its localization to various central nervous system (CNS) cells with differential morphology in the brain tissues of both 263K-infected hamsters and 139A-infected C57BL/6 mice at disease end stages. Dynamic analyses of MAC in the brains of 263K-infected hamsters and 139A-infected C57BL/6 mice demonstrated remarkably time-dependent deposition during the incubation period, which may highlight a persistently activated terminal complement components. Moreover, immunofluorescent assays (IFAs) showed that MAC-specific signals appeared to overlap with morphologically abnormal neurons rather than proliferative astrocytes or activated microglia throughout the CNS of both 263K-infected hamsters and 139A-infected C57BL/6 mice. Overall, these results indicate that the activation of the complement system and the subsequent localization of the complement components to neurons may be a hallmark during prion infection, which ultimately contribute to the neurodegeneration in PrD.

  6. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice.

    Science.gov (United States)

    Fluiter, Kees; Opperhuizen, Anne Loes; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2014-03-01

    Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. We generated a C6 antisense oligonucleotide that blocks MAC formation by inhibiting C6, and we compared its therapeutic effect to that of Ornithodoros moubata complement inhibitor (OmCI), a known inhibitor of C5 activation that blocks generation of the anaphylatoxin C5a and C5b, an essential component of MAC. Severe closed head injury in mice induced abundant MAC deposition in the brain. Treatment with C6 antisense reduced C6 synthesis (85%) and serum levels (90%), and inhibited MAC deposition in the injured brain (91-96%). Treatment also reduced accumulation of microglia/macrophages (50-88%), neuronal apoptosis, axonal loss and weight loss (54-93%), and enhanced neurologic performance (84-92%) compared with placebo-treated controls after injury. These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.

  7. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations.

    Science.gov (United States)

    Wollesen, T; Loesel, R; Wanninger, A

    2009-04-30

    Among bilaterian invertebrates, cephalopod molluscs (e.g., squids, cuttlefish and octopuses) have a central nervous system (CNS) that rivals in complexity that of the phylogenetically distant vertebrates (e.g., mouse and human). However, this prime example of convergent evolution has rarely been the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling experiments are less time-consuming and allow a high throughput of samples. Besides other advantages summarized here, phalloidin reliably labels the entire neuropil of the CNS of all squids, cuttlefish and octopuses investigated. This facilitates high-resolution in toto reconstructions of the CNS and contributes to a better understanding of the organization of neural networks. Amenable for multi-labeling experiments employing antibodies against neurotransmitters, proteins and enzymes, phalloidin constitutes an excellent neuropil marker for the complex cephalopod CNS.

  8. Fifty Years in the Development of a Glutaminergic-Dopaminergic Optimization Complex (KB220) to Balance Brain Reward Circuitry in Reward Deficiency Syndrome: A Pictorial

    Science.gov (United States)

    Blum, K; Febo, M; Badgaiyan, RD

    2016-01-01

    Dopamine along with other chemical messengers like serotonin, cannabinoids, endorphins and glutamine, play significant roles in brain reward processing. There is a devastating opiate/opioid epidemicin the United States. According to the Centers for Disease Control and Prevention (CDC), at least 127 people, young and old, are dying every day due to narcotic overdose and alarmingly heroin overdose is on the rise. The Food and Drug Administration (FDA) has approved some Medication-Assisted Treatments (MATs) for alcoholism, opiate and nicotine dependence, but nothing for psychostimulant and cannabis abuse. While these pharmaceuticals are essential for the short-term induction of “psychological extinction,” in the long-term caution is necessary because their use favors blocking dopaminergic function indispensable for achieving normal satisfaction in life. The two institutions devoted to alcoholism and drug dependence (NIAAA & NIDA) realize that MATs are not optimal and continue to seek better treatment options. We review, herein, the history of the development of a glutaminergic-dopaminergic optimization complex called KB220 to provide for the possible eventual balancing of the brain reward system and the induction of “dopamine homeostasis.” This complex may provide substantial clinical benefit to the victims of Reward Deficiency Syndrome (RDS) and assist in recovery from iatrogenically induced addiction to unwanted opiates/opioids and other addictive behaviors. PMID:27840857

  9. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons.

    Science.gov (United States)

    Wang, Wan-Chen; Cheng, Chau-Fu; Tsaur, Meei-Ling

    2015-03-01

    Subthreshold A-type K(+) currents (ISA s) have been recorded from the cell bodies of hippocampal and neocortical interneurons as well as neocortical pyramidal neurons. Kv4 channels are responsible for the somatodendritic ISA s. It has been proposed that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits, K(+) channel-interacting proteins (KChIPs), and dipeptidyl peptidase-like proteins (DPPLs). However, colocalization evidence was still lacking. The distribution of DPP10 mRNA in rodent brain has been reported but its protein localization remains unknown. In this study, we generated a DPP10 antibody to label DPP10 protein in adult rat brain by immunohistochemistry. Absent from glia, DPP10 proteins appear mainly in the cell bodies of DPP10(+) neurons, not only at the plasma membrane but also in the cytoplasm. At least 6.4% of inhibitory interneurons in the hippocampus coexpressed Kv4.3, KChIP1, and DPP10, with the highest density in the CA1 strata alveus/oriens/pyramidale and the dentate hilus. Colocalization of Kv4.3/KChIP1/DPP10 was also detected in at least 6.9% of inhibitory interneurons scattered throughout the neocortex. Both hippocampal and neocortical Kv4.3/KChIP1/DPP10(+) inhibitory interneurons expressed parvalbumin or somatostatin, but not calbindin or calretinin. Furthermore, we found colocalization of Kv4.2/Kv4.3/KChIP3/DPP10 in neocortical layer 5 pyramidal neurons and olfactory bulb mitral cells. Together, although DPP10 is also expressed in some brain neurons lacking Kv4 (such as parvalbumin- and somatostatin-positive Golgi cells in the cerebellum), colocalization of DPP10 with Kv4 and KChIP at the plasma membrane of ISA -expressing neuron somata supports the existence of Kv4/KChIP/DPPL ternary complex in vivo.

  10. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests

    Science.gov (United States)

    López-Gil, Xavier; Amat-Roldan, Iván; Tudela, Raúl; Castañé, Anna; Prats-Galino, Alberto; Planas, Anna M.; Farr, Tracy D.; Soria, Guadalupe

    2014-01-01

    The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent. PMID:25100993

  11. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests

    Directory of Open Access Journals (Sweden)

    Xavier eLópez-Gil

    2014-07-01

    Full Text Available The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26 and 40 weeks after birth. Diffusion weighted imaging was analyzed in 2 different ways, by regional characterization of diffusion tensor imaging indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, diffusion tensor imaging scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and grey matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional 3-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.

  12. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    Directory of Open Access Journals (Sweden)

    Anke Vermehren-Schmaedick

    Full Text Available Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes. Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are

  13. Evaluation of {sup 18}F-BCPP-EF for mitochondrial complex 1 imaging in the brain of conscious monkeys using PET

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hideo; Ohba, Hiroyuki; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu, Shizuoka (Japan)

    2014-04-15

    We have reported on the development of a novel PET probe, {sup 18}F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy] -pyridin-3-ylmethoxy}-2H-pyridazin-3-one ({sup 18}F-BCPP-EF), for quantitative imaging of mitochondrial complex 1 (MC-1) activity in the brain of the living rat. For clinical application in humans, translational research in the monkey was conducted. PET measurements with {sup 18}F-BCPP-EF were performed in young and old monkeys (Macaca mulatta) in a conscious state with arterial blood sampling. The binding specificity of {sup 18}F-BCPP-EF was evaluated with rotenone, a specific MC-1 inhibitor, in young animals. The binding (total distribution volume, V{sub T}) of {sup 18}F-BCPP-EF was calculated using Logan graphical analysis, and one-tissue compartment model (1-TC) and two-tissue compartment model (2-TC) analyses using a metabolite-corrected plasma input function. F-BCPP-EF was rapidly taken up into the brain just after intravenous injection, peaked between 10 and 20 min after injection, and was then gradually eliminated. The 2-TC analysis provided a better fit than the 1-TC analysis, and the V{sub T} values from the 2-TC analysis correlated well with those from the Logan plot. With predosing with rotenone, {sup 18}F-BCPP-EF showed a higher uptake peak in the brain, followed by more rapid elimination thereafter than in the vehicle condition, resulting in significant reductions in 2-TC V{sub T} values in all regions. In old animals, the kinetics of {sup 18}F-BCPP-EF were slightly slower with lower peak levels than in young animals, resulting age-related reductions in {sup 18}F-BCPP-EF binding in all brain regions. The present study demonstrated that {sup 18}F-BCPP-EF may be a potential PET probe for quantitative imaging MC-1 activity in the living brain using PET. (orig.)

  14. Robot brains

    NARCIS (Netherlands)

    Babuska, R.

    2011-01-01

    The brain hosts complex networks of neurons that are responsible for behavior in humans and animals that we generally call intelligent. I is not easy to give an exact definition of intelligence – for the purpose of this talk it will suffice to say that we refer to intelligence as a collection of cap

  15. Brain Basics

    Medline Plus

    Full Text Available ... These factors may act alone or together in complex ways, to change the way a gene is ... improve treatments for anxiety disorders like phobias or post-traumatic stress disorder (PTSD) . Prefrontal cortex (PFC) —Seat of the brain's ...

  16. Differential Gene Expression Patterns in Developing Sexually Dimorphic Rat Brain Regions Exposed to Antiandrogenic, Estrogenic, or Complex Endocrine

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2015-01-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect...... to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E...... on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids...

  17. Brain electric correlates of strong belief in paranormal phenomena: intracerebral EEG source and regional Omega complexity analyses.

    Science.gov (United States)

    Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P

    2000-12-22

    The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.

  18. Long-Term Supplementation with Beta Serum Concentrate (BSC, a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jian Guan

    2015-06-01

    Full Text Available We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16 or blank gels (n = 16 from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark–light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.

  19. Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats.

    Science.gov (United States)

    Guan, Jian; MacGibbon, Alastair; Fong, Bertram; Zhang, Rong; Liu, Karen; Rowan, Angela; McJarrow, Paul

    2015-06-05

    We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16) or blank gels (n = 16) from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark-light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.

  20. Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hideo; Nishiyama, Shingo; Ohba, Hiroyuki; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro [Hamamatsu Photonics K.K., Central Research Laboratory, Shizuoka (Japan)

    2014-11-15

    The aim of the present study was to compare amyloid-β (Aβ) deposition, translocator protein (TSPO) activity, regional cerebral metabolic rate of glucose (rCMRglc), and mitochondrial complex I (MC-I) activity in the brain of aged monkeys. PET scans with {sup 11}C-PIB (Aβ), {sup 18}F-BCPP-EF (MC-I), {sup 11}C-DPA-713 (TSPO), and {sup 18}F-FDG (rCMRglc) were performed in aged monkeys (Macaca mulatta) in the conscious state and under isoflurane anaesthesia. {sup 11}C-PIB binding to Aβ and {sup 11}C-DPA-713 binding to TSPO were evaluated in terms of standard uptake values (SUV). The total volume of distribution (V{sub T}) of {sup 18}F-BCPP-EF and rCMRglc with {sup 18}F-FDG were calculated using arterial blood sampling. Isoflurane did not affect MC-I activity measured in terms of {sup 18}F-BCPP-EF uptake in living brain. There was a significant negative correlation between {sup 18}F-BCPP-EF binding (V{sub T}) and {sup 11}C-PIB uptake (SUVR), and there was a significant positive correlation between {sup 11}C-DPA-713 uptake (SUV) and {sup 11}C-PIB uptake. In contrast, there was no significant correlation between rCMRglc ratio and {sup 11}C-PIB uptake. {sup 18}F-BCPP-EF could be a potential PET probe for quantitative imaging of impaired MC-I activity that is correlated with Aβ deposition in the living brain. (orig.)

  1. 基于复杂网络的ADHD患者脑功能连接分析%Brain Functional Connection Research in ADHD Based on Complex Network

    Institute of Scientific and Technical Information of China (English)

    李双; 李艳玮

    2014-01-01

    基于复杂网络理论,对ADHD患者进行功能连接分析对研究ADHD病理具有重要意义。这一过程中,阈值的选择是至关重要的。本文研究了不同阈值下ADHD患者大脑拓扑特性和健康人的差别,并以K均值聚类分析结果为依据找出比较合适的阈值,为阈值选择提供依据。%It is important to conduct brain functional connection research in ADHD based on complex network to study the pathology of ADHD. The selection of threshold is crucial in this process. In this paper, the difference of brain topological charac-teristics between ADHD patients and healthy people is studied. Furthermore, a relatively suitable threshold is found based on the results of the k-means clustering analysis, thus providing a basis for threshold selection.

  2. Interaction of pyracetam with specific /sup 3/H-imipramine binding sites and GABA-benzodiazepine receptor complex of brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozhanets, V.V.; Chakhbra, K.K.; Danchev, N.D.; Malin, K.M.; Rusakov, D.Yu.; Val' dman, A.V.

    1986-06-01

    This paper studies the effect of pyracetam on parameters of specific binding of tritium-imipramine and GABA-activated binding of tritium-flunitrazepam with rat brain membranes. The experimental method is described and it is shown that pyracetam and mebicar in experiments in vivo on normal animals can exert their anxiolytic action without the participation of bensodiazepine receptors. Either the interaction of pyracetam and mebicar with benzodiazeprine receptors has a different interpretation than competition of these compounds with specific binding sites of tritium-flunitrazepam, or in experiments on normal animals in vivo GABA-benzodiazepine receptor complex does not accept pyracetam and mebicar, for it contains endogenous inhibitors of GABA-modulating action.

  3. Cu-pyruvaldehyde-bis(N{sup 4}-methylthiosemicarbazone)(Cu-PTSM), a metal complex with selective NADH-dependent reduction by complex I in brain mitochondria. A potential radiopharmaceutical for mitochondria-functional imaging with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Taniuchi, Hideyuki; Fujibayashi, Yasuhisa; Yokoyama, Akira [Kyoto Univ. (Japan). Faculty of Pharmaceutical Science; Okazawa, Hidehiko; Yonekura, Yoshiharu; Konishi, Junji

    1995-08-01

    The reductive retention mechanism of copper(II)-Pyruvaldehyde-bis (N{sup 4}-methylthiosemicarbazone) (Cu-PTSM), a generator-produced positron-emitting {sup 62}Cu-labeled radiopharmaceutical, was studied with non-radioactive and radioactive copper. Changes in the chemical form of Cu-PTSM were detected by electron spin resonance spectrometry (ESR) with cold copper. The effects of electron transport chain inhibitors on the reduction of Cu-PTSM were also examined. Rotenone and antimycin A activated the reduction of Cu-PTSM in the brain mitochondria by 1.6 and 1.4-fold, respectively, compared with untreated controls, while thenoyltrifluoroacetone (TTFA) had no effect on the reduction. These results were confirmed with radioactive copper. Furthermore, this reduction of Cu-PTSM was dependent on the protein concentration of mouse brain submitochondrial particle (SMP) with 1 mM NADH2.S%, 8mg-protein/ml: 69.0{+-}5.5%, each value was % of reduced Cu. Similarly, this reduction depended on NADH concentration at a fixed concentration of SMP (8mg-protein/ml). These results indicated that the electron transport chain, especially complex I, participate in the reduction mitochondria, and this suggested that Cu-PTSM has the potential to act as a functional imaging agent for diagnosis of the electron transport chain. (author).

  4. Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2017-09-01

    Full Text Available Entropy-based algorithms have been suggested as robust estimators of electroencephalography (EEG predictability or regularity. This study aimed to examine possible disturbances in EEG complexity as a means to elucidate the pathophysiological mechanisms in chronic stroke, before and after a brain computer interface (BCI-motor observation intervention. Eleven chronic stroke subjects and nine unimpaired subjects were recruited to examine the differences in their EEG complexity. The BCI-motor observation intervention was designed to promote functional recovery of the hand in stroke subjects. Fuzzy approximate entropy (fApEn, a novel entropy-based algorithm designed to evaluate complexity in physiological systems, was applied to assess the EEG signals acquired from unimpaired subjects and stroke subjects, both before and after training. The results showed that stroke subjects had significantly lower EEG fApEn than unimpaired subjects (p < 0.05 in the motor cortex area of the brain (C3, C4, FC3, FC4, CP3, and CP4 in both hemispheres before training. After training, motor function of the paretic upper limb, assessed by the Fugl-Meyer Assessment-Upper Limb (FMA-UL, Action Research Arm Test (ARAT, and Wolf Motor Function Test (WMFT improved significantly (p < 0.05. Furthermore, the EEG fApEn in stroke subjects increased considerably in the central area of the contralesional hemisphere after training (p < 0.05. A significant correlation was noted between clinical scales (FMA-UL, ARAT, and WMFT and EEG fApEn in C3/C4 in the contralesional hemisphere (p < 0.05. This finding suggests that the increase in EEG fApEn could be an estimator of the variance in upper limb motor function improvement. In summary, fApEn can be used to identify abnormal EEG complexity in chronic stroke, when used with BCI-motor observation training. Moreover, these findings based on the fApEn of EEG signals also expand the existing interpretation of training-induced functional

  5. A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice

    OpenAIRE

    Aksenov, Vadim; Long, Jiangang; Liu, Jiankang; Szechtman, Henry; Khanna, Parul; Matravadia, Sarthak; Rollo, C. David

    2011-01-01

    We developed a complex dietary supplement designed to offset five key mechanisms of aging and tested its effectiveness in ameliorating age-related cognitive decline using a visually cued Morris water maze test. All younger mice (1 year) were unable to learn the maze even after 5 days, indicative of strong cognitive decline at older ages. In contrast, no cognitive decline was evident in older supplemented mice, even when ∼2 years old. Supplemented older mice were nearly 50% better at locating ...

  6. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    Science.gov (United States)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  7. [{sup 67}Ga]Gallium-complex with 2-acetylpyridine N4-ortho fluorophenylthiosemicarbazone as a radiotracer for brain tumor diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pesquero, Jorge L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica; Pujatti, Priscilla B.; Araujo, Elaine B. de [Instituto de Pesquisas Energeticas Nucleares (DIRF/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia; Lessa, Josane A.; Beraldo, Heloisa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Soares, Marcella A.; Santos, Raquel G. dos, E-mail: santosr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The aim of this work was to develop a {sup 67}Ga-based SPECT imaging agent derived from 2-acetylpyridine N4-orthofluorophenyl - thiosemicarbazone (PhoF). For this purpose, PhoF was radiolabeled using {sup 67}Ga as radiotracer, and after quality control analysis its biodistribution and SPECT imaging were evaluated on Swiss mice and Nude mice bearing glioblastoma multiform tumor (U87-MG). The labelling of PhoF with {sup 67}GaCl{sub 3} was performed in methanol for 30 minutes at room temperature. Radiochemical analyses were done by HPLC with radioactivity detection. {sup 67}Ga- PhoF was successful produced with 97.5 {+-} 0.6% of radiochemical purity and high specific activity (1.0 TBq /mmol). {sup 67}Ga- PhoF showed to be a stable compound keeping its stability, when stored at 2-4 deg C. In biodistribution studies, {sup 67}Ga- PhoF displayed not only a significant tumor uptake, but also rapid blood clearance (T{sub 1/2} {sub fast} {sub phase}= 3.7 min. and T{sub 1/2} {sub slow} {sub phase}= 127.2 min.) and low accumulations in non target tissues, resulting in high target-to-non target ratios. Scintigraphic images of {sup 67}Ga- PhoF in nude mice bearing U87-MG tumor showed a significant activity in tumor ({approx} 7% of total activity) and tumor-to-normal tissue ratio was more than 10-fold higher depending on the organ. Our results suggest that {sup 67}Ga-PhoF possess indispensable characteristics for a good radiopharmaceutical for brain tumor diagnosis. (author)

  8. Cognitive control deficit in patients with first-episode schizophrenia is associated with complex deviations of early brain development

    Science.gov (United States)

    Gay, Olivier; Plaze, Marion; Oppenheim, Catherine; Gaillard, Raphael; Olié, Jean-Pierre; Krebs, Marie-Odile; Cachia, Arnaud

    2017-01-01

    Background Several clinical and radiological markers of early neurodevelopmental deviations have been independently associated with cognitive impairment in patients with schizophrenia. The aim of our study was to test the cumulative and/or interactive effects of these early neurodevelopmental factors on cognitive control (CC) deficit, a core feature of schizophrenia. Methods We recruited patients with first-episode schizophrenia-spectrum disorders, who underwent structural MRI. We evaluated CC efficiency using the Trail Making Test (TMT). Several markers of early brain development were measured: neurological soft signs (NSS), handedness, sulcal pattern of the anterior cingulate cortex (ACC) and ventricle enlargement. Results We included 41 patients with schizophrenia in our analysis, which revealed a main effect of ACC morphology (p = 0.041) as well as interactions between NSS and ACC morphology (p = 0.005), between NSS and handedness (p = 0.044) and between ACC morphology and cerebrospinal fluid (CSF) volume (p = 0.005) on CC measured using the TMT-B score – the TMT-A score. Limitations No 3- or 4-way interactions were detected between the 4 neurodevelopmental factors. The sample size was clearly adapted to detect main effects and 2-way interactions, but may have limited the statistical power to investigate higher-order interactions. The effects of treatment and illness duration were limited as the study design involved only patients with first-episode psychosis. Conclusion To our knowledge, our study provides the first evidence of cumulative and interactive effects of different neurodevelopmental markers on CC efficiency in patients with schizophrenia. Such findings, in line with the neurodevelopmental model of schizophrenia, support the notion that CC impairments in patients with schizophrenia may be the final common pathway of several early neurodevelopmental mechanisms. PMID:28245174

  9. Effects of corticotropin releasing factor on spontaneous burst activity in the piriform-amygdala complex of in vitro brain preparations from newborn rats.

    Science.gov (United States)

    Fujii, Tomoko; Onimaru, Hiroshi; Homma, Ikuo

    2011-10-01

    The amygdala is an important higher regulatory center of the autonomic nervous system, involved in respiratory and cardiovascular control, and it also plays a role in the formation of emotions. Corticotropin-releasing factor (CRF) is a neuropeptide involved in stress responses. We have examined the effects of CRF on the spontaneous burst activity in the piriform-amygdala complex of rat brain preparations in vitro. Limbic-brainstem-spinal cord preparations of 0- to 1-day-old Wistar rats were isolated under deep ether anesthesia, and were superperfused in a modified Krebs solution. Bath application of 50nM CRF substantially increased the frequency of burst activity in the piriform-amygdala complex, whereas this polypeptide exerted only minor effects on C4 inspiratory activity. The excitatory effect of CRF on the amygdala burst was effectively blocked by the CRF1 antagonist, antalarmin, but not the CRF2 antagonist, astressin-2B, suggesting that CRF1 mediated the excitatory effect. The spatio-temporal pattern of the burst activity according to optical recordings was basically identical to the controls; the burst activity initially appeared in the piriform cortex and then propagated to the amygdala. The present experimental model could be useful for the study of role of the limbic system, including the amygdala, in stress responses.

  10. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart.

    Science.gov (United States)

    Cervellin, Gianfranco; Lippi, Giuseppe

    2011-08-01

    Although the potential influence of music in eliciting organic reactions has been appreciated since the ancient Assyrian and Greek cultures, its relationship with body responses has been believed for long to belong to the field of magic. Growing experimental evidence now attests that some kind of music might indeed modulate several cardiac and neurological functions, as well as trigger biochemical measurable stress-reducing effects in certain individuals, mostly depending on their subjective musical education. On this basis, music has been increasingly used as a therapeutic tool in the treatment of different diseases in healthy and ill subjects over recent years (e.g., the so called "Mozart effect"), although the underlying scientific background is still poorly understood. The aim of this article is to review the current scientific evidences about the complex and multifaceted interactions between music and human biology. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  11. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.

    2013-04-08

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  12. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training.

    Science.gov (United States)

    Chen, Joyce L; Penhune, Virginia B; Zatorre, Robert J

    2008-02-01

    Much is known about the motor system and its role in simple movement execution. However, little is understood about the neural systems underlying auditory-motor integration in the context of musical rhythm, or the enhanced ability of musicians to execute precisely timed sequences. Using functional magnetic resonance imaging, we investigated how performance and neural activity were modulated as musicians and nonmusicians tapped in synchrony with progressively more complex and less metrically structured auditory rhythms. A functionally connected network was implicated in extracting higher-order features of a rhythm's temporal structure, with the dorsal premotor cortex mediating these auditory-motor interactions. In contrast to past studies, musicians recruited the prefrontal cortex to a greater degree than nonmusicians, whereas secondary motor regions were recruited to the same extent. We argue that the superior ability of musicians to deconstruct and organize a rhythm's temporal structure relates to the greater involvement of the prefrontal cortex mediating working memory.

  13. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  14. Acute hypercapnic hyperoxia stimulates reactive species production in the caudal solitary complex of rat brain slices but does not induce oxidative stress.

    Science.gov (United States)

    Ciarlone, Geoffrey E; Dean, Jay B

    2016-12-01

    Central CO2 chemoreceptive neurons in the caudal solitary complex (cSC) are stimulated by hyperoxia via a free radical mechanism. Hyperoxia has been shown to increase superoxide and nitric oxide in the cSC, but it remains unknown how changes in Pco2 during hyperoxia affect the production of O2-dependent reactive oxygen and nitrogen species (RONS) downstream that can lead to increased levels of oxidative and nitrosative stress, cellular excitability, and, potentially, dysfunction. We used real-time fluorescence microscopy in rat brain slices to determine how hyperoxia and hypercapnic acidosis (HA) modulate one another in the production of key RONS, as well as colorimetric assays to measure levels of oxidized and nitrated lipids and proteins. We also examined the effects of CO2 narcosis and hypoxia before euthanasia and brain slice harvesting, as these neurons are CO2 sensitive and hypothesized to employ CO2/H(+) mechanisms that exacerbate RONS production and potentially oxidative stress. Our findings show that hyperoxia ± HA increases the production of peroxynitrite and its derivatives, whereas increases in Fenton chemistry are most prominent during hyperoxia + HA. Using CO2 narcosis before euthanasia modulates cellular sensitivity to HA postmortem and enhances the magnitude of the peroxynitrite pathway, but blunts the activity of Fenton chemistry. Overall, hyperoxia and HA do not result in increased production of markers of oxidative and nitrosative stress as expected. We postulate this is due to antioxidant and proteosomal removal of damaged lipids and proteins to maintain cell viability and avoid death during protracted hyperoxia.

  15. (/sup 3/H)MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, E.H.; Knight, A.R.; Woodruff, G.N.

    1988-01-01

    The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist (/sup 3/H)MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of (/sup 3/H)MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. (/sup 3/H)MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated (/sup 3/H)MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by (/sup 3/H)TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-(/sup 3/H)SKF 10,047. (/sup 3/H)MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that (/sup 3/H)MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.

  16. Laparoscopic Chromopertubation, Myomectomy with Opening of the Uterine Cavity and Hysteroscopy during the Early Implantation Phase of an Undetected Pregnancy: Delivery of a Child with a Complex Brain Malformation

    Science.gov (United States)

    Mann, C.; Karl, K.; Ertl-Wagner, B.; Weigand, H.; Thaler, C. J.

    2016-01-01

    A previously infertile woman underwent laparoscopic myomectomy involving opening of the uterine cavity and chromopertubation that showed closed Fallopian tubes during the early implantation stage of an undetected pregnancy. The pregnancy was not terminated, and a child with a complex brain malformation was delivered at 37 weeks of gestation by Cesarean section. PMID:27570253

  17. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  18. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... Events About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Brain Research Glossary Brain Basics (PDF, 10 pages) Introduction Watch the Brain Basics video Welcome. Brain Basics ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ...

  1. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland.

    Science.gov (United States)

    Bagyura, Zsolt; Pócsai, Károly; Kálmán, Mihály

    2010-01-01

    The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.

  2. Insights into the dN/dS ratio heterogeneity between brain specific genes and widely expressed genes in species of different complexity.

    Science.gov (United States)

    Biswas, Kakali; Chakraborty, Sandip; Podder, Soumita; Ghosh, Tapash Chandra

    2016-07-01

    In mammals, it has long been suggested that brain-specific genes (BSGs) and widely expressed genes (WEGs) have seemingly lower dN/dS ratio than any other gene sets. However, to what extent these genes differ in their dN/dS ratio has still remained controversial. Here, we have revealed lower dN/dS ratio of BSGs than WEGs in human-mouse, human-orangutan, human-chimpanzee and mouse-rat orthologous pair. The significance level of dN/dS ratio difference indicates a trend of decreasing difference as complexity of compared pairs increases. Further studies with the human-mouse pair revealed that, removal of the duplicated genes from both the dataset has nullified this difference which dictates a vital role of duplicated genes in governing the selection pressure. Conclusively, higher paralog number, expression level, and longer regulatory region length of BSGs allow fewer nucleotide substitutions within them. Our results show for the first time to our knowledge lower dN/dS ratio of BSGs than WEGs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Silicon Brains

    Science.gov (United States)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation design an intelligent technical response.

  4. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  5. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...... underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential...

  6. 基于 DTI 复杂网络的两性大脑差异性研究%Research of Brain Differences between the Sexes based on DTI Complex Networks

    Institute of Scientific and Technical Information of China (English)

    俞宙; 陶玲; 钱志余; 武江芬; 赵翠花

    2014-01-01

    为解释男女大脑差异是如何影响人们的思维和行为的,我们利用DTI复杂网络技术对男女两性大脑的差异性进行了定量分析。将44例健康志愿者分成男女两组,利用磁共振弥散张量成像对志愿者进行扫描和数据采集,通过构建脑白质纤维结构网络,并结合图论知识和复杂网络特征度量参数,对男女大脑结构差异及其在功能上的体现进行分析。对两组志愿者的脑结构网络分析发现,男女两组志愿者均具有小世界属性。结构网络局部参数分析显示,男女在涉及语言、情感、运动、方向感等的脑区具有显著差异。男女两性大脑生理结构的差别确实会导致大脑在功能上出现差别,两性大脑在功能上的差别可认为是两性在负责相关功能的脑区所具有的差异所导致。%To explain how the brain differences between men and women affect people's thinking and behavior, we made an quanti-tative analysis for the brain differences between the sexes based on DTI complex network technology.44 cases of healthy volunteers were divided into female group and male group.The data were collected by magnetic resonance diffusion tensor imaging scan.The differences of brain structural between the sexes and their corresponding functional manifestation were analyzed by constructing brain structure network based on white matter fiber and using graph theory and the characteristics parameters of complex networks.Both groups showed small-world property.There were significant gender differences in the brain regions involved in language, emotional, motor skills and orientation.The brain structural differences between the sexes does lead to the functional difference.The brain func-tional differences between sexes can be thought to be caused by the brain regions difference responsible for related functions.

  7. Distinct localization of FMRFamide- and bovine pancreatic polypeptide-like material in the brain, retrocerebral complex and suboesophageal ganglion of the cockroach Periplaneta americana L

    DEFF Research Database (Denmark)

    Verhaert, P; Grimmelikhuijzen, C J; De Loof, A

    1985-01-01

    One bovine pancreatic polypeptide (BPP) antiserum and two FMRFamide antisera were applied in the peroxidase-antiperoxidase (PAP) immunohistochemical technique on a complete series of sections of brains, suboesophageal ganglia (SOG), corpora cardiaca (CC) and corpora allata of Periplaneta american...

  8. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency

    Directory of Open Access Journals (Sweden)

    Lioudmila Pliss

    2016-06-01

    Conclusion: The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  9. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    Directory of Open Access Journals (Sweden)

    Lilian eCalderón-Garcidueñas

    2014-08-01

    Full Text Available Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are permanent, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  10. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalography (EEG to determine whether specific information is stored in a subject's brain.

  11. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  12. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  13. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  14. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity

    Directory of Open Access Journals (Sweden)

    Svetlana ePundik

    2015-07-01

    Full Text Available Objectives: Neuroplastic changes that drive recovery of shoulder/elbow function after stoke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors. Methods: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test (AMAT, collected before and after treatment.Results: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was an linear relationship between greater functional gain (AMAT and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke. Conclusions: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e. increase or decrease in task-related brain recruitment for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases or different strategies of neuroplasticity that drive functional recovery.

  15. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity

    Science.gov (United States)

    Pundik, Svetlana; McCabe, Jessica P.; Hrovat, Ken; Fredrickson, Alice Erica; Tatsuoka, Curtis; Feng, I Jung; Daly, Janis J.

    2015-01-01

    Objectives: Neuroplastic changes that drive recovery of shoulder/elbow function after stroke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors.Methods: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI) for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test, AMAT), collected before and after treatment.Results: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was a linear relationship between greater functional gain (AMAT) and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke.Conclusions: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e., increase or decrease in task-related brain recruitment) for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases of recovery or different patterns of neuroplasticity that drive functional recovery. PMID:26257623

  16. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons ... affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. ...

  1. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  2. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... How the brain develops How genes and the environment affect the brain The basic structure of the ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... can lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits ... tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  6. Study of complex hemodynamic fluctuations in the human brain by simultaneous near-infrared spectro-imaging and functional magnetic resonance imaging

    Science.gov (United States)

    Toronov, Vladislav Y.; Franceschini, Maria-Angela; Fantini, Sergio; Webb, Andrew G.; Gratton, Enrico

    2004-05-01

    In this paper we discuss temporal and spatial patterns of brain hemodynamics under rest and motor stimulation conditions obtained by functional magnetic resonance imaging and simultaneous fast multi-channel near-infrared spectro-imaging in the human motor cortex. Our data indicate that the main difference between the brain hemodynamics under the repetitive stimulation and the rest conditions is not in the appearance of hemoglobin concentration changes during the stimulations (since fluctuations occur at rest as well), but in their more regular, i.e. phase-synchronous with the stimulation behavior.

  7. 基于图论的复杂网络分析在癫痫中的研究进展%Developments of complex brain networks based on graph theoretical analysis in epilepsy

    Institute of Scientific and Technical Information of China (English)

    项蕾(综述); 卢光明(审校)

    2014-01-01

    癫痫作为一种脑网络异常疾病,目前已有用复杂网络分析方法分析磁共振和脑电图数据等构建出全脑的结构和功能网络;这种源于图论分析的复杂网络方法,可以对连接所构网络进行量化分析,提供多种量化指标,可以帮助我们提高对癫痫发展及癫痫发作产生机制的认识。本文介绍了当前复杂网络的基本概念及其在癫痫疾病上的应用情况。%Epilepsy is a disease of aberrant network .Recent advances in MRI and electrophysiology with the complex brain networks based on graph theoretical analysis now make it possible to investigate structural and functional network of the entire brain ,and these techniques are able to quantify the analyses of functional connectivity network by a set of values and currently contribute to our understanding of the mechanisms underlying the development of epilepsy and the generation of epileptic seizures .In this paper ,the authors discuss the multiple basic concepts in complex networks and the current ap-plications of complex network in epilepsy .

  8. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  9. Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood-brain barrier in a complex neurological disease.

    Science.gov (United States)

    Lucke-Wold, Brandon P; Logsdon, Aric F; Turner, Ryan C; Rosen, Charles L; Huber, Jason D

    2014-01-01

    The blood-brain barrier (BBB) has many important functions in maintaining the brain's immune-privileged status. Endothelial cells, astrocytes, and pericytes have important roles in preserving vasculature integrity. As we age, cell senescence can contribute to BBB compromise. The compromised BBB allows an influx of inflammatory cytokines to enter the brain. These cytokines lead to neuronal and glial damage. Ultimately, the functional changes within the brain can cause age-related disease. One of the most prominent age-related diseases is ischemic stroke. Stroke is the largest cause of disability and is third largest cause of mortality in the United States. The biggest risk factors for stroke, besides age, are results of the metabolic syndrome. The metabolic syndrome, if unchecked, quickly advances to outcomes that include diabetes, hypertension, cardiovascular disease, and obesity. The contribution from these comorbidities to BBB compromise is great. Some of the common molecular pathways activated include: endoplasmic reticulum stress, reactive oxygen species formation, and glutamate excitotoxicity. In this chapter, we examine how age-related changes to cells within the central nervous system interact with comorbidities. We then look at how comorbidities lead to increased risk for stroke through BBB disruption. Finally, we discuss key molecular pathways of interest with a focus on therapeutic targets that warrant further investigation.

  10. Techniques and instrumental complex for research of influence of microwaves encoded by brain neural signals on biological objects’ psycho physiological state

    Science.gov (United States)

    Gurkovskiy, B. V.; Zhuravlev, B. V.; Onishchenko, E. M.; Simakov, A. B.; Trifonova, N. Yu; Voronov, Yu A.

    2016-10-01

    New instrumental technique for research of the psycho-physiological reactions of the bio-objects under the microwave electromagnetic radiation, modulated by interval patterns of neural activity in the brain registered under different biological motivations, are suggested. The preliminary results of these new tool tests in real psycho physiological experiments on rats are presented.

  11. Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats

    OpenAIRE

    GUAN, JIAN; MacGibbon, Alastair; Fong, Bertram; Zhang, Rong; Liu, Karen; Rowan, Angela; McJarrow, Paul

    2015-01-01

    We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n...

  12. Brain and Behavior: a Review

    Directory of Open Access Journals (Sweden)

    Rivera Urbina, Guadalupe N.

    2012-08-01

    Full Text Available The contribution of many scientific disciplines allows us to know surprising aspects of the relationship between the brain and its functions. Current technology and the convergence of these disciplines are essential to understand the complex brain mechanisms underlying behavior. In this paper will be described some scientific disciplines whose studies help to understand the biological substrates of normal and altered behavior. We will describe some pathologies or neuropsychological disorders and, in addition, we will review some of the known neurobiological mechanisms that control our brain functions. This allows us to conclude that the behavior and brain functions depend on complex biological mechanisms, many of which are still to be elucidated.

  13. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism appears to peak early. And as ...

  14. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  15. Exophytic pilocytic astrocytoma of the brain stem in an adult with encasement of the caudal cranial nerve complex (IX-XII): presurgical anatomical neuroimaging using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, Indra; Yousry, Tarek A. [Department of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich (Germany); Muacevic, Alexander; Olteanu-Nerbe, Vlad [Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich (Germany); Naidich, Thomas P. [Department of Radiology, Section of Neuroradiology, Mount Sinai Hospital, New York (United States)

    2004-07-01

    We describe a rare case of adult pilocytic astrocytoma in which exophytic growth from the brain stem presented as a right cerebellopontine angle mass. An initial MRI examination using T2- and T1-weighted images without and with contrast suggested the diagnosis of schwannoma. Subsequent use of 3D CISS (three-dimensional constructive interference in steady state) and T1-weighted contrast-enhanced 3D MP-RAGE (three-dimensional magnetization prepared rapid acquisition gradient echo) sequences led to the diagnosis of an exophytic brain stem tumor, documented the precise relationships of the tumor to cranial nerve VIII, revealed encasement of cranial nerves IX-XII (later confirmed intraoperatively), and provided the proper basis for planning surgical management. (orig.)

  16. ‘Hit & Run' model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation

    OpenAIRE

    Ren, Zeguang; Iliff, Jeffrey J.; Yang, LiJun; Yang, Jiankai; Chen, Xiaolin; Chen, Michael J.; Giese, Rebecca N; Wang, Baozhi; Shi, Xuefang; Nedergaard, Maiken

    2013-01-01

    Cerebral edema is a major contributor to morbidity associated with traumatic brain injury (TBI). The methods involved in most rodent models of TBI, including head fixation, opening of the skull, and prolonged anesthesia, likely alter TBI development and reduce secondary injury. We report the development of a closed-skull model of murine TBI, which minimizes time of anesthesia, allows the monitoring of intracranial pressure (ICP), and can be modulated to produce mild and moderate grade TBI. In...

  17. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    OpenAIRE

    SCHARFMAN, HELEN E.; MacLusky, Neil J.

    2006-01-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, ...

  18. The Preliminary Exploration and Study on Brain Mechanism of Cognitive Load in the DHCI of Complex System%复杂系统数字界面中认知负荷的脑机制研究

    Institute of Scientific and Technical Information of China (English)

    牛亚峰; 薛澄岐; 王海燕; 李晶

    2012-01-01

    人机交互数字界面是复杂系统人机交互的主要载体,界面信息认知产生的认知负荷在任务执行中显得十分重要,该过程中脑机制研究成为揭秘人类内源性认知的重要途径.首先回顾了复杂系统人机交互数字界面中认知负荷和相关脑机制研究国内外进展,随后分析对比了认知负荷的各种测量方法及其优劣,对运用脑电技术开展认知负荷研究,以及对人机交互数字界面认知负荷脑机制过程作了介绍,最后对人机交互数字界面认知负荷ERP实验范式进行了探讨,指出开展脑机制研究对数字界面交互设计可取得的预期成果,可为该领域带来的新突破和进展.%The DHCI is the main carrier of the complex system of human-computer interaction, cognitive load in the interface information cognition in the task execution is very important, and the brain mechanism research becomes an important way to uncover human endogenous cognition in the process. The paper first reviews the domestic and international progress of cognitive load and related brain mechanisms in the DHCI of the complex systems, followed by analysis and comparison of a variety of measurement methods of the cognitive load and their pros and cons, and carries out a research on cognitive load by using brain electrical technology and takes a introduction on the brain mechanisms process of the DHCI cognitive load, finally discusses the ERP experimental paradigms of the DHCI cognitive load,through the above content, points out that the expected results can being achieved by carrying out the brain mechanism research on the DHCI and can bring a new breakthrough and progress in this field.

  19. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity.

    Science.gov (United States)

    Freese, Christian; Hanada, Sanshiro; Fallier-Becker, Petra; Kirkpatrick, C James; Unger, Ronald E

    2017-05-01

    We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm(2) was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.

  20. Comparative genomics of brain size evolution

    OpenAIRE

    Enard, Wolfgang

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large ...

  1. Comparative genomics of brain size evolution

    OpenAIRE

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large ...

  2. Emergindo a complexidade do cuidado de enfermagem ao ser em morte encefálica Complejidad emergente del cuidado de enfermería al paciente con muerte cerebral Emerging the complexity of nursing care facing a brain death

    Directory of Open Access Journals (Sweden)

    Aline Lima Pestana

    2012-12-01

    ambivalentes sentimientos. La complejidad de los cuidados al paciente en muerte cerebral consiste en comprender su singularidad y dialogicidad.This study aimed to unveil the complexity of nursing care to human being in brain death. It was used as a theoretical and methodological reference, complex thinking and Grounded Theory, respectively. Data were collected in a university hospital in northeastern Brazil, from December 2010 to June 2011, through non structured interviews. The theoretical sample consisted of 12 nurses, distributed in three samples groups. The phenomenon of "Unveiling the multiple relationships and interactions to be a nurse in the complexity of care to the brain death" was delimited by five categories. In this article, was discussed the category "Emerging complexity of nursing care to be brain death". The study showed that the care facing a brain death is accompanied by disorder and uncertainties, causing the nurse to experience different feelings and ambivalent. The complexity of care facing a brain death is to understand its uniqueness and dialogical.

  3. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    Science.gov (United States)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  4. THE USE OF A COMPLEXBRAIN-COMPUTER INTERFACE AND EXO-SKELETON” AND MOVEMENT IMAGINATION TECHNIQUE FOR POST-STROKE REHABILITATION

    Directory of Open Access Journals (Sweden)

    S. V. Kotov

    2015-01-01

    Full Text Available Background: Efficacy of physical exercise and movement imagination for restoration of motor dysfunction after a stroke is seen as proven. However, the use of movement imagination is complicated by impossibility of objective and subjective control over  the exercise, as well as by the absence of their motor support. The brain-computer interface based on electroencephalography is a technique that enables a feedback during movement imagination.Materials and methods: We assessed 10 patients (6 men and 4 women aged from 30 to 66 years (mean age, 47 ± 7.7 years with an ischemic (n = 9 and hemorrhagic (n = 1 stroke during the last 2 months to 4 years. Online recognition of movement imagination was done by a classifier with a brain computer interface. An exo-skeleton supported passive movements in a paretic hand managed by the brain-computer interface. During 2 weeks the patients had 10 sessions of 45–90 minute duration each. For control, we used data from 5 stroke patients who, in addition to their standard treatment, underwent an imitation of rehabilitation procedures without movement imagination and feedback. To assess efficacy of treatment, we used a modified Ashworth scale, Fugl-Meyer scale, test for evaluation of hand functions ARAT, British scale for assessment of muscle force MRC-SS. Level of everyday activity and working ability was measured with a modified Rankin scale and Bartel index. Cognitive functions were assessed with Schulte tables.Results: Online recognition of movement imagination according to desynchronization of μ rhythm was registered in 50–75% of patients. All patients reported a subjective improvement of motor functions and working ability. Positive results for at least one parameter were observed in all patients; however, there were no significant difference between the parameters before and after rehabilitation procedures, excluding cognitive functions (degree of warming-up, p < 0.02.Conclusion: In post stroke patients

  5. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  6. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  7. 'Hit & Run' model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation.

    Science.gov (United States)

    Ren, Zeguang; Iliff, Jeffrey J; Yang, Lijun; Yang, Jiankai; Chen, Xiaolin; Chen, Michael J; Giese, Rebecca N; Wang, Baozhi; Shi, Xuefang; Nedergaard, Maiken

    2013-06-01

    Cerebral edema is a major contributor to morbidity associated with traumatic brain injury (TBI). The methods involved in most rodent models of TBI, including head fixation, opening of the skull, and prolonged anesthesia, likely alter TBI development and reduce secondary injury. We report the development of a closed-skull model of murine TBI, which minimizes time of anesthesia, allows the monitoring of intracranial pressure (ICP), and can be modulated to produce mild and moderate grade TBI. In this model, we characterized changes in aquaporin-4 (AQP4) expression and localization after mild and moderate TBI. We found that global AQP4 expression after TBI was generally increased; however, analysis of AQP4 localization revealed that the most prominent effect of TBI on AQP4 was the loss of polarized localization at endfoot processes of reactive astrocytes. This AQP4 dysregulation peaked at 7 days after injury and was largely indistinguishable between mild and moderate grade TBI for the first 2 weeks after injury. Within the same model, blood-brain barrieranalysis of variance permeability, cerebral edema, and ICP largely normalized within 7 days after moderate TBI. These findings suggest that changes in AQP4 expression and localization may not contribute to cerebral edema formation, but rather may represent a compensatory mechanism to facilitate its resolution.

  8. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid.

    Science.gov (United States)

    Bunik, Victoria I; Raddatz, Günter; Wanders, Ronald J A; Reiser, Georg

    2006-06-12

    Pyruvate and 2-oxoglutarate dehydrogenase complexes are strongly inhibited by phytanoyl-CoA (IC(50) approximately 10(-6)-10(-7) M). Palmitoyl-CoA is 10-fold less potent. Phytanic or palmitic acids have no inhibitory effect up to 0.3 mM. At the substrate saturation, the acyl-CoA's affect the first and second enzymatic components of the 2-oxoglutarate dehydrogenase complex, while the third component is inhibited only at a low saturation with its substrate dihydrolipoamide. Thus, key regulatory branch points of mitochondrial metabolism are targets of a cellular derivative of phytanic acid. Decreased activity of the complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease.

  9. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... development, and may also assist in learning and memory. hippocampus —A portion of the brain involved in creating and filing new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... the brain How different parts of the brain communicate and work with each other How changes in ... communication signal sent between neurons by which neurons communicate with each other. magnetic resonance imaging (MRI) mdash; ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... their final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... harder for Sarah to recover normally from her low mood. It's important to remember that everyone gets " ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... the basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... and her husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early- ... and techniques are giving scientists a more detailed understanding of the brain than ever before. Brain Imaging ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the ... enclosed by a cell membrane, which separates the inside contents of the cell from its surrounding environment ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... lead to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons ... However, recent research points to a possible new class of antidepressants that can relieve symptoms of the ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... Functional magnetic resonance imaging (fMRI) is another important research tool in understanding how the brain functions. Another type of brain scan called magnetoencephalography, or MEG, can ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you ... of DNA. Sometimes this copying process is imperfect, leading to a gene mutation that causes the gene ...

  5. Brain Diseases

    Science.gov (United States)

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain ... studies show that brain growth in children with autism appears to peak early. And as they grow ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... experienced long periods of deep sadness throughout her teenage years, but had never seen a doctor about ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a ... blues" from time to time. In contrast, major depression is a serious disorder that lasts for weeks. ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... affect many aspects of life. Scientists are continually learning more about how the brain grows and works ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... works in healthy people, and how normal brain development and function can go awry, leading to mental ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ... depression experience when starting treatment. Gene Studies Advanced technologies are also making it faster, easier, and more ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ... unit of the brain and nervous system. These cells are highly specialized for the function of conducting ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on neurons ... Using MEG, some scientists have found a specific pattern of brain activity that may help predict who ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... all. She was happily married and successful in business. Then, after a serious setback at work, she ... of the brain's structure, studies show that brain growth in children with autism appears to peak early. ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of ... but sometimes give rise to disabilities or diseases. neural circuit —A network of neurons and their interconnections. ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain ... system. These cells are highly specialized for the function of conducting messages. A neuron has three basic ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... brain may play a role in disorders like schizophrenia or attention deficit hyperactivity disorder (ADHD) . Glutamate —the ... mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and depression . Brain Regions Just as many neurons ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions ... basic working unit of the brain and nervous system. These cells are highly specialized for the function ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ... MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... How the brain develops How genes and the environment affect the brain The basic structure of the ... inside contents of the cell from its surrounding environment and controls what enters and leaves the cell, ...

  3. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  4. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  5. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  6. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan;

    2011-01-01

    constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes......After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  7. The Brain.

    Science.gov (United States)

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  8. Brain Basics

    Medline Plus

    Full Text Available ... and plays an important role during early brain development. It may also assist in learning and memory. Problems in making or using glutamate ... increases neuronal activity, is involved in early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  9. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit ... final destination. Chemical signals from other cells guide neurons in forming various brain structures. Neighboring neurons make connections with each other ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... pituitary-adrenal (HPA) axis. Brain Basics in Real Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah ... having trouble coping with the stresses in her life. She began to think of suicide because she ...

  12. Complex interplay between brain function and structure during cerebral amyloidosis in APP transgenic mouse strains revealed by multi-parametric MRI comparison.

    Science.gov (United States)

    Grandjean, Joanes; Derungs, Rebecca; Kulic, Luka; Welt, Tobias; Henkelman, Mark; Nitsch, Roger M; Rudin, Markus

    2016-07-01

    Alzheimer's disease is a fatal neurodegenerative disorder affecting the aging population. Neuroimaging methods, in particular magnetic resonance imaging (MRI), have helped reveal alterations in the brain structure, metabolism, and function of patients and in groups at risk of developing AD, yet the nature of these alterations is poorly understood. Neuroimaging in mice is attractive for investigating mechanisms underlying functional and structural changes associated with AD pathology. Several preclinical murine models of AD have been generated based on transgenic insertion of human mutated APP genes. Depending on the specific mutations, mouse strains express different aspects of amyloid pathology, e.g. intracellular amyloid-β (Aβ) aggregates, parenchymal plaques, or cerebral amyloid angiopathy. We have applied multi-parametric MRI in three transgenic mouse lines to compare changes in brain function with resting-state fMRI and structure with diffusion tensor imaging and high resolution anatomical imaging. E22ΔAβ developing intracellular Aβ aggregates did not present functional or structural alterations compared to their wild-type littermates. PSAPP mice displaying parenchymal amyloid plaques displayed mild functional changes within the supplementary and barrel field cortices, and increased isocortical volume relative to controls. Extensive reduction in functional connectivity in the sensory-motor cortices and within the default mode network, as well as local volume increase in the midbrain relative to wild-type have been observed in ArcAβ mice bearing intracellular Aβ aggregates as well as parenchymal and vascular amyloid deposits. Patterns of functional and structural changes appear to be strain-specific and not directly related to amyloid deposition.

  13. Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees.

    Science.gov (United States)

    Roper, Mark; Fernando, Chrisantha; Chittka, Lars

    2017-02-01

    The ability to generalize over naturally occurring variation in cues indicating food or predation risk is highly useful for efficient decision-making in many animals. Honeybees have remarkable visual cognitive abilities, allowing them to classify visual patterns by common features despite having a relatively miniature brain. Here we ask the question whether generalization requires complex visual recognition or whether it can also be achieved with relatively simple neuronal mechanisms. We produced several simple models inspired by the known anatomical structures and neuronal responses within the bee brain and subsequently compared their ability to generalize achromatic patterns to the observed behavioural performance of honeybees on these cues. Neural networks with just eight large-field orientation-sensitive input neurons from the optic ganglia and a single layer of simple neuronal connectivity within the mushroom bodies (learning centres) show performances remarkably similar to a large proportion of the empirical results without requiring any form of learning, or fine-tuning of neuronal parameters to replicate these results. Indeed, a model simply combining sensory input from both eyes onto single mushroom body neurons returned correct discriminations even with partial occlusion of the patterns and an impressive invariance to the location of the test patterns on the eyes. This model also replicated surprising failures of bees to discriminate certain seemingly highly different patterns, providing novel and useful insights into the inner workings facilitating and limiting the utilisation of visual cues in honeybees. Our results reveal that reliable generalization of visual information can be achieved through simple neuronal circuitry that is biologically plausible and can easily be accommodated in a tiny insect brain.

  14. Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees

    Science.gov (United States)

    Fernando, Chrisantha

    2017-01-01

    The ability to generalize over naturally occurring variation in cues indicating food or predation risk is highly useful for efficient decision-making in many animals. Honeybees have remarkable visual cognitive abilities, allowing them to classify visual patterns by common features despite having a relatively miniature brain. Here we ask the question whether generalization requires complex visual recognition or whether it can also be achieved with relatively simple neuronal mechanisms. We produced several simple models inspired by the known anatomical structures and neuronal responses within the bee brain and subsequently compared their ability to generalize achromatic patterns to the observed behavioural performance of honeybees on these cues. Neural networks with just eight large-field orientation-sensitive input neurons from the optic ganglia and a single layer of simple neuronal connectivity within the mushroom bodies (learning centres) show performances remarkably similar to a large proportion of the empirical results without requiring any form of learning, or fine-tuning of neuronal parameters to replicate these results. Indeed, a model simply combining sensory input from both eyes onto single mushroom body neurons returned correct discriminations even with partial occlusion of the patterns and an impressive invariance to the location of the test patterns on the eyes. This model also replicated surprising failures of bees to discriminate certain seemingly highly different patterns, providing novel and useful insights into the inner workings facilitating and limiting the utilisation of visual cues in honeybees. Our results reveal that reliable generalization of visual information can be achieved through simple neuronal circuitry that is biologically plausible and can easily be accommodated in a tiny insect brain. PMID:28158189

  15. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    Directory of Open Access Journals (Sweden)

    Ségolène Mrozek

    2012-01-01

    Full Text Available The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.

  16. A long-term, complex, unitary appraisal regarding neurorestorative, including neurorehabilitative, outcomes in patients treated with Cerebrolysin®, following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Daia CO

    2014-06-01

    Full Text Available Cristina O Daia,1,2 Monica Haras,1,2 Tiberiu Spircu,1 Aurelian Anghelescu,1,2 Liliana Onose,3 Alexandru Vlad Ciurea,1,2 Anca Sanda Mihaescu,2 Gelu Onose1,21Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; 2Bagdasar-Arseni Teaching Emergency Hospital, Bucharest, Romania; 3Metrorex – The Medical Service, Bucharest, RomaniaBackground: Neuroprotection is a modern therapeutic concept that has some useful outcomes discussed in the literature, including for traumatic brain injury (TBI.Scope and study design: This was a retrospective case-control study that was approved by the bioethics commission of the Bagdasar-Arseni Teaching Emergency Hospital, Bucharest, Romania. The aim of the study was to comparatively assess neurorestorative, including neurorehabilitative, outcomes obtained with or without Cerebrolysin®.Materials and methods: Nineteen cases treated with Cerebrolysin versus 28 who did not receive this drug were included in this study. All cases had a subacute or post-acute status after TBI and were hospitalized (only at their first admission between January 2005 and December 2010 in the hospital's NeuroRehabilitation Clinic Division. Epidemiological, clinical, paraclinical, and functional parameters were evaluated, using the: Functional Independence Measure (FIMTM, Glasgow Outcome Score (GOS, and Modified Rankin Scale.Results: Patients in the Cerebrolysin group had, on average, higher (although not statistically significant FIM evolution values (36.53 than the control group (29.64 (P=0.174, 95% confidence interval: -8.0 to 21.8. The effect size assessed on the GOS was 2.1%. Additionally, the mean FIM value at admission of the Cerebrolysin group (45.79 was lower than that of controls (61.50; P=0.076.Discussion and conclusion: The clinical/functional evolution, comparatively evaluated in the studied inpatients, and taking into account the small sample and effect sizes – including for GOS – suggest that Cerebrolysin

  17. Advances in Brain Research: Implications for Educators

    Science.gov (United States)

    Stickel, Sue A.

    2005-01-01

    Cognitive neuroscience will provide theoretical foundations for areas of educational policy and practice. Educators will benefit from knowledge in the basic sciences related to brain development and function. Brain development begins at birth and the brain remains capable of complex changes throughout the lifespan. Educators will want to be aware…

  18. THE EXPRESSION OF FOS IN THE WHOLE BRAIN OF RATS FOLLOWING COMPLEX DOUBLE ROTATION ON TWO AXES%围绕两轴进行复杂的旋转刺激后大鼠全脑内Fos的表达

    Institute of Scientific and Technical Information of China (English)

    葛顺楠; 董玉琳; 张富兴; 李金莲

    2007-01-01

    为了探讨旋转刺激与运动病发生的关系,本研究利用一种复杂的围绕两轴旋转的加速度刺激器刺激大鼠后,观察大鼠全脑内Fos蛋白的表达情况.动物被随机地分成四组,即正常对照组、两轴旋转刺激组、双侧迷路毁损组以及双侧迷路毁损后接受旋转刺激组.采用免疫组织化学染色方法观察全脑不同核团内Fos蛋白的表达情况.结果显示:(1)正常对照组和双侧迷路毁损组大鼠的脑内均未检测到Fos样免疫阳性产物;(2)两轴旋转刺激组的大鼠在给予复杂的围绕两轴旋转的加速度刺激后,在大鼠脑和脑干的多个核团内均可检测到Fos样免疫阳性神经元,其阳性产物主要表达于细胞核.其中在脑干内的前庭复合体的不同亚核(包括前庭内侧核、前庭上核和前庭下核),孤束核、蓝斑核、臂旁内侧核、臂旁外侧核,间脑的室旁核以及边缘系统的杏仁核等内均可观察到密集分布的Fos样免疫阳性神经元;(3)双侧迷路毁损组大鼠在接受复杂的围绕两轴旋转刺激后,在上述相应核团内均难以检测到Fos蛋白的表达.以上研究结果提示两轴旋转刺激可以有效地激活前庭神经元,而大鼠在接受前庭刺激后,脑和脑干的许多核团内大量的神经元可能通过与前庭核复合体发生直接或间接的纤维联系也被激活,这些被激活的神经元可能与运动病发生的复杂机制有关.%To investigate the relationship of the rotation stimulation with motion sickness, the expression of Fos protein in the whole brain of the rat stimulated by complex double rotation on two axes was observed in the present study. The rats were randomly divided into four groups: normal contral group; double-axes rotation stimulation group; the bilateral labyrinthectomy group; group of two-axes rotation stimulation after the bilateral labyrinthectomy. Immunohistochemical staining method was used to detect the expression of Fos

  19. Our Brain Enjoys Making Friends

    OpenAIRE

    Gleichgerrcht, Ezequiel; Salvarezza, Florencia; Manes, Facundo

    2013-01-01

    Is it important to have friends? Why do we enjoy spending time with them? Do we learn differently around our friends? Neuroscience research is helping us to answer some of these questions by looking at the way our brain allows us to, and benefits from, interacting with other humans. Part of the reason why human brains are so complex is that our interactions with others are so complex; we are social creatures and have been living in groups for thousands of years. Our brain has developed the ab...

  20. The coupling of cerebral blood flow and oxygen metabolism with brain activation is similar for simple and complex stimuli in human primary visual cortex.

    Science.gov (United States)

    Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B

    2015-01-01

    Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Motor cortex stimulation(MCS) for intractable complex regional pain syndrome (CRPS) type II: PSM analysis of Tc-99m ECD brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Son, B. C.; Yoo, I. R.; Kim, S. H.; Kim, E. N.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    We had experienced a patient with intractable CRPS in whom statistical parametric mapping (SPM) analysis of cerebral perfusion explained the mechanism of pain control by MCS. A 43-year-old man presented spontaneous severe burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. After the electrodes for neuromodulation therapy were inserted in the central sulcus, the baseline and stimulation brain perfusion SPECT using Tc-99m ECD were obtained within two days. The differences between the baseline and stimulation SPECT images, estimated at every voxel using t-statistics using SPM-99 software, were considered significant at a threshold of uncorrected P values less than 0.01. Among several areas significantly activated following pain relief with MCS, ipsilateral pyramidal tract in the cerebral peduncle might be related to the mechanism of pain control with MCS through efferent motor pathway. The result suggested that corticospinal neurons themselves or motor cortex efferent pathway maintained by the presence of intact corticospinal neurons could play an important role in producing pain control after MCS. This study would helpful in understanding of neurophysiology.

  2. From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7T.

    Science.gov (United States)

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; Liu, Jiaen; He, Bin

    2013-06-01

    Elevated specific absorption rate (SAR) associated with increased main magnetic field strength remains a major safety concern in ultra-high-field (UHF) magnetic resonance imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radio-frequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission.

  3. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    Science.gov (United States)

    Scharfman, Helen E; MacLusky, Neil J

    2006-12-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.

  4. Antiproliferative effects of palladium(II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin-angiotensin system in tumoral brain cells.

    Science.gov (United States)

    Illán-Cabeza, Nuria A; García-García, Antonio R; Martínez-Martos, José M; Ramírez-Expósito, María J; Moreno-Carretero, Miguel N

    2013-09-01

    Seventeen new palladium(II) complexes of general formulaes PdCl2L, PdCl(LH-1)(solvent) and PdCl2(PPh3)2L containing pyrimidine ligands derived from 6-amino-5-nitrosouracil and violuric acid have been prepared and characterized by elemental analysis, IR and NMR ((1)H and (13)C) methods and, two of them, PdCl(DANUH-1)(CH3CN)]·½H2O and [PdCl(2MeOANUH-1)(CH3CN)] by X-ray single-crystal diffraction (DANU: 6-amino-1,3-dimethyl-5-nitrosouracil; 2MeOANU: 6-amino-2-methoxy-5-nitroso-3H-pyrimidin-4-one). The coordination environment around palladium is nearly square planar in the two compounds with different supramolecular arrangements. Crystallographic and spectral data are consistent with a bidentate coordination mode through N5 and O4 atoms when the ligands act in neutral form and N5 and N6 atoms in the monodeprotonated ones. The cytotoxicity of the complexes against human neuroblastoma (NB69) and human glioma (U373-MG) cell lines has been tested showing a considerable antiproliferative activity. Also, the study of the effects of palladium(II) complexes on the renin-angiotensin system (RAS) regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP) shows a strong dependence on the compound tested and the tumoral cell type, also affecting different catalytic routes; the compounds affect in a different way the activities of enzymes of the RAS system, changing their functional roles as initiators of cell proliferation in tumors as autocrine/paracrine mediators.

  5. Evolution of brain and language.

    Science.gov (United States)

    Schoenemann, P Thomas

    2012-01-01

    In this chapter evolutionary changes in the human brain that are relevant to language are reviewed. Most of what is known involves assessments of the relative sizes of brain regions. Overall brain size is associated with some key behavioral features relevant to language, including complexity of the social environment and the degree of conceptual complexity. Prefrontal cortical and temporal lobe areas relevant to language appear to have increased disproportionately. Areas relevant to language production and perception have changed less dramatically. The extent to which these changes were a consequence specifically of language versus other behavioral adaptations is a good question, but the process may best be viewed as a complex adaptive system, whereby cultural learning interacts with biology iteratively over time to produce language. Overall, language appears to have adapted to the human brain more so than the reverse. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures.

    Directory of Open Access Journals (Sweden)

    Bruce Pulford

    Full Text Available BACKGROUND: Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrP(C expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrP(C expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs, acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation. CONCLUSIONS/SIGNIFICANCE: Liposome-siRNA-peptide complexes (LSPCs delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrP(C expression and eliminated PrP(RES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrP(C-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.

  7. Genetic basis of human brain evolution

    OpenAIRE

    Vallender, Eric J.; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-01-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human b...

  8. Characterization of phosphine complexes of technetium(III) as transport substrates of the multidrug resistance P-glycoprotein and functional markers of P-glycoprotein at the blood-brain barrier.

    Science.gov (United States)

    Luker, G D; Rao, V V; Crankshaw, C L; Dahlheimer, J; Piwnica-Worms, D

    1997-11-18

    The multidrug resistance (MDR1) P-glycoprotein functions as a broad specificity efflux transporter of structurally diverse natural product and xenobiotic compounds. P-glycoprotein also is an important component of the functional blood-brain barrier. To enable further studies of function and modulation of MDR1 P-glycoprotein in vitro and in vivo, two novel phosphine technetium(III) complexes were designed and characterized: trans-[2,2'-(1, 2-ethanediyldiimino)bis(1, 5-methoxy-5-methyl-4-oxo-hexenyl)]bis[methylbis(3-methoxy-1- propyl)ph osphine]Tc(III) (Tc-Q58) and trans-[5,5'-(1,2-ethanediyl diimino)bis(2-ethoxy-2-methyl-3-oxo-4-pentenyl)]bis[dimethyl(3- methox y-1-propyl)phosphine)]Tc(III) (Tc-Q63). In human drug-sensitive KB 3-1 cells and multidrug-resistant KB 8-5 and 8-5-11 derivative cell lines, expressing nonimmunodetectable, low, and high levels of MDR1 P-glycoprotein, respectively, accumulation of Tc-Q58 and Tc-Q63 was inverse to expression of the transporter. Differences between drug-sensitive and multidrug-resistant cells, while detectable at picomolar concentrations of each radiopharmaceutical, were independent of tracer concentration. Ratios of tracer accumulation in KB 3-1 and 8-5 cells were 62.3 and 48.1 for Tc-Q58 and Tc-Q63, respectively. Cell contents of Tc-Q58 and Tc-Q63 were enhanced up to 60-fold in MDR cells by known modulators of MDR1 P-glycoprotein, while drugs not in the multidrug-resistant phenotype had no effect on their accumulation. In KB 8-5 cells, potency of modulators was GF120918 > cyclosporin A > verapamil. Accumulation of Tc-Q58 and Tc-Q63 in Sf9 insect cells infected with a recombinant baculovirus containing human MDR1 P-glycoprotein was reduced in a GF120918-reversible manner (EC50 phosphine-containing metal complexes. As shown with Tc-Q58, these Q complexes can be used to detect transport activity and modulation of MDR1 P-glycoprotein in vitro and to directly monitor the functional status of P-glycoprotein at the blood-brain

  9. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    Science.gov (United States)

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders.

  10. Mitochondrial Complex I Activity is Conditioned by Supercomplex I-III2-IV Assembly in Brain Cells: Relevance for Parkinson's Disease.

    Science.gov (United States)

    Lopez-Fabuel, Irene; Resch-Beusher, Monica; Carabias-Carrasco, Monica; Almeida, Angeles; Bolaños, Juan P

    2017-02-14

    The assembly of complex I (CI) with complexes III (CIII) and IV (CIV) of the mitochondrial respiratory chain (MRC) to configure I-III- or I-III-IV-containing supercomplexes (SCs) regulates mitochondrial energy efficiency and reactive oxygen species (mROS) production. However, whether the occurrence of SCs impacts on CI specific activity remains unknown to our knowledge. To investigate this issue, here we determined CI activity in primary neurons and astrocytes, cultured under identical antioxidants-free medium, from two mouse strains (C57Bl/6 and CBA) and Wistar rat, i.e. three rodent species with or without the ability to assemble CIV into SCs. We found that CI activity was 6- or 1.8-fold higher in astrocytes than in neurons, respectively, from rat or CBA mouse, which can form I-III2-IV SC; however, CI activity was similar in the cells from C57Bl/6 mouse, which does not form I-III2-IV SC. Interestingly, CII-III activity, which was comparable in neurons and astrocytes from mice, was about 50% lower in astrocytes when compared with neurons from rat, a difference that was abolished by antioxidants- or serum-containing media. CIV and citrate synthase activities were similar under all conditions studied. Interestingly, in rat astrocytes, CI abundance in I-III2-IV SC was negligible when compared with its abundance in I-III-containing SCs. Thus, CIV-containing SCs formation may determine CI specific activity in astrocytes, which is important to understand the mechanism for CI deficiency observed in Parkinson's disease.

  11. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ... to slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in understanding ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... chemicals. glutamate —The most common neurotransmitter in a person's body, which increases neuronal activity, is involved in early brain development, and may also assist in learning and memory. hippocampus —A portion of the brain ...

  15. Brain Autopsy

    Science.gov (United States)

    ... why a family should consider arranging for a brain autopsy upon the death of their loved one. To get a definitive ... study of tissue removed from the body after death. Examination of the whole brain is important in understanding FTD because the patterns ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... Join A Study News & Events News & Events Home Science News Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About ... on how the brain works, how mental illnesses are disorders of the brain, and ongoing research that ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... PTSD) . Prefrontal cortex (PFC) —Seat of the brain's executive functions, such as judgment, decision making, and problem solving. ... brain that, in humans, plays a role in executive functions such as judgment, decision making and problem solving, ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... as they grow there are differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing such children to those with normal brain development may help scientists to pinpoint when and where ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... and are working to compare that with brain development in people mental disorders. Genes and environmental cues both help to direct ... comparing such children to those with normal brain development may help scientists to pinpoint when and where mental disorders begin and perhaps how to slow or stop ...

  20. EFFICACY OF COMPLEX NEUROREHABILITATION OF PATIENTS WITH A POST-STROKE ARM PARESIS WITH THE USE OF A BRAIN-COMPUTER INTERFACE+EXOSKELETON SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Frolov

    2016-01-01

    Full Text Available Background: Rehabilitation of patients with poststroke motor disorders with the use of a brain-computer interface (BCI+exoskeleton may raise the rehabilitation to a  new high-tech level and allow for an effective correction of the post-stroke dysfunction. Aim: To assess the efficacy of BCI+exoskeleton procedures for neurorehabilitation of patients with post-stroke motor dysfunction. Materials and methods: The study included 40 patients with a history of cerebral stroke (mean age 59±10.4 years, 26 male and 14 female. Thirty six of them had had an ischemic stroke and 4, a hemorrhagic stroke from 2 months to 4 years before the study entry. All patients had a various degree post-stroke hemiparesis predominantly of the arm. The main group patients (n=20, in addition to conventional therapy, had 10  sessions (3  times daily of BCI+exoskeleton. The BCI recognized the hand ungripping imagined by the patient and, by a  feedback signal, the exoskeleton exerted the passive movement in the paretic arm. The control group patients (n=10 had 10  BCI+exoskeleton sessions without imaginary movements, and the exoskeleton functioned in a  random mode. The comparison group included 10  patients who received only standard treatment. Results: At the end of rehabilitation treatment (day 14, all study groups demonstrated an improvement in the function of the paretic extremity. There was an improvement of functioning and daily activities in the main group, compared to the control and the comparison groups: the change in the modified Rankin scale score was 0.4±0.1, 0.1±0.1  and 0±0.2 (p<0.05, in the Bartel scale score, 5.6±0.8, 2.3±0.3 and 1±0.2 (p<0.001, respectively. In the BCI+exoskeleton group the motor function of the paretic arm assessed by the ARAT scale, improved by 5.5±1.3  points (2.4±0.6  points in the control group and 1.9±0.7  in the comparison group, р<0.05, and as assessed by the Fugl-Meyer scale, by 10.8±1.5 points (3.8

  1. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  2. Brain peroxisomes.

    Science.gov (United States)

    Trompier, D; Vejux, A; Zarrouk, A; Gondcaille, C; Geillon, F; Nury, T; Savary, S; Lizard, G

    2014-03-01

    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered.

  3. Brain activation in complex partial seizures during switching from a the goal-directed task to a resting state: comparison of fMRI maps to the default mode network.

    Science.gov (United States)

    Karmonik, Christof; Dulay, Mario; Verma, Amit; Yen, Christopher; Grossman, Robert G

    2010-01-01

    The default mode network (DMN) has been previously identified as a set of brain regions activated during internally directed cognition. The objective of this study was to investigate patterns of brain activation during switching between a goal-directed task and a rest period obtained from clinical functional magnetic resonance imaging (fMRI) paradigms in complex partial seizures (CPS) and age-matched controls. As part of pre-surgical evaluation with fMRI, a visually presented block-design language task was performed by eight subjects (4 CPS, 4 age-matched controls). Single subject fMRI maps were calculated and transferred into Talairach space for an atlas-based analysis. For the rest state, total volumes of activation, brain regions with largest volume of activation and regions commonly activated in the CPS and the control group were identified. A voxel-by-voxel comparison was conducted to reveal inter-group statistically significant differences. Average volume of activation in the CPS group was significantly higher (32,080 mm(3)) than in the control group (7,915 mm(3), p-value 〈 0.03). In both groups, most of the common activation volume (81% in the CPS group and 98 % in the control group) was located in cognitive regions of the frontal lobe and temporal lobes as well as anterior cingulate cortex, precuneus and cuneus. The remaining 19% in the CPS group included regions in the precentral gyrus, the superior and medial occipital gyrus, the parahippocampal gyrus, the inferior parietal lobule and the angular gyrus. The voxel-by-voxel comparison showed larger areas of activation mostly in the frontal and temporal lobes in the CPS group (as well as in the cuneus and precuneus), while regions with larger activation in the control group were found mostly in the parietal lobe. Our findings implicate that switching from goal-directed behavior to the default mode in CPS patients is impaired. Information contained in clinical fMRI block-design image data can be used to

  4. [Brain concussion].

    Science.gov (United States)

    Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha

    2011-01-01

    Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.

  5. Artistic explorations of the brain

    Directory of Open Access Journals (Sweden)

    Eberhard E Fetz

    2012-02-01

    Full Text Available The symbiotic relationships between art and the brain begin with the obvious fact that brain mechanisms underlie the creation and appreciation of art. Conversely, many spectacular images of neural structures have remarkable aesthetic appeal. But beyond its fascinating forms, the many functions performed by brain mechanisms provide a profound subject for aesthetic exploration. Complex interactions in the tangled neural networks in our brain miraculously generate coherent behavior and cognition. Neuroscientists tackle these phenomena with specialized methodologies that limit the scope of exposition and are comprehensible to an initiated minority. Artists can perform an end run around this impasse by representing the brain’s many functions in a manner that can communicate to a wide and receptive audience. This paper explores the ways that brain mechanisms can provide a largely untapped subject for artistic exploration.

  6. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  7. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, the results can affect many ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... sends impulses and extends from cell bodies to meet and deliver impulses to another nerve cell. Axons ... in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman who ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Amygdala —The brain's "fear hub," which activates our natural "fight-or-flight" response to confront or escape ... identify unknown pills from the National Library of Medicine Contact Us Staff Directories Privacy Notice Policies FOIA ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ... can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as mood, ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting to NIMH National Institutes of ... electrical signals. The brain begins as a small group of cells in the outer layer of a ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... they can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as ... brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... but can still remember past events and learned skills, and carry on a conversation, all which rely ... A brain-body circuit which plays a critical role in the body's response to stress. impulse —An ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... specific protein. Scientists believe epigenetics play a major role in mental disorders and the effects of medications. ... feeling regions of the brain may play a role in disorders like schizophrenia or attention deficit hyperactivity ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... bind onto, leading to more normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the ... reward systems in the brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... of the cell from its surrounding environment and controls what enters and leaves the cell, and responds ... via axons) to form brain circuits. These circuits control specific body functions such as sleep and speech. ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... Month May 2017 PTSD Awareness Month June 2017 General Health Information from NIH MEDLINEPlus : Authoritative information from ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, ... occur when this process does not work correctly. Communication between neurons can also be electrical, such as ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... affects the Brain Meet Sarah Sarah is a middle-aged woman who seemed to have it all. ... However, recent research points to a possible new class of antidepressants that can relieve symptoms of the ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... and information that the cell needs for growth, metabolism, and repair. Cytoplasm is the substance that fills ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... each other How changes in the brain can lead to mental disorders, such as depression. The Growing ... understanding of genes and epigenetics may one day lead to genetic testing for people at risk for ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... he saw, Sarah's husband took her to the doctor, who ran some tests. After deciding her symptoms ... a stroke, brain tumor, or similar conditions, Sarah's doctor referred her to a psychiatrist, a type of ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... early brain development. It may also assist in learning and memory. Problems in making or using glutamate have been linked to many mental disorders, including autism , obsessive compulsive disorder (OCD) , schizophrenia , and ...

  7. Brain Basics

    Medline Plus

    Full Text Available ... genes and epigenetics may one day lead to genetic testing for people at risk for mental disorders. ... brain. DNA —The "recipe of life," containing inherited genetic information that helps to define physical and some ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... Some people who develop a mental illness may recover completely; others may have repeated episodes of illness ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... her feelings. Brain Research Modern research tools and techniques are giving scientists a more detailed understanding of ... other. magnetic resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... health research are listed below. Amygdala —The brain's "fear hub," which activates our natural "fight-or-flight" ... also appears to be involved in learning to fear an event, such as touching a hot stove, ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ... Higher Death Rate Among Youth with Psychosis Delayed Walking Link ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... the brain, which is linked to thought and emotion. It is also linked to reward systems in ... or-flight response and is also involved in emotions and memory. anterior cingulate cortex —Is involved in ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... some point. Such disorders include depression , anxiety disorders , bipolar disorder , attention deficit hyperactivity disorder (ADHD) , and many ... differences in brain development in children who develop bipolar disorder than children who do not. Studies comparing ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  15. Brain Basics

    Medline Plus

    Full Text Available ... of the brain's executive functions, such as judgment, decision making, and problem solving. Different parts of the PFC ... a role in executive functions such as judgment, decision making and problem solving, as well as emotional control ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... with symptoms of mental illness every day. They can be moderate, or serious and cause severe disability. ... disorders are brain disorders. Evidence shows that they can be related to changes in the anatomy, physiology, ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ... normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the flow of information to the ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... that contains codes to make proteins and other important body chemicals. DNA also includes information to control ... cells required for normal function and plays an important role during early brain development. It may also ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... to better cope with her feelings. Brain Research Modern research tools and techniques are giving scientists a ... containing inherited genetic information that helps to define physical and some behavioral traits. epigenetics —The study of ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... Some people who develop a mental illness may recover completely; others may have repeated episodes of illness ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot ... husband questions about Sarah's symptoms and family medical history. Epigenetic changes from stress or early-life experiences ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... control specific body functions such as sleep and speech. The brain continues maturing well into a person's ... was happily married and successful in business. Then, after a serious setback at work, she lost interest ...

  3. Brain Basics

    Medline Plus

    Full Text Available ... These circuits control specific body functions such as sleep and speech. The brain continues maturing well into ... factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... in early detection, more tailored treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything ... Priorities Update RDoC Developmental Webinar Post-ER Suicide Prevention Strategies are Cost Effective More Upcoming Events Borderline ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... better understand and treat disorders. Mental disorders are common. You may have a friend, colleague, or relative ... attention deficit hyperactivity disorder (ADHD) . Glutamate —the most common neurotransmitter, glutamate has many roles throughout the brain ...

  6. BrainNet Europe's Code of Conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Dexter, David T; Al-Sarraj, Safa; Seilhean, Danielle; Streichenberger, Nathalie; Schmitz, Peer; Bell, Jeanne E; Ironside, James W; Arzberger, Thomas; Huitinga, Inge

    2015-07-01

    Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.

  7. Structural and theoretical studies on rhodium and iridium complexes with 5-nitrosopyrimidines. Effects on the proteolytic regulatory enzymes of the renin-angiotensin system in human tumoral brain cells.

    Science.gov (United States)

    Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Ramírez-Expósito, María J; García-García, Antonio R; Peña-Ruiz, Tomás; Martínez-Martos, José M; Moreno-Carretero, Miguel N

    2015-02-01

    The reactions of [RhCl(CO)(PPh3)2], [RhCl(CO)2]2 and [IrCl(CO)(PPh3)2] with different 5-nitrosopyrimidines afforded sixteen complexes which have been structurally characterized by elemental analysis, IR and NMR ((1)H and (13)C) spectral methods and luminescence spectroscopy. The crystal and molecular structures of [Rh(III)Cl(VIOH-1)2(PPh3)], [Rh(III)Cl(DVIOH-1)2(PPh3)] and [Rh(II)(DVIOH-1)2(PPh3)2] have been established from single crystal x-ray structure analyses. The three complexes are six-coordinated with both violurato ligands into an equatorial N5,O4-bidentate fashion, but with different mutually arrangements. Theoretical studies were driven on the molecular structure of [Rh(III)Cl(VIOH-1)2(PPh3)] to assess the nature of the metal-ligand interaction as well as the foundations of the cis-trans (3L-2L) isomerism. An assortment of density functional (SOGGA11-X, B1LYP, B3LYP, B3LYP-D3 and wB97XD) has been used, all of them leading to a similar description of the target system. Thus, a topological analysis of the electronic density within AIM scheme and the study of the Mulliken charges yield a metal-ligand link of ionic character. Likewise, it has been proved that the cis-trans isomerism is mainly founded on that metal-ligand interaction with the relativistic effects playing a significant role. Although most of the compounds showed low direct toxicity against the human cell lines NB69 (neuroblastoma) and U373-MG (astroglioma), they differently modify in several ways the renin-angiotensin system (RAS)-regulating proteolytic regulatory enzymes aminopeptidase A (APA), aminopeptidase N (APN) and insulin-regulated aminopeptidase (IRAP). Therefore, these complexes could exert antitumor activity against both brain tumor types, acting through the paracrine regulating system mediated by tissue RAS rather than exerting a direct cytotoxic effect on tumor cells.

  8. Brain death.

    Science.gov (United States)

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families.

  9. Brain computer

    Directory of Open Access Journals (Sweden)

    Sarah N. Abdulkader

    2015-07-01

    Full Text Available Brain computer interface technology represents a highly growing field of research with application systems. Its contributions in medical fields range from prevention to neuronal rehabilitation for serious injuries. Mind reading and remote communication have their unique fingerprint in numerous fields such as educational, self-regulation, production, marketing, security as well as games and entertainment. It creates a mutual understanding between users and the surrounding systems. This paper shows the application areas that could benefit from brain waves in facilitating or achieving their goals. We also discuss major usability and technical challenges that face brain signals utilization in various components of BCI system. Different solutions that aim to limit and decrease their effects have also been reviewed.

  10. Thinking about the brain

    CERN Document Server

    Bialek, W

    2002-01-01

    We all are fascinated by the phenomena of intelligent behavior, as generated both by our own brains and by the brains of other animals. As physicists we would like to understand if there are some general principles that govern the structure and dynamics of the neural circuits that underlie these phenomena. At the molecular level there is an extraordinary universality, but these mechanisms are surprisingly complex. This raises the question of how the brain selects from these diverse mechanisms and adapts to compute "the right thing" in each context. One approach is to ask what problems the brain really solves. There are several examples - from the ability of the visual system to count photons on a dark night to our gestalt recognition of statistical tendencies toward symmetry in random patterns - where the performance of the system in fact approaches some fundamental physical or statistical limits. This suggests that some sort of optimization principles may be at work, and there are examples where these princi...

  11. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiologic......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho...... functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking...

  12. Brain Candy

    Directory of Open Access Journals (Sweden)

    Deborah Dudley

    2016-12-01

    Full Text Available Brain Candy is the result of conversations and collaborations with my daughters, Luca, age 12 and Isabel, age 16. As American adolescents, they consume millions of still and moving images each year in advertising, marketing and entertainment. While digesting hours of media, they are simultaneously responsible for producing and publishing thousands of images narrating their daily lives through social media. Understanding the dynamics of images as cultural candy for the brain as well as deconstructing the mechanics of image making, and how it informs identity and perception of self, has become a critical conversation in navigating the intensely photographic saturation of our lives.

  13. Advanced Pediatric Brain Imaging Research Program

    Science.gov (United States)

    2016-10-01

    system, by creating and implementing methods for converting the existing in-classroom educational BRAIN seminars into self-directed online learning...confirm that online multimedia learning provides a highly engaging educational method to teaching complex subject matter on brain development, brain injury...modules. In addition to the pre and post assessment data, we gathered participant feedback using a post- run module questionnaire accessible from

  14. Conference Report: Actor Brain

    Directory of Open Access Journals (Sweden)

    Naziker Bayram

    2006-05-01

    Full Text Available The remarkable progress in neuroscience contributes a great deal to the debate about topics such as "free will" and "intersubjectivity." The brain is considered to be the initial basis, the superior entity of human action and evolves more and more into an autonomous actor challenging the social and philosophical sciences to a somatic turn. The main aim of the symposium "Actor Brain" at Duisburg-Essen University, was to more precisely conceive the approaches taken by neuroscience in order to arrive at a better understanding of them and their implications. Due to the scientific diversity of the speakers, the final discussion could point out that the positions taken by the participants were not as incompatible as may be first assumed. The need for accurate and precise definitions of terms such as "action", "decision-making", and "free will" is accentuated as the complexity of the debate increases. URN: urn:nbn:de:0114-fqs0603241

  15. Cholesterol metabolism and homeostasis in the brain.

    Science.gov (United States)

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  16. Brain Basics

    Medline Plus

    Full Text Available ... highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ... component of the U.S. Department of Health and Human Services. Contact Us Staff Directories Privacy Notice Policies FOIA Accessibility Topic Finder Publicaciones en Español Top

  17. Brain Basics

    Medline Plus

    Full Text Available ... at the front of the brain that, in humans, plays a role in executive functions such as ... ClinicalTrials.gov : Federally and privately supported research using human volunteers PubMed Central: An archive of life sciences ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... in the body's response to stress. impulse —An electrical communication signal sent between neurons by which neurons communicate with each other. magnetic resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation — ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... they can cause tremors or symptoms found in Parkinson's disease. Serotonin —helps control many functions, such as mood, ... brain. Problems in producing dopamine can result in Parkinson's disease, a disorder that affects a person's ability to ...

  20. Brain Basics

    Medline Plus

    Full Text Available ... PFC are involved in using short-term or "working" memory and in retrieving long-term memories. This area ... neuron —A nerve cell that is the basic, working unit of the brain and nervous ... serotonin —A neurotransmitter that regulates many functions, including ...

  1. Brain Basics

    Medline Plus

    Full Text Available ... depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can cause tremors or symptoms found in Parkinson's disease. Serotonin — ...

  2. Brain Basics

    Medline Plus

    Full Text Available ... Join A Study News & Events News & Events Home Science News Events Multimedia Social Media Press Resources Newsletters NIMH News Feeds About Us About Us Home About the Director Advisory Boards and Groups Strategic ... Basics will introduce you to some of this science, such as: How the brain develops How genes ...

  3. Brain Fog

    Science.gov (United States)

    ... Elaine Alexander, MD, PhD, clinician and researcher in Sjögren’s syndrome, biomedical consultant and Chair-Elect of the SSF ... fact of life. Brain Fog can occur in Sjögren’s syndrome (SS), but other factors might cause these symptoms and ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... reuptake inhibitor (SSRI). SSRIs are the most common type of medication used to treat depression. SSRIs boost the amount of serotonin in the brain and help reduce symptoms of depression. Sarah also has several follow-up visits scheduled with the psychiatrist to check how ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... in mental illnesses. Scientists have already begun to chart how the brain develops over time in healthy ... Authoritative information from government agencies and health-related organizations, available in both English and Spanish ( Español ) ClinicalTrials. ...

  6. Brain Basics

    Medline Plus

    Full Text Available ... cell that contains DNA and information the cell needs for growing, staying alive, and making new neurons. prefrontal cortex —A highly developed area at the front of the brain that, in humans, plays a role in executive functions such as ...

  7. Brain tumor survivors speak out.

    Science.gov (United States)

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  8. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  9. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  10. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  11. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  12. Evolution of Brain and Language

    Science.gov (United States)

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  13. Evolution of Brain and Language

    Science.gov (United States)

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  14. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  15. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  16. Quantum Brain?

    CERN Document Server

    Mershin, A; Skoulakis, E M C

    2000-01-01

    In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.

  17. Animating Brains

    Science.gov (United States)

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  18. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.

    Science.gov (United States)

    Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D

    2015-09-01

    , brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.

  19. Male or female? Brains are intersex

    Directory of Open Access Journals (Sweden)

    Daphna eJoel

    2011-09-01

    Full Text Available The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms male or female, and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in utero and throughout life to determine the structure of the brain, and that because these interactions are complex, the result is a multi-morphic, rather than a dimorphic, brain. More specifically, here I argue that human brains are composed of an ever-changing heterogeneous mosaic of male and female brain characteristics (rather than being all male or all female that cannot be aligned on a continuum between a male brain and a female brain. I further suggest that sex differences in the direction of change in the brain mosaic following specific environmental events lead to sex differences in neuropsychiatric disorders.

  20. Essay on mesoscopic and quantum brain

    CERN Document Server

    Rosu, H C

    1994-01-01

    In the pure essay style (no mathematical formulas), I present a number of speculative reflections and suggestions on possible applications of mesoscopic methods (e.g., self-organized criticality, wavelets) and of quantum mechanical concepts to as such a complex system as the human brain. As an initial guide for this essay I used {\\em The Emperor's New Mind} of Roger Penrose. Contents: 1. Introduction (1); 2. What is the human brain ? (4); 3. Consciousness and mesoscopia (8); 4. Hints for quantum approaches to the human brain (12); 5. Quantum effects in human receptors (15); 6. Limitations of the human brain to the quantum knowledge (21); 7. Conclusions (25); References (28).

  1. Small-world brain networks in schizophrenia

    Institute of Scientific and Technical Information of China (English)

    Mingli LI; Zhuangfei CHEN; Tao LI

    2012-01-01

    Over the last decade the combination of brain neuroimaging techniques and graph theoretical analysis of the complex anatomical and functional networks in the brain have provided an exciting new platform for exploring the etiology of mental disorders such as schizophrenia. This review introduces the current status of this work, focusing on these networks in schizophrenia. The evidence supporting the findings of reduced efficiency of information exchange in schizophrenia both within local brain regions and globally throughout the brain is reviewed and the potential relationship of these changes to cognitive and clinical symptoms is discussed. Finally we propose some suggestions for future research.

  2. Carney Complex

    Science.gov (United States)

    ... Types of Cancer > Carney Complex Request Permissions Carney Complex Approved by the Cancer.Net Editorial Board , 11/2015 What is Carney complex? Carney complex is a hereditary condition associated with: ...

  3. Genetic basis of human brain evolution.

    Science.gov (United States)

    Vallender, Eric J; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-12-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human brain evolution span a wide range from single-nucleotide substitutions to large-scale structural alterations of the genome. Similarly, the functional consequences of these genetic changes vary greatly, including protein-sequence alterations, cis-regulatory changes and even the emergence of new genes and the extinction of existing ones. Here, we provide a general review of recent findings into the genetic basis of human brain evolution, highlight the most notable trends that have emerged and caution against over-interpretation of current data.

  4. Complex Beauty

    OpenAIRE

    Franceschet, Massimo

    2014-01-01

    Complex systems and their underlying convoluted networks are ubiquitous, all we need is an eye for them. They pose problems of organized complexity which cannot be approached with a reductionist method. Complexity science and its emergent sister network science both come to grips with the inherent complexity of complex systems with an holistic strategy. The relevance of complexity, however, transcends the sciences. Complex systems and networks are the focal point of a philosophical, cultural ...

  5. Complexity, Information and Biological Organisation

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2005-12-01

    Full Text Available Regarding the widespread confusion about the concept and nature of complexity, information and biological organization, we look for some coordinated conceptual considerations corresponding to quantitative measures suitable to grasp the main characteristics of biological complexity. Quantitative measures of algorithmic complexity of supercomputers like Blue Gene/L are compared with the complexity of the brain. We show that both the computer and the brain have a more fundamental, dynamic complexity measure corresponding to the number of operations per second. Recent insights suggest that the origin of complexity may go back to simplicity at a deeper level, corresponding to algorithmic complexity. We point out that for physical systems Ashby’s Law, Kahre’s Law and causal closure of the physical exclude the generation of information, and since genetic information corresponds to instructions, we are faced with a controversy telling that the algorithmic complexity of physics is much lower than the instructions’ complexity of the human DNA: I_algorithmic(physics ~ 10^3 bit << I_instructions(DNA ~ 10^9 bit. Analyzing the genetic complexity we obtain that actually the genetic information corresponds to a deeper than algorithmic level of complexity, putting an even greater emphasis to the information paradox. We show that the resolution of the fundamental information paradox may lie either in the chemical evolution of inheritance in abiogenesis, or in the existence of an autonomous biological principle allowing the production of information beyond physics.

  6. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  7. Brain Tumor Surgery

    Science.gov (United States)

    ... Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. The part of the brain where the tumor is/was located. The areas ...

  8. That's Using Your Brain!

    Science.gov (United States)

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  9. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  10. Brain Basics

    Medline Plus

    Full Text Available ... our physical surroundings but also factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone or together in complex ways, to change the way a gene is expressed or the way messages are ... environmental factors can affect how a given gene operates. But unlike gene ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... our physical surroundings but also factors that can affect our bodies, such as sleep, diet, or stress. These factors may act alone or together in complex ways, to change the way a gene is expressed or the way messages are ... environmental factors can affect how a given gene operates. But unlike gene ...

  12. Gregariousness increases brain size in ungulates.

    Science.gov (United States)

    Pérez-Barbería, F Javier; Gordon, Iain J

    2005-08-01

    The brain's main function is to organise the physiological and behavioural responses to environmental and social challenges in order to keep the organism alive. Here, we studied the effects that gregariousness (as a measurement of sociality), dietary habits, gestation length and sex have on brain size of extant ungulates. The analysis controlled for the effects of phylogeny and for random variability implicit in the data set. We tested the following groups of hypotheses: (1) Social brain hypothesis-gregarious species are more likely to have larger brains than non-gregarious species because the former are subjected to demanding and complex social interactions; (2) Ecological hypothesis-dietary habits impose challenging cognitive tasks associated with finding and manipulating food (foraging strategy); (3) Developmental hypotheses (a) energy strategy: selection for larger brains operates, primarily, on maternal metabolic turnover (i.e. gestation length) in relation to food quality because the majority of the brain's growth takes place in utero, and finally (b) sex hypothesis: females are expected to have larger brains than males, relative to body size, because of the differential growth rates of the soma and brain between the sexes. We found that, after adjusting for body mass, gregariousness and gestation length explained most of the variation in brain mass across the ungulate species studied. Larger species had larger brains; gregarious species and those with longer gestation lengths, relative to body mass, had larger brains than non-gregarious species and those with shorter gestation lengths. The effect of diet was negligible and subrogated by gestation length, and sex had no significant effect on brain size. The ultimate cause that could have triggered the co-evolution between gestation length and brain size remains unclear.

  13. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    CERN Document Server

    Astakhov, Vadim

    2007-01-01

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic e...

  14. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  15. Neonatal maltreatment and brain development

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2014-06-01

    Full Text Available The early childhood years are a period of rapid change in the brain. During early childhood, the brain forms and refines a complex network of connections through synaptogenesis, pruning, and myelination. The development of the brain is regulated by genes, which interact profoundly with early experience. There are sensitive periods for development of certain capabilities. These refer to critical windows of time in the developmental process when certain parts of the brain may be most susceptible to particular experiences during its development. Most functions of the human brain result from a complex interplay between genetic potential and appropriately timed experiences. Early postnatal experiences play a major role in shaping the functional capacity of the neural systems responsible for mediating our cognitive, emotional, social and physiological functions. When the necessary experiences are not provided at the optimal times, these neural systems do not develop in optimal ways. Adverse environments and experiences during the neonatal period can dramatically affect the development of the hypothalamic-pituitary-adrenal axis (HPA axis that underlies adaptive behavioral responses. Early life stress programs HPA axis development and exerts profound effects on neural plasticity, with resultant long-term influences on neurobehavior. Animal studies show that not only are these neurobiological changes long lasting, but that they too can be passed on to future generations via non-genetic transmission. Olfactory, auditory, visual and tactile stimulation may serve as an important cue for brain development exerting specific effects on neuroendocrine systems regulating social and emotional behavior which may have consequences for subsequent generations of offspring. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in Neonatology Guest Editors: Vassilios

  16. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  17. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  18. Relative Brain and Brain Part Sizes Provide Only Limited Evidence that Machiavellian Behaviour in Cleaner Wrasse Is Cognitively Demanding.

    Science.gov (United States)

    Chojnacka, Dominika; Isler, Karin; Barski, Jaroslaw Jerzy; Bshary, Redouan

    2015-01-01

    It is currently widely accepted that the complexity of a species' social life is a major determinant of its brain complexity, as predicted by the social brain hypothesis. However, it remains a challenge to explain what social complexity exactly is and what the best corresponding measures of brain anatomy are. Absolute and relative size of the brain and of the neocortex have often been used as a proxy to predict cognitive performance. Here, we apply the logic of the social brain hypothesis to marine cleaning mutualism involving the genus Labroides. These wrasses remove ectoparasites from 'client' reef fish. Conflict occurs as wrasse prefer client mucus over ectoparasites, where mucus feeding constitutes cheating. As a result of this conflict, cleaner wrasse show remarkable Machiavellian-like behaviour. Using own data as well as available data from the literature, we investigated whether the general brain anatomy of Labroides provides any indication that their Machiavellian behaviour is associated with a more complex brain. Neither data set provided evidence for an increased encephalisation index compared to other wrasse species. Published data on relative sizes of brain parts in 25 species of the order Perciformes suggests that only the diencephalon is relatively enlarged in Labroides dimidiatus. This part contains various nuclei of the social decision making network. In conclusion, gross brain anatomy yields little evidence for the hypothesis that strategic behaviour in cleaning selects for larger brains, while future research should focus on more detailed aspects like the sizes of specific nuclei as well as their cryoarchitectonic structure and connectivity.

  19. A model for brain life history evolution.

    Science.gov (United States)

    González-Forero, Mauricio; Faulwasser, Timm; Lehmann, Laurent

    2017-03-01

    Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain's energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting ("me vs nature"), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model's parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.

  20. Bucolic Complexes

    CERN Document Server

    Brešar, Bostjan; Chepoi, Victor; Gologranc, Tanja; Osajda, Damian

    2012-01-01

    In this article, we introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. This class of complexes is closed under Cartesian products and amalgamations over some convex subcomplexes. We study various approaches to bucolic complexes: from graph-theoretic and topological viewpoints, as well as from the point of view of geometric group theory. Bucolic complexes can be defined as locally-finite simply connected prism complexes satisfying some local combinatorial conditions. We show that bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties. In particular, we prove a version of the Cartan-Hadamard theorem, the fixed point theorem for finite group actions, and establish some results on groups acting geometrically on such complexes. We also characterize the 1-skeletons (which we call bucolic graphs) and the 2-skeletons of bucolic complexes. In particular, we prove that bucolic graphs are precisely retracts of Ca...

  1. Emotionalism Following Brain Damage

    Directory of Open Access Journals (Sweden)

    Peter Allman

    1991-01-01

    Full Text Available Emotionalism is an heightened tendency to cry, or more rarely, laugh. It is commonly associated with brain damage and is often distressing to both patients and carers. Emotionalism is easily confused with depression, and when severe it can interfere with treatment. The aetiology is poorly understood but its response to drugs with different modes of action suggests that there is more than one underlying mechanism. When the components of emotionalism are studied separately a wide range is observed and they combine in a more complex and varied way than commonly held stereotyped views suggest. Most patients with emotionalism are helped by simple education and reassurance. Some severe cases respond dramatically to tricyclic antidepressants, levodopa or fluoxetine.

  2. Anesthesia for Patients with Traumatic Brain Injuries.

    Science.gov (United States)

    Bhattacharya, Bishwajit; Maung, Adrian A

    2016-12-01

    Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.

  3. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    National Research Council Canada - National Science Library

    Simonyan, Kristina; Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce...

  4. Emergent Complex Network Geometry

    CERN Document Server

    Wu, Zhihao; Rahmede, Christoph; Bianconi, Ginestra

    2014-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geo...

  5. Brain AVM (Arteriovenous Malformation)

    Science.gov (United States)

    ... a brain scan for another health issue or after the blood vessels rupture and cause bleeding in the brain (hemorrhage). Once diagnosed, a brain AVM can often be treated successfully to prevent complications, such as brain damage or stroke. Find out why Mayo Clinic is the best ...

  6. Brain and Nervous System

    Science.gov (United States)

    ... the left side; when you're listening to music, you're using the right side. It's believed that some people are more "right-brained" or "left-brained" while others are more "whole-brained," meaning they use both halves of their brain to the same degree. The outer layer of ...

  7. [Advanced MRI techniques of the fetal brain].

    Science.gov (United States)

    Schöpf, V; Dittrich, E; Berger-Kulemann, V; Kasprian, G; Kollndorfer, K; Prayer, D

    2013-02-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.

  8. The multisensory brain and its ability to learn music.

    Science.gov (United States)

    Zimmerman, Emily; Lahav, Amir

    2012-04-01

    Playing a musical instrument requires a complex skill set that depends on the brain's ability to quickly integrate information from multiple senses. It has been well documented that intensive musical training alters brain structure and function within and across multisensory brain regions, supporting the experience-dependent plasticity model. Here, we argue that this experience-dependent plasticity occurs because of the multisensory nature of the brain and may be an important contributing factor to musical learning. This review highlights key multisensory regions within the brain and discusses their role in the context of music learning and rehabilitation.

  9. Inhibition and Brain Work

    OpenAIRE

    Buzsáki, György; Kaila, Kai; Raichle, Marcus

    2007-01-01

    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  10. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  11. Comparative genomics of brain size evolution

    Directory of Open Access Journals (Sweden)

    Wolfgang eEnard

    2014-05-01

    Full Text Available Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution.

  12. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  13. Network Theory and Effects of Transcranial Brain Stimulation Methods on the Brain Networks

    Directory of Open Access Journals (Sweden)

    Sema Demirci

    2014-12-01

    Full Text Available In recent years, there has been a shift from classic localizational approaches to new approaches where the brain is considered as a complex system. Therefore, there has been an increase in the number of studies involving collaborations with other areas of neurology in order to develop methods to understand the complex systems. One of the new approaches is graphic theory that has principles based on mathematics and physics. According to this theory, the functional-anatomical connections of the brain are defined as a network. Moreover, transcranial brain stimulation techniques are amongst the recent research and treatment methods that have been commonly used in recent years. Changes that occur as a result of applying brain stimulation techniques on physiological and pathological networks help better understand the normal and abnormal functions of the brain, especially when combined with techniques such as neuroimaging and electroencephalography. This review aims to provide an overview of the applications of graphic theory and related parameters, studies conducted on brain functions in neurology and neuroscience, and applications of brain stimulation systems in the changing treatment of brain network models and treatment of pathological networks defined on the basis of this theory.

  14. Neuroscience, brains, and computers

    Directory of Open Access Journals (Sweden)

    Giorno Maria Innocenti

    2013-07-01

    Full Text Available This paper addresses the role of the neurosciences in establishing what the brain is and how states of the brain relate to states of the mind. The brain is viewed as a computational deviceperforming operations on symbols. However, the brain is a special purpose computational devicedesigned by evolution and development for survival and reproduction, in close interaction with theenvironment. The hardware of the brain (its structure is very different from that of man-made computers.The computational style of the brain is also very different from traditional computers: the computationalalgorithms, instead of being sets of external instructions, are embedded in brain structure. Concerningthe relationships between brain and mind a number of questions lie ahead. One of them is why andhow, only the human brain grasped the notion of God, probably only at the evolutionary stage attainedby Homo sapiens.

  15. Neural underpinnings of music: the polyrhythmic brain.

    Science.gov (United States)

    Vuust, Peter; Gebauer, Line K; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard ('rhythm') and the brain's anticipatory structuring of music ('the meter'). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain's general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

  16. Brain rhythms reveal a hierarchical network organization.

    Directory of Open Access Journals (Sweden)

    G Karl Steinke

    2011-10-01

    Full Text Available Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or "virtual brains", whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic, in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states

  17. Communication complexity and information complexity

    Science.gov (United States)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  18. Epidemiology of Brain Tumors.

    Science.gov (United States)

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  19. Waxholm Space atlas of the Sprague Dawley rat brain

    OpenAIRE

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  20. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro,; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume de...

  1. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    OpenAIRE

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. ...

  2. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  3. Epilepsy: Extreme Events in the Human Brain

    Science.gov (United States)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  4. Brain readiness and the nature of language

    Directory of Open Access Journals (Sweden)

    Denis eBouchard

    2015-09-01

    Full Text Available To identify the neural components that make a brain ready for language, it is important to have well defined linguistic phenotypes, to know precisely what language is. There are two central features to language: the capacity to form signs (words, and the capacity to combine them into complex structures. We must determine how the human brain enables these capacities.A sign is a link between a perceptual form and a conceptual meaning. Acoustic elements and content elements, are already brain-internal in non-human animals, but as categorical systems linked with brain-external elements. Being indexically tied to objects of the world, they cannot freely link to form signs. A crucial property of a language-ready brain is the capacity to process perceptual forms and contents offline, detached from any brain-external phenomena, so their representations may be linked into signs. These brain systems appear to have pleiotropic effects on a variety of phenotypic traits and not to be specifically designed for language.Syntax combines signs, so the combination of two signs operates simultaneously on their meaning and form. The operation combining the meanings long antedates its function in language: the primitive mode of predication operative in representing some information about an object. The combination of the forms is enabled by the capacity of the brain to segment vocal and visual information into discrete elements. Discrete temporal units have order and juxtaposition, and vocal units have intonation, length, and stress. These are primitive combinatorial processes. So the prior properties of the physical and conceptual elements of the sign introduce combinatoriality into the linguistic system, and from these primitive combinatorial systems derive concatenation in phonology and combination in morphosyntax.Given the nature of language, a key feature to our understanding of the language-ready brain is to be found in the mechanisms in human brains that

  5. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  6. Brain cancer spreads.

    Science.gov (United States)

    Perryman, Lara; Erler, Janine T

    2014-07-30

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).

  7. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  8. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  9. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  10. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  11. Aneurysm in the brain

    Science.gov (United States)

    ... aneurysms Medical problems such as polycystic kidney disease , coarctation of the aorta , and endocarditis High blood pressure, ... Read More Aneurysm Brain aneurysm repair Brain surgery Coarctation of the aorta Endovascular embolization Epilepsy - overview Incidence ...

  12. Neuronal avalanches in complex networks

    Directory of Open Access Journals (Sweden)

    Victor Hernandez-Urbina

    2016-12-01

    Full Text Available Brain networks are neither regular nor random. Their structure allows for optimal information processing and transmission across the entire neural substrate of an organism. However, for topological features to be appropriately harnessed, brain networks should implement a dynamical regime which prevents phase-locked and chaotic behaviour. Critical neural dynamics refer to a dynamical regime in which the system is poised at the boundary between regularity and randomness. It has been reported that neural systems poised at this boundary achieve maximum computational power. In this paper, we review recent results regarding critical neural dynamics that emerge from systems whose underlying structure exhibits complex network properties.

  13. Consciousness and the brain deciphering how the brain codes our thoughts

    CERN Document Server

    Dehaene, Stanislas

    2014-01-01

    How does our brain generate a conscious thought? And why does so much of our knowledge remain unconscious? Thanks to clever psychological and brain-imaging experiments, scientists are closer to cracking this mystery than ever before. In this lively book, Stanislas Dehaene describes the pioneering work his lab and the labs of other cognitive neuroscientists worldwide have accomplished in defining, testing, and explaining the brain events behind a conscious state. We can now pin down the neurons that fire when a person reports becoming aware of a piece of information and understand the crucial role unconscious computations play in how we make decisions. The emerging theory enables a test of consciousness in animals, babies, and those with severe brain injuries. A joyous exploration of the mind and its thrilling complexities, Consciousness and the Brain will excite anyone interested in cutting-edge science and technology and the vast philosophical, personal, and ethical implications of finally quantifying cons...

  14. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  15. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  16. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias Vasquez, A.; Desrivieres, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Boks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.; Cuellar-Partida, G.; Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santianez, R.; Rose, E.J.; Salami, A.; Samann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J. van; Eijk, K.R. van; Walters, R.K.; Westlye, L.T.; Whelan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.; McKay, D.R.; Needham, M.; Nugent, A.C.; Putz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; Marel, S.S. van der; Hulzen, K.J.E. van; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; Fisher, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  17. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  18. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic; M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn; S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole A.); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cock); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate h

  19. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  20. Brain-Actuated Interaction

    OpenAIRE

    Millán, José del R.; Renkens, F.; Mouriño, J.; Gerstner, W.

    2004-01-01

    Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results have been obtained with either invasive approaches (requiring surgical implantation of electrodes) or synchronous protocols (where brain signals are time-locked to external cues). In this paper we describe a portable noninvasive brain-computer...