WorldWideScience

Sample records for complex hydrogen tunneling

  1. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    Science.gov (United States)

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  2. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  3. Matrix effect on hydrogen-atom tunneling of organic molecules in cryogenic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2000-01-01

    Although the tunneling of atoms through potential energy barriers separating the reactant and reaction systems is not paid much attention in organic reactions, this plays an important role in reactions including the transfer of light atoms. Atomic tunneling is especially important for chemical reactions at low temperatures, since the thermal activation of reactant systems is very slow process in comparison with the tunneling. One of the typical reactions of atomic tunneling is hydrogen-atom abstraction from alkanes in cryogenic solids exposed to high-energy radiation. Irradiation of alkane molecules causes the homolytic cleavage of C-H bonds, which results in the pairwise formation of free hydrogen atoms and organic free radicals. Since the activation energies for the abstraction of hydrogen atoms from alkane molecules by free hydrogen atoms are higher than 5 kcal/mol, the lifetime of free hydrogen atoms at 77 K is estimated from the Arrhenius equation of k=vexp(-E a /RT) to be longer than 10 hrs. However, except for solid methane, free hydrogen atoms immediately convert to alkyl radicals even at 4.2 K by hydrogen-atom tunneling from alkane molecules to the free hydrogen atoms. The rate of hydrogen atom tunneling does not necessary increase with decreasing activation energy or the peak height of the potential energy barrier preventing the tunneling. Although the activation energy is the lowest at the tertiary carbon of alkanes, hydrogen atom tunneling from branched alkanes with tertiary carbon at the antepenultimate position of the carbon skeleton is the fastest at the secondary penultimate carbon. Based on our experimental results, we have proposed that the peculiarity of the hydrogen-atom abstraction in cryogenic solids comes from the steric hindrance by matrix molecules to the deformation of alkane molecules from the initial sp 3 to the final sp 2 configurations. The steric hindrance causes the increase of the height of the potential energy barrier for the

  4. Simulation of hydrogen releases from fuel-cell vehicles in tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Houf, William G.; Evans, Greg H.; James, Scott C. [Sandia National Labs., Livermore, CA (United States); Merilo, Erik; Groethe, Mark [SRI International, Menlo Park, CA (United States)

    2010-07-01

    Simulation results for a hydrogen fuel-cell vehicle in a full-scale tunnel have been performed for the case where hydrogen gas is vented from the vehicle as a result of thermal activation of the pressure relief device (PRD). The same modeling approach used in the full-scale tunnel modeling was validated in a scaled model by comparing simulated results with measured results from a series of scaled-tunnel test experiments performed at the SRI Corral Hollow test facility. Results of the simulations were found to be in good agreement with the experimental data. Finally, a rudimentary risk analysis indicated that the level of potential risk from hydrogen vehicles accidents involving thermally activated PRDs in tunnels does not appear to significantly increase the current level of individual risk to the public from everyday life. (orig.)

  5. Proton tunnelling in intermolecular hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Horsewill, A J [Nottingham Univ. (United Kingdom); Johnson, M R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Trommsdorff, H P [Grenoble-1 Univ., 38 (France)

    1997-04-01

    The wavefunctions of particles extend beyond the classically accessible regions of potential energy-surfaces (PES). A manifestation of this partial delocalization is the quantum-mechanical tunneling effect which enables a particle to escape from a metastable potential-well. Tunnelling is most important for the lightest atoms, so that the determination of its contribution to proton transfer, one of the most fundamental chemical reactions, is an important issue. QENS and NMR techniques have been employed to study the motion of protons in the hydrogen bond of benzoic-acid crystals, a system which has emerged as a particularly suitable model since proton transfer occurs in a near symmetric double-well potential. The influence of quantum tunnelling was revealed and investigated in these experiments. This work provides an experimental benchmark for theoretical descriptions of translational proton-tunnelling. (author). 7 refs.

  6. Suppression of tunnel modes of hydrogen in α-Mn by elastic stresses

    International Nuclear Information System (INIS)

    Antonov, V.E.; Fedotov, V.K.; Glazkov, V.P.; Somenkov, V.A.; Kozlenko, D.P.; Savenko, B.N.

    2002-01-01

    By means of inelastic incoherent scattering of neutrons one investigated into behavior of hydrogen tunnel mode in MnH 0.04 and MnH 0.07 under high pressure values in sapphire anvils. Peak of inelastic scattering relevant to hydrogen tunnelling in a two-hole potential was determined to vanish at 0.8 GPa pressure under quasi-hydrostatic mode and to survive with no visible changes under standard hydrostatics. The detected effect of suppression of tunnel modes by inhomogeneous elastic stresses is explained by interruption of levels in neighboring holes by static shifts [ru

  7. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  8. Structure and tunneling dynamics in a model system of peptide co-solvents: Rotational spectroscopy of the 2,2,2-trifluoroethanol⋯water complex

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Javix; Xu, Yunjie, E-mail: yunjie.xu@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-06-21

    The hydrogen-bonding topology and tunneling dynamics of the binary adduct, 2,2,2-trifluoroethanol (TFE)⋯water, were investigated using chirped pulse and cavity based Fourier transform microwave spectroscopy with the aid of high level ab initio calculations. Rotational spectra of the most stable binary TFE⋯water conformer and five of its deuterium isotopologues were assigned. A strong preference for the insertion binding topology where water is inserted into the existing intramolecular hydrogen-bonded ring of TFE was observed. Tunneling splittings were detected in all of the measured rotational transitions of TFE⋯water. Based on the relative intensity of the two tunneling components and additional isotopic data, the splitting can be unambiguously attributed to the tunneling motion of the water subunit, i.e., the interchange of the bonded and nonbonded hydrogen atoms of water. The absence of any other splitting in the rotational transitions of all isotopologues observed indicates that the tunneling between g+ and g− TFE is quenched in the TFE⋯H{sub 2}O complex.

  9. Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography

    Science.gov (United States)

    Pascher, Nikola; Hennel, Szymon; Mueller, Susanne; Fuhrer, Andreas

    2016-08-01

    A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source-drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.

  10. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  11. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  12. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    Science.gov (United States)

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  13. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  14. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  15. Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis

    Science.gov (United States)

    Klinman, Judith P.; Kohen, Amnon

    2014-01-01

    The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C–H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial. PMID:23746260

  16. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  17. Electronic dipole moment and tunneling state of hydrogen atom in hydrogen-bond materials revealed by neutron and X-ray structure analyses

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi

    2007-01-01

    The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)

  18. Quantum Electron Tunneling in Respiratory Complex I1

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  19. Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    International Nuclear Information System (INIS)

    Delande, Dominique; Zakrzewski, Jakub

    2003-01-01

    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution

  20. Hydrogen bond nature of ferroelectric material studied by X-ray and neutron diffraction. Electric dipole moment and proton tunneling

    International Nuclear Information System (INIS)

    Noda, Yukio; Kiyanagi, Ryoji; Mochida, Tomoyuki; Sugawara, Tadashi

    2006-01-01

    Hydrogen bond nature of MeHPLN and BrHPLN is studied using x-ray and neutron diffraction technique. We found that electric dipole moment of hydrogen atom plays an important role for the phase transition, and proton tunneling model is confirmed on this isolated hydrogen bond system. (author)

  1. Multi-functionalized naphthalene complexes for hydrogen storage

    International Nuclear Information System (INIS)

    Kalamse, Vijayanand; Wadnerkar, Nitin; Chaudhari, Ajay

    2013-01-01

    A density functional study of hydrogen uptake capacity of multi-functionalized naphthalene with Ti and Li metal atom has been carried out. It is observed that, the naphthalene functionalized with two Ti atoms can interact with total eight hydrogen molecules in which each Ti metal atom interacts with four hydrogen molecules. Naphthalene decorated with two Li atoms can interact with total three H 2 molecules only. First ( 19 Li) and second ( 20 Li) Li atom can interact with only one and two hydrogen molecule respectively. It is observed that, hydrogen molecules bind strongly to the C 10 H 8 Ti 2 complex than C 10 H 8 Li 2 complex. The gravimetric hydrogen uptake capacity of C 10 H 8 Ti 2 and C 10 H 8 Li 2 complex is found to be 6.72 and 3.73 wt% respectively. Moreover, after functionalizing naphthalene with four Li atoms, the uptake capacity is increased to 7.20 wt %. However, the thermochemistry result favors to Ti functionalized naphthalene complex (C 10 H 8 Ti 2 ) for hydrogen storage over Li functionalized naphthalene (both C 10 H 8 Li 2 and C 10 H 8 Li 4 ) complexes. Atom-centered density matrix propagation (ADMP) molecular dynamics simulations have been performed which showed that C 10 H 8 Li 2 and C 10 H 8 Li 4 complex cannot bind single hydrogen molecule at room temperature whereas C 10 H 8 Ti 2 can bind five hydrogen molecules. -- Highlights: ► The gravimetric H 2 uptake capacity of C 10 H 8 Ti 2 complex is 6.72 wt%. ► Uptake capacity of C 10 H 8 Li 2 and C 10 H 8 Li 4 complex is 3.73 and 7.20 wt% respectively. ► C 10 H 8 Ti is more promising material for hydrogen adsorption. ► C 10 H 8 Ti 2 can bind five hydrogen molecules as shown by ADMP-MD results.

  2. The hydrogen tunneling splitting in malonaldehyde: A full-dimensional time-independent quantum mechanical method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Ren, Yinghui; Bian, Wensheng, E-mail: bian@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-08-21

    The accurate time-independent quantum dynamics calculations on the ground-state tunneling splitting of malonaldehyde in full dimensionality are reported for the first time. This is achieved with an efficient method developed by us. In our method, the basis functions are customized for the hydrogen transfer process which has the effect of greatly reducing the size of the final Hamiltonian matrix, and the Lanczos method and parallel strategy are used to further overcome the memory and central processing unit time bottlenecks. The obtained ground-state tunneling splitting of 24.5 cm{sup −1} is in excellent agreement with the benchmark value of 23.8 cm{sup −1} computed with the full-dimensional, multi-configurational time-dependent Hartree approach on the same potential energy surface, and we estimate that our reported value has an uncertainty of less than 0.5 cm{sup −1}. Moreover, the role of various vibrational modes strongly coupled to the hydrogen transfer process is revealed.

  3. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  4. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    Science.gov (United States)

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  5. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  6. Complex Regional Pain Syndrome (CRPS Type II After Carpal Tunnel Release Surgery: Case Report

    Directory of Open Access Journals (Sweden)

    Hakan Tunç

    2010-08-01

    Full Text Available Summary Complex regional pain syndrome is a chronic syndrome characterised with dystrophic changes and neurovascular disordes of bone and skin of extremities. The most common etiological factors are trauma, ischemic heart disease, cerebral lesions, servical region disorders, infections, and surgical treatments. Carpal tunnel syndrome is the most common compressive neuropaty of the upper extremity. There are various surgical and conservative alternatives in the treatment of carpal tunnel syndrome. Complex regional pain syndrome has been reported as a complication of surgical carpal tunnel release in 2-5% of patients. In this case report clinical characteristics and rehabilitation outcomes of a patient with complex regional pain syndrome after carpal tunnel release surgery is presented. (Osteoporoz Dünyasından 2010;16:41-3

  7. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    Science.gov (United States)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  8. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  9. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  10. Analysis of oxygen and hydrogen adsorption on Nb(100) surface by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    An, Bai; Wen, Mao; Fukuyama, Seiji; Yokogawa, Kiyoshi; Ichimura, Shingo; Yoshimura, Masamichi

    2006-01-01

    The surface structure of Nb(100) under the condition of cleaning, oxidation and hydrogen adsorption is observed by STM (scanning tunneling microscopy). The results obtained are followings; (1) (3 x 1)-O→(4 x 1)-O→c(2 x 2)-O→clean(1 x 1)structure was observed by atom level, and these atomic models of structures and STM images were verified by the first-principles calculations, (2) when the clean(1 x 1) structure exposed to hydrogen, dissociative adsorption of hydrogen was observed and Nb hydride cluster formed on the surface at room temperature. It was heated at about 450 - 670 K in UHV, the cluster decomposed into hydrogen and (1 x 1) structure with linear defect was formed. The c(2 x 2)-O structure by oxygen adsorption transformed into (1 x 1)-H structure with OH and Nb hydride cluster under hydrogen gas at room temperature. When it was heated in UHV at 640 K, OH desorbed from the surface and (1 x 1) structure with linear defect was generated. The surface of (3 x 1)-O structure was not changed by hydrogen. (S.Y.)

  11. New Transition metal assisted complex borohydrides for hydrogen storage

    International Nuclear Information System (INIS)

    Sesha Srinivasan; Elias Lee Stefanakos; Yogi Goswami

    2006-01-01

    High capacity hydrogen storage systems are indeed essential for the on-board vehicular application that leads to the pollution free environment. Apart from the various hydrogen storage systems explored in the past, complex hydrides involving light weight alkali/alkaline metals exhibits promising hydrogenation/ dehydrogenation characteristics. New transition metal assisted complex borohydrides [Zn(BH 4 ) 2 ] have been successfully synthesized by an inexpensive mechano-chemical process. These complex hydrides possesses gravimetric hydrogen storage capacity of ∼8.4 wt.% at around 120 C. We have determined the volumetric hydrogen absorption and desorption of these materials for a number of cycles. Another complex borohydride mixture LiBH 4 /MgH 2 catalyzed with ZnCl 2 has been synthesized and characterized using various analytical techniques. (authors)

  12. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  13. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  14. H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2016-02-01

    Full Text Available A search of the Cambridge Structural Database (CSD was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NCP:OH2, H2FP:OH2, H2(CNP:OH2, and H2(OHP:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCHP:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P, 1hJ(H-P, and 1J(O-H across hydrogen bonds, and 1pJ(P-O across pnicogen bonds.

  15. Infinite dwell time and group delay in resonant electron tunneling through double complex potential barrier

    Science.gov (United States)

    Opacak, Nikola; Milanović, Vitomir; Radovanović, Jelena

    2017-12-01

    Tunneling times in complex potentials are investigated. Analytical expressions for dwell time, self-interference time and group delay are obtained for the case of complex double delta potentials. It is shown that we can always find a set of parameters of the potential so that the tunneling times achieve very large values and even approach infinity for the case of resonance. The phenomenon of infinite tunneling times occurs for only one particular positive value of the imaginary part of the potential, if all other parameters are given.

  16. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  17. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  18. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  19. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    Science.gov (United States)

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  20. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  1. Entanglement and co-tunneling of two equivalent protons in hydrogen bond pairs

    Science.gov (United States)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2018-03-01

    A theoretical study is reported of a system of two identical symmetric hydrogen bonds, weakly coupled such that the two mobile protons can move either separately (stepwise) or together (concerted). It is modeled by two equivalent quartic potentials interacting through dipolar and quadrupolar coupling terms. The tunneling Hamiltonian has two imaginary modes (reaction coordinates) and a potential with a single maximum that may turn into a saddle-point of second order and two sets of (inequivalent) minima. Diagonalization is achieved via a modified Jacobi-Davidson algorithm. From this Hamiltonian the mechanism of proton transfer is derived. To find out whether the two protons move stepwise or concerted, a new tool is introduced, based on the distribution of the probability flux in the dividing plane of the transfer mode. While stepwise transfer dominates for very weak coupling, it is found that concerted transfer (co-tunneling) always occurs, even when the coupling vanishes since the symmetry of the Hamiltonian imposes permanent entanglement on the motions of the two protons. We quantify this entanglement and show that, for a wide range of parameters of interest, the lowest pair of states of the Hamiltonian represents a perfect example of highly entangled quantum states in continuous variables. The method is applied to the molecule porphycene for which the observed tunneling splitting is calculated in satisfactory agreement with experiment, and the mechanism of double-proton tunneling is found to be predominantly concerted. We show that, under normal conditions, when they are in the ground state, the two porphycene protons are highly entangled, which may have interesting applications. The treatment also identifies the conditions under which such a system can be handled by conventional one-instanton techniques.

  2. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K.; Zhang, Guoqi; Vasudevan, Kalyan V.

    2017-02-14

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  3. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  4. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  5. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    Science.gov (United States)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  6. Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems

    Science.gov (United States)

    Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira

    2017-10-01

    The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.

  7. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  8. Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios

    DEFF Research Database (Denmark)

    Berchtold, Florian; Knaust, Christian; Arnold, Lukas

    2018-01-01

    Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics...... complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios...... used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement...

  9. Hydrogen trapping ability of the pyridine-lithium⁺ (1:1) complex.

    Science.gov (United States)

    Chattaraj, Saparya; Srinivasu, K; Mondal, Sukanta; Ghosh, Swapan K

    2015-03-26

    Theoretical studies have been carried out at different levels of theory to verify the hydrogen adsorption characteristics of pyridine-lithium ion (1:1) complexes. The nature of interactions associated with the bonding between pyridine and lithium as well as that between lithium and adsorbed molecular hydrogen is studied through the calculation of electron density and electron-density-based reactivity descriptors. The pyridine-lithium ion complex has been hydrogenated systematically around the lithium site, and each lithium site is found to adsorb a maximum of four hydrogen molecules with an interaction energy of ∼-4.0 kcal/mol per molecule of H2. The fate of the hydrogen adsorbed in a pyridine-lithium ion complex (corresponding to the maximum adsorption) is studied in the course of a 2 ps time evolution through ab initio molecular dynamics simulation at different temperatures. The results reveal that the complex can hold a maximum of four hydrogen molecules at a temperature of 77 K, whereas it can hold only two molecules of hydrogen at 298 K.

  10. Phosphorus-hydrogen complexes in LEC-grown InP

    International Nuclear Information System (INIS)

    Ulrici, W.; Kwasniewski, A.; Czupalla, M.; Neubert, M.

    2005-01-01

    In LEC-grown InP, about 30 sharp vibrational absorption lines are measured in the frequency region 2200 to 2350 cm -1 . All these lines are due to phosphorus-hydrogen stretching modes. Experiments on InP containing both hydrogen and deuterium finally proved that the line at 2202.4 cm -1 is due to a single hydrogen atom bonded to P in an indium vacancy (V In ) and that the line at 2315.6 cm -1 is due to the complex of four P-H bonds in an V In . In InP:H:D, this V In H 4 complex gives rise to six vibrational lines in the region of P-H modes and six lines in the region of P-D modes because of the five different types of V In H n D m complexes. The measured frequencies of these 12 lines are in excellent agreement with those obtained from ab initio calculations reported in the literature. Additional P-H complexes are discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  12. Complex operator method of the hydrogen atom

    International Nuclear Information System (INIS)

    Jiang, X.

    1989-01-01

    Frequently the hydrogen atom eigenvalue problem is analytically solved by solving a radial wave equation for a particle in a Coulomb field. In this article, complex coordinates are introduced, and an expression for the energy levels of the hydrogen atom is obtained by means of the algebraic solution of operators. The form of this solution is in accord with that of the analytical solution

  13. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  14. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  15. Phosphorus-hydrogen complexes in LEC-grown InP

    Energy Technology Data Exchange (ETDEWEB)

    Ulrici, W. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Kwasniewski, A.; Czupalla, M.; Neubert, M. [Institut fuer Kristallzuechtung, Max-Born-Str. 2, 12489 Berlin (Germany)

    2005-03-01

    In LEC-grown InP, about 30 sharp vibrational absorption lines are measured in the frequency region 2200 to 2350 cm{sup -1}. All these lines are due to phosphorus-hydrogen stretching modes. Experiments on InP containing both hydrogen and deuterium finally proved that the line at 2202.4 cm{sup -1} is due to a single hydrogen atom bonded to P in an indium vacancy (V{sub In}) and that the line at 2315.6 cm{sup -1} is due to the complex of four P-H bonds in an V{sub In}. In InP:H:D, this V{sub In}H{sub 4} complex gives rise to six vibrational lines in the region of P-H modes and six lines in the region of P-D modes because of the five different types of V{sub In}H{sub n}D{sub m} complexes. The measured frequencies of these 12 lines are in excellent agreement with those obtained from ab initio calculations reported in the literature. Additional P-H complexes are discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    International Nuclear Information System (INIS)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p z atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  17. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Science.gov (United States)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  18. Hydrogen-related complexes in Li-diffused ZnO single crystals

    International Nuclear Information System (INIS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-01-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li_2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10"1"9" cm"−"3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm"−"1, attributed to surface O-H species. When Li_2CO_3 is used, a structured blue luminescence band and O-H mode at 3327 cm"−"1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  19. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    Science.gov (United States)

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  20. Hydrogen-related complexes in Li-diffused ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Corolewski, Caleb D. [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Parmar, Narendra S.; Lynn, Kelvin G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2814 (United States); McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2016-07-21

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li{sub 2}O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10{sup 19 }cm{sup −3}). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm{sup −1}, attributed to surface O-H species. When Li{sub 2}CO{sub 3} is used, a structured blue luminescence band and O-H mode at 3327 cm{sup −1} are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level ∼0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  1. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  2. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Risk and sustainability analysis of complex hydrogen infrastructures

    DEFF Research Database (Denmark)

    Markert, Frank; Marangon, A.; Carcassi, M.

    2017-01-01

    -based fuels. Therefore, future hydrogen supply and distribution chains will have to address several objectives. Such a complexity is a challenge for risk assessment and risk management of these chains because of the increasing interactions. Improved methods are needed to assess the supply chain as a whole......Building a network of hydrogen refuelling stations is essential to develop the hydrogen economy within transport. Additional, hydrogen is regarded a likely key component to store and convert back excess electrical power to secure future energy supply and to improve the quality of biomass....... The method of “Functional modelling” is discussed in this paper. It will be shown how it could be a basis for other decision support methods for comprehensive risk and sustainability assessments....

  4. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  5. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  6. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    Science.gov (United States)

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  8. Mechanisms of charge-state determination in hydrogen-based impurity complexes in crystalline germanium

    International Nuclear Information System (INIS)

    Oliva, J.

    1984-01-01

    Recent experiments suggest that hydrogen may become bound to, and then tunnel around, substitutional carbon, silicon, or oxygen impurities in crystalline germanium. All these complexes are electrically active; [H,C] and [H,Si] are shallow acceptors, while [H,O] is a shallow donor. This paper attempts to elucidate the basic physical mechanisms controlling the charge state of such complexes as a function of the choice of the substitutional atom. A minimal-basis Bethe-cluster approach is used with the cluster comprising the ten-atom tetrahedral cage (including the substitutional atom) and enclosed H site, the latter coupled to all ten atoms of the cage. The important local correlation effect which tends to favor single occupation of the H site is modeled with a Hubbard-type term at that site. The charge state of the [H,C], [H,Si], and [H,O] complexes is associated with double occupation of the H site. Four aspects of the model are involved in favoring double occupation: (1) a low value of the H-site energy, (2) a reduced local correlation effect at the H site, (3) small hybridization between the H site and cage, and (4) a low value of the substitutional-site energy relative to that of the host. Results for the charge state for H at the cage center and for H near the substitutional atom are discussed in detail. Several useful formal results for local self-energies and local Green's functions are presented

  9. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 98 August. Tunneling reaction and its theory

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-10-01

    Present report is the proceedings of the 4th Meeting on Tunneling Reaction and Low Temperature Chemistry held in August 3 and 4, 1998. The main subject of the meeting is `Tunneling Reaction and Its Theory`. In the present meeting the theoretical aspects of tunneling phenomena in the chemical reaction were discussed intensively as the main topics. Ten reports were presented on the quantum diffusion of muon and proton in the metal and H{sub 2}{sup -} anion in the solid para-hydrogen, the theory of tunnel effect in the nuclear reaction and the tunneling reaction in the organic compounds. One special lecture was presented by Prof. J. Kondo on `Proton Tunneling in Solids`. The 11 of the presented papers are indexed individually. (J.P.N.)

  10. Road vehicle emissions of molecular hydrogen (H 2) from a tunnel study

    Science.gov (United States)

    Vollmer, Martin K.; Juergens, Niklas; Steinbacher, Martin; Reimann, Stefan; Weilenmann, Martin; Buchmann, Brigitte

    Motor vehicle combustion emissions of molecular hydrogen (H 2), carbon monoxide (CO), and carbon dioxide (CO 2) were measured during a 6-week period from November 2004 to January 2005 in Gubrist Tunnel, Switzerland, to determine vehicle emission factors for these trace gases and the ratios of the concentration growths ΔH2/ΔCO and ΔH2/ΔCO2 in the tunnel under real-world highway driving conditions. For H 2, molar mixing ratios at the tunnel exit were found to be 7-10 ppm (parts-per-million, 10-6) during rush hours. Mean emission factors of E=49.7(±16.5)mgkm-1, ECO=1.46(±0.54)gkm-1, and E=266(±69)gkm-1 were calculated. E was largest during weekday rush-hour traffic, a consequence of the more frequent accelerations in congested traffic when fuel combustion is not optimal. E was smaller for heavy-duty vehicles (HDV) compared to light-duty vehicles (LDV), a finding which was attributed to the diesel vs. gasoline engine technology. The mean ΔH2/ΔCO molecular ratio was 0.48±0.12. This ratio increased to ˜0.6 during rush hours, suggesting that H 2 yield is favored relative to CO under fuel-rich conditions, presumably a consequence of an increasing contribution of the water-gas-shift reaction. The mean ΔH2/ΔCO2 molecular ratio was 4.4×10-3 but reduced to 2.5×10-3 when the relative HDV abundance was at maximum. Using three different approaches, road traffic H 2 emissions were estimated for 2004 for Switzerland at 5.0-6.6 Gg and globally at 4.2-8.1 Tg. Despite projections of increasing traffic, Swiss H 2 emissions are not expected to change significantly in the near future, and global emissions are likely to decrease due to improved exhaust gas clean-up technologies.

  11. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage

    Science.gov (United States)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay

    2018-04-01

    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  12. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    Science.gov (United States)

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  14. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is 'Tunneling Reaction and Quantum Medium'. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  15. Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Lippert Tobias

    2009-08-01

    Full Text Available Abstract Background Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted. Results We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach. Conclusion Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.

  16. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    Science.gov (United States)

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  17. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    OpenAIRE

    Jović, Branislav; Nikolić, Aleksandar; Petrović, Slobodan

    2012-01-01

    The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA) have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are...

  18. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  19. Quantum mechanical calculation of diffusion of hydrogen isotopes in vanadium

    International Nuclear Information System (INIS)

    Yoshinari, Osamu

    2013-01-01

    Highlights: • Diffusion of H isotopes in V was investigated with a quantum mechanical calculation. • Calculated diffusion coefficients quantitatively agreed with the experimental data. • H in V jumps via quantum mechanical tunneling between the two tetrahedral sites. • H tunneling between ground states is dominant at low temperatures. • H tunneling between exited states becomes important at higher temperatures. -- Abstract: Diffusion of hydrogen isotopes in vanadium was investigated by a quantum mechanical calculation. Wave functions and the corresponding eigen energies (E) for hydrogen isotopes were obtained as a function of hydrogen position along the diffusion path (ξ) by solving the three dimensional Schrödinger equation. Hydrogen potential was calculated by using a first principles method with a nudged elastic band technique. By analyzing the E–ξ curves, the tunneling matrix elements were obtained for the coincidence states between two neighboring tetrahedral sites. It was clarified that the tunneling between ground states was dominant at low temperatures, whereas the contribution of that between the first exited states becomes larger at higher temperatures. The transition temperature of the dominant tunneling decreases with the isotope mass. The calculated temperature dependence of the diffusion for the V–H system quantitatively agreed with the experimental data in the literature, although those for the V–D and –T systems were somewhat underestimated

  20. Ammonia-hydrogen bromide and ammonia-hydrogen iodide complexes: anion photoelectron and ab initio studies.

    Science.gov (United States)

    Eustis, S N; Whiteside, A; Wang, D; Gutowski, M; Bowen, K H

    2010-01-28

    The ammonia-hydrogen bromide and ammonia-hydrogen iodide, anionic heterodimers were studied by anion photoelectron spectroscopy. In complementary studies, these anions and their neutral counterparts were also investigated via ab initio theory at the coupled cluster level. In both systems, neutral NH(3)...HX dimers were predicted to be linear, hydrogen-bonded complexes, whereas their anionic dimers were found to be proton-transferred species of the form, (NH(4)(+)X(-))(-). Both experimentally measured and theoretically predicted vertical detachment energies (VDE) are in excellent agreement for both systems, with values for (NH(4)(+)Br(-))(-) being 0.65 and 0.67 eV, respectively, and values for (NH(4)(+)I(-))(-) being 0.77 and 0.81 eV, respectively. These systems are discussed in terms of our previous study of (NH(4)(+)Cl(-))(-).

  1. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  2. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  3. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    Science.gov (United States)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  4. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  5. How does tunneling contribute to counterintuitive H-abstraction reactivity of nonheme Fe(IV)O oxidants with alkanes?

    Science.gov (United States)

    Mandal, Debasish; Ramanan, Rajeev; Usharani, Dandamudi; Janardanan, Deepa; Wang, Binju; Shaik, Sason

    2015-01-21

    This article addresses the intriguing hydrogen-abstraction (H-abstraction) and oxygen-transfer (O-transfer) reactivity of a series of nonheme [Fe(IV)(O)(TMC)(Lax)](z+) complexes, with a tetramethyl cyclam ligand and a variable axial ligand (Lax), toward three substrates: 1,4-cyclohexadiene, 9,10-dihydroanthracene, and triphenyl phosphine. Experimentally, O-transfer-reactivity follows the relative electrophilicity of the complexes, whereas the corresponding H-abstraction-reactivity generally increases as the axial ligand becomes a better electron donor, hence exhibiting an antielectrophilic trend. Our theoretical results show that the antielectrophilic trend in H-abstraction is affected by tunneling contributions. Room-temperature tunneling increases with increase of the electron donation power of the axial-ligand, and this reverses the natural electrophilic trend, as revealed through calculations without tunneling, and leads to the observed antielectrophilic trend. By contrast, O-transfer-reactivity, not being subject to tunneling, retains an electrophilic-dependent reactivity trend, as revealed experimentally and computationally. Tunneling-corrected kinetic-isotope effect (KIE) calculations matched the experimental KIE values only if all of the H-abstraction reactions proceeded on the quintet state (S = 2) surface. As such, the present results corroborate the initially predicted two-state reactivity (TSR) scenario for these reactions. The increase of tunneling with the electron-releasing power of the axial ligand, and the reversal of the "natural" reactivity pattern, support the "tunneling control" hypothesis (Schreiner et al., ref 19). Should these predictions be corroborated, the entire field of C-H bond activation in bioinorganic chemistry would lay open to reinvestigation.

  6. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  7. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.

    Science.gov (United States)

    Pool, Jaime A; Lobkovsky, Emil; Chirik, Paul J

    2004-02-05

    Molecular nitrogen is relatively inert owing to the strength of its triple bond, nonpolarity and high ionization potential. As a result, the fixation of atmospheric nitrogen to ammonia under mild conditions has remained a challenge to chemists for more than a century. Although the Haber-Bosch process produces over 100 million tons of ammonia annually for the chemical industry and agriculture, it requires high temperature and pressure, in addition to a catalyst, to induce the combination of hydrogen (H2) and nitrogen (N2). Coordination of molecular nitrogen to transition metal complexes can activate and even rupture the strong N-N bond under mild conditions, with protonation yielding ammonia in stoichiometric and even catalytic yields. But the assembly of N-H bonds directly from H2 and N2 remains challenging: adding H2 to a metal-N2 complex results in the formation of N2 and metal-hydrogen bonds or, in the case of one zirconium complex, in formation of one N-H bond and a bridging hydride. Here we extend our work on zirconium complexes containing cyclopentadienyl ligands and show that adjustment of the ligands allows direct observation of N-H bond formation from N2 and H2. Subsequent warming of the complex cleaves the N-N bond at 45 degrees C, and continued hydrogenation at 85 degrees C results in complete fixation to ammonia.

  8. Theoretical research on effects of substituents and the solvent on quadruple hydrogen bonded complexes

    Directory of Open Access Journals (Sweden)

    Lingjia Xu

    2007-04-01

    Full Text Available Semiempirical AM1 and INDO/CIS methods were used to study the structures and spectroscopy of hydrogen bonded complexes formed by the oligophenyleneethynylene (monomer A with isophthalic acid (monomer B. The binding energies of the complexes are lowered by increasing electron-donating abilities of the substituents near the hydrogen bonds on monomer A. The first absorptions in the electronic spectra and the vibration frequencies of the N-H bonds in the IR spectra for the complexes are both red-shifted compared with those of the monomers. The presence of dimethylsulfoxide (DMSO can reduce the binding energy of the complex through hydrogen bonding. This results in a blue-shift for the first absorption in the electronic spectrum and red-shift for the vibration frequencies of the N-H bonds in the IR spectrum of the complex.

  9. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  10. Chemometric characterization of the hydrogen bonding complexes of secondary amides and aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jović Branislav

    2012-01-01

    Full Text Available The paper reports the results of the study of hydrogen bonding complexes between secondary amides and various aromatic hydrocarbons. The possibility of using chemometric methods was investigated in order to characterize N-H•••π hydrogen bonded complexes. Hierarchical clustering and Principal Component Analysis (PCA have been applied on infrared spectroscopic and Taft parameters of 43 N-substituted amide complexes with different aromatic hydrocarbons. Results obtained in this report are in good agreement with conclusions of other spectroscopic and thermodynamic analysis.

  11. Sulphate reduction in the Aespoe HRL tunnel

    International Nuclear Information System (INIS)

    Gustafson, G.; Pedersen, K.; Tullborg, E.L.; Wallin, B.; Wikberg, P.

    1995-12-01

    Evidence and indications of sulphate reduction based on geological, hydrogeological, groundwater, isotope and microbial data gathered in and around the Aespoe Hard Rock Laboratory tunnel have been evaluated. This integrated investigation showed that sulphate reduction had taken place in the past but is most likely also an ongoing process. Anaerobic sulphate-reducing bacteria can live in marine sediments, in the tunnel sections under the sea and in deep groundwaters, since there is no access to oxygen. The sulphate-reducing bacteria seem to thrive when the Cl - concentration of the groundwater is 4000-6000 mg/l. Sulphate reduction is an in situ process but the resulting hydrogen-sulphide rich water can be transported to other locations. A more vigorous sulphate reduction takes place when the organic content in the groundwater is high (>10 mg/l DOC) which is the case in the sediments and in the groundwaters under the sea. Some bacteria use hydrogen as an electron donor instead of organic carbon and can therefore live in deep environments where access to organic material is limited. The sulphate-reducing bacteria seem to adapt to changing flow situations caused by the tunnel construction relatively fast. Sulphate reduction seems to have occurred and will probably occur where conditions are favourable for the sulphate-reducing bacteria such as anaerobic brackish groundwater with dissolved sulphate and organic carbon or hydrogen. 59 refs, 37 figs, 6 tabs

  12. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  13. Hydrogen exchange kinetics changes upon formation of the soybean trypsin inhibitor: trypsin complex

    International Nuclear Information System (INIS)

    Woodward, C.K.; Ellis, L.M.

    1975-01-01

    The hydrogen exchange kinetics of the complex of trypsin--soybean trypsin inhibitor (Kunitz) have been compared to the calculated sum of the exchange kinetics for the inhibitor and trypsin measured separately. The exchange rates observed for the complex are substantially less than the sum of the exchange rates in the two individual proteins. These results cannot be accounted for by changes in intermolecular or intramolecular hydrogen bonding. The decrease in exchange rates in the complex are ascribed to changes in solvent accessibility in the component proteins. (U.S.)

  14. Magnetic Resonance Imaging Currently Fails to Fully Evaluate the Biceps-Labrum Complex and Bicipital Tunnel.

    Science.gov (United States)

    Taylor, Samuel A; Newman, Ashley M; Nguyen, Joseph; Fabricant, Peter D; Baret, Nikolas J; Shorey, Mary; Ramkumar, Prem; O'Brien, Stephen J

    2016-02-01

    To determine the diagnostic accuracy of magnetic resonance imaging (MRI) for biceps-labrum complex (BLC) lesions, including the extra-articular bicipital tunnel. A retrospective review of 277 shoulders with chronic refractory BLC symptoms that underwent arthroscopic subdeltoid transfer of the long head of the biceps tendon (LHBT) to the conjoint tendon was conducted. Intraoperative lesions were categorized as "inside" (labral tears and dynamic LHBT incarceration), "junctional" (LHBT partial tears, LHBT subluxation, and biceps chondromalacia), or "bicipital tunnel" (extra-articular bicipital tunnel scar/stenosis, loose bodies, LHBT instability, and LHBT partial tears) based on anatomic location. Attending radiologist-generated MRI reports were graded dichotomously as positive or negative for biceps and labral damage and then compared with intraoperative findings. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for MRI with respect to intraoperative findings. With regard to inside lesions, MRI had an overall sensitivity, specificity, PPV, and NPV for labrum lesions of 77.3%, 68.2%, 57.3%, and 84.5% respectively. The sensitivity, specificity, PPV, and NPV of MRI for junctional lesions were 43.3%, 55.6%, 73.1%, and 26.0%, respectively. For the bicipital tunnel, MRI had a sensitivity, specificity, PPV, and NPV of 50.4%, 61.4%, 48.7%, and 63.0%, respectively. MRI was unreliable for ruling out BLC lesions among chronically symptomatic patients, including when the bicipital tunnel was affected. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  16. Hydrogen-boron complexes in heavily boron-doped silicon treated with high concentration of hydrogen atoms

    International Nuclear Information System (INIS)

    Fukata, N.; Fukuda, S.; Sato, S.; Ishioka, K.; Kitajima, M.; Hishita, S.; Murakami, K.

    2006-01-01

    The formation of hydrogen (H)-related complexes was investigated in boron (B)-doped Si treated with high concentration of H. The isotope shifts of H-related Raman peaks by replacement of H to deuterium and 1 B to 11 B clearly showed the formation of the B-H complexes in which H directly bonds to B in Si. The results of the resistivity measurements suggested that the B acceptors are passivated via the formation of the B-H complexes, as well as the well-known passivation center in B-doped Si, namely, H-B passivation center

  17. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton...... is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit....

  18. Hydrogen Exchange Differences between Chemoreceptor Signaling Complexes Localize to Functionally Important Subdomains

    Science.gov (United States)

    2015-01-01

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045

  19. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    Science.gov (United States)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  20. Template Synthesis, Crystal Structure, and Magnetic Properties of a Dinuclear Copper(II) Complex with Cooperative Hydrogen Bonding

    International Nuclear Information System (INIS)

    Kang, Shin Geol; Nam, Kwang Hee; Min, Kil Sik; Lee, Uk

    2011-01-01

    The dinuclear complex with cooperative hydrogen bonds can be prepared by the metal-directed reaction of Eq. This work shows that the coordinated hydroxyl group trans to the secondary amino group is deprotonated more readily than that trans to the tertiary amino group and acts as the hydrogen-bond accepter. The lattice water molecules in act as bridges between the two mononuclear units through hydrogen bonds. The complex is quite stable as the dimeric form even in various polar solvents. The complex exhibits a weak antiferromagnetic interaction between the metal ions in spite of relatively long Cu···Cu distance. This strongly supports the suggestion that the antiferromagnetic behavior is closely related to the cooperative hydrogen bonds. The design and synthesis of polynuclear transition metal complexes have received much attention because of their potential applications in various fields, such as catalysis, supramolecular chemistry, and materials chemistry. Until now, various types of dinuclear copper(II) complexes have been prepared and investigated. Some dinuclear copper(II) complexes resulting from cooperative hydrogen bonding, such as containing two N_2O_2 donor sets, are also reported

  1. Spectroscopic studies of europium-tetracyclines complexes and their applications in detection of hydrogen peroxide and urea peroxide

    International Nuclear Information System (INIS)

    Grasso, Andrea Nastri

    2010-01-01

    In this work were studied the spectroscopic properties of trivalent europium ion complexed with components of tetracycline family, chlorotetracycline, oxytetracycline and metacycline, in the presence of hydrogen peroxide and urea peroxide. Optical parameters were obtained such as absorption, emission, lifetime and calibration curves were constructed for luminescence spectra. Experiments were carried out with both inorganic compounds and europium-tetracyclines complexes in order to verify possible interferences. Studies for glucose determination were also described using europium-tetracyclines complexes as biosensors. Results show that europium tetracyclines complexes emit a narrow band in the visible region and, in the presence of hydrogen peroxide or urea peroxide there is a greater enhancement in their luminescence and lifetime. Thus, europium-tetracyclines complexes studied can be used as biosensors for hydrogen and urea peroxides determination as a low cost and room temperature method. An indirect method for glucose determination was studied by adding glucose oxidase enzyme in europium-tetracyclines complex in the presence of glucose promoting as product hydrogen peroxide. (author)

  2. Nitrogen Adsorption and Hydrogenation on a MoFe6S9 Complex

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Hammer, Bjørk; Nørskov, Jens Kehlet

    1999-01-01

    The enzyme nitrogenase catalyzes the biological nitrogen fixation where N-2 is reduced to NH3. Density functional calculations are presented of the bonding and hydrogenation of N-2 on a MoFe6S9 complex constructed to model aspects of the active site of nitrogenase. N-2 is found to bind end on to ...... on to one of the Fe atoms. A complete energy diagram for the addition of hydrogen to the MoFe6S9 complex with and without N-2 is given, and a mechanism for ammonia synthesis is proposed on this basis....

  3. Impurity-defect complexes in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Yang, L.H.; Fong, C.Y.; Nichols, C.S.

    1991-01-01

    The two most outstanding features observed for dopants in hydrogenated amorphous silicon (a-Si:H)-a shift in the Fermi level accompanied by an increase in the defect density and an absence of degenerate doping have previously been postulated to stem from the formation of substitutional dopant-dangling bond complexes. Using first-principles self-consistent pseudopotential calculations in conjunction with a supercell model for the amorphous network and the ability of network relaxation from the first-principles results. The authors have studied the electronic and structural properties of substitutional fourfold-coordinated phosphorus and boron at the second neighbor position to a dangling bond defect. This paper demonstrates that such impurity-defect complexes can account for the general features observed experimentally in doped a-Si:H

  4. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  5. Evidence for tunneling in base-catalyzed isomerization of glyceraldehyde to dihydroxyacetone by hydride shift under formose conditions.

    Science.gov (United States)

    Cheng, Liang; Doubleday, Charles; Breslow, Ronald

    2015-04-07

    Hydrogen atom transfer reactions between the aldose and ketose are key mechanistic features in formose chemistry by which formaldehyde is converted to higher sugars under credible prebiotic conditions. For one of these transformations, we have investigated whether hydrogen tunneling makes a significant contribution to the mechanism by examining the deuterium kinetic isotope effect associated with the hydrogen transfer during the isomerization of glyceraldehyde to the corresponding dihydroxyacetone. To do this, we developed a quantitative HPLC assay that allowed us to measure the apparent large intrinsic kinetic isotope effect. From the Arrhenius plot of the kinetic isotope effect, the ratio of the preexponential factors AH/AD was 0.28 and the difference in activation energies Ea(D) - Ea(H) was 9.1 kJ·mol(-1). All these results imply a significant quantum-mechanical tunneling component in the isomerization mechanism. This is supported by multidimensional tunneling calculations using POLYRATE with small curvature tunneling.

  6. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  7. Local stabilization of single-walled carbon nanotubes on Si(100)-2 x 1:H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Albrecht, Peter M; Lyding, Joseph W

    2007-01-01

    An ultrahigh vacuum scanning tunnelling microscope (UHV-STM) was used to modify the interface between isolated ∼10 A-diameter single-walled carbon nanotubes (SWNTs) and the hydrogen-passivated Si(100) surface. Room-temperature UHV-STM desorption of hydrogen at the SWNT/H-Si(100) interface resulted in the local mechanical stabilization of tubes originally perturbed by the rastered STM tip under nominal imaging conditions. For the section of the SWNT contacted by depassivated Si, a topographic depression of 1.5 A (1 A) was measured in the case of parallel (nearly perpendicular) alignment between the tube axis and the Si dimer rows, in agreement with existing first-principles calculations. The compatibility of hydrogen-resist UHV-STM nanolithography with SWNTs adsorbed on H-Si(100) would enable the atomically precise placement of single molecules in proximity to the tube for the bottom-up fabrication of molecular electronic devices

  8. Carbon-hydrogen-related complexes in Si

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.; Gwozdz, K.; Weber, J.

    2018-04-01

    Several deep level transient spectroscopy (DLTS) peaks (E42, E65, E75, E90, E262, and H180) are observed in n- and p-type Czochralski-grown Si samples subjected to hydrogenation by a dc H plasma treatment. The concentration of the defects is found to be proportional to the carbon and hydrogen content in our samples. The analysis of the depth profiles performed in Si samples hydrogenated by wet chemically etching shows that all these defects contain a single H atom. E65 and E75 appear only in samples with a high oxygen content which shows that oxygen is a constituent of these defects. The analysis of the enhancement of the emission rate of the defects with electric field shows that E65, E75, E90, and E262 are single acceptors whereas E42 is a double acceptor. The presence of a barrier for hole capture (about 53 meV) can explain the absence of the enhancement of the emission rate of H180, which can be attributed to a single acceptor state. From a comparison with theory, we assign E90 to CH1BC, E42 (E262) to CH1AB, and H180 to CH1Td. The similarity of the electrical properties of E65 and E75 to those of E90 suggest that E65 and E75 may originate from the CH1BC defect with an oxygen atom in its nearest neighborhood. Our results on the CH-related complexes give a conclusive explanation of some previously reported controversial experimental data.

  9. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  10. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  11. STUDI KOMPUTASI BERBASIS DFT TERHADAP FENOMENA QUANTUM TUNNELING DALAM ISOMERISASI METILHIDROKSIKARBENA

    Directory of Open Access Journals (Sweden)

    Jumaidil Awal

    2016-01-01

    Full Text Available Density functional theory-based methods have been applied to predict the most possible one among the isomerizations of methylhydroxycarbene considering the probability of hydrogen tunneling occurrence. B3LYP/6-31+G(d,p and M08-SO/6-31+G(d,p methods were applied in all computations using GAMESS-US software. There were three steps of computation in this research. First, electronic structure computations of both equilibrium and transition compounds involved in all isomerization alternatives in order to obtain the optimum structures of the compounds. Second, vibrational computations of optimum transition structures to ensure that each of the respective structures is well on its potential energy surface. Third, tunneling analysis accomplished by intrinsic reaction coordinate (IRC computatuins for all isomerization alternatives followed by tunneling probabilitycalculation using the Wentzel-Kramers-Brillouin (WKB formula for methylhydroxycarbene isomerizations. The result of this research showed that the DFT methods successfully produced the optimum structure of each compound. Both DFT methods also successfully mapped all the intrinsic reaction coordinates. B3LYP/6-31+G(d,p method gave tunneling probabilities of 3.55 x 10-19 for the isomerization into acetaldehyde and 3.30 x 10-20 for that into vinyl alcohol. While M08-SO/6-31+G(d,p method gave tunneling probabilities of 2.38 x 10-23 for the isomerization into acetaldehyde and 4.79 x 10-23 for that into vinyl alcohol. Keywords: DFT, methylhydroxycarbene, hydrogen tunneling, isomerization

  12. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  13. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  14. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  15. Proceedings of the frontiers of hydrogen complexity

    International Nuclear Information System (INIS)

    Yamamuro, Osamu

    2000-05-01

    The discussion meeting on complex systems containing hydrogen and/or hydrogen bondings were held at High Energy Accelerator Research Organization (KEK), Japan, in December, 1999, and the proceedings of the papers presented, 18 oral and 20 poster presentations, are included in the present report. Study on water structure using neutron scattering in these 50 years is activated by appearance of new research techniques: Pulsed neutron sources and easy preparation method of amorphous ices, high density amorphous (HDA) and low density amorphous (LDA) one. Both techniques may bring about possibility of elucidation of the dynamics of water structure. Pulsed neutron sources make possible to carry out measurements in a wider Q-w space, thus extending excitations to higher levels. HDA state can be kept in lower temperatures while maintaining the same density as that of liquid water. Research fields relevant to the present discussion include super-cooled liquid, glassy state, supercritical liquid, polymers, gels and micro-emulsions. Other research techniques for this study include X-ray and photon scattering, NMR, dielectric relaxation phenomena, calorimetric measurement, and computer simulations. (S.Ohno)

  16. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  17. Hydrogen storage properties of Na-Li-Mg-Al-H complex hydrides

    International Nuclear Information System (INIS)

    Tang Xia; Opalka, Susanne M.; Laube, Bruce L.; Wu Fengjung; Strickler, Jamie R.; Anton, Donald L.

    2007-01-01

    Lightweight complex hydrides have attracted attention for their high storage hydrogen capacity. NaAlH 4 has been widely studied as a hydrogen storage material for its favorable reversible operating temperature and pressure range for automotive fuel cell applications. The increased understanding of NaAlH 4 has led to an expanded search for high capacity materials in mixed alkali and akali/alkaline earth alanates. In this study, promising candidates in the Na-Li-Mg-Al-H system were evaluated using a combination of experimental chemistry, atomic modeling, and thermodynamic modeling. New materials were synthesized using solid state and solution based processing methods. Their hydrogen storage properties were measured experimentally, and the test results were compared with theoretical modeling assessments

  18. Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.

    Science.gov (United States)

    Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes

    2017-08-30

    Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.

  19. Cooperative catalysis: electron-rich Fe-H complexes and DMAP, a successful "joint venture" for ultrafast hydrogen production.

    Science.gov (United States)

    Rommel, Susanne; Hettmanczyk, Lara; Klein, Johannes E M N; Plietker, Bernd

    2014-08-01

    A series of defined iron-hydrogen complexes was prepared in a straightforward one-pot approach. The structure and electronic properties of such complexes were investigated by means of quantum-chemical analysis. These new complexes were then applied in the dehydrogenative silylation of methanol. The complex (dppp)(CO)(NO)FeH showed a remarkable activity with a TOF of more than 600 000 h(-1) of pure hydrogen gas within seconds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Similar strength of the NH⋯O and NH⋯S hydrogen bonds in binary complexes

    DEFF Research Database (Denmark)

    Andersen, Cecilie Lindholm; Jensen, Christine S.; Mackeprang, Kasper

    2014-01-01

    to be extremely small with only 5 and 19 cm-1 for DMA-DME and DMA-DMS, respectively. The experimentally determined integrated absorbance has been combined with a calculated oscillator strength to determine an equilibrium constant of 2 × 10-3 and 4 × 10-3 for the DMA-DME and DMA-DMS complexes, respectively....... The topological analyses reveal that several hydrogen bond interactions are present in the complexes. The calculated binding energies, geometric parameters, observed redshifts, and topological analyses suggest that oxygen and sulfur are hydrogen bond acceptors of similar strength. (Graph Presented)....

  1. Fast Heavy-Atom Tunneling in Trifluoroacetyl Nitrene.

    Science.gov (United States)

    Wu, Zhuang; Feng, Ruijuan; Li, Hongmin; Xu, Jian; Deng, Guohai; Abe, Manabu; Bégué, Didier; Liu, Kun; Zeng, Xiaoqing

    2017-12-04

    Chemical reactions involving quantum mechanical tunneling (QMT) increasingly attract the attention of scientists. In contrast to the hydrogen-tunneling as frequently observed in chemistry and biology, tunneling solely by heavy atoms is rare. Herein, we report heavy-atom tunneling in trifluoroacetyl nitrene, CF 3 C(O)N. The carbonyl nitrene CF 3 C(O)N in the triplet ground state was generated in cryogenic matrices by laser (193 or 266 nm) photolysis of CF 3 C(O)N 3 and characterized by IR and EPR spectroscopy. In contrast to the theoretically predicted activation barriers (>10 kcal mol -1 ), CF 3 C(O)N undergoes rapid rearrangement into CF 3 NCO with half-life times of less than 10 min and unprecedentedly large 14 N/ 15 N kinetic isotope effects (1.18-1.33) in solid Ar, Ne, and N 2 matrices even at 2.8 K. The tunneling disappearance of CF 3 C(O)N becomes much slower in the chemically active toluene and in 2-methyltetrahydrofuran at 5 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced tunneling through nonstationary barriers

    International Nuclear Information System (INIS)

    Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.

    2007-01-01

    Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented

  3. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  5. Electronic structure of divacancy-hydrogen complexes in silicon

    International Nuclear Information System (INIS)

    Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R

    2003-01-01

    Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments

  6. General risks for tunnelling projects: An overview

    Science.gov (United States)

    Siang, Lee Yong; Ghazali, Farid E. Mohamed; Zainun, Noor Yasmin; Ali, Roslinda

    2017-10-01

    Tunnels are indispensable when installing new infrastructure as well as when enhancing the quality of existing urban living due to their unique characteristics and potential applications. Over the past few decades, there has been a significant increase in the building of tunnels, world-wide. Tunnelling projects are complex endeavors, and risk assessment for tunnelling projects is likewise a complex process. Risk events are often interrelated. Occurrence of a technical risk usually carries cost and schedule consequences. Schedule risks typically impact cost escalation and project overhead. One must carefully consider the likelihood of a risk's occurrence and its impact in the context of a specific set of project conditions and circumstances. A project's goals, organization, and environment impacts in the context of a specific set of project conditions and circumstances. Some projects are primarily schedule driven; other projects are primarily cost or quality driven. Whether a specific risk event is perceived fundamentally as a cost risk or a schedule risk is governed by the project-specific context. Many researchers have pointed out the significance of recognition and control of the complexity, and risks of tunnelling projects. Although all general information on a project such as estimated duration, estimated cost, and stakeholders can be obtained, it is still quite difficult to accurately understand, predict and control the overall situation and development trends of the project, leading to the risks of tunnelling projects. This paper reviews all the key risks for tunnelling projects from several case studies that have been carried out by other researchers. These risks have been identified and reviewed in this paper. As a result, the current risk management plan in tunnelling projects can be enhanced by including all these reviewed risks as key information.

  7. Multiple Hydrogen Bond Tethers for Grazing Formic Acid in Its Complexes with Phenylacetylene.

    Science.gov (United States)

    Karir, Ginny; Kumar, Gaurav; Kar, Bishnu Prasad; Viswanathan, K S

    2018-03-01

    Complexes of phenylacetylene (PhAc) and formic acid (FA) present an interesting picture, where the two submolecules are tethered, sometimes multiply, by hydrogen bonds. The multiple tentacles adopted by PhAc-FA complexes stem from the fact that both submolecules can, in the same complex, serve as proton acceptors and/or proton donors. The acetylenic and phenyl π systems of PhAc can serve as proton acceptors, while the ≡C-H or -C-H of the phenyl ring can act as a proton donor. Likewise, FA also is amphiprotic. Hence, more than 10 hydrogen-bonded structures, involving O-H···π, C-H···π, and C-H···O contacts, were indicated by our computations, some with multiple tentacles. Interestingly, despite the multiple contacts in the complexes, the barrier between some of the structures is small, and hence, FA grazes around PhAc, even while being tethered to it, with hydrogen bonds. We used matrix isolation infrared spectroscopy to experimentally study the PhAc-FA complexes, with which we located global and a few local minima, involving primarily an O-H···π interaction. Experiments were corroborated by ab initio computations, which were performed using MP2 and M06-2X methods, with 6-311++G (d,p) and aug-cc-pVDZ basis sets. Single-point energy calculations were also done at MP2/CBS and CCSD(T)/CBS levels. The nature, strength, and origin of these noncovalent interactions were studied using AIM, NBO, and LMO-EDA analysis.

  8. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    Science.gov (United States)

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes.

  9. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid

    International Nuclear Information System (INIS)

    Hanna, Gabriel; Geva, Eitan

    2010-01-01

    The signature of hydrogen-bond strength on the one- and two-dimensional infrared spectra of the hydrogen-stretch in a hydrogen-bonded complex dissolved in a polar liquid was investigated via mixed quantum-classical molecular dynamics simulations. Non-Condon effects were found to intensify with increasing hydrogen-bond strength and to shift oscillator strength from the stable configurations that correspond to the ionic and covalent tautomers into unstable configurations that correspond to the transition-state between them. The transition-state peak is observed to blue shift and increase in intensity with increasing hydrogen-bond strength, and to dominate the spectra in the case of a strong hydrogen-bond. It is argued that the application of multidimensional infrared spectroscopy in the region of the transition-state peak can provide a uniquely direct probe of the molecular events underlying breaking and forming of hydrogen-bonds in the condensed phase.

  10. Communication: A hydrogen-bonded difluorocarbene complex: Ab initio and matrix isolation study

    Science.gov (United States)

    Sosulin, Ilya S.; Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2017-10-01

    Structure and spectroscopic features of the CF2⋯HF complexes were studied by ab initio calculations at the CCSD(T) level and matrix isolation FTIR spectroscopy. The calculations predict three stable structures. The most energetically favorable structure corresponds to hydrogen bonding of HF to the lone pair of the C atom (the interaction energy of 3.58 kcal/mol), whereas two less stable structures are the H⋯F bonded complexes (the interaction energies of 0.30 and 0.24 kcal/mol). The former species was unambiguously characterized by the absorptions in the FTIR spectra observed after X-ray irradiation of fluoroform in a xenon matrix at 5 K. The corresponding features appear at 3471 (H-F stretching), 1270 (C-F symmetric stretching, shoulder), 1175 (antisymmetric C-F stretching), and 630 (libration) cm-1, in agreement with the computational predictions. To our knowledge, it is the first hydrogen-bonded complex of dihalocarbene. Possible weaker manifestations of the H⋯F bonded complexes were also found in the C-F stretching region; however, their assignment is tentative. The H⋯C bonded complex is protected from reaction yielding a fluoroform molecule by a remarkably high energy barrier (23.85 kcal/mol), so it may be involved in various chemical reactions.

  11. Infrared spectra and tunneling dynamics of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O.

    Science.gov (United States)

    Zhu, Yu; Zheng, Rui; Li, Song; Yang, Yu; Duan, Chuanxi

    2013-12-07

    The rovibrational spectra of the N2-D2O and OC-D2O complexes in the v2 bend region of D2O have been measured in a supersonic slit jet expansion using a rapid-scan tunable diode laser spectrometer. Both a-type and b-type transitions were observed for these two complexes. All transitions are doubled, due to the heavy water tunneling within the complexes. Assuming the tunneling splittings are the same in K(a) = 0 and K(a) = 1, the band origins, all three rotational and several distortion constants of each tunneling state were determined for N2-D2O in the ground and excited vibrational states, and for OC-D2O in the excited vibrational state, respectively. The averaged band origin of OC-D2O is blueshifted by 2.241 cm(-1) from that of the v2 band of the D2O monomer, compared with 1.247 cm(-1) for N2-D2O. The tunneling splitting of N2-D2O in the ground state is 0.16359(28) cm(-1), which is about five times that of OC-D2O. The tunneling splittings decrease by about 26% for N2-D2O and 23% for OC-D2O, respectively, upon excitation of the D2O bending vibration, indicating an increase of the tunneling barrier in the excited vibrational state. The tunneling splittings are found to have a strong dependence on intramolecular vibrational excitation as well as a weak dependence on quantum number K(a).

  12. Probing conserved helical modules of portal complexes by mass spectrometry-based hydrogen/deuterium exchange.

    Science.gov (United States)

    Kang, Sebyung; Poliakov, Anton; Sexton, Jennifer; Renfrow, Matthew B; Prevelige, Peter E

    2008-09-05

    The Double-stranded DNA bacteriophage P22 has a ring-shaped dodecameric complex composed of the 84 kDa portal protein subunit that forms the central channel of the phage DNA packaging motor. The overall morphology of the P22 portal complex is similar to that of the portal complexes of Phi29, SPP1, T3, T7 phages and herpes simplex virus. Secondary structure prediction of P22 portal protein and its threading onto the crystal structure of the Phi29 portal complexes suggested that the P22 portal protein complex shares conserved helical modules that were found in the dodecameric interfaces of the Phi29 portal complex. To identify the amino acids involved in intersubunit contacts in the P22 portal ring complexes and validate the threading model, we performed comparative hydrogen/deuterium exchange analysis of monomeric and in vitro assembled portal proteins of P22 and the dodecameric Phi29 portal. Hydrogen/deuterium exchange experiments provided evidence of intersubunit interactions in the P22 portal complex similar to those in the Phi29 portal that map to the regions predicted to be conserved helical modules.

  13. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    Science.gov (United States)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  14. Giant tunneling effect of hydrogen dissolved in α-Mn

    International Nuclear Information System (INIS)

    Kolesnikov, A.I.; Grosse, G.; Wagner, F.E.

    1999-01-01

    Complete text of publication follows. A neutron diffraction study has shown that H atoms in α-Mn occupy a double-well potential with a distance of l = 0.68 A between the minima. The results of the inelastic neutron scattering study are presented of α-MnH 0.07 and α-MnD 0.05 at temperatures from 1.7 to 200 K over a wide range of energy and momentum transfers. Together with the high-energy bands of the optical vibrations, pronounced peaks at ε = 6.3 and 1.6 meV were observed in the spectra of the samples loaded with H and D, respectively. The temperature, momentum-transfer and isotope dependence of the spectra unambiguously demonstrated the tunneling origin of these peaks. The anomalously high value of the tunneling energy, ε, is presumably due to the short distance, l, between the minima of the double-well potential, which is about half that found in other metal-H systems, while ε increases exponentially with decreasing l 2 . (author)

  15. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  16. Efficient evaluation of atom tunneling combined with electronic structure calculations.

    Science.gov (United States)

    Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes

    2018-03-14

    Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.

  17. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.

    Science.gov (United States)

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-09-21

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.

  18. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    Science.gov (United States)

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    Science.gov (United States)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  20. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    Science.gov (United States)

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  1. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  2. Tunneling magnetoresistance and electroresistance in Fe/PbTiO3/Fe multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Dai, Jian-Qing

    2016-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO 3 /Fe multiferroic tunnel junction with asymmetric TiO 2 - and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p z orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  3. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    Science.gov (United States)

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.

  4. Electron spin-lattice relaxation mechanisms of radiation produced trapped electrons and hydrogen atoms in aqueous and organic glassy matrices. Modulation of electron nuclear dipolar interaction by tunnelling modes in a glassy matrix. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, M K; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry

    1977-01-01

    The spin lattice relaxation of trapped electrons in aqueous and organic glasses and trapped hydrogen atoms in phosphoric acid glass has been directly studied as a function of temperature by the saturation recovery method. Below 50 to 100 K, the major spin lattice relaxation mechanism involves modulation of the electron nuclear dipolar (END) interaction with nuclei in the radical's environment by tunnelling of those nuclei between two or more positions. This relaxation mechanism occurs with high efficiency and has a characteristic linear temperature dependence. The tunnelling nuclei around trapped electrons do not seem to involve the nearest neighbor nuclei which are oriented by the electron in the process of solvation. Instead the tunnelling nuclei typically appear to be next nearest neighbors to the trapped electron. The identities of the tunnelling nuclei have been deduced by isotopic substitution and are attributed to: Na in 10 mol dm/sup -3/ NaOH aqueous glass, ethyl protons in ethanol glass, methyl protons in methanol glass and methyl protons in MTHF glass. For trapped hydrogen atoms in phosphoric acid, the phosphorus nuclei appear to be the effective tunnelling nuclei. Below approximately 10 K the spin lattice relaxation is dominated by a temperature independent cross relaxation term for H atoms in phosphoric acid glass and for electrons in 10 mol dm/sup -3/ NaOH aqueous glass, but not for electrons in organic glasses. This is compared with recent electron-electron double resonance studies of cross relaxation in these glasses. The spin lattice relaxation of O/sup -/ formed in 10 mol dm/sup -3/ NaOH aqueous glass was also studied and found to be mainly dominated by a Raman process with an effective Debye temperature of about 100 K.

  5. Local electronic and geometrical structures of hydrogen-bonded complexes studied by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Luo, Y.

    2004-01-01

    Full text: The hydrogen bond is one of the most important forms of intermolecular interactions. It occurs in all-important components of life. However, the electronic structures of hydrogen-bonded complexes in liquid phases have long been difficult to determine due to the lack of proper experimental techniques. In this talk, a recent joint theoretical and experimental effort to understand hydrogen bonding in liquid water and alcohol/water mixtures using synchrotron radiation based soft-X-ray spectroscopy will be presented. The complexity of the liquid systems has made it impossible to interpret the spectra with physical intuition alone. Theoretical simulations have thus played an essential role in understanding the spectra and providing valuable insights on the local geometrical and electronic structures of these liquids. Our study sheds light on a 40-year controversy over what kinds of molecular structures are formed in pure liquid methanol. It also suggests an explanation for the well-known puzzle of why alcohol and water do not mix completely: the system must balance nature's tendency toward greater disorder (entropy) with the molecules' tendency to form hydrogen bonds. The observation of electron sharing and broken hydrogen bonding local structures in liquid water will be presented. The possible use of X-ray spectroscopy to determinate the local arrangements of hydrogen-bonded nanostructures will also been discussed

  6. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  7. Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction

    Science.gov (United States)

    Dong, Zhipeng; Cao, Xi; Wu, Tong; Guo, Jing

    2018-03-01

    Ferroelectric tunnel junctions (FTJs) have been intensively explored for future low power data storage and information processing applications. Among various ferroelectric (FE) materials studied, HfO2 and H0.5Zr0.5O2 (HZO) have the advantage of CMOS process compatibility. The validity of the simple effective mass approximation, for describing the tunneling process in these materials, is examined by computing the complex band structure from ab initio simulations. The results show that the simple effective mass approximation is insufficient to describe the tunneling current in HfO2 and HZO materials, and quantitative accurate descriptions of the complex band structures are indispensable for calculation of the tunneling current. A compact k . p Hamiltonian is parameterized to and validated by ab initio complex band structures, which provides a method for efficiently and accurately computing the tunneling current in HfO2 and HZO. The device characteristics of a metal/FE/metal structure and a metal/FE/semiconductor (M-F-S) structure are investigated by using the non-equilibrium Green's function formalism with the parameterized effective Hamiltonian. The result shows that the M-F-S structure offers a larger resistance window due to an extra barrier in the semiconductor region at off-state. A FTJ utilizing M-F-S structure is beneficial for memory design.

  8. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.

  9. Infrared intensities and charge mobility in hydrogen bonded complexes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta,” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-08-21

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al.[J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X–H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the –XH⋯Y– fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  10. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-21

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  11. High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering

    International Nuclear Information System (INIS)

    Phillips, A B; Shivaram, B S

    2009-01-01

    We have recently shown that organo-metallic complexes formed by laser ablating transition metals in ethylene are high hydrogen absorbers at room temperature (Phillips and Shivaram 2008 Phys. Rev. Lett. 100 105505). Here we show that the absorption percentage depends strongly on the ethylene pressure. High ethylene pressures (>100 mTorr) result in a lowered hydrogen uptake. Transmission electron microscopy measurements reveal that while low pressure ablations result in metal atoms dispersed uniformly on a near atomic scale, high pressure ones yield distinct nanoparticles with electron energy-loss spectroscopy demonstrating that the metal atoms are confined solely to the nanoparticles.

  12. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  13. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  14. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  15. Theoretical investigations into the blue-shifting hydrogen bond in benzene complexes

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Hobza, Pavel

    2006-01-01

    Roč. 7, č. 3 (2006), s. 640-643 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GA203/05/0009; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : blue-shifting hydrogen bond * benzene complexes * London dispersion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.449, year: 2006

  16. IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching.

    Science.gov (United States)

    Singh, Prashant Chandra; Patwari, G Naresh

    2008-06-12

    The electronic transitions of phenylacetylene complexes with water and trifluoroethanol are shifted to the blue, while the corresponding transitions for methanol and ethanol complexes are shifted to the red relative to the phenylacetylene monomer. Fluorescence dip infrared (FDIR) spectra in the O-H stretching region indicate that, in all the cases, phenylacetylene is acting as a hydrogen bond acceptor to the alcohols. The FDIR spectrum in the acetylenic C-H stretching region shows Fermi resonance bands for the bare phenylacetylene, which act as a sensitive tool to probe the intermolecular structures. The FDIR spectra reveal that water and trifluoroethanol interact with the pi electron density of the acetylene C-C triple bond, while methanol and ethanol interact with the pi electron density of the benzene ring. It can be inferred that the hydrogen bonding acceptor site on phenylacetylene switches from the acetylene pi to the benzene pi with lowering in the partial charge on the hydrogen atom of the OH group. The most significant finding is that the intermolecular structures of water and methanol complexes are notably distinct, which, to the best of our knowledge, this is first such observation in the case of complexes of substituted benzenes.

  17. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    Science.gov (United States)

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  19. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  20. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    Science.gov (United States)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  1. Building information modelling review with potential applications in tunnel engineering of China

    Science.gov (United States)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  2. Performing wind-tunnel modeling for better management of near-field risks

    International Nuclear Information System (INIS)

    Huang, Ju-Chrong; Weber, A.H.

    1992-01-01

    All industrial complexes must be able to demonstrate that air pollutant concentrations from normal and accidental releases are within the bounds of stringent acceptance criteria. The offsite concentrations are comparatively easy to compute with the standard Gaussian models. By contrast, the onsite (in particular, near-field) concentrations can be more complex since the wind flows can interact with various structures in complex ways to create regions of relatively high local concentrations. Three methods can be used to predict the air pollutant concentrations: (1) mathematical models, (2) field experiments, and (3) fluid models (wind-tunnel testing). The complex flow in the vicinity of buildings is not amenable to simple mathematical generalizations. Field experiments cannot encompass the wind spectrum of meteorological conditions in the time generally allotted. Wind tunnel testing works best where numerical models fail and field testing is not applicable. This paper covers the following aspects related to the wind-tunnel modeling studies: (1) planning strategies; (2) types of wind-tunnel modeling studies flow visualization and concentration measurement experiments; (3) highlights (video tape show) of the wind tunnel experiments; (4) technical challenges; and (5) various applications

  3. Isotope effects in complex scattering lengths for He collisions with molecular hydrogen

    International Nuclear Information System (INIS)

    Nolte, J. L.; Yang, B. H.; Stancil, P. C.; Lee, Teck-Ghee; Balakrishnan, N.; Forrey, R. C.; Dalgarno, A.

    2010-01-01

    We examine the effect of theoretically varying the collision-system reduced mass in collisions of He with vibrationally excited molecular hydrogen and observe zero-energy resonances for select atomic 'hydrogen' masses less than 1 u or a 'helium' mass of 1.95 u. Complex scattering lengths, state-to-state vibrational quenching cross sections, and a low-energy elastic scattering resonance are all studied as a function of collision-system reduced mass. Experimental observations of these phenomena in the cold and ultracold regimes for collisions of 3 He and 4 He with H 2 , HD, HT, and DT should be feasible in the near future.

  4. Similarities between intra- and intermolecular hydrogen bonds in RNA kissing complexes found by means of cross-correlated relaxation

    International Nuclear Information System (INIS)

    Dittmer, Jens; Kim, Chul-Hyun; Bodenhausen, Geoffrey

    2003-01-01

    The bond lengths and dynamics of intra- and intermolecular hydrogen bonds in an RNA kissing complex have been characterized by determining the NMR relaxation rates of various double- and triple-quantum coherences that involve an imino proton and two neighboring nitrogen-15 nuclei belonging to opposite bases. New experiments allow one to determine the chemical shift anisotropy of the imino protons. The bond lengths derived from dipolar relaxation and the lack of modulations of the nitrogen chemical shifts indicate that the intermolecular hydrogen bonds which hold the kissing complex together are very similar to the intramolecular hydrogen bonds in the double-stranded stem of the RNA

  5. Resonant tunneling via a Ru–dye complex using a nanoparticle bridge junction

    Science.gov (United States)

    Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya

    2018-06-01

    Nonlinear current–voltage (I–V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru–dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I–V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I–V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.

  6. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    Science.gov (United States)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  7. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  8. Research of Tunnel Construction Monitoring System Base on Senor Information Fusion

    Directory of Open Access Journals (Sweden)

    Kaisheng Zhang

    2014-05-01

    Full Text Available With the complex of the tunnel construction, tunnel construction become more and more difficult, in order to ensure the safety of tunnel construction, the paper introduced a kind of tunnel construction monitoring system based on sensor. The system achieves the real- time monitoring of tunnel construction environment including temperature and humidity, gas concentration, dust concentration, location tracking for construction workers through the wireless communication technology, to control of the real-time status of the tunnel, and ensure timely rescue when the accident occurred.

  9. Indium-hydrogen complexes in silicon and germanium under compression and tension

    International Nuclear Information System (INIS)

    Marx, G.; Vianden, R.

    1996-01-01

    The response of hydrogen-acceptor complexes in silicon and germanium to the application of uniaxial mechanical stress was studied by means of the perturbed angular correlation technique. This hyperfine interaction technique is sensitive to the microscopic structure of the immediate lattice environment of the probe atom. For the measurements, the probe 111 In was introduced into Si and Ge crystals by ion implantation at room temperature. After annealing, the radioactive probe atom 111 In acts as an acceptor in the elemental semiconductors Si and Ge and as such can easily be passivated by hydrogen indiffusion. The resulting In-H complex was subsequently exposed to uniaxial compressive and tensile stress, which was produced by bending the crystals along the three major lattice directions left angle 100 right angle, left angle 110 right angle and left angle 111 right angle. It was found that the application of uniaxial mechanical stress causes no change in the population of the four equivalent bond centred H sites surrounding the In acceptor. Evidence was found for a large mismatch of the lattice parameters between the passivated In implanted layer and the surrounding pure Si. (orig.)

  10. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  11. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  12. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  13. Fabrication of metallic nanowires with a scanning tunnelling microscope

    NARCIS (Netherlands)

    Kramer, N.; Kramer, N.; Birk, H.; Jorritsma, J.; Schönenberger, C.

    1995-01-01

    A procedure to pattern thin metal films on a nanometer scale with a scanning tunneling microscope (STM) operating in air is reported. A 30 nm film of hydrogenated amorphous silicon (a‐Si:H) is deposited on a 10 nm film of TaIr. Applying a negative voltage between the STM tip and the a‐Si:H film

  14. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    mediated hydrogenation process leading to reversibility. The Al-AB complexes have comparable hydrogen capacity with other M-AB and have potential to meet DOE’s 2010 and 2015 targets for system wt%.

  15. Two independent hydrogen bonded complexes of bis(1-piperidiniumacetate) hydrochloride in crystal and in the PM3 optimized structure

    International Nuclear Information System (INIS)

    Dega-Szafran, Z.; Petryna, M.; Dutkiewicz, G.; Kosturkiewicz, Z.

    2003-01-01

    Bis(1-piperidiniumacetate) hydrochloride, (PAA) 2 H · Cl + , has been synthesized and its structure solved by X-ray diffraction. The crystals belong to the triclinic system with two symmetrically independent hydrogen bonded complexes, denoted A and B, at two different inversion centers. The compound crystallizes in the space group P1 with a = 8.559(1), b = 9.625(1), c = 11.441(1) A, α = 74.85(1) o , β = 68.22(1) o , γ 84.10(1) o , Z = 2, R = 0.036. Each complex consists of two 1-piperidiniumacetate moieties. Four 1-piperidiniumacetates, as zwitterions, are held together by a network of hydrogen bonds of the types O...H...O (2.462(3) and 2.463(3) A), N-H...O (2.755(2) A) and N-H...Cl (3.167(2) A). Both N-H atoms in a complex A interact with chlorine anions. A number of weak C-H...Cl contacts stabilize the three-dimensional crystal structure. In the isolated molecule of (PAA) 2 H · Cl + optimized by the PM3 method, there also are two independent hydrogen bonded complexes. In complex A the natural form of 1-piperidineacetic acid interacts with its anionic form, while in complex B the 1-piperidiniumacetic acid, as a cation, forms a hydrogen bond with its zwitterionic form. FTIR spectrum of bis(1-piperidiniumacetate) hydrochloride has been analysed and discussed. (author)

  16. Tunnel conductance of Watson-Crick nucleoside-base pairs from telegraph noise

    International Nuclear Information System (INIS)

    Chang Shuai; He Jin; Lin Lisha; Zhang Peiming; Liang Feng; Huang Shuo; Lindsay, Stuart; Young, Michael

    2009-01-01

    The use of tunneling signals to sequence DNA is presently hampered by the small tunnel conductance of a junction spanning an entire DNA molecule. The design of a readout system that uses a shorter tunneling path requires knowledge of the absolute conductance across base pairs. We have exploited the stochastic switching of hydrogen-bonded DNA base-nucleoside pairs trapped in a tunnel junction to determine the conductance of individual molecular pairs. This conductance is found to be sensitive to the geometry of the junction, but a subset of the data appears to come from unstrained molecular pairs. The conductances determined from these pairs are within a factor of two of the predictions of density functional calculations. The experimental data reproduces the counterintuitive theoretical prediction that guanine-deoxycytidine pairs (3 H-bonds) have a smaller conductance than adenine-thymine pairs (2 H-bonds). A bimodal distribution of switching lifetimes shows that both H-bonds and molecule-metal contacts break.

  17. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  18. Efficient logistics enabled by smart solutions in tunneling

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2017-12-01

    Full Text Available While logistics comprises an important part of tunneling costs, it is generally not considered a lever of performance but rather a constraint to a project's progress. This study presents some insights on how smart technology can impact the tunneling industry. The impact is even greater because of the complexity of the tunneling supply chain, and smart technology could help support this process. Finally, we discuss how the nature of the tunneling industry invites stakeholders to develop a common understanding of the project prior to construction to successfully deploy smart technology during the use or maintenance phase. Keywords: Smart technology, Logistics, Underground space, Supply chain, Construction, Lean construction

  19. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  20. The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond

    NARCIS (Netherlands)

    Deferme, W.; Tanasa, G.; Amir, J.; Haenen, K.; Nesladek, M.; Flipse, C.F.J.

    2006-01-01

    In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphol. and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD

  1. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  2. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  3. Risk analysis of complex hydrogen infrastructures

    DEFF Research Database (Denmark)

    Markert, Frank; Marangon, Alessia; Carcassi, Marco

    2015-01-01

    Developing a future sustainable refuelling station network is the next important step to establish hydrogen as a fuel for vehicles and related services. Such stations will most likely be integrated in existing refuelling stations and result in multi-fuel storages with a variety of fuels being...... to improve the quality of biomass based fuels. Therefore, hydrogen supply and distribution chains will likely not only serve to fulfil the demands of refuelling, but may also be important for the wider electrical power and fuel industries. Based on an integrated hydrogen supply and distribution network...... assessment methodologies, and how functional models could support coherent risk and sustainability (Risk Assessment, Life Cycle Assessment /Life Cycle Costing) assessments, in order to find optimal solutions for the development of the infrastructure on a regional or national level....

  4. Hydrolytic cleavage of ammonia-borane complex for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid; T-Raissi, Ali; Adebiyi, Olawale [Hydrogen R and D Division, Florida Solar Energy Center, University of Central Florida 1679 Clearlake Rd., Cocoa, FL 32955 (United States)

    2007-05-15

    A new process for generating hydrogen via near room temperature hydrolysis of AB complex using small amounts of platinum group metal catalyst has been studied. Using in situ {sup 11}B NMR spectroscopy, the overall rate of K{sub 2}Cl{sub 6}Pt catalyzed hydrolysis of AB complex was calculated to be third-order. The pre-exponential factor (A) and the activation energy (E{sub a}) of Arrhenius equation, ln k = ln A - E{sub a}/RT, were determined to be: A = 1.6 x 10{sup 11} L mol{sup -1} s{sup -1} and E{sub a} = 86.6 kJ mol{sup -1} for temperature range of (25-35 C). X-ray photoelectron spectroscopy of the residue suggested that the platinum salt was reduced from Pt{sup 4+} to Pt{sup 0} within the course of the reaction and X-ray diffraction analysis pattern for the residue showed crystallized single-phase boric acid. (author)

  5. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  6. Determination of Spin Inversion Probability, H-Tunneling Correction, and Regioselectivity in the Two-State Reactivity of Nonheme Iron(IV)-Oxo Complexes.

    Science.gov (United States)

    Kwon, Yoon Hye; Mai, Binh Khanh; Lee, Yong-Min; Dhuri, Sunder N; Mandal, Debasish; Cho, Kyung-Bin; Kim, Yongho; Shaik, Sason; Nam, Wonwoo

    2015-04-16

    We show by experiments that nonheme Fe(IV)O species react with cyclohexene to yield selective hydrogen atom transfer (HAT) reactions with virtually no C═C epoxidation. Straightforward DFT calculations reveal, however, that C═C epoxidation on the S = 2 state possesses a low-energy barrier and should contribute substantially to the oxidation of cyclohexene by the nonheme Fe(IV)O species. By modeling the selectivity of this two-site reactivity, we show that an interplay of tunneling and spin inversion probability (SIP) reverses the apparent barriers and prefers exclusive S = 1 HAT over mixed HAT and C═C epoxidation on S = 2. The model enables us to derive a SIP value by combining experimental and theoretical results.

  7. Cyclopropenyl Anions: Carbon Tunneling or Diradical Formation? A Contest between Jahn-Teller and Hund.

    Science.gov (United States)

    Kozuch, Sebastian

    2015-07-14

    The π bond shifting (automerization) by carbon tunneling of cyclopropenyl anions was computationally analyzed by the small curvature tunneling methodology. Similar to other antiaromatic cases, the process is hindered by substituents departing from planarity, since these groups must be realigned along with the π bond shifting. With hydrogens as substituents the tunneling is extremely fast, in a case of both heavy and light atom tunneling. But, with more massive substituents (such as Me and F), and especially with longer groups (such as CN), the tunneling probability is reduced or even virtually canceled. The automerization of triphenylcyclopropyl anion by tunneling was supposed to be impossible due to the high mass of the phenyl groups. However, it was found that the ground state of this species is actually a D3h aromatic triplet, a single-well system that cannot undergo automerization. For this and other systems with π acceptor groups, the superposition of states that generates the second-order Jahn-Teller distortion is diminished, and by Hund's rule, the triplet results in the ground state.

  8. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    Science.gov (United States)

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  9. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  10. Hydrogen-Bonded Polymer-Small Molecule Complexes with Tunable Mechanical Properties.

    Science.gov (United States)

    Liu, Tianqi; Peng, Xin; Chen, Ya-Nan; Bai, Qing-Wen; Shang, Cong; Zhang, Lin; Wang, Huiliang

    2018-03-13

    A novel type of polymeric material with tunable mechanical properties is fabricated from polymers and small molecules that can form hydrogen-bonded intermolecular complexes (IMCs). In this work, poly(vinyl alcohol) (PVA)-glycerol hydrogels are first prepared, and then they are dried to form IMCs. The tensile strengths and moduli of IMCs decrease dramatically with increasing glycerol content, while the elongations increase gradually. The mechanical properties are comparable with or even superior to those of common engineering plastics and rubbers. The IMCs with high glycerol content also show excellent flexibility and cold-resistance at subzero temperatures. Cyclic tensile and stress relaxation tests prove that there is an effective energy dissipation mechanism in IMCs and dynamic mechanical analysis confirms their physical crosslinking nature. FTIR and NMR characterizations prove the existence of hydrogen bonding between glycerol and PVA chains, which suppresses the crystallization of PVA from X-ray diffraction measurement. These PVA-glycerol IMCs may find potential applications in barrier films, biomedical packaging, etc., in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  12. Density of states and tunneling characteristics of layered superconductors

    International Nuclear Information System (INIS)

    Liu, S.H.; Klemm, R.A.

    1993-04-01

    We have studied the structure of the density-of-states (DOS) curves and tunneling characteristics of layered superconductors with two distinct layers in a unit cell. In general, the peaks of the DOS curves do not correspond to energy gaps of each layer, but depend on the gaps and the interlayer hopping strengths in a complex manner. This makes the interpretation of tunneling data of layered superconductors much less straightforward than isotropic superconductors. Our simulated tunneling characteristics bear certain resemblance to experimental results

  13. Entropy and complexity analysis of hydrogenic Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rosa, S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Aplicada II, Universidad de Sevilla, 41012-Sevilla (Spain); Toranzo, I. V.; Dehesa, J. S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Sanchez-Moreno, P. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Matematica Aplicada, Universidad de Granada, 18071-Granada (Spain)

    2013-05-15

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Cramer-Rao, Fisher-Shannon, and Lopez Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n- 1), and quasicircular (l=n- 2) states is explicitly done.

  14. Vibrational transitions in hydrogen bonded bimolecular complexes – A local mode perturbation theory approach to transition frequencies and intensities

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Kjærgaard, Henrik Grum

    2017-01-01

    The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...

  15. Affinity capture of biotinylated proteins at acidic conditions to facilitate hydrogen/deuterium exchange mass spectrometry analysis of multimeric protein complexes

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Jørgensen, Thomas J. D.; Koefoed, Klaus

    2013-01-01

    Characterization of conformational and dynamic changes associated with protein interactions can be done by hydrogen/deuterium exchange mass spectrometry (HDX-MS) by comparing the deuterium uptake in the bound and unbound state of the proteins. Investigation of local hydrogen/deuterium exchange...... in heteromultimeric protein complexes poses a challenge for the method due to the increased complexity of the mixture of peptides originating from all interaction partners in the complex. Previously, interference of peptides from one interaction partner has been removed by immobilizing the intact protein on beads...... complexes without interference of peptides originating from other interaction partners in the complex. The biotin-streptavidin strategy has been successfully implemented in a model system with two recombinant monoclonal antibodies that target nonoverlapping epitopes on the human epidermal growth factor...

  16. Multi-arrangement quantum dynamics in 6D: cis-trans isomerization and 1,3-hydrogen transfer in HONO

    International Nuclear Information System (INIS)

    Luckhaus, David

    2004-01-01

    The overtone spectrum and wave packet dynamics of nitrous acid (HONO) are studied with a global six-dimensional potential energy function interpolated directly from density functional calculations together with the corresponding dipole hypersurfaces. The quantum dynamics for the cis-trans isomerization and the symmetric 1,3-hydrogen transfer are treated in full dimensionality in terms of the generalized Z-matrix discrete variable representation. For the quantum mechanical description of complicated rearrangements a new approach to multi-arrangement quantum dynamics is introduced and applied to the symmetric hydrogen exchange tunneling in cis-HONO. The cis-trans isomerization is found to be dominated by adiabatic barrier crossing with only minor tunneling contributions, but with pronounced mode selectivity. The OH-stretching overtones of trans-HONO are adiabatically almost completely separated from the OH torsional dynamics with extremely slow intramolecular energy redistribution. The 1,3-hydrogen transfer, by contrast, proceeds largely via coherent tunneling even significantly below the barrier. The process is clearly non-adiabatic (at least in terms of valence coordinates) but remains highly state specific. While the absorption spectrum of trans-HONO remains largely unaffected, OH-stretching overtones of cis-HONO (above the barrier between 2ν OH and 3ν OH ) decompose into highly fragmented absorption patterns with corresponding tunneling periods on the picosecond time scale

  17. Technology and application of 3D tunnel information monitoring

    Science.gov (United States)

    Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin

    2015-12-01

    It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.

  18. Synthesis and structure of ketene complexes of permethylzirconocene and their hydrogenation to zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E.J.; Straus, D.A.; Armantrout, J.; Santarsiero, B.D.; Grubbs, R.H.; Bercaw, J.E.

    1983-04-06

    The reduction of carbon monoxide by Cp*/sub 2/ZrH/sub 2/ (1, Cp* = n/sup 5/-C/sub 5/Me/sub 5/) is complex and yields a variety of products depending on reaction conditions. Whereas the mechanism leading to trans-(Cp*/sub 2/ZrH)/sub 2/(..mu..-OCH=CHO) from 1 and free CO is relatively well established, the steps leading to cis-(Cp*/sub 2/ZrH)/sub 2/(..mu..-OCH=CHO) (4) from 1, Cp*/sub 2/Zr(CO)/sub 2/ (2), and H/sub 2/ are largely speculative. The favored scheme involves initial attack of 1 at a carbonyl ligand of 2 followed by carbene-carbonyl coupling affording coordinated ''zirconoxy'' ketene 3, which undergoes hydrogenation to 4. The cis geometry of this enediolate product was proposed to result from (i) the structure of 3 in which the bulky Cp*/sub 2/ZrO moieties are sterically constrained in a cis arrangement and (ii) its stereospecific hydrogenation to 4. Recently a general route to titanocene and zirconocene ketene complexes, dehydrohalogenation of haloacyl compounds, has been developed. Application of this methodology to the permethylzirconocene system has led to isolation of monomeric, Lewis base adducts of Cp*/sub 2/Zr(C,O-n/sup 2/-R/sub 2/C=CO). Here the results of a structure determination for Cp*/sub 2/Zr(py)(C,O-n/sup 2/-H/sub 2/C=CO) (py = pyridine) and the stereochemistry of the hydrogenation of the tert-butyl ketene complex, which bears on the proposed CO reduction mechanism are reported.

  19. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Science.gov (United States)

    Poznański, Jarosław; Poznańska, Anna; Shugar, David

    2014-01-01

    Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  20. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.

    Science.gov (United States)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Chen, Jie-Zhi; ManduLa, Huhe; Zhang, Yan-Yang; Yang, Shen-Yuan; Jiang, Xiang-Wei

    2018-02-21

    The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm -1 and 1652 μA μm -1 , respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm -1 and 1368 μA μm -1 , respectively, which is closer to realistic nanodevices.

  1. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot

    Science.gov (United States)

    Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2018-05-01

    We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.

  2. N₂reduction and hydrogenation to ammonia by a molecular iron-potassium complex.

    Science.gov (United States)

    Rodriguez, Meghan M; Bill, Eckhard; Brennessel, William W; Holland, Patrick L

    2011-11-11

    The most common catalyst in the Haber-Bosch process for the hydrogenation of dinitrogen (N(2)) to ammonia (NH(3)) is an iron surface promoted with potassium cations (K(+)), but soluble iron complexes have neither reduced the N-N bond of N(2) to nitride (N(3-)) nor produced large amounts of NH(3) from N(2). We report a molecular iron complex that reacts with N(2) and a potassium reductant to give a complex with two nitrides, which are bound to iron and potassium cations. The product has a Fe(3)N(2) core, implying that three iron atoms cooperate to break the N-N triple bond through a six-electron reduction. The nitride complex reacts with acid and with H(2) to give substantial yields of N(2)-derived ammonia. These reactions, although not yet catalytic, give structural and spectroscopic insight into N(2) cleavage and N-H bond-forming reactions of iron.

  3. Tunnel Vision in Environmental Management.

    Science.gov (United States)

    Miller, Alan

    1982-01-01

    Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…

  4. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  5. Entropy and complexity analysis of hydrogenic Rydberg atoms

    International Nuclear Information System (INIS)

    López-Rosa, S.; Toranzo, I. V.; Dehesa, J. S.; Sánchez-Moreno, P.

    2013-01-01

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Crámer-Rao, Fisher-Shannon, and López Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n− 1), and quasicircular (l=n− 2) states is explicitly done.

  6. High tunnels: protection for rather than from insect pests?

    Science.gov (United States)

    Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E

    2017-12-01

    High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor.

    Directory of Open Access Journals (Sweden)

    Jarosław Poznański

    Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.

  8. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  9. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    Science.gov (United States)

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  10. Ultraviolet photoemission spectroscopy of hydrogen complex deactivation on InP:Zn(1 0 0) surfaces

    International Nuclear Information System (INIS)

    Williams, M.D.; Williams, S.C.; Yasharahla, S.A.; Jallow, N.

    2007-01-01

    Ultraviolet photoemission spectroscopy is used to study the kinetics of the H-Zn complex deactivation in Zn doped InP(1 0 0). Hydrogen injected into the material electronically passivates the local carrier concentration. Reverse-biased anneals of the InP under ultra-high vacuum show a dramatic change in the work function of the material with increasing temperature. Spectral features are also shown to be sensitive to sample temperature. To our knowledge, we show the first view of hydrogen retrapping at the surface using photoemission spectroscopy. A simple photoelectron threshold energy analysis shows the state of charge compensation of the material

  11. Tunneling time through a barrier using the tempus operator

    Energy Technology Data Exchange (ETDEWEB)

    Kobe, Donald H.; Aguilera-Navarro, Valdir C. [North Texas Univ., Denton, TX (United States). Dept. of Physics

    1996-11-01

    The time a particle spends in a classically forbidden region of a potential barrier is expressed as an expectation value of the time operator in that region. Classically, time is canonically conjugate to the energy and is equal to the time a conservative system. The tunneling time is calculated by this approach for a rectangular barrier, which gives a complex time. The imaginary part of the time is non negative, so it is interpreted as a tunneling time. The real part gives a negative value for some values of the parameters, and is therefore rejected because it violates causality. This tunneling time is compared with other tunneling times that have been suggested by also calculating them for the rectangular barrier. 58 refs., 7 figs.

  12. Tunneling time through a barrier using the tempus operator

    International Nuclear Information System (INIS)

    Kobe, Donald H.; Aguilera-Navarro, Valdir C.

    1996-11-01

    The time a particle spends in a classically forbidden region of a potential barrier is expressed as an expectation value of the time operator in that region. Classically, time is canonically conjugate to the energy and is equal to the time a conservative system. The tunneling time is calculated by this approach for a rectangular barrier, which gives a complex time. The imaginary part of the time is non negative, so it is interpreted as a tunneling time. The real part gives a negative value for some values of the parameters, and is therefore rejected because it violates causality. This tunneling time is compared with other tunneling times that have been suggested by also calculating them for the rectangular barrier. 58 refs., 7 figs

  13. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  14. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...

  15. Comparison between Hydrogen and Methane Fuels in a 3-D Scramjet at Mach 8

    Science.gov (United States)

    2016-06-24

    scramjet using a cavity based flame holder in the T4 shock tunnel at The University of Queensland, as well as a companion fundamental CFD study. The...shock tunnel. 15. SUBJECT TERMS Airbreathing Engines, Hypersonics , Propulsion, AOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Report Comparison between hydrogen, methane and ethylene fuels in a 3-D Scramjet at Mach 8 Professor Michael K. Smart Chair of Hypersonic Propulsion

  16. Transformation from layered to tunnel structures: Synthesis, characterization, and applications of manganese oxide octahedral molecular sieves

    Science.gov (United States)

    Xia, Guan-Guang

    Manganese oxide based octahedral molecular sieves (OMS) have been found to have a wide variety of applications as catalysts, absorbents, and battery materials due to their unique structures and physical and chemical properties. OMS materials are made up of manganese oxide octahedral building blocks sharing comers and edges to form tunnel structures. Manganese species in the framework of OMS materials are mixed valent with various ion-exchangeable cations residing in the tunnels playing important roles in charge balancing and special chemical activities. With different synthetic parameters such as the template used, temperature, pressure, and the pH of the synthetic media, layered birnessite materials were hydrothermally transformed into distinct tunnel structures with different tunnel sizes, including Mg-3x3 (OMS-1), NH4-2x2 (NH4-OMS-2), Na-2x4 (OMS-5), and other manganese oxides. Characterization of the OMS materials with a wide variety of instruments has revealed that most of them are nano-fibrous hollow crystals ith large surface areas, high ion-exchange capabilities, and relatively high thermal stabilities. The Na-2x4 tunnel structure sodium MnOx has been synthesized for the first time and studied in detail, including synthetic strategies, structural analyses, and other physical and chemical property analyses. As catalysts, the synthetic OMS materials show high catalytic activities and shape-selective properties. For example, the results of the competitive oxidation of cycloalkanes with tertiary butyl hydrogen peroxide (TBHP) over different tunnel sized ONIS materials have proven that the OMS materials with larger tunnels are more favorable for the oxidation of the biggest molecule, cyclooctane, than the smallest one, cyclohexane. Besides the tunnel size effects, tunnel cations in the OMS materials also have influences on their catalytic activities. The study of carbon monoxide cleanup for fuel cell applications demonstrates that Ag-OMS-2 (a hollandite

  17. Kinetics of Oxidation of Cobalt(III Complexes of a Acids by Hydrogen Peroxide in the Presence of Surfactants

    Directory of Open Access Journals (Sweden)

    Mansur Ahmed

    2008-01-01

    Full Text Available Hydrogen peroxide oxidation of pentaamminecobalt(III complexes of α-hydroxy acids at 35°C in micellar medium has been attempted. In this reaction the rate of oxidation shows first order kinetics each in [cobalt(III] and [H2O2]. Hydrogen peroxide induced electron transfer in [(NH35 CoIII-L]2+ complexes of α-hydroxy acids readily yields 100% of cobalt(II with nearly 100% of C-C bond cleavage products suggesting that it behaves mainly as one equivalent oxidant in micellar medium. With unbound ligand also it behaves only as C-C cleavage agent rather than C-H cleavage agent. With increasing micellar concentration an increase in the rate is observed.

  18. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  19. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    International Nuclear Information System (INIS)

    Radosavljević, Sanja; Radovanović, Jelena; Milanović, Vitomir

    2016-01-01

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  20. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljević, Sanja [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Photonics Research Group, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Radovanović, Jelena, E-mail: radovanovic@etf.bg.ac.rs [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia)

    2016-12-09

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  1. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  2. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    Science.gov (United States)

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  3. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    Energy Technology Data Exchange (ETDEWEB)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  4. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  5. First principles studies of electron tunneling in proteins

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  6. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  7. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  8. N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex

    Science.gov (United States)

    Rodriguez, Meghan M.; Bill, Eckhard; Brennessel, William W.; Holland, Patrick L.

    2011-01-01

    The most common catalyst in the Haber-Bosch process for the hydrogenation of dinitrogen (N2) to ammonia is an iron surface promoted with K+, but soluble iron complexes have neither reduced the N-N bond of N2 to nitride nor produced large amounts of NH3 from N2. We report a molecular iron complex that reacts with N2 and a potassium reductant to give a complex with two nitrides, which are bound to iron and potassium cations. The product has a Fe3N2 core, implying that three iron atoms cooperate to break the N-N triple bond through a six-electron reduction. The nitride complex reacts with acid and with H2 to give substantial yields of N2-derived ammonia. These reactions, though not yet catalytic, give structural and spectroscopic insight into N2 cleavage and N-H bond-forming reactions of iron. PMID:22076372

  9. Historical review and future perspectives for Pilot Transonic Wind Tunnel of IAE

    Directory of Open Access Journals (Sweden)

    João Batista P. Falcão Filho

    2009-01-01

    Full Text Available The Pilot Transonic Wind Tunnel of Institute of Aeronautics and Space (PTT Pilot Transonic Wind Tunnel is an important result of a tremendous effort to install a high speed wind tunnel complex (TTS acronyms for Transonic and Supersonic Tunnels, in Portuguese at the IAE, to support Brazilian aerospace research. Its history is described below, starting from the moment the TTS project was first conceived, highlighting each successive phase, mentioning the main difficulties encountered, and the solutions chosen, up until the final installation of the Pilot facility. A brief description of the tunnel's shakedown and calibration phases is also given, together with the present campaigns and proposed activities for the near future.

  10. Protein Tunnels: The Case of Urease Accessory Proteins.

    Science.gov (United States)

    Musiani, Francesco; Gioia, Dario; Masetti, Matteo; Falchi, Federico; Cavalli, Andrea; Recanatini, Maurizio; Ciurli, Stefano

    2017-05-09

    Transition metals are both essential micronutrients and limited in environmental availability. The Ni(II)-dependent urease protein, the most efficient enzyme known to date, is a paradigm for studying the strategies that cells use to handle an essential, yet toxic, metal ion. Urease is a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Ni(II) insertion in the urease active site is performed through the action of three essential accessory proteins: UreD, UreF, and UreG. The crystal structure of the UreD-UreF-UreG complex from the human pathogen Helicobacter pylori (HpUreDFG) revealed the presence of tunnels that cross the entire length of both UreF and UreD, potentially able to deliver Ni(II) ions from UreG to apo-urease. Atomistic molecular dynamics simulations performed on the HpUreDFG complex in explicit solvent and at physiological ionic conditions demonstrate the stability of these protein tunnels in solution and provide insights on the trafficking of water molecules inside the tunnels. The presence of different alternative routes across the identified tunnels for Ni(II) ions, water molecules, and carbonate ions, all involved in urease activation, is highlighted here, and their potential role in the urease activation mechanism is discussed.

  11. Low temperature ultrasonic study of hydrogen in niobium

    International Nuclear Information System (INIS)

    Poker, D.B.

    1979-01-01

    Measurements were made of the velocity and attenuation of ultrasonic waves in niobium containing 1000 ppM oxygen with additional concentrations of hydrogen, to determine the properties of a relaxation of the hydrogen which appears below 10 K. Measurements were made as a function of temperature, frequency, polarization of the ultrasonic wave, hydrogen isotope, and concentration of hydrogen and oxygen. The Birnbaum--Flynn model of hydrogen tunnelling is modified to take into account the trapping of hydrogen by interstitial impurities. An Orbach process is proposed for a relaxation between the degenerate first excited states. Three parameters which are determined by the hydrogen ultrasonic attenuation data are sufficient to describe the properties of this model. The model correctly predicts the presence of unusual features of the relaxation which are not contained in a classical model of hydrogen motion over a potential barrrier; the decrease of the hydrogen relaxation strength at low temperatures, the decrease in velocity below the relaxation temperature without a corresponding effect in the attenuation, and the broadness of the deuterium decrement peak compared to that for hydrogen. A reasonable fit to the velocity data for low concentration of hydrogen is made by the model with no adjustable parameters. A fit to the heat capacity can be made with the addition of parameters representing the strain effects of the oxygen trapping

  12. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  13. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels.

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan Qureshi

    Full Text Available Radio propagation models (RPMs are generally employed in Vehicular Ad Hoc Networks (VANETs to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels. For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.

  14. Involvement of hydrogen-vacancy complexes in the baking effect of niobium cavities

    Directory of Open Access Journals (Sweden)

    B. Visentin

    2010-05-01

    Full Text Available Baking is necessary to improve high accelerating gradient performances of superconducting niobium cavities. Ten years after this discovery in 1998, the understanding of this effect still resists a lot of theoretical explanations. For the first time, positron annihilation spectroscopy performed on niobium samples reveals the increase after baking of positrons trapped under the Nb surface. Presence of hydrogen-vacancy complexes and their dissociation by baking could both explain rf losses observed at high fields (Q drop and its cure (baking effect.

  15. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  16. Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8

    Science.gov (United States)

    2016-06-24

    scramjet using a cavity based flame holder in the T4 shock tunnel at The University of Queensland, as well as a companion fundamental CFD study. The...shock tunnel. 15. SUBJECT TERMS Airbreathing Engines, Hypersonics , Propulsion, AOARD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Report Comparison between hydrogen, methane and ethylene fuels in a 3-D Scramjet at Mach 8 Professor Michael K. Smart Chair of Hypersonic Propulsion

  17. Strong and weak hydrogen bonds in drug–DNA complexes

    Indian Academy of Sciences (India)

    The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O−H···O and N−H···O, the ubiquitous presence of weak hydrogen bonds such as C−H···O is implicated in molecular ...

  18. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    Science.gov (United States)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  19. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  20. Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy

    Science.gov (United States)

    Brauer, G.; Anwand, W.; Grambole, D.; Grenzer, J.; Skorupa, W.; Čížek, J.; Kuriplach, J.; Procházka, I.; Ling, C. C.; So, C. K.; Schulz, D.; Klimm, D.

    2009-03-01

    A systematic study of various, nominally undoped ZnO single crystals, either hydrothermally grown (HTG) or melt grown (MG), has been performed. The crystal quality has been assessed by x-ray diffraction, and a comprehensive estimation of the detailed impurity and hydrogen contents by inductively coupled plasma mass spectrometry and nuclear reaction analysis, respectively, has been made also. High precision positron lifetime experiments show that a single positron lifetime is observed in all crystals investigated, which clusters at 180-182 ps and 165-167 ps for HTG and MG crystals, respectively. Furthermore, hydrogen is detected in all crystals in a bound state with a high concentration (at least 0.3at.% ), whereas the concentrations of other impurities are very small. From ab initio calculations it is suggested that the existence of Zn-vacancy-hydrogen complexes is the most natural explanation for the given experimental facts at present. Furthermore, the distribution of H at a metal/ZnO interface of a MG crystal, and the H content of a HTG crystal upon annealing and time afterward has been monitored, as this is most probably related to the properties of electrical contacts made at ZnO and the instability in p -type conductivity observed at ZnO nanorods in literature. All experimental findings and presented theoretical considerations support the conclusion that various types of Zn-vacancy-hydrogen complexes exist in ZnO and need to be taken into account in future studies, especially for HTG materials.

  1. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not

  2. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases

    OpenAIRE

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-01-01

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the c...

  3. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  4. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand

    KAUST Repository

    Pan, Yupeng

    2016-04-22

    An unsymmetrically protonated PN3-pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. Grabbing hold: A PN3-pincer complex was employed for the selective hydrogen generation from formic acid. Mechanistic studies suggest the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  6. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    Science.gov (United States)

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  8. Anion-assisted trans-cis isomerization of palladium(II) phosphine complexes containing acetanilide functionalities through hydrogen bonding interactions.

    Science.gov (United States)

    Lu, Xiao-Xia; Tang, Hau-San; Ko, Chi-Chiu; Wong, Jenny Ka-Yan; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2005-03-28

    The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.

  9. Reactivity of hydrogen with uranium in the presence of Pt

    International Nuclear Information System (INIS)

    Balooch, M.; Siekhaus, W.J.

    1997-07-01

    The surface-reaction of di-hydrogen with uranium in the presence of Pt clusters has been studied using scanning tunneling microscopy (STM). Uranium was deposited on highly oriented pyrolytic graphite (HOPG) and annealed at temperatures up to 1200 degrees C to obtain atomically pyrolytic flat surfaces. Pt clusters were then formed using evaporation from a Pt source onto the surface and subsequent annealing. Hydrogen mainly attacked uranium in the vicinity of Pt clusters and formed hydride. The hydride formation probability is almost constant at 2.3x10 -4 over the range of exposures studied

  10. Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...

  11. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  12. Importance of complex band structure and resonant states for tunneling

    Czech Academy of Sciences Publication Activity Database

    Dederichs, P. H.; Mavropoulos, Ph.; Wunnicke, O.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Drchal, Václav; Kudrnovský, Josef

    2002-01-01

    Roč. 240, - (2002), s. 108-113 ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010829; GA ČR GA202/00/0122; GA MŠk OC P5.30 Grant - others:TSR(XX) 01398 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * tunneling * band structure * interface effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  13. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  14. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  15. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  16. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  17. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  18. Tunnelling of orbital angular momentum in parallel optical waveguides

    International Nuclear Information System (INIS)

    Alexeyev, C N; Fadeyeva, T A; Yavorsky, M A; Boklag, N A

    2011-01-01

    We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied

  19. Distinction of nuclear spin states with the scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  20. Tunneling molecular dynamics in the light of the corpuscular-wave dualism theory.

    Science.gov (United States)

    Latanowicz, L; Filipek, P

    2007-08-16

    This paper presents the experimental demonstration of the corpuscular-wave dualism theory. The correlation between the de Broglie wavelength related to the thermal motion and the potential barrier width and height is reported. The stochastic jumps of light atoms (hydrogen, deuterium) between two equilibrium sites A and B (identical geometry) occur via different pathways; one pathway is over the barrier (classical dynamics), and the other one is through the barrier (tunneling). On the over-the-barrier pathway, there are no obstacles for the de Broglie waves, and this pathway exists from high to low temperatures up to 0 K because the thermal energy is subjected to the Maxwell distribution and a certain number of particles owns enough energy for the hopping over the barrier. On the tunneling pathway, the particles pass through the barrier, or they are reflected from the barrier. Only particles with the energy lower than barrier heights are able to perform a tunneling hopping. The de Broglie waves related to these energies are longer than the barrier width. The Schrödinger equation is applied to calculate the rate constant of tunneling dynamics. The Maxwell distribution of the thermal energy has been taken into account to calculate the tunneling rate constant. The equations for the total spectral density of complex motion derived earlier by us together with the expression for the tunneling rate constant, derived in the present paper, are used in analysis of the temperature dependence of deuteron spin-lattice relaxation of the ammonium ion in the deuterated analogue of ammonium hexachloroplumbate ((ND4)2PbCl6). It has been established that the equation CpTtun = EH (thermal energy equals activation energy), where Cp is the molar heat capacity (temperature-dependent, known from literature), determines directly the low temperature Ttun at which the de Broglie wavelength, lambdadeBroglie, related to the thermal energy, CpT, is equal to the potential barrier width, L. Above

  1. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  2. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.

    Science.gov (United States)

    Wang, Wan-Hui; Suna, Yuki; Himeda, Yuichiro; Muckerman, James T; Fujita, Etsuko

    2013-07-14

    A series of highly functionalized cyclopentadienyl rhodium(III) complexes, [Cp'Rh(bpy)Br](ClO4) (Cp' = substituted cyclopentadienyl), was synthesized from various multi-substituted cyclopentadienes (Cp'H). [Rh(cod)Cl]2 and Cp'H were firstly converted to [Cp'Rh(cod)] complexes, which were then treated with Br2 to give the rhodium(III) dibromides [Cp'RhBr2]2. The novel complexes [Cp'Rh(bpy)Br](ClO4) were obtained readily by the reaction of 2,2'-bipyridine with [Cp'RhBr2]2. These rhodium complexes [Cp'Rh(bpy)Br](ClO4) were fully characterized and utilized in the hydrogenation of cyclohexanone and acetophenone with generally high yields, but they did not exhibit the same reactivity trends for the two substrate ketones. The different activity of these complexes for the different substrates may be due to the influence of the substituents on the Cp' rings.

  3. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  4. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  5. Numerical simulation of pollutant dispersion in urban roadway tunnels

    Directory of Open Access Journals (Sweden)

    Jingliang Dong

    2017-03-01

    Full Text Available Vehicular toxic emissions can easily contaminate the air quality of the enclosed tunnel environment, especially during rush hours with traffic jam events or low vehicle speeds, which poses serious health hazards to road utilizers. The piston effect generated by moving vehicles was normally considered adequate to discharge vitiated air out of short tunnel based on a typical driving speed. However, complex traffic conditions may yield unexpected consequences on in-tunnel air quality levels. This study numerically investigated the CO2 concentration to identify the in-tunnel pollutant dispersion under three traffic conditions including severe traffic congestion and traffic flow with low vehicle speeds. Fan conditions were considered to model the influence of mechanical winds on pollutant dispersion and comparison with vehicular piston effect was also performed. The results revealed elevated pollutant concentration regions were found at the vicinity of near-ground region and tunnel downstream. The vehicular piston effect can sufficiently remove the in-tunnel vehicular emissions when vehicles travel at relatively higher speed. However, pollutant accumulation occurs when vehicles are idling or moving at slow speed. Compared with traffic piston effect at high travelling speed, the mechanical ventilation of ceiling mounted fans only generate a limited contribution to the removal of emissions.

  6. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  7. On the role of electron quantum tunneling in charging of dust grains in complex plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.O.; Vladimirov, S.V.

    2011-01-01

    The aim of this work is calculate ion additional current associated with the quantum tunneling of plasma electrons, that are classically forbidden to overcome the repulsive potential barrier, onto the negatively charged grain. We compare this additional quantum tunneling current with the classical electron current from plasma onto the grain and analyze how this additional current affects the self-consistent equilibrium grain charge for different plasma parameters and grain sizes.

  8. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  9. Coexistance of Giant Tunneling Electroresistance and Magnetoresistance in an All-Oxide Composite Magnetic Tunnel Junction

    KAUST Repository

    Caffrey, Nuala Mai

    2012-11-30

    We propose, by performing advanced abinitio electron transport calculations, an all-oxide composite magnetic tunnel junction, within which both large tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects can coexist. The TMR originates from the symmetry-driven spin filtering provided by an insulating BaTiO3 barrier to the electrons injected from the SrRuO3 electrodes. Following recent theoretical suggestions, the TER effect is achieved by intercalating a thin insulating layer, here SrTiO3, at one of the SrRuO3/BaTiO3 interfaces. As the complex band structure of SrTiO3 has the same symmetry as that of BaTiO3, the inclusion of such an intercalated layer does not negatively alter the TMR and in fact increases it. Crucially, the magnitude of the TER also scales with the thickness of the SrTiO3 layer. The SrTiO3 thickness becomes then a single control parameter for both the TMR and the TER effect. This protocol offers a practical way to the fabrication of four-state memory cells. © 2012 American Physical Society.

  10. Coexistance of Giant Tunneling Electroresistance and Magnetoresistance in an All-Oxide Composite Magnetic Tunnel Junction

    KAUST Repository

    Caffrey, Nuala Mai; Archer, Thomas; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    We propose, by performing advanced abinitio electron transport calculations, an all-oxide composite magnetic tunnel junction, within which both large tunneling magnetoresistance (TMR) and tunneling electroresistance (TER) effects can coexist. The TMR originates from the symmetry-driven spin filtering provided by an insulating BaTiO3 barrier to the electrons injected from the SrRuO3 electrodes. Following recent theoretical suggestions, the TER effect is achieved by intercalating a thin insulating layer, here SrTiO3, at one of the SrRuO3/BaTiO3 interfaces. As the complex band structure of SrTiO3 has the same symmetry as that of BaTiO3, the inclusion of such an intercalated layer does not negatively alter the TMR and in fact increases it. Crucially, the magnitude of the TER also scales with the thickness of the SrTiO3 layer. The SrTiO3 thickness becomes then a single control parameter for both the TMR and the TER effect. This protocol offers a practical way to the fabrication of four-state memory cells. © 2012 American Physical Society.

  11. A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.

    Science.gov (United States)

    Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li

    2014-02-01

    A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.

  12. Isotope effects in the diffusion of hydrogen and deuterium in ferromagnetic binary alloys of the Cu3Au type

    International Nuclear Information System (INIS)

    Hirscher, M.; Maier, C.U.; Schwendemann, B.; Kronmueller, H.

    1989-01-01

    The diffusion behaviour of hydrogen and deuterium at low temperatures was investigated in ordered and disordered alloys of Ni 3 Fe, Ni 3 Mn, and Fe 3 Pt by means of magnetic after-effect (MAE) measurements. After hydrogen charging all specimens show characteristic MAE relaxation spectra, which can be described taking into account the different octahedral positions of the hydrogen atoms in the Cu 3 Au structure. The observed isotope effect can qualitatively be explained by a thermally activated tunnelling process of the hydrogen isotopes. (orig.)

  13. Hydrogen bonding in tight environments

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio

    2016-01-01

    The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...

  14. Iteratively-coupled propagating exterior complex scaling method for electron-hydrogen collisions

    International Nuclear Information System (INIS)

    Bartlett, Philip L; Stelbovics, Andris T; Bray, Igor

    2004-01-01

    A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schroedinger equation, for L ≤ 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources. (letter to the editor)

  15. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  16. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  17. Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.

    Science.gov (United States)

    Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato

    2013-06-01

    Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth

  18. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  19. Quantized acoustoelectric current in the presence of large tunneling counterflow

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Hansen, Jørn Bindslev

    2004-01-01

    A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate...... and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic...... interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire....

  20. Quantized acoustoelectric current in the presence of large tunneling counterflow

    International Nuclear Information System (INIS)

    Gloos, K.; Utko, P.; Lindelof, P.E.; Hansen, J. Bindslev

    2004-01-01

    A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire

  1. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    Science.gov (United States)

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  2. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  3. Hydrogen-Bonding Capability of a Templating Difluorotoluene Nucleotide Residue in an RB69 DNA Polymerase Ternary Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuangluo; Konigsberg, William H.; Wang, Jimin (Yale)

    2011-08-29

    Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 {angstrom}-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.

  4. Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes

    Science.gov (United States)

    Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.

    2014-01-01

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333

  5. Microwave measurements of the tropolone–formic acid doubly hydrogen bonded dimer

    Energy Technology Data Exchange (ETDEWEB)

    Pejlovas, Aaron M.; Kukolich, Stephen G. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Serrato, Agapito; Lin, Wei [Department of Chemistry, University of Texas Rio Grande Valley, Brownsville, Texas 78520 (United States)

    2016-01-28

    The microwave spectrum was measured for the doubly hydrogen bonded dimer formed between tropolone and formic acid. The predicted symmetry of this dimer was C{sub 2v}(M), and it was expected that the concerted proton tunneling motion would be observed. After measuring 25 a- and b-type rotational transitions, no splittings which could be associated with a concerted double proton tunneling motion were observed. The calculated barrier to the proton tunneling motion is near 15 000 cm{sup −1}, which would likely make the tunneling frequencies too small to observe in the microwave spectra. The rotational and centrifugal distortion constants determined from the measured transitions were A = 2180.7186(98) MHz, B = 470.873 90(25) MHz, C = 387.689 84(22) MHz, D{sub J} = 0.0100(14) kHz, D{sub JK} = 0.102(28) kHz, and D{sub K} = 13.2(81) kHz. The B3LYP/aug-cc-pVTZ calculated rotational constants were within 1% of the experimentally determined values.

  6. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    International Nuclear Information System (INIS)

    Herman, Michael F.

    2015-01-01

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p 0 * , at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results

  7. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Michael F. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.

  8. Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    An, Wei, E-mail: weian@sues.edu.cn; Men, Yong; Wang, Jinguo

    2017-02-01

    Highlights: • Hydrogenation of propanal is kinetically much faster on Ni(111) than Cu(111). • Hydroxyl route is prefered over alkoxy route on Ni(111). • Alkoxy route is prefered over hydroxyl route on Cu(111). • Activation barrier for hydrogenation of carbonyl is lowered by H-tunneling effect. • η{sup 2}(C,O)-adsorption mode is beneficial for hydrogenation/dehydrogenation of aldehyde. - Abstract: Using propanal as a probe molecule, we have comparatively investigated hydrogenation of carbonyl (C=O) in short carbon-chain aldehyde on Ni(111) and Cu(111) by means of periodic density functional theory. Our focus is in particular on the differentiation of reaction route in sequential hydrogenation on Ni(111) and Cu(111) following Langmuir–Hinshelwood mechanism. Strong binding with alkoxy intermediates has great impact on altering reaction pathways on the two surfaces, where hydroxyl route via 1-hydroxyl propyl intermediate is dominant on Ni(111), but alkoxy route via propoxyl intermediate is more likely on Cu(111) due to a higher activiation barrier of initial hydrogenation in hydroxyl route. In comparison, hydrogenation of carbonyl on Ni(111) is kinetically much faster than that on Cu(111) as a result of much lower activation barrier in rate-determining step (i.e., 13.2 vs 26.8 kcal/mol) of most favorable reaction pathways. Furthermore, the discrepancy in calculated and experimental barriers can be well explained by using the concept of H-tunneling effect on bond forming with H atoms during sequential hydrogenation. The different features of electronic structure exhibited by the two metal surfaces provide insight into their catalytic behaviors.

  9. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    Science.gov (United States)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  10. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  11. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  12. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  13. Theory of superconducting tunneling without the tunneling Hamiltonian

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling

  14. Symmetric bi-pyridyl banana-shaped molecule and its intermolecular hydrogen bonding liquid-crystalline complexes

    Science.gov (United States)

    Sui, Dan; Hou, Qiufei; Chai, Jia; Ye, Ling; Zhao, Liyan; Li, Min; Jiang, Shimei

    2008-11-01

    A new symmetric bi-pyridyl banana-shaped molecule 1,3-phenylene diisonicotinate (PDI) was designed and synthesized. Its molecular structure was confirmed by FTIR, Elemental analysis and 1H NMR. X-ray crystallographic study reveals that there is an angle of approximate 118° among the centroids of the three rings (pyridyl-phenyl-pyridyl) in each PDI molecule indicating a desired banana shape. In addition, a series of liquid crystal complexes nBA:PDI:nBA induced by intermolecular hydrogen bonding between PDI (proton acceptor) and 4-alkoxybenzoic acids (nBA, proton donor) were synthesized and characterized. The mesomorphism properties and optical textures of the complex of nBA:PDI:nBA were investigated by differential scanning calorimetry, polarizing optical microscope and X-ray diffraction.

  15. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  16. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    Science.gov (United States)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  17. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  18. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  19. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  20. Investigation of non-collinear spin states with scanning tunneling microscopy.

    Science.gov (United States)

    Wulfhekel, W; Gao, C L

    2010-03-05

    Most ferromagnetic and antiferromagnetic substances show a simple collinear arrangement of the local spins. Under certain circumstances, however, the spin configuration is non-collinear. Scanning tunneling microscopy with its potential atomic resolution is an ideal tool for investigating these complex spin structures. Non-collinearity can be due to topological frustration of the exchange interaction, due to relativistic spin-orbit coupling or can be found in excited states. Examples for all three cases are given, illustrating the capabilities of spin-polarized scanning tunneling microscopy.

  1. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  2. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  3. New Ru(II)N'NN'-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO_2 or bicarbonates to formate salts

    International Nuclear Information System (INIS)

    Zengjin Dai; Qi Luo; Hengjiang Cong; Jing Zhang; Tianyou Peng

    2017-01-01

    [RuCl(L1)(MeCN)_2]Cl (1) and [RuCl(L2)(MeCN)_2]Cl (2) complexes were prepared through the reaction of [RuCl2(p-cymene)]_2 with 2,6-bis(benzimidazole-2-yl)-4-hydroxy-pyridine (L1) or 2,6-bis(benzimidazole- 2-yl) pyridine (L2) in acetonitrile, respectively. The treatment of [Ru(OTf)(L2)(MeCN)_2]OTf (3) with 1 equivalent of PPh_3 in ethanol resulted in the formation of [Ru(L2"-"1)(MeCN)(PPh_3)_2]OTf (4), in which one of the N-H moieties of L2 is deprotonated to give an anionic ligand (L2"-"1). It was found that complex 1 can catalyze the hydrogenation of CO_2 to formate salts, producing sodium formate in 34.0% yield with a turnover number (TON) of 407 under the optimized conditions. Further investigations revealed that complexes 1-4 can efficiently catalyze the hydrogenation of sodium bicarbonate to sodium formate, and the catalytic activity follows the order 4 ≥ 1 ≥ 2 ≅ 3. In particular, sodium formate was obtained in good yield (77%) with a high TON (1530) when complex 4 was used as the catalyst. The present results illustrate a new example of Ru(II) complexes bearing a rigid N'NN' framework for the efficient hydrogenation of CO_2 to formate salts in a homogeneous system. (authors)

  4. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  5. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Communication: Isotopic effects on tunneling motions in the water trimer

    International Nuclear Information System (INIS)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.

    2016-01-01

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H 2 O] 3 and [D 2 O] 3 , at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H 2 O] 3 than in [D 2 O] 3 . Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments

  7. Fast magnetization tunneling in tetranickel(II) single-molecule magnets.

    Science.gov (United States)

    Yang, En-Che; Wernsdorfer, Wolfgang; Zakharov, Lev N; Karaki, Yoshitomo; Yamaguchi, Akira; Isidro, Rose M; Lu, Guo-Di; Wilson, Samuel A; Rheingold, Arnold L; Ishimoto, Hidehiko; Hendrickson, David N

    2006-01-23

    A series of Ni(4) cubane complexes with the composition [Ni(hmp)(ROH)Cl](4) complexes 1-4 where R= -CH(3) (complex 1), -CH(2)CH(3) (complex 2), -CH(2)CH(2)(C(4)H(9)) (complex 3), -CH(2)CH(2)CH(2)(C(6)H(11)) (complex 4), hmp(-) is the anion of 2-hydroxymethylpyridine, t-Buhmp(-) is the anion of 4-tert-butyl-2-hydroxymethylpyridine, and dmb is 3,3-dimethyl-1-butanol] and [Ni(hmp)(dmb)Br](4) (complex 5) and [Ni(t-Buhmp)(dmb)Cl](4) (complex 6) were prepared. All six complexes were characterized by dc magnetic susceptibility data to be ferromagnetically coupled to give an S = 4 ground state with significant magnetoanisotropy (D approximately equal to -0.6 cm(-1)). Magnetization hysteresis measurements carried out on single crystals of complexes 1-6 establish the single-molecule magnet (SMM) behavior of these complexes. The exchange bias observed in the magnetization hysteresis loops of complexes 1 and 2 is dramatically decreased to zero in complex 3, where the bulky dmb ligand is employed. Fast tunneling of magnetization is observed for the high-symmetry (S(4) site symmetry) Ni(4) complexes in the crystal of complex 3, and the tunneling rate can even be enhanced by destroying the S(4) site symmetry, as is the case for complex 4, where there are two crystallographically different Ni(4) molecules, one with C(2) and the other with C(1) site symmetry. Magnetic ordering temperatures due to intermolecular dipolar and magnetic exchange interactions were determined by means of very low-temperature ac susceptibility measurements; complex 1 orders at 1100 mK, complex 3 at 290 mK, complex 4 at approximately 80 mK, and complex 6 at lower temperatures for those complexes with the bulkiest ligands.

  8. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.

    Science.gov (United States)

    Yang, Jenny Y; Smith, Stuart E; Liu, Tianbiao; Dougherty, William G; Hoffert, Wesley A; Kassel, W Scott; Rakowski DuBois, M; DuBois, Daniel L; Bullock, R Morris

    2013-07-03

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0) complex [Ni(P(Cy)2N(t-Bu)2H)2](BF4)2. Using the pKa values and Ni(II/I) and Ni(I/0) redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(P(Cy)2N(t-Bu)2)2](2+) was determined to be -7.9 kcal mol(-1). The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s(-1) is observed at 23 °C.

  9. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    . To accomplish tight binding of both proteins the PS1 subunit PsaE was genetically fused to the C-terminal end of the small subunit of MBH, i.e. close to the electron acceptor site of MBH. This fusion protein spontaneously assembled with the PsaE-deletion mutant of PS1. Crucial for a high hydrogen evolution rate of the system is an efficient electron transfer between both proteins. To allow this measurement, the PsaE-deletion mutant of PS1 was immobilized on a Ni-NTAterminated monolayer via a genetically introduced His-tag. The specificity of the assembly of fusion protein and deletion mutant was verified by SEIRAS. Surface plasmon resonance, gas chromatography and electrochemistry complemented this measurement and yielded the specific activity of the functional hybrid complex: 4500 mol H{sub 2} min{sup -1} mol{sup -1}. The investigated complex allowed hydrogen evolution at potentials up to 85 mV, i.e. hydrogen production at a lower energy level than on a platinum electrode. In addition, the hydrogen production rate was higher than for hydrogenase-modified electrodes without PS1. Beyond these specific results, the experimental setup can be used to quantify the hydrogen evolution rate on a molecular level for variable hydrogenases and hybrid complexes. This information will be used to choose the most efficient catalysts for introduction into the native system for in vivo hydrogen production. (orig.)

  10. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  11. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  12. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  13. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  14. Shock Tunnel Studies of Scramjet Phenomena 1993

    Science.gov (United States)

    Stalker, R. J.; Bakos, R. J.; Morgan, R. G.; Porter, L.; Mee, D.; Paull, A.; Tuttle, S.; Simmons, J. M.; Wendt, M.; Skinner, K.

    1995-01-01

    Reports by the staff of the University of Queensland on various research studies related to the advancement of scramjet technology and hypervelocity pulse test facilities are presented. These reports document the tests conducted in the reflected shock tunnel T4 and supporting research facilities that have been used to study the injection, mixing, and combustion of hydrogen fuel in generic scramjets at flow conditions typical of hypersonic flight. In addition, topics include the development of instrumentation and measurement technology, such as combustor wall shear and stream composition in pulse facilities, and numerical studies and analyses of the scramjet combustor process and the test facility operation. This research activity is Supplement 10 under NASA Grant NAGw-674.

  15. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  16. 1,8-Naphthyridine-2,7-diamine: a potential universal reader of Watson-Crick base pairs for DNA sequencing by electron tunneling.

    Science.gov (United States)

    Liang, Feng; Lindsay, Stuart; Zhang, Peiming

    2012-11-21

    With the aid of Density Functional Theory (DFT), we designed 1,8-naphthyridine-2,7-diamine as a recognition molecule to read DNA base pairs for genomic sequencing by electron tunneling. NMR studies show that it can form stable triplets with both A : T and G : C base pairs through hydrogen bonding. Our results suggest that the naphthyridine molecule should be able to function as a universal base pair reader in a tunneling gap, generating distinguishable signatures under electrical bias for each of DNA base pairs.

  17. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  18. Technologies for the Detection and Monitoring of Clandestine Underground Tunnels, Fall 2007 - Project 07-03

    Science.gov (United States)

    2008-01-01

    entrepreneurial skills, and provide microfinance loans to them to start new businesses.178 These initiatives can help provide more opportunities for Mexican... tubes from a tunnel complex.”192 On December 15, 2007, the U.S. military reported that a search operation northwest of Baghdad discovered tunnels with

  19. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  20. Reverse degradation of nickel graphene junction by hydrogen annealing

    Directory of Open Access Journals (Sweden)

    Zhenjun Zhang

    2016-02-01

    Full Text Available Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C is an effective technique to reverse the degradation.

  1. Rock mass evaluation for predicting tunnel constructability in the preliminary investigation stage. Phenomena causing difficult tunneling and rockburst prediction

    International Nuclear Information System (INIS)

    Shin, Koichi; Sawada, Masataka; Inohara, Yoshiki; Shidahara, Takumi; Hatano, Teruyoshi

    2011-01-01

    For the selection of the Detailed Investigation Areas for HLW disposal, predicting the tunnel constructability is one of the requirements together with assessing long-term safety. This report is the 1st of the three papers dealing with the evaluation of tunnel constructability. This paper deals with the geological factors relating to difficult tunneling such as squeezing, rockburst, and others. Also it deals with the prediction of rockburst. The 2nd paper will deal with the prediction of squeezing. The 3rd paper deals with the engineering characteristics of rock mass through rock mass classification. This paper about difficult tunneling has been based upon analysis of more than 500 tunneling reports about 280 tunnel constructions. The causes of difficult tunneling are related to (1) underground water, (2) mechanical properties of the rock, or (3) others such as gas. The geological factors for excessive water inflow are porous volcanic product of Quarternary, fault crush zone and hydrothermally altered zone of Green Tuff area, and degenerated mixed rock in accretionary complex. The geological factors for squeezing are solfataric clay at Quarternary volcanic zone, fault crush zone and hydrothermally altered zone of Green Tuff area, mudstone and fault crush zone of sedimentary rock of Neogene and later. Information useful for predicting rockburst has been gathered from previous reports. In the preliminary investigation stage, geological survey, geophysical survey and borehole survey from the surface are the source of information. Therefore rock type, P-wave velocity from seismic exploration and in-situ rock stress from hydrofracturing have been considered. Majority of rockburst events occurred at granitic rock, excluding coal mine where different kind of rockburst occurred at pillars. And P-wave velocity was around 5 km/s at the rock of rockburst events. Horizontal maximum and minimum stresses SH and Sh have been tested as a criterion for rockburst. It has been

  2. Passivation of boron in silicon by hydrogen and muonium: calculation of electric field gradients, quadrupole resonance frequencies and cross relaxation functions

    International Nuclear Information System (INIS)

    Maric, Dj.M.; Meier, P.F.; Vogel, S.; Davis, E.A.

    1991-01-01

    The possibility of studying impurity passivation complexes in semiconductors by quadrupole resonance spectroscopy is examined. The problem is illustrated for the case of boron in silicon passivated with hydrogen or, equivalently, with muonium, since the radioactive light isotope in principle offers a greater sensitivity for detection of the spectra. Ab initio calculations on suitable cluster models of the passivation complexes provide estimates of the electric field gradients at the quadrupolar nuclei, and thereby predictions of the quadrupole resonance frequencies. Detection via cross-relaxation techniques is proposed, notably muon level crossing resonance (μLCR), and illustrated by calculation of the time dependence of the muon polarization function. Possible reasons for the absence of quadrupolar resonances in μLCR spectra recorded in exploratory experiments are discussed; these include the existence of a local tunnelling mode for the lighter isotope. (author)

  3. Effect of the strong metal-support interaction on hydrogen sorption kinetics of Pd-capped switchable mirrors

    NARCIS (Netherlands)

    Borgschulte, A.; Westerwaal, R.J.; Rector, J.H.; Dam, B.; Griessen, R.P.; Schoenes, J.

    2004-01-01

    The morphology and electronic structure of Pd clusters grown on oxidized yttrium surfaces are investigated by scanning tunneling microscopy and ultraviolet photoelectron spectroscopy. The hydrogen sorption mediated by the Pd clusters is determined from the optically monitored switching kinetics of

  4. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  5. Processes involved in pion capture in hydrogen-containing molecules

    International Nuclear Information System (INIS)

    Horvath, D.

    1983-03-01

    A systematic analysis is presented of the possible elementary processes determining the fate of negative pions stopped in hydrogen-containing samples. Using a phenomenological description in comparison with the available experimental information on pion capture in hydrogen, it is shown that the formation and decay of pπ - atoms in compounds Zsub(m)Hsub(n) are determined mainly by the processes of Auger capture in a molecular orbit ZHπ - , transition from molecular to atomic orbit, transfer of pions to atoms Z in collisions pπ - +Z, and nuclear capture in collisions pπ - +H. The recent assumption of a considerable role of the processes of radiative atomic capture in bound hydrogen atoms, nuclear capture of pions by protons from the molecular state ZHπ - , or 'inner' transfer of the pion via tunnelling through the bond Z-H is not supported by the theory and contradicts the experimental data

  6. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  7. Diffusion coefficient of hydrogen in niobium and tantalum

    International Nuclear Information System (INIS)

    Vargas, P.; Miranda, L.; Lagos, M.

    1988-08-01

    We show that the current data on hydrogen diffusion in Tantalum between 15K and 550K and in Niobium between 135K and 400K can be quantitatively explained by the small polaron theory. The experimental data can be understood assuming ground-state to ground-state tunneling between interstitial sites with tetrahedral symmetry plus an activated contribution due to tunneling between excited states having octahedral symmetry. The break of the diffusivity curve at T approx. = 250K follows naturally. It evidences the transition between the tetrahedral and octahedral hopping. For Ta the second break of the diffusivity curve at T approx. = 20K indicated the recovering of the ground-state hopping with tetrahedral symmetry. Below T approx. = 10K for Ta and T approx. = 7K for Nb the diffusion coefficient becomes independent of T. (author). 17 refs, 3 figs, 1 tab

  8. Safety evaluation model of urban cross-river tunnel based on driving simulation.

    Science.gov (United States)

    Ma, Yingqi; Lu, Linjun; Lu, Jian John

    2017-09-01

    Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.

  9. One-fiftieth scale model studies of 40-by 80-foot and 80-by 120-foot wind tunnel complex at NASA Ames Research Center

    Science.gov (United States)

    Schmidt, Gene I.; Rossow, Vernon J.; Vanaken, Johannes M.; Parrish, Cynthia L.

    1987-01-01

    The features of a 1/50-scale model of the National Full-Scale Aerodynamics Complex are first described. An overview is then given of some results from the various tests conducted with the model to aid in the design of the full-scale facility. It was found that the model tunnel simulated accurately many of the operational characteristics of the full-scale circuits. Some characteristics predicted by the model were, however, noted to differ from previous full-scale results by about 10%.

  10. Wind Tunnel and Water Channel Investigations for Improving MAV Aerodynamic Performance

    National Research Council Canada - National Science Library

    Spedding, Geoffrey; Browand, Frederick; McArthur, John

    2007-01-01

    .... The flows are complex and almost always involve significant spanwise components. The results are being used to guide current wind-tunnel based quantitative flow investigations in selected two-dimensional planes.

  11. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    International Nuclear Information System (INIS)

    Kangur, L; Leiger, K; Freiberg, A

    2008-01-01

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes

  12. Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kangur, L; Leiger, K; Freiberg, A [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia)

    2008-07-15

    The bacteriochlorophyll a-containing LH2 light harvesting complex is an integral membrane protein that catalyzes the photosynthetic process in purple photosynthetic bacteria. The LH2 complexes from Rhodobacter sphaeroides show characteristic strong absorbance at 800 and 850 nm due to the bacteriochlorophyll a molecules confined in two separate areas of the protein. Using these cofactors as intrinsic probes to monitor changes in membrane protein structure, we investigate the response to high hydrostatic pressure up to 2.1 GPa of LH2 complexes embedded into natural membrane environment or extracted with detergent. We demonstrate that high pressure does induce significant alterations to the tertiary structure of the protein in proximity of the protein-bound bacteriochlorophyll a molecules, including breakage of the hydrogen bond they are involved in. The membrane-embedded complexes appear more resilient to damaging effects of the compression than the complexes extracted into detergent environment. This difference has tentatively been explained by more compact structure of the membrane-embedded complexes.

  13. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  14. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  15. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  16. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  17. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  18. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  19. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    Science.gov (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Work function dependence and isotope effect in the production of negative hydrogen ions during sputtering of adsorbed hydrogen on Cs covered Mo(100) surfaces

    International Nuclear Information System (INIS)

    Yu, M.L.

    1977-01-01

    The enhancement of the H - yield, during sputtering of adsorbed hydrogen on a Mo(100) surface, by a Cs overlayer was investigated. An exponential dependence of the H - yield on the work function was observed for a wide range of Cs coverages. A simple electron tunneling model was proposed. A large reduction in the ion yield was also observed when D 2 replaced H 2 as the adsorbate

  1. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  2. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope.

    Science.gov (United States)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-07-22

    We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.

  3. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  4. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  5. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  6. Hydrogen, energy of the future?

    International Nuclear Information System (INIS)

    Alleau, Th.

    2007-01-01

    A cheap, non-polluting energy with no greenhouse gas emissions and unlimited resources? This is towards this fantastic future that this book brings us, analyzing the complex but promising question of hydrogen. The scientific and technical aspects of production, transport, storage and distribution raised by hydrogen are thoroughly reviewed. Content: I) Energy, which solutions?: 1 - hydrogen, a future; 2 - hydrogen, a foreseeable solution?; II) Hydrogen, an energy vector: 3 - characteristics of hydrogen (physical data, quality and drawbacks); 4 - hydrogen production (from fossil fuels, from water, from biomass, bio-hydrogen generation); 5 - transport, storage and distribution of hydrogen; 6 - hydrogen cost (production, storage, transport and distribution costs); III) Fuel cells and ITER, utopias?: 7 - molecular hydrogen uses (thermal engines and fuel cells); 8 - hydrogen and fusion (hydrogen isotopes, thermonuclear reaction, ITER project, fusion and wastes); IV) Hydrogen acceptability: 9 - risk acceptability; 10 - standards and regulations; 11 - national, European and international policies about hydrogen; 12 - big demonstration projects in France and in the rest of the world; conclusion. (J.S.)

  7. Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko

    Energy Technology Data Exchange (ETDEWEB)

    Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)

    1994-08-01

    At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.

  8. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    Science.gov (United States)

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis  =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  9. Inverse Analysis and Modeling for Tunneling Thrust on Shield Machine

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2013-01-01

    Full Text Available With the rapid development of sensor and detection technologies, measured data analysis plays an increasingly important role in the design and control of heavy engineering equipment. The paper proposed a method for inverse analysis and modeling based on mass on-site measured data, in which dimensional analysis and data mining techniques were combined. The method was applied to the modeling of the tunneling thrust on shield machines and an explicit expression for thrust prediction was established. Combined with on-site data from a tunneling project in China, the inverse identification of model coefficients was carried out using the multiple regression method. The model residual was analyzed by statistical methods. By comparing the on-site data and the model predicted results in the other two projects with different tunneling conditions, the feasibility of the model was discussed. The work may provide a scientific basis for the rational design and control of shield tunneling machines and also a new way for mass on-site data analysis of complex engineering systems with nonlinear, multivariable, time-varying characteristics.

  10. Mechanism of water inrush in tunnel construction in karst area

    Directory of Open Access Journals (Sweden)

    Liping Li

    2016-05-01

    Full Text Available With the rapid developing trend of long, large and deep construction characteristics for underground engineering in the world, China has the largest number of karst tunnels with the wide scales and great difficulties. As the hydrogeological conditions are becoming unprecedentedly complex, water inrush disaster becomes the bottleneck problem for the further development of traffic tunnels. Based on the statistical analysis of a large number of cases of water inrush in karst tunnels, influence factors of water inrush have been put forward from the view of karst hydrogeological factors and engineering disturbance of human factors. Karst hydrogeological factors include geological defect, strata dip, formation lithology, landform and underground level. Human factors of engineering disturbance include excavation and reinforcement geological prediction, monitoring and measurement of surrounding rock. It also introduces some geological disasters caused by the water inrush in tunnel excavation. In terms of the formation of water inrush channel, water inrush types are divided into geological defects inrush, non-geological defects inrush and the combination. Conclusions will be beneficial to further research on hazards control of underground construction.

  11. Complex hydrides for hydrogen storage - New perspectives

    DEFF Research Database (Denmark)

    Ley, Morten B.; Jepsen, Lars H.; Lee, Young-Su

    2014-01-01

    Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: developing an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached...

  12. Electrocatalytic activity of a mononuclear yttrium(III)–methyl orange complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles for adsorption/desorption of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shafaie, Fahimeh [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Hadadzadeh, Hassan, E-mail: hadad@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Behnamfar, Mohammad Taghi [Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2016-12-01

    A new mononuclear yttrium(III) complex, [Y(MO){sub 3}(DMF){sub 3}(H{sub 2}O){sub 2}] (where MO{sup –} is methyl orange anion (4-[(4-dimethylamino)phenyldiazenyl]benzenesulfonate)), was synthesized in an aqueous solution. The complex was characterized by elemental analysis, UV/Vis, FT-IR, and single-crystal X-ray crystallography. The yttrium oxysulfate nanoparticles (Y{sub 2}O{sub 2}SO{sub 4}) were then prepared by calcination of [Y(MO){sub 3}(DMF){sub 3}(H{sub 2}O){sub 2}]. The obtained nanoparticles were characterized by FT-IR, X-ray diffraction analysis (XRD), and field-emission scanning electron microscopy (FE-SEM). The hydrogen adsorption/desorption (H{sub ads}/H{sub des}) behavior of the Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles was studied at a carbon paste electrode (CPE) in H{sub 2}SO{sub 4} by cyclic voltammetry (CV). The recorded voltammograms exhibited a pair of peaks corresponding to the adsorption/desorption of hydrogen for the Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles. The results show a reversible hydrogen adsorption/desorption reaction for both compounds. The voltammograms of the nanoparticles indicate an excellent cycling stability for the adsorption/desorption of hydrogen. In addition, the linear sweep voltammetry (LSV) technique was used to investigate the electrocatalytic activity of both compounds for the hydrogen adsorption reaction. The linear voltammograms of both compounds demonstrate the excellent electrocatalytic activity for the hydrogen adsorption reaction. - Highlights: • Preparation of a new Y(III) complex and Y{sub 2}O{sub 2}SO{sub 4} nanoparticles. • Investigation of the H{sub ads}/H{sub des} reaction for both compounds by voltammetry. • Observation of two peaks corresponding to the H{sub ads}/H{sub des} in both compounds. • An excellent cycling stability for the nanoparticles in H{sub 2}SO{sub 4}.

  13. Solubility and diffusivity of hydrogen in complex materials

    International Nuclear Information System (INIS)

    Kirchheim, R.

    2001-01-01

    A general model based on Statistical Mechanics and Random Walk is presented which allows to describe the behavior of hydrogen in disordered systems, i.e. metallic glasses, amorphous silicon, nanocrystalline metals, deformed metals, disordered metallic solutions, and metallic multi layers. The various systems are specified by a lattice with an appropriate site energy disorder and a distribution of site transitions rates. Lattice sites are filled according to Fermi-Dirac Statistics because double occupancy is excluded. Thus the model is applicable to adsorption on heterogeneous surfaces or solutions of small particles in oxide glasses and polymers. With a given distribution of site energies a relationship between chemical potential (Fermi energy) of hydrogen and its concentration can be derived and compared with experimental results. It is a unique feature of hydrogen that its chemical potential and its diffusion coefficient can be determined rather easily by electrochemical techniques or by measuring partial pressures at moderate temperatures around 300 K. With increasing H-content the sites are usually filled from lower to higher energies. As a consequence Henry's Law is not fulfilled and the diffusion coefficient increases because at high concentrations low energy sites are saturated and additional H-atoms have to perform their random walk through sites of low occupancy or small time of residence, respectively. Some results for metallic glasses, nanocrystalline metals, deformed metals, and metallic multi layers are presented and compared with the model. Thus information on the interaction between defects (dislocations, grain boundaries, distorted tetrahedral sites in glasses) and hydrogen are obtained. For extended defects the diffusion is strongly anisotropic, i.e. it differs in a Pd/Nb-multi layer by a factor of 10 5 for diffusion in plane and out of plane. (orig.)

  14. Investigation of the Si(111)7 multiplication 7 surface near corner pots by tunneling microscope with various tips

    CERN Document Server

    Bulavenko, S Y; Nakhodkyin, M G

    2002-01-01

    A change of the local density of electronic states (LDOS) of Si(111)7 multiplication 7 atoms under hydrogen adsorption in corner pits is studied with a scanning tunneling microscope. Hydrogen adsorption in a corner pit is found to result in increase of LDOS of neighbor adatoms on the unfaulted halves of 7 multiplication 7 unit cells. The change of LDOS is observed with both Bi/W and usual tips. Application of the phenomenon of the change of LDOS of adatoms on the unfaulted halves as an indicator of hydrogen adsorption in corner pits in STM-investigations with usual tips is offered. Use of such an indicator is suggested to be appropriate for the investigation of the adsorption of other adsorbates in corner pits.

  15. Electro-activity of cobalt and nickel complexes for the reduction of protons into di-hydrogen. Application to PEM water electrolysis

    International Nuclear Information System (INIS)

    Pantani, O.; Anxolabehere, E.; Aukauloo, A.; Millet, P.

    2006-01-01

    Proton exchange membrane (PEM) water electrolysis is a safe and efficient way to perform water splitting into di-hydrogen and di-oxygen. In a PEM water electrolyser, platinum is commonly used as electro-catalyst on the cathodic side of the cells, mostly because of its efficiency for hydrogen evolution. But for cost considerations, there is a need to find alternative low-cost electrocatalysts. Molecular chemistry offers the possibility of synthesizing new compounds for this purpose, such as transition metal complexes. Results obtained with nickel- and cobalt-oximes compounds are presented in this paper. They have been chemically (1H NMR, EPR) and electrochemically (voltametry, spectro-electrochemistry) characterized. Their ability to electrochemically reduce protons into di-hydrogen when they are either dissolved in solution or immobilized at the surface of a solid electrode is discussed. (authors)

  16. Vanessa Di Murro and Richard Mortin in the SPS tunnel

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    University of Cambridge PhD student Vanessa Di Murro is using smart sensor technology to monitor geotechnical effects in the tunnels that are part of CERN's accelerator complex. She is the first PhD student within the SMB department.

  17. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  18. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  19. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  20. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  1. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  2. Suppression of quantum tunneling for all spins for easy-axis systems

    International Nuclear Information System (INIS)

    Khare, Avinash; Paranjape, M. B.

    2011-01-01

    The semiclassical limit of quantum spin systems corresponds to a dynamical Lagrangian which contains the usual kinetic energy, the couplings and interactions of the spins, and an additional, first-order kinematical term which corresponds to the Wess-Zumino-Novikov-Witten (WZNW) term for the spin degree of freedom. It was shown that in the case of the kinetic dynamics determined only by the WZNW term, half-odd integer spin systems show a lack of tunneling phenomena, whereas integer spin systems are subject to it in the case of potentials with easy-plane easy-axis symmetry. Here we prove for the theory with a normal quadratic kinetic term of arbitrary strength or the first-order theory with azimuthal symmetry (which is equivalently the so-called easy-axis situation), that the tunneling is in fact suppressed for all nonzero values of spin. This model exemplifies the concept that in the presence of complex Euclidean action, it is necessary to use the ensuing complex critical points in order to define the quantum (perturbation) theory. In the present example, if we do not do so, exactly the opposite, erroneous conclusion that the tunneling is unsuppressed for all spins, is reached.

  3. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  4. Communication: Isotopic effects on tunneling motions in the water trimer

    Energy Technology Data Exchange (ETDEWEB)

    Videla, Pablo E. [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Rossky, Peter J. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Laria, D., E-mail: dhlaria@cnea.gov.ar [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires (Argentina)

    2016-02-14

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H{sub 2}O]{sub 3} and [D{sub 2}O]{sub 3}, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H{sub 2}O]{sub 3} than in [D{sub 2}O]{sub 3}. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.

  5. Dimeric Self-assembling via Hydrogen Bonding and Emissive Behavior of a New Copper (I Complex

    Directory of Open Access Journals (Sweden)

    Juciely M. dos Reis

    2017-04-01

    Full Text Available This work describes the synthesis, structural characterization and emissive behavior of a new copper (I complex based on 1-thiocarbamoyl-5-(4-methoxiphenyl-3-phenyl-4,5-dihydro-1H-pyrazole ligand. A dimeric self-assembling via hydrogen bonding was determined by analyzing the short contacts present in the solid-state structure by means of X-ray crystallography. The spectroscopic properties were determined using UV-Vis and fluorescence experiments and an interesting behavior as bluish luminescence was assigned mainly to the mixed (MLCT + IL electronic transitions of the Cu(Id10 ® (S=C–Nligand type. The complete characterization of the new copper (I complex also included elemental analyses and IR spectroscopy. DOI: http://dx.doi.org/10.17807/orbital.v9i1.952

  6. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  7. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  8. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Roberrt C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  9. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst. (DRI), Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst. (DRI), Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-01-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  10. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  11. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    Science.gov (United States)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  12. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  13. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  14. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  15. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  16. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  17. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    Science.gov (United States)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  18. Computational Role of Tunneling in a Programmable Quantum Annealer

    Science.gov (United States)

    Boixo, Sergio; Smelyanskiy, Vadim; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Amin, Mohammad; Mohseni, Masoud; Denchev, Vasil S.; Neven, Hartmut

    2016-01-01

    Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.

  19. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    Science.gov (United States)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  20. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  1. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  2. Complex energies from real perturbation series for the LoSurdo-Stark effect in hydrogen by Borel-Pade approximants

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, V.; Grecchi, V.; Silverstone, H.J.

    1985-09-01

    The resonance energies for the hydrogen atom in an electric field, both the real and imaginary parts, have been calculated together from the real Rayleigh-Schroedinger perturbation series by Borel summation. Pade approximants were used to evaluate the Borel transform. The numerical results compare well with values obtained by the complex-coordinate variational method and by sequential use of Pade approximants.

  3. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  4. Spectroscopic studies of europium-tetracyclines complexes and their applications in detection of hydrogen peroxide and urea peroxide; Estudos espectroscopicos dos complexos europio-tetraciclinas e suas aplicacoes na detecao de peroxido de hidrogenio e peroxido de ureia

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, Andrea Nastri

    2010-07-01

    In this work were studied the spectroscopic properties of trivalent europium ion complexed with components of tetracycline family, chlorotetracycline, oxytetracycline and metacycline, in the presence of hydrogen peroxide and urea peroxide. Optical parameters were obtained such as absorption, emission, lifetime and calibration curves were constructed for luminescence spectra. Experiments were carried out with both inorganic compounds and europium-tetracyclines complexes in order to verify possible interferences. Studies for glucose determination were also described using europium-tetracyclines complexes as biosensors. Results show that europium tetracyclines complexes emit a narrow band in the visible region and, in the presence of hydrogen peroxide or urea peroxide there is a greater enhancement in their luminescence and lifetime. Thus, europium-tetracyclines complexes studied can be used as biosensors for hydrogen and urea peroxides determination as a low cost and room temperature method. An indirect method for glucose determination was studied by adding glucose oxidase enzyme in europium-tetracyclines complex in the presence of glucose promoting as product hydrogen peroxide. (author)

  5. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface.

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-04-15

    A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

  6. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  7. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  8. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  9. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.

    2011-01-01

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  10. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J. [Technische Universität Dresden, Institut für Angewandte Physik, 01062 Dresden (Germany)

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  11. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    Science.gov (United States)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  12. Automatic Generation of the Planning Tunnel High Speed Craft Hull Form

    Institute of Scientific and Technical Information of China (English)

    Morteza Ghassabzadeh; Hassan Ghassemi

    2012-01-01

    The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic,and also for structural design and equipments arrangement are so important in the ship design process.Planning tunnel high speed craft is one of the crafts in which,achievement to their top speed is more important.These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance,good sea-keeping behavior,reduce slamming and avoid porpoising.Because of the existence of the tunnel,the hull form generation of these crafts is more complex and difficult.In this paper,it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters,to generate automatically the hull form of planning tunnel craft.At first,the equations of mathematical model are described and subsequent,three different models generated based on present method are compared and analyzed.Obviously,the generated model has more application in the early stages of design.

  13. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  14. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    International Nuclear Information System (INIS)

    Pathak, Anshuma; Bora, Achyut; Tornow, Marc; Liao, Kung-Ching; Schwartz, Jeffrey; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter

    2016-01-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current–voltage (J–V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono   =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis   =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices. (paper)

  15. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  16. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  17. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  18. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  20. Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.-Y.; Chen, Z.-M.; Wang, Y.; Wu, E.-M.; Wang, G. [Jiangsu Institute of Nuclear Medicine, Ministry of Health, Key Laboratory of Molecular Nuclear Medicine (China); Jiang, M.-J., E-mail: jmj16888@126.com [Nanjing Medical University, Affiliated Wuxi Peoples Hospital, Wuxi Institute of Translational Medicine, Department of Clinical Laboratory Science (China)

    2016-12-15

    The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.

  1. Tunneling of self-trapped states and formation of a band

    International Nuclear Information System (INIS)

    Yonemitsu, K.

    1993-12-01

    Tunneling of a self-trapped kink and formation of a band are studied semi classically in the one-dimensional extended Peierls-Hubbard model near half filling, considering up to Gaussian fluctuations around imaginary-time-dependent periodic motion of electrons and phonons on the stationary phase of the action derived using Slater determinants. In the strong-coupling limit of both the Holstein and attractive Hubbard models, it reproduces analytically-known effective hopping of a single bipolaron because the tunneling involves only one in this limit. The method gives new results in other general cases and is easily applied to excited or more complex systems. 13 refs, 4 figs

  2. Spin filtering through ferromagnetic BiMn O3 tunnel barriers

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Barthélémy, A.; Bouzehouane, K.; Fusil, S.; Varela, M.; Fontcuberta, J.; Fert, A.

    2005-07-01

    We report on experiments of spin filtering through ultrathin single-crystal layers of the insulating and ferromagnetic oxide BiMnO3 (BMO). The spin polarization of the electrons tunneling from a gold electrode through BMO is analyzed with a counterelectrode of the half-metallic oxide La2/3Sr1/3MnO3 (LSMO). At 3K we find a 50% change of the tunnel resistances according to whether the magnetizations of BMO and LSMO are parallel or opposite. This effect corresponds to a spin-filtering efficiency of up to 22%. Our results thus show the potential of complex ferromagnetic insulating oxides for spin filtering and injection.

  3. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  4. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  5. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  6. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  7. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  8. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  9. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  10. Geology and History of Water-Containment Ponds at U12n, U12t, and U12e Tunnels, Rainier Mesa, Nevada National Security Site

    International Nuclear Information System (INIS)

    Huckins-Gang, H.; Townsend, M.

    2011-01-01

    Tunnels constructed in Rainier Mesa at the Nevada National Security Site (formerly Nevada Test Site) intersected water-producing areas (perched well above the regional groundwater system) during mining and drilling. There was enough overall sustained flow from three of the tunnel complexes (U12n, U12t, and U12e, also known as N-Tunnel, T-Tunnel, and E-Tunnel), that ponds were constructed in drainages below the portals to contain the discharged water. Water flow has now been blocked from N-Tunnel and T-Tunnel, and the ponds there are dry; however, E-Tunnel continues to produce water. The Underground Test Area Sub-Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is examining the possibility that contaminants from the tunnel complexes may be able to reach the regional groundwater flow system. Because some radiologically contaminated water was conveyed to these ponds, the ponds have been viewed as a potential source of groundwater contamination (in addition to the tunnel complexes themselves but part of the same hydrologic source term). Although the regional water table is very deep (greater than 305 meters [1,000 feet]) beneath the pond locations, some of the ponds were constructed on carbonate rocks, which some scientists think might provide a 'fast path' to the regional groundwater system. This report describes the geology and hydrologic conditions in the area of these three sets of tunnel ponds to aid in determining whether the ponds should be modeled as sources of contaminant migration. Data concerning the locations of the ponds, the volume of effluent discharged, and the concentration of tritium and other radionuclides in the water have been compiled from published and unpublished sources and included also.

  11. N-H···S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers.

    Science.gov (United States)

    Wategaonkar, Sanjay; Bhattacherjee, Aditi

    2018-05-03

    The N-H···S hydrogen bond, even though classified as an unconventional hydrogen bond, is found to bear important structural implications on protein structure and folding. In this article, we report a gas-phase study of the N-H···S hydrogen bond between the model compounds of histidine (benzimidazole, denoted BIM) and methionine (dimethyl sulfide, diethyl sulfide, and tetrahydrothiophene, denoted Me 2 S, Et 2 S, and THT, respectively). A combination of laser spectroscopic methods such as laser-induced fluorescence (LIF), two-color resonant two-photon ionization (2cR2PI), and fluorescence depletion by infrared spectroscopy (FDIR) is used in conjunction with DFT and ab initio calculations to characterize the nature of this prevalent H-bonding interaction in simple bimolecular complexes. A single conformer was found to exist for the BIM-Me 2 S complex, whereas the BIM-Et 2 S and BIM-THT complexes showed the presence of three and two conformers, respectively. These conformers were characterized on the basis of IR spectroscopic results and electronic structure calculations. Quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and energy decomposition (NEDA) analyses were performed to investigate the nature of the N-H···S H-bond. Comparison of the results with the N-H···O type of interactions in BIM and indole revealed that the strength of the N-H···S H-bond is similar to N-H···O in these binary gas-phase complexes.

  12. Direct synthesis of hydrogen peroxide in a microreactor

    NARCIS (Netherlands)

    Paunovic, V.; Schouten, J.C.; Nijhuis, T.A.

    2014-01-01

    The direct synthesis of hydrogen peroxide in a microreactor is a safe and efficient process. Conventionally, hydrogen peroxide is produced using the anthraquinone autooxidation process, which is rather complex and can only be performed cost-effectively on a large scale. As a result, hydrogen

  13. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    complexity of developing a model that can be used for successfully implementing a standardized management planning tool. The objective of this study was to implement an Integrated Wind Tunnel Planning System to improve the operations within the aeronautics testing and research group, in particular Wind Tunnel Enterprise. The study included following steps: Conducted literature search and expert discussions (NASA and Old Dominion University faculty), Performed environmental scan of NASA Langley wind tunnel operations as foundation for problem definition. Established operation requirements and evaluation methodologies. Examined windtunnel operations to map out the common characteristics, critical components, and system structure. Reviewed and evaluated various project scheduling and management systems for implementation, Evaluated and implemented "Theory of Constraints (TOC)" project scheduling methodology at NASA Langley wind tunnel operations together with NASA staff.

  14. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  16. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  17. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2012-01-01

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  18. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    Science.gov (United States)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  19. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    Science.gov (United States)

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  20. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  1. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  2. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  3. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.

    2012-10-25

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  4. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  5. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R [DRI

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation

  6. Direct determination of tungsten in the presence of high content of molybdenum in the form of its complex with bromopyrogallol red and hydrogen peroxide

    International Nuclear Information System (INIS)

    Andreeva, I.Yu.; Lebedeva, L.I.; Flotskaya, E.A.

    1982-01-01

    It has been shown that tungsten reacts with Bromopyrogallol Red and hydrogen peroxide to form a ternary complex. A procedure has been developed of determining tungsten(6) in the presence of 500 times molar amounts of molybdenum(6). Under the conditions chosen molybdenum forms a stable peroxide complex and does not interfere with the determination

  7. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    OpenAIRE

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...

  8. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  9. Tunneling into quantum wires: regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    OpenAIRE

    Filippone, Michele; Brouwer, Piet

    2016-01-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...

  10. Dynamic response of railway tracks in tunnel

    OpenAIRE

    Hoang , T; Duhamel , Denis; Forêt , Gilles; Yin , H.P.; Joyez , P; Caby , R

    2014-01-01

    International audience; Periodically supported beams subjected to a moving load are often used for modelling the railway dynamics and analytical solutions have been developed for such modelling [3, 4]. More complex models can be constructed by including supports with damping or non-linear stiffness elements. This study deals with the dynamical modelling of non-ballasted railways, especially railways in tunnels. The model is developed as a dynamical system of multi-degree of freedom. Under the...

  11. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  12. ALL-IN-ONE LASER SCANNING METHODS FOR SURVEYING, REPRESENTING AND SHARING INFORMATION ON ARCHAEOLOGY. VIA FLAMINIA AND THE FURLO TUNNEL COMPLEX

    Directory of Open Access Journals (Sweden)

    P. Clini

    2013-07-01

    Full Text Available The aim of this paper is to describe the results of the laser scanner survey of an archaeological complex, aimed at knowledge, documentation and diagnostic operations to make premises secure. Archaeology has always been the most complex subject where the discipline of surveying is continually being put to the test and experimented with. The development in laser scanner technologies has led to an extremely important turning point in this field. Complex geometrical shapes or irregular surfaces, such as those in archaeology, are defined through surfaces that can be directly extrapolated from the point cloud with extremely high precision, allowing even the finest details to be mapped. The precision of this surveying technique together with the wide range of data that can be acquired and represented provide several opportunities for communication and investigation. This experimental work has concentrated on the Furlo tunnel complex, located along one of the most important infrastructural arteries from Roman antiquity, the Via Flaminia. The need in this case was to be able to acquire the entire rocky complex, extending the scan area as far as possible so as to assess the whole system in its entirety. The results of our metric and morphological survey provide an excellent basis for record the situation as it is today, so as to establish the initial temporal step to be used in future monitoring programmes. The accuracy of the survey allows static assessments and effective planning for future safety-oriented projects.

  13. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  14. Cobalt(III) complexes of [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane. Report of an inert, chelate hydrogen carbonate ion

    DEFF Research Database (Denmark)

    Broge, Louise; Søtofte, Inger; Olsen, Carl Erik

    2001-01-01

    .H2O (3a). The coordination geometry around the cobalt(III) ion is a distorted octahedron with the inorganic ligands at cis-positions. Complex 2 is the second example of a cobalt(III) complex for which the X-ray structure,sfiows a chelate binding mode of the hydrogen carbonate entity. The pK(a) value...

  15. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  16. Enhanced MRI in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Nakane, Takashi; Kobayashi, Shigeru; Asai, Takahiro; Wada, Kunio; Yoshizawa, Hidezo

    1998-01-01

    In this study, we performed contrast-enhanced MRI in patients with idiopathic carpal tunnel syndrome and examined the morphologic change in the carpal tunnel. In the transverse section of the opening of carpal tunnel where scaphoid and pisiform bones are figured out, we measured and examined 4 items, viz. the soft carpal tunnel volume, flat rate of median nerve, position of median nerve and thickness of palmer ligaments composing the base of carpal tunnel, with an image analyzer attached to the MRI apparatus. Whereas the average carpal tunnel volume in 12 hands of normal controls was 166.8 mm 2 , that in 74 hands of carpal tunnel syndrome was 207.2 mm 2 , a significant increase compared with the normal controls. The flat rate of median nerve was 46% in the controls, but that was 37.5% in the carpal tunnel syndrome, a significant flattening was noted. We connected the peaks of the scaphoid node and pisiform bone with a line and named it standard line. When we observed the position of median nerve in the carpal tunnel, the nerve in 9 of 12 hands, 75%, lay below the standard line in the controls, but the nerve in 65 of 74 hands, 87.8%, lay above the standard line in the carpal tunnel syndrome, clearly showing that the median nerve had shifted to the palmar side. Regarding these morphologic changes of the carpal tunnel, the internal pressure of the carpal tunnel is considered to be raised with swelling of the soft tissues mainly composing the inside of carpal tunnel, thus the area of cross section of carpal tunnel to be increased, the median nerve to be shifted to the palmar side and the median nerve to be compressed by the transverse carpal ligament at that time. Although we can observe these morphological changes readily in MRI images, these images show only the results of carpal tunnel syndrome after all, and do not specify the direct causes. However, we believe that these facts are important factors in the manifestation of idiopathic carpal tunnel syndrome. (author)

  17. A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II,Rh(III,Ru(II Photoinitiated Electron Collectors

    Directory of Open Access Journals (Sweden)

    Shamindri M. Arachchige

    2011-12-01

    Full Text Available Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL2Ru(dpp}2RhX2](PF65 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the 3MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the 3MLCT state and not the 3MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

  18. Josephson tunneling and nanosystems

    OpenAIRE

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  19. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  20. An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seong-Ho; Chang, Seok-Bue [Yooshin Engineering Corporation, Seoul(Korea); Lee, Sang-Duk [Ajou University, Suwon(Korea)

    2002-06-30

    It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads, and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel. the reasons of the load for secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rock bolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required for the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves for the theoretical solution of a circular tunnel, And also, the application of this proposed model to numerical analysis is verified in order to check the potential for the tunnel with the complex analysis conditions. (author). 8 refs., 2 tabs., 7 figs.

  1. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  2. New vision of magnetic tunnelling

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Jonathan R. [Amherst College, Amhurst, MA (United States)

    2002-01-01

    Recent experiments support the idea that crystal defects may be responsible for the quantum tunnelling of magnetic moments in molecular magnets at low temperatures. The magnetic moment of a typical bar magnet will never spontaneously reverse direction. However, thermal fluctuations can flip the moment of a magnetic particle just a few nanometres across. The particle can be cooled to nearly absolute zero to suppress this process, but the moment may still find a way to reverse via quantum tunnelling. Quantum tunnelling of magnetization has been the subject of decades of research. Until a few years ago, however, there had only been circumstantial evidence for the phenomenon. This is because most systems of small magnetic particles are hard to characterize - the particles have a variety of shapes, sizes and other properties, making it difficult to compare data with theory. Some real progress was made a few years ago through research into high-spin single-molecule magnets. With dimensions of about a nanometre, these magnets are usually composed of a magnetic core that is surrounded by organic complexes. When they crystallize into a regular lattice, the organic ions keep neighbouring magnets well separated so that they interact only weakly. Ideally all the molecules are identical because they have been built chemically, which means that they can be characterized precisely and that any data can be analysed quantitatively. The most studied of these molecules is manganese-12 acetate (Mn{sub 12}). Within each molecule, the spins of the eight Mn{sup 3+} ions (each with S=2) are antiparallel to the spins of the four Mn{sup 4+} ions (each with S=3/2), giving Mn{sub 12} a total spin of S=10. Or, to put it another way, the magnetic moment of Mn{sub 12} is 20 times larger than that of the electron. Now Eugene Chudnovsky of Lehman College in New York and Dmitry Garanin of the University of Mainz in Germany have suggested a new mechanism for producing tunnelling in Mn{sub 12

  3. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  4. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  5. Synthesis and Crystal Structure of a Three—dimensionla Manganese(Ⅱ)Complex COnstructed via Covalent and Hydrogen Bonds

    Institute of Scientific and Technical Information of China (English)

    WANGRui-Hu; ChenLi-Hua; 等

    2003-01-01

    The assembly of 1,4-benzenedicarboxylic acid (H2bdc),4,4′-bipyridine (4,4′-bipy),trimethyltin chloride and MnBr2.4H2O in hydrothermal conditions gave rise to a hydrogen-bonded three-dimensional complex {Mn(4,4′-bipy).4H2O](bdc}nwhich has been characterized by single-crystal X-ray diffraction.The complex crystallizes in the monoclinic system,space group,P2/n with a=7.0001(2),b=11.5540(3),c=11.4192(1)°↑A,β=101.754(2)°,V=904.21(4)°↑A3,Z=2,C18H20MnN2O8,Mr=447.30,Dc=1.643 g/cm3,F(000)=462 and μ(Mokα)=0.783mm1,The final R and wR are 0.0499 and 0.1301,respectively for 1335 observed reflctions with I≥2σ(I).The Mn(Ⅱ)is six-coordinated in a distorted octahedral geometry,4,4′-Bipyridine in a μ-bridge mode links [Mn(H2O)4]2+ into a linear cation chain.bdc acts as a counter anion and links the linear chains into a three-dimensional structure through hydrogen bonds.

  6. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...

  7. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110)

    International Nuclear Information System (INIS)

    Dávila, M E; Montero, I; Marele, A; Gómez-Rodríguez, J M; De Padova, P; Hennies, F; Pietzsch, A; Shariati, M N; Le Lay, G

    2012-01-01

    We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected. (paper)

  8. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  9. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions

    KAUST Repository

    El-Sepelgy, Osama

    2016-09-29

    A dual catalytic iron/lipase system has been developed and applied in the dynamic kinetic resolution of benzylic and aliphatic secondary alcohols. A detailed study of the Knölker-type iron complexes demonstrated the hydrogen autotransfer of alcohols to proceed under mild reaction conditions and allowed the combination with the enzymatic resolution. Different racemic alcohols were efficiently converted to chiral acetates in good yields and with excellent enantioselectivities. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  10. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions

    KAUST Repository

    El-Sepelgy, Osama; Alandini, Nurtalya; Rueping, Magnus

    2016-01-01

    A dual catalytic iron/lipase system has been developed and applied in the dynamic kinetic resolution of benzylic and aliphatic secondary alcohols. A detailed study of the Knölker-type iron complexes demonstrated the hydrogen autotransfer of alcohols to proceed under mild reaction conditions and allowed the combination with the enzymatic resolution. Different racemic alcohols were efficiently converted to chiral acetates in good yields and with excellent enantioselectivities. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  11. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  12. Isotopic studies on ligand exchange between complex and simple cyanides in water medium and in liquid hydrogen cyanide. Part 2. Radiocyanide ligand exchange study between hydrogen cyanide and octacyanotungstate(4) in water solutions of mineral acids

    International Nuclear Information System (INIS)

    Zielinski, M.

    1979-01-01

    Radiocyanide ligand exchange between potassium octacyanotungstate(4) and hydrogen cyanide in aqueous solutions of sulfuric acid and between octacyanotungstic(4) acid and hydrogen cyanide in aqueous solutions have been investigated experimentally. The observed enhancement of the rate of ligand exchange in acidic medium has been rationalized in terms of the proposed new general reaction scheme taking into account the reversible decomposition of complex cyanide at low pH, and irreversible one at high pH. The discussion on the results obtained has been carried out within the framework of derived formal kinetic equations. (author)

  13. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    Science.gov (United States)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  14. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity

    Directory of Open Access Journals (Sweden)

    Sergey Tin

    2015-05-01

    Full Text Available In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol % and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R-limonene for the reaction is also reported with the amine isolated by acid extraction.

  15. Evaluation of Cognitive Complexity of Tasks for the Topic Hydrogen Exponent in the Solutions of Acids and Bases

    Directory of Open Access Journals (Sweden)

    Saša Horvat

    2018-02-01

    Full Text Available The aim of this study was evaluation of cognitive complexity of tasks for the topic hydrogen exponent in the solutions of acids and bases and its validation. The created procedure included an assessment of the difficulty of concepts and an assessment of their interactivity. There were 48 freshmen students enrolled in the study program Basic academic studies in chemistry. As a research instrument for assessing performance, test of knowledge was specifically constructed for this research. Each task in the test was followed by a seven-point Likert scale for the evaluation of invested mental effort. The evaluation of cognitive complexity was confirmed by a series of linear regression analysis where high values of correlation coefficients are obtained among the examined variables: student’s performance and invested mental effort (dependent variables and cognitive complexity (independent variable.

  16. Lowest order in inelastic tunneling approximation : efficient scheme for simulation of inelastic electron tunneling data

    NARCIS (Netherlands)

    Rossen, E.T.R.; Flipse, C.F.J.; Cerda, J.I.

    2013-01-01

    We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the tunneling regime by carrying out the structural optimization and vibrational

  17. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    Scivetti, Ivan

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  18. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2013-12-06

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green\\'s function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  19. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñ oz, Enrique; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green's function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  20. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  1. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  2. Investigation of Fault Zones In The Penninic Gneiss Complex of The Swiss Central Alps Using Tomograhic Inversion of The Seismic Wavefield Along Tunnels

    Science.gov (United States)

    Giese, R.; Klose, C.; Otto, P.; Selke, C.; Borm, G.

    Underground seismic investigations have been carried out since March 2000 in the Faido adit of the Gotthard Base Tunnel (Switzerland) and the Piora exploration adit. Both adits cut metamorphic rock formations of the Leventina and Lucomagno Gneiss Complexes. The seismic measurements in the Faido Adit were carried out every 200 m during the excavation work with the Integrated Seismic Imaging System (ISIS) developed by the GeoForschungsZentrum Potsdam in cooperation with Amberg Measuring Technique, Switzerland. This system provides high resolution seismic images via an array of stan- dard anchor rods containing 3D-geophones which can be installed routinely during the excavation process. The seismic source is a repetitive pneumatic impact hammer. For each measurement in the Faido adit, seismic energy was transmitted from 30 to 50 source points distributed along the tunnel wall at intervals of 1.0 to 1.5 m. In the Piora exploration adit a 2D grid of 441 source points distributed along a distance of 147 tunnel meters were measured. In both adits the shots were recorded by arrays of 8 to 16 three - component geophone anchor rods glued into 2 m deep boreholes at intervals of 9 m - 10 m. The total length of all profiles was about 850 m. Seismic sections show first P-wave energy at frequencies up to 2 kHz and S-wave energy up to 1.3 kHz. Reflection energy was observed from distances of up to 350 m for P-waves and 200 m for S-waves. The dominant frequencies of reflective energy were found between 600 and 800 Hz for P-waves and between 200 and 400 Hz for S-waves. The corresponding wave lengths were 8 to 10 m. We used the first arrival times of P- and S- waves to calculate tomographic inversions. The 2D-velocity models for P- and S-waves in the Faido adit revealed a near field of 2 to 3 m from the tunnel surface which is characterized by strong velocity variations: 3000 to 5700 m/s for P-wave velocity (Vp) and 2000 to 3000 m/s for S-wave velocity (Vs). High velocity zones

  3. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  4. Submucosal tunneling techniques: current perspectives.

    Science.gov (United States)

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  5. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  6. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  7. Preliminary studies on the Marcoule site, using a wind-tunnel

    International Nuclear Information System (INIS)

    Chassany, J.Ph.; Salaun-Penquer, G.

    1961-01-01

    The tests were carried out in the 3.30 x 2.20 subsonic elliptical wind-tunnel of the Marseille Institute of fluid mechanics, on a 1/1000 scale model measuring 3 m x 3 m. The aerodynamic field developing above the site, made visible by ammonium, hydro-chlorate fumes, and the residues were observed and filmed by means of a synchronised cine-camera with stroboscopic lighting for 4 wind directions. The fall-out from the various waste products was obtained from a spraying of lead acetate solution on the model and hydrogen sulphide emissions. The zones of maximum pollution can be determined from a study of the film taken during the blackening of the spots. (author) [fr

  8. 13th Australian tunnelling conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The theme of the conference was 'Engineering in a changing environment'. Topics covered include Australian tunnelling projects, design and development of ground support, tunnelling, international projects, fire and life safety, mining projects, risk management in tunnelling, and tunnel boring machine tunnelling. Papers of particular interest to the coal industry are: improving roadway development in underground coal mine (G. Lewis and G. Gibson), and polymer-based alternative to steel mesh for coal mine strata reinforcement (C. Lukey and others).

  9. Activation of the C-H bond: catalytic hydroxylation of hydrocarbons by new cobaltic alkylperoxydic complexes; selective and catalytic cycloalkane dehydrogenation in presence of uranium for hydrogen transfer

    International Nuclear Information System (INIS)

    Brazi, E.

    1987-01-01

    The aim of the thesis is to improve efficiency and selectivity of chemical reactions for alkane transformations. In the first part decomposition of hydroperoxides and hydrocarbon hydroxylation by cobalt complexes is studied. In the second part cycloalkanes are dehydrogenated into aromatics with a Pt catalyst, trapping hydrogen by uranium. Uranium hydride UH 3 can yield very pure hydrogen at reasonable temperature [fr

  10. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    Science.gov (United States)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C Niek; Fu, Freddie H

    2015-12-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a flexible reamer were included in this study. The control group was comprised of 50 patients all of who underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a rigid reamer. All femoral tunnels were drilled through a medial portal to ensure anatomic tunnel placement. The FTA was determined from post-operative anterior-to-posterior (AP) radiographs by two independent observers. A 5° difference between the two mean FTA was considered clinically significant. The average FTA, when drilled with a rigid reamer, was 42.0° ± 7.2°. Drilling with a flexible reamer resulted in a mean FTA of 44.7° ± 7.0°. The mean difference of 2.7° was not statistically significant. The intraclass correlation coefficient for inter-tester reliability was 0.895. The FTA can be reliably determined from post-operative AP radiographs and provides a useful and reproducible metric for characterizing femoral tunnel position after both rigid and flexible femoral tunnel drilling. This has implications for post-operative evaluation and preoperative treatment planning for ACL revision surgery. IV.

  11. Derivation of the tunnelling exchange time for the model of trap-assisted tunnelling

    International Nuclear Information System (INIS)

    Racko, J.; Ballo, P.; Benko, P.; Harmatha, L.; Grmanova, A.; Breza, J.

    2014-01-01

    We present derivation of the tunnelling exchange times that play the key role in the model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes between the trapping centre lying in the forbidden band of the semiconductor and the conduction band, valence band or a metal. All exchange processes are quantitatively described by respective exchange times. The reciprocal values of these exchange times represent the frequency with which the exchange processes contribute to the probability of occupation of the trap by free charge carriers. The crucial problem in any model of TAT is the calculation of the occupation probability. In our approach this probability is expressed in terms of only thermal and tunnelling exchange times. The concept of tunnelling exchange times presents a dominant contribution to our model of TAT. The new approach allows to simply calculate the probability of occupation of the trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling generation-recombination rates occurring in the continuity equations. This is why the TAT model based on thermal and tunnelling exchange times is suitable for simulating the electrical properties of semiconductor nanostructures in which quantum mechanical phenomena play a key role. (authors)

  12. A method for hydrogenating and carbonylizing unsaturated compounds in the presence of catalysts based on phosphine and metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J C; Dyer, G

    1982-12-22

    The hydrogenation of unsaturated organic compounds or the attachment to them of CO is accomplished with contact with a synthesis gas in the presence of a stereospecific catalyst (Kt), a compound of a metal of the platinum group (preferably Rhodium, but also Platinum, Palladium, Ruthenium or Iridium) and an asymmetrical bis-phosphine of the formula A-(CH2)n-B, where A and B are phosphine groups. R2P and R'2P or RRhP, where R is an aryl radical, R' is aralkyl, alcarylic or alkyl radical, n = 1 to 10, or an asymmetrical monophosphine of the formula R2-R'P. The complex compound also includes Hydrogen, CO and (or) halogen (preferably Chlorine) as ligands. The physical properties of the obtained complex compounds of the carbonylchlorbisphosphines or Rh are presented: trans-(RhC1-(CO)(Ph2P(CH2)6PPh2))2; trans-(RhC1(CO)(C2H5PhP-(CH2)6PPh2))2; trans-(RhC1(CO)(cycloC6H11PhP(CH2)6-PPh2))2; trans-(RhC1(CO)(C2H5PhP(CH2)4PPh2)2; trans-(RhC1(CO)(C2H5PhP(Ch2))2 and PhC1(CO)4(p-C6H4CH2)2P(Ch2)6PPh2). The isolated complexes are light yellow crystalline substances.

  13. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  14. Tunneling of Atoms, Nuclei and Molecules

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2015-01-01

    This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation. (author)

  15. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  16. Imaging of surface plasmon polariton interference using phase-sensitive scanning tunneling microscope

    NARCIS (Netherlands)

    Jose, J.; Segerink, Franciscus B.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air

  17. Salecker-Wigner-Peres clock, Feynman paths, and a tunneling time that should not exist

    Science.gov (United States)

    Sokolovski, D.

    2017-08-01

    The Salecker-Wigner-Peres (SWP) clock is often used to determine the duration a quantum particle is supposed to spend in a specified region of space Ω . By construction, the result is a real positive number, and the method seems to avoid the difficulty of introducing complex time parameters, which arises in the Feynman paths approach. However, it tells little about the particle's motion. We investigate this matter further, and show that the SWP clock, like any other Larmor clock, correlates the rotation of its angular momentum with the durations τ , which the Feynman paths spend in Ω , thereby destroying interference between different durations. An inaccurate weakly coupled clock leaves the interference almost intact, and the need to resolve the resulting "which way?" problem is one of the main difficulties at the center of the "tunnelling time" controversy. In the absence of a probability distribution for the values of τ , the SWP results are expressed in terms of moduli of the "complex times," given by the weighted sums of the corresponding probability amplitudes. It is shown that overinterpretation of these results, by treating the SWP times as physical time intervals, leads to paradoxes and should be avoided. We also analyze various settings of the SWP clock, different calibration procedures, and the relation between the SWP results and the quantum dwell time. The cases of stationary tunneling and tunnel ionization are considered in some detail. Although our detailed analysis addresses only one particular definition of the duration of a tunneling process, it also points towards the impossibility of uniting various time parameters, which may occur in quantum theory, within the concept of a single tunnelling time.

  18. A theoretical study of the hydrogen bonding between the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride

    Science.gov (United States)

    Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.

    2009-04-01

    MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.

  19. Chaos regularization of quantum tunneling rates

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward

    2011-01-01

    Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

  20. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851 ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  1. Excavation of the Surikamigawa dam diversion tunnel. Surikamigawa dam karihaisui tunnel kantsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T.; Konno, T. (Ministry of Construction, Tokyo (Japan))

    1994-04-01

    A bypass tunnel construction has been completed at the Surikamigawa dam (Japan). This paper describes the summary of the construction. The full-swing dam construction work is scheduled to begin in 1995. The soils distributed near the dam site consist of lapillus tuff containing andesite-based light stones and tuff-based conglomerates containing large gravels. Excavation of the dam diversion tunnel has used a blasting method, and the tunnel construction has adopted an automatic tunnel cross section marking system and a non-electric explosion method. This marking system is a system to irradiate a laser beam onto the facing to depict excavation lines that realizes labor saving and high-accuracy excavation. The error at the tunnel completion was found 20 mm. The non-electric explosion method ignites a coated explosive layer with an impact wave, which is electrostatically safe, and reduces blasting vibration. Electric detonators have also been used because of using ANFO explosives. The result obtained from measurements of inner space displacement necessary for the blasting process has indicated that the area near the dam site consists of stable mountains. 6 figs., 4 tabs.

  2. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  3. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  4. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  5. Peak stresses shift from femoral tunnel aperture to tibial tunnel aperture in lateral tibial tunnel ACL reconstructions: a 3D graft-bending angle measurement and finite-element analysis.

    Science.gov (United States)

    Van Der Bracht, Hans; Tampere, Thomas; Beekman, Pieter; Schepens, Alexander; Devriendt, Wouter; Verdonk, Peter; Victor, Jan

    2018-02-01

    To investigate the effect of tibial tunnel orientation on graft-bending angle and stress distribution in the ACL graft. Eight cadaveric knees were scanned in extension, 45°, 90°, and full flexion. 3D reconstructions with anatomically placed anterior cruciate ligament (ACL) grafts were constructed with Mimics 14.12 ® . 3D graft-bending angles were measured for classic medial tibial tunnels (MTT) and lateral tibial tunnels (LTT) with different drill-guide angles (DGA) (45°, 55°, 65°, and 75°). A pivot shift was performed on 1 knee in a finite-element analysis. The peak stresses in the graft were calculated for eight different tibial tunnel orientations. In a classic anatomical ACL repair, the largest graft-bending angle and peak stresses are seen at the femoral tunnel aperture. The use of a different DGA at the tibial side does not change the graft-bending angle at the femoral side or magnitude of peak stresses significantly. When using LTT, the largest graft-bending angles and peak stresses are seen at the tibial tunnel aperture. In a classic anatomical ACL repair, peak stresses in the ACL graft are found at the femoral tunnel aperture. When an LTT is used, peak stresses are similar compared to classic ACL repairs, but the location of the peak stress will shift from the femoral tunnel aperture towards the tibial tunnel aperture. the risk of graft rupture is similar for both MTTs and LTTs, but the location of graft rupture changes from the femoral tunnel aperture towards the tibial tunnel aperture, respectively. I.

  6. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  7. Use of Heterogenized Metal Complexes in Hydrogenation Reactions: Comparison of Hydrogenation and CTH Reactions.

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Zsigmond, A.; Gyémánt, M.; Czeglédi, A.; Klusoň, Petr

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9281-9294 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : catalytic transfer hydrogenation * iron-phthalocyanine catalyst * chemoselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  8. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  9. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  10. Tunneling time, what is its meaning?

    International Nuclear Information System (INIS)

    McDonald, C R; Orlando, G; Vampa, G; Brabec, T

    2015-01-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed

  11. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  12. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  13. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  14. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation

  15. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    tert-butanol (t-BuOH), with dimethyl ether (DME) as the hydrogen-bond acceptor. Using a combination of Fourier-transform infrared spectroscopy and quantum chemical calculations, we compare the strength of the OH-O hydrogen bond and the total strength of complexation. We find that, both in terms...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  16. Road and Railroad Tunnels

    Data.gov (United States)

    Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...

  17. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  18. Influence of pairing correlations on the probability and dynamics of tunneling through the barrier in fission and fusion of complex nuclei

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.

    1986-01-01

    An analytically solvable model is used to study the potential barrier penetrability in the case when the gap parameter Δ is treated as a dynamical variable governed by the least action principle. It is found that, as compared to the standard (BCS) approach, the dynamical treatment of pairing results in a considerably weakened dependence of the fission barrier penetrability on the intensity of pairing correlations in the initial state (Δ 0 ), on the barrier height, and on the energy of the initial state. On this basis, a more adequate explanation is proposed for typical order-of-magnitude values of the empirical hidrance factors for groun-state spontaneous fission of odd nuclei. It is also shown that a large enhancement of superfluidity in tunneling - the inherent effect of the dynamical treatment of pairing - strongly facilitates deeply subbarier fusion of complex nuclei. Finally, an analysis is given for the probability of spontaneous fission from K-isomeric quasiparticle (q-p) states in even-even heavy nuclei. The relative change of the partial spontaneous fission half-life in going from the ground-state to a high-spin q-p isomeric state, T* sf /T sf , is found to be strongly dependent on whether or not there takes place the dynamically induced enhancement of superfluidity in tunneling. Measurements of T* sf /T sf provide thus a unique possibility of verifying theoretical predictions about the strong, inverse-square Δ dependence of the effective inertia associated with large-scale subbarrier rearrangements of nuclei

  19. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling

    Science.gov (United States)

    Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.

    2018-02-01

    The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.

  20. Effects of internal hydrogen on the vacancy loop formation probability in Al

    International Nuclear Information System (INIS)

    Bui, T.X.; Sirois, E.; Robertson, I.M.

    1990-04-01

    The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability