WorldWideScience

Sample records for complex geomorphological river

  1. Geomorphology and River Management

    Directory of Open Access Journals (Sweden)

    GARY BRIERLEY

    2008-01-01

    Full Text Available Engineering-dominated practices, visible in a "command and control" outlook on natural systems, have induced enormous damage to the environment. Biodiversity losses and declining provision of ecosystem services are testimony to the non-sustainable outcomes brought about by such practices. More environmentally friendly approaches that promote a harmonious relationship between human activities and nature are required. Moves towards an "ecosystem approach" to environmental management require coherent (integrative scientific guidance. Geomorphology, the study of the form of the earth, provides a landscape template with which to ground this process. This way of thinking respects the inherent diversity and complexity of natural systems. Examples of the transition toward such views in environmental practice are demonstrated by the use of science to guide river management, emphasising applications of the River Styles framework.

  2. Complex systems in aeolian geomorphology

    Science.gov (United States)

    Baas, Andreas C. W.

    2007-11-01

    Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process with non-linear dynamics, while dune field evolution is a prototypical self-organisation phenomenon. Both of these broad areas of aeolian geomorphology are discussed and analysed in the context of complexity and a systems approach. A feedback loop analysis of the aeolian boundary-layer-flow/sediment-transport/bedform interactions, based on contemporary physical models, reveals that the system is fundamentally unstable (or at most meta-stable) and likely to exhibit chaotic behaviour. Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event time-series can be fully reproduced from a combination of (self-organised) 1/ f forcing, motion threshold, and saltation inertia. The evolution of various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporate only simplified physically-based interactions (rules). Because of their undefined physical scale, however, it not clear whether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of

  3. Geomorphology of outflow part Batova river valley

    Science.gov (United States)

    Vulcheva-Georgieva, Ivalena; Stankova, Svetla

    2017-03-01

    Firths are geomoiphological and hydrological sites typical for flat, neutral coast of no tidal sea basins. There in the greatest extend is preserved the geological column of the correlative Pleistocene- Holocene sediments. They make possible to reveal the Quaternary evolution of the contact zone "land-sea". Firths are one of the most reliable indicators for the Quaternary Earth crust movements. Along the Black Sea coast most widely are developed the firths in the north - west and the west periphery, where they form a classic firth type coast. This report examines the results of complex studies of Batova river firth, located (developed) on the North Bulgarian Black Sea coast.

  4. Delineating riparian zones for entire river networks using geomorphological criteria

    Directory of Open Access Journals (Sweden)

    D. Fernández

    2012-03-01

    Full Text Available Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC, while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance. As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment. Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that

  5. Toward a new system approach of complexity in geomorphology

    Science.gov (United States)

    Masson, E.

    2012-04-01

    Since three decades the conceptual vision of catchment and fluvial geomorphology is strongly based on the "fluvial system" (S. A. Schumm, 1977) and the "river continuum system" (R. L. Vannote et al., 1980) concepts that can be embedded in a classical physical "four dimensions system" (C. Amoros and G.-E. Petts, 1993). Catchment and network properties, sediment and water budgets and their time-space variations are playing a major role in this geomorpho-ecological approach of hydro-geomorphosystems in which human impacts are often considered as negative externalities. The European Water Framework Directive (i.e. WFD, Directive 2000/60/EC) and its objective of good environmental status is addressing the question of fluvial/catchment/landscape geomorphology and its integration into IWRM in such a sustainable way that deeply brings back society and social sciences into the water system analysis. The DPSIR methodology can be seen as an attempt to cope with the analysis of unsustainable consequences of society's water-sediment-landscape uses, environmental pressures and their consequences on complex fluvial dynamics. Although more and more scientific fields are engaged in this WFD objective there's still a lack of a global theory that could integrate geomorphology into the multi-disciplinary brainstorming discussion about sustainable use of water resources. Our proposition is to promote and discuss a trans-disciplinary approach of catchments and fluvial networks in which concepts can be broadly shared across scientific communities. The objective is to define a framework for thinking and analyzing geomorphological issues within a whole "Environmental and Social System" (i.e. ESS, E. Masson 2010) with a common set of concepts and "meta-concepts" that could be declined and adapted in any scientific field for any purpose connected with geomorphology. We assume that geomorphological research can benefit from a six dynamic dimensions system approach based on structures

  6. Geomorphology of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake

  7. Geomorphology and River Dynamics of the Lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges. Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005-07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36-37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36-37 during average flow periods. The U.S. Geological Survey's Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  8. Geomorphological Impacts of an extreme Flood in Karoon River, Iran

    Science.gov (United States)

    Yousefi, Saleh; Mirzaee, Somaya; Keesstra, Saskia; Piegay, Herve; Pourghasemi, Hamid Reza

    2017-04-01

    An extreme flood occurred on 14.04.2016 in Kroon River. Using the OLI Landsat images on 08.04.2016 (before flood) and 24.04.2016 (after flood) the morphological evolution in different land cover types by this flood event were detected. The results show that the event significantly affected the channel width. The main effect was the high mobilization of channel sediments and severe bank erosion in the studied meandering reach. According to field surveys, the flood occupied the whole channel corridor and even some of the flood plain parts, but the channel pattern was not markedly changed. Results show the average of active channel width increased from 192 m to 256 m respectively for before and after flood. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. Findings show that the channel morphological changes (channel widening) varied significantly in different land cover types along the Karoon River banks. Specifically, the channel has widened less in the residential areas than the other land cover types, which is the result of bank protection activities. Keywords: Remote sensing, fluvial geomorphology, floodplain management, river evolution.

  9. Fluvial geomorphology of the Middle Reach of the Huai River

    Institute of Scientific and Technical Information of China (English)

    Bang-yi YU; Peng WU; Jue-yi SUI; Xing-ju YANG; Jin NI

    2014-01-01

    The Middle Reach of the Huai River (MRHR) flows northeast into the Hongzehu Lake. Before entering the Hongzehu Lake, the Huai River has a braided channel which is shallow and wide, and the riverbed has a negative slope. Based on the characteristics of the MRHR, this river reach can be divided into the following sections: a quasi-straight (or mildly curved) section, a bend section, and a braided section. The majority of the MRHR is quasi-straight. In this paper, several parameters are used to assess the geomorphology of the MRHR. Statistical analyses are performed to establish a relationship between the span length“L”and channel width“B”for different channel patterns. The relationship between the meandering length “S” and bankfull channel width “B” is also derived. Results indicate that the bankfull channel width “B”, the bankfull cross sectional area “A” and the average flow depth“H”are mainly dependent on the dominant discharge in the channel. A relationship is derived that describes the dependency of the curvature radius“R”on the dominant discharge“Q”, water surface slope“J”and the turning angle“α”.

  10. Geomorphologic map and derived geomorphological evolution model of the Ampato volcanic complex (Southern Peru).

    Science.gov (United States)

    Alcalá, J.; Zamorano, J. J.; Palacios, D.

    2012-04-01

    In this work we present the evolution of the Ampato volcanic complex (15°24´-15° 51´S, 73°W; 6.288 m asl) from a geomorphological perspective based on the analysis of landforms, both volcanic and derived from cold processes such as moraines and rock glaciers. In order to do so, a detailed 1:20.000 scale geomorphological map was elaborated by integrating the following techniques: the interpretation of the 1:35.000 scale aerial photographs (Instituto Geográfico Nacional de Perú, 1956) and the analysis of satellite images (Mrsid; NASA, 2000). The cartography was corrected through field work campaigns. A geomorphological cross-section traversing the map from North to South was elaborated in order facilitate the interpretation of the landforms. From the thorough analysis of the landforms represented in the geomorphological map and their relative position we have identified six main volcanic phases, mainly constructive but also, to a lesser extent, destructive (related with a Sant. Helens eruption), interspersed by five large glacial phases. From the three andesitic stratovolcanoes that form the complex (HualcaHualca, Sabancaya and Ampato) we suggest that the oldest of them is HualcaHualca representing the first step of the process over which the other units were placed. The most recent phase corresponds to the main cone of Sabancaya and its sets of domes and large lavas flows. Also we have detected a number of well-preserved vents on the Southern slope of volcano HualcaHualca close to the 1955 glacier tongues. Their presence is an evidence of recent volcanic activity in a volcano considered extinct. The glacial activity has been very active during the Quaternary on the Ampato Complex. The most ancient glacial phase is linked to the Last Glacial Maximum of the Pleistocene. During this event, the paleoglaciers descended down to 3650 m asl and builted moraines of 25- 30 m height. The most recent advance is related to the global event known as Little Ice Age (LIA

  11. Flood risk analysis of the Limpopo River basin through past evolution reconstruction and geomorphological approach

    Directory of Open Access Journals (Sweden)

    M. Spaliviero

    2014-02-01

    Full Text Available This research reconstructs the past evolution of the Limpopo River, a transboundary system located in south-eastern Africa, and describes its geomorphological settings through literature review and field work activities, with aim to analyse the risk of floods in the basin. Major changes have occurred since the late Jurassic – early Cretaceous period due to successive tectonic events. The paper demonstrates that the apparently abandoned drainage conformation of the palaeo-Limpopo in the upper and middle stretches of the river constitutes today preferential flood-prone areas in case of major rainfall events. An important palaeo-delta is identified in the lower Limpopo, which imposes a particular drainage pattern to the floodplain in Mozambique and influences the floods dynamics at present. The adopted method is helpful in determining flood risk in a data-scarce area showing complex fluvial dynamics, and allows identifying unsuitable locations for human settlements.

  12. The case of Sarno River (Southern Italy): effects of geomorphology on the environmental impacts.

    Science.gov (United States)

    De Pippo, Tommaso; Donadio, Carlo; Guida, Marco; Petrosino, Carmela

    2006-05-01

    Analysis of the morphological, geological and environmental characteristics of the Sarno River basin has shown the present degraded condition of the area. Over the past thirty years, the supply of untreated effluent of domestic, agricultural and industrial origin has ensured the presence of high concentrations of pollutants, including heavy metals. The geological context of the catchment area has played a major part in determining the current ecological conditions and public health problems: while human activity has modified the landscape, the natural order has indirectly contributed to increasing the environmental impact. The health situation is precarious as the basin's inhabitants feed on agricultural and animal products, and use polluted water directly or indirectly. The hazard of contracting degenerative illnesses of the digestive or respiratory apparatus, bacterial infections or some neoplasia has gradually increased, especially in the last five years. Moreover, polluted basin waters flowing into the Bay of Naples increase sea water contamination, thereby damaging tourism, public health and degrading the local littoral quality. The overview presented shows how the environmental state of the Sarno River basin gives considerable cause for concern. The basin's complex geomorphologic setting has a direct bearing on local environmental and health conditions. The analysis of the available data demonstrates how the physical aspects of the area are closely linked to the diffusion and concentration of the pollutants, and how the latter ones have a large influence on the hygienic-sanitary conditions of the local population. Specific interventions need to be undertaken to monitor and improve the chemical, physical and microbiological conditions of water and sediments, especially in light of the geomorphological vulnerability of the river basin.

  13. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    Science.gov (United States)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  14. Geomorphology and fish assemblages in a Piedmont river basin, U.S.A

    Science.gov (United States)

    Walters, D.M.; Leigh, D.S.; Freeman, Mary C.; Freeman, B.J.; Pringle, C.M.

    2003-01-01

    1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20?40 times stream width). 2. Non-metric multidimensional scaling (NMDS) identified 85% of the among-site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter-cyprinid-redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60?0.82) by reach-level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the `River Continuum Concept? which argues that stream assemblages vary predictably along stream size gradients. Our findings support the `Process Domains Concept?, which argues that local-scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.

  15. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    Science.gov (United States)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  16. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  17. Hydrological, geomorphological and ecological river characterization: PELLIDRAC (Alcotra Project)

    Science.gov (United States)

    Piccione, S.; Comino, E.; Rosso, M.; Chouquet, I.

    2012-04-01

    PELLIDRAC Project, allowed to highlight both the positive characteristics that the critical ones of the two analyzed rivers: Pellice river in Italy and Drac river, in French territory. We also analyzed different methods of river management to identify the best one for risk mitigation (hydraulic and concerning populations) and for water bodies and riparian environment protection. Main activities were inspections, to allow a direct knowledge of investigated areas, application of environmental and morphological indices, hydraulic simulations and evaluation of planimetrical variations and elevation changes of riverbed. The work shows two not homogeneous river ecosystems, characterized by high erosion of the banks and progressive lowering of riverbed bottom that leads to local outcrops of the substrate (most evident on Drac); to fight against erosion, many bank protections have been built. In addition, we observed human actions, such as riverbed remodeling and extraction of material, that cause negative impacts on riparian areas. About ecological and environmental aspects, we identified some areas with good river functionality and high level of naturalness, mainly characterized by the presence of wetlands and riparian vegetation well-developed and diversified. In analyzed territories, we proposed some interventions, such as creation of new wetlands, widening of some riverbed sections and a material recharge, attempting to mitigate founded problems. PELLIDRAC Project conclusion is not a point of arrival but a point of departure for further planning of specific interventions on river ecosystems, aimed at good management of water courses and at improvement of riparian populations living conditions.

  18. Geomorphologic Study of Anhui Section of Changjiang River Using Landsat TM Image

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluvial landforms in the Anhui section of the Changjiang (Yangtze) River are often considered as the main factors for frequent floods. It is these special landforms that influence the channel changes of the Changjiang River.Using Landsat TM image of 2000, this paper conducted a series of image processing, including principal component analysis, multi-spectral composition, gray value statstics, and spectral analysis of ground objects. Then it got a new interpretation map of different kinds of fluvial landforms of the Changjiang River in the Anhui section. Based on the interpretation mentioned above, the paper analyzes the distribution and characteristics of such typical landforms as terraces, floodplains and battures, and their functions on the changes of river channel. The results show a consistence with the earlier conclusion that the Anhui section of the Changjiang River tends to deflect gradually toward south,which provides more implications for further study on the geomorphologic evolution of the river channel.

  19. Temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta

    Institute of Scientific and Technical Information of China (English)

    PENG Jun; MA Suisui; CHEN Hongquan; LI Zhiwen

    2013-01-01

    Based on measured data of coastline and bathometry,processed by softwares of Surfer and Mapinfo,and combined with sediment loads in different phases at Lijin gauging station,temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta is analyzed.The results show that ~68% of sediments were delivered by the Yellow River deposited around the river mouth and in the littoral area from 1953 to 2000.Coastline in different coasts had distinctive changes in response to shifts of river course.Coastline was stable in the west of the Diaokou river mouth.Coastline from the east of the Diaokou river mouth to the north of the Gudong oilfield had experienced siltation,then serious erosion,and finally kept stable with sea walls conservation.Generally,coastline of the survived river mouth of the Qingshuigou river course stretched seaward,whereas the south side of sand spit at the Qingshuigou old river mouth was eroded after the Yellow River inpouring near the position at the Qing 8.The subaqueous geomorphology off the survived river mouth exhibited siltation from 1976 to 1996,with flat topset beds and steeper foreset beds.From 1996 to 2005,the subaqueous geomorphology off the Qingshuigou old river mouth was eroded in the topset and foreset beds,but silted in the bottomset beds.The subaqueous geomorphology off the new river mouth sequentially performed siltation with small degree compared to that of 1976-1996.

  20. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    Science.gov (United States)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  1. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    Science.gov (United States)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  2. Insights to integrated river management from a geomorphological viewpoint

    Science.gov (United States)

    Valyrakis, Manousos; Liu, Da

    2016-04-01

    In the context of increasing magnitude and frequency of extreme hydrologic events, eco-hydraulic engineers have a dual role of providing novel designs that both help stabilise river systems, as well as help effectively route floodwater safely downstream, though the catchment. One of such soft and green measures commonly used in engineering to protect channel banks and floodplains, is riverbank vegetation. Riverbank vegetation can be of high importance both in preserving the form (morphology) and function (ecology) of our natural as well as engineered river systems. Here the results of an experimental flume study, investigating riverbank hydrodynamics are presented. The effect of different riverbank vegetation densities on flow hydrodynamics across the channel are reported and discussed. Flow diagnostics including mean and turbulent intensity flow profiles along the streamwise and lateral directions, are being assessed via acoustic Doppler velocimetry (ADV) both at the main channel and within the riverbank. The configuration of vegetation elements follows a linear or staggered arrangement as vegetation density is progressively increased. Implications for sediment transport are discussed by considering the change in near-bed shear stresses at the main channel (increasing) and riverbank (decreasing) as the riverbank density increases. As such processes have the potential to affect both the form and function of the river system, the insights from this study are of significant importance to geomorphologists and hydraulic engineers, as well as ecologists.

  3. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    Science.gov (United States)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets

  4. Geomorphological Prerequisites of Recreation and Tourism Development in the Basin of Bolshaya Golubaya River

    Directory of Open Access Journals (Sweden)

    Vishnyakov Nikolay Vladimirovich

    2014-12-01

    Full Text Available The basin of the Bolshaya Golubaya river is a promising region for the development of recreation, due to the unique natural conditions and rich historical and cultural heritage of this territory. The article demonstrates geomorphological features of the basin of Bolshaya Golubaya and their influence on the prospects of recreational use of this area. The author analyses the literature data on the geomorphology of the region and supplements it with his own field studies. The nature of this region is picturesque and multifarious. There are a lot of ravines, gullies, terraces, chalk cliffs and other landforms here. The author discovers the opportunities of organization of different recreational types in the study area in light of its geomorphological features. Recreational characteristics of this territory make it suitable for hiking, skiing and cycling tourism, horse riding. The results of this research can be used at the stage of creating of tourist-recreational projects, when designing and conducting excursion trips, sports and health touristic events. These studies contribute to the expansion of practical knowledge about the geography of the territory which has a positive effect on the possibility of carrying out mentioned above recreational projects.

  5. Using Fluvial Geomorphology as a Physical Template in Process-Based and Recovery Enhancement Approaches to River Management

    Science.gov (United States)

    Fryirs, K.

    2016-12-01

    In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.

  6. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    Science.gov (United States)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  7. Dynamics of Bottomland Geomorphology and Vegetation Along a Dammed, Arid Region River: Implications for Streamflow Management

    Science.gov (United States)

    Shafroth, P. B.; House, P. K.

    2007-05-01

    In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion

  8. Risks Associated To Present Geomorphologic Processes In The Stemnic (Buda River Basin

    Directory of Open Access Journals (Sweden)

    Bojoagă Ioan

    2015-10-01

    Full Text Available The paper analyses the main geomorphologic processes in the Stemnic (Buda river basin, conditioned by the joint action of several factors, among which are the lithological peculiarities and the nature of superficial deposits, morphometric characteristics, climate, vegetation type and structure, properties of the soil cover etc. The Stemnic river basin with an area of 15662.52 ha is characterized by its elongated shape (the maximum length is of 30.5 km, maximum width of 8.5 km, its relative lithological homogeneity, but also by a variety of superficial deposits (eluvium, diluvium, colluvium and proluvium, alluvium and by a relief energy of significant values between 136 m and 10 m (mean value of 73 m. Under these conditions, study area is characterized by a high degree of susceptibility to the occurrence of geomorphologic risk processes. For the morphometric and morphological analysis, we applied the method of the digital terrain model (DTM with vectorisation of the contour lines on topographic maps with a scale of 1:5,000. In this paper we used indicators that highlight the particular frequency of landslides, especially in the upper and middle sectors, but the rather reduced frequency of deep erosion. Due to the satisfactory coverage of the ground with vegetation, the erosion reaction is differentiated, as it depends on the use of the land and the concentration of liquid flow on the slopes. Consequently, landslides of different ages, types and forms hold large surfaces in the basin (approx. 8%, while surface erosion affects most areas of the slopes, but with different intensities depending on their use and on agricultural technologies.

  9. Rios de leito rochoso: aspectos geomorfológicos fundamentais / Bedrock Rivers: fundamental geomorphologic aspects

    Directory of Open Access Journals (Sweden)

    Adalto Gonçalves de Lima

    2010-11-01

    Full Text Available ResumoOs estudos sobre rios de leito rochoso desenvolveram-se grandemente nas ultimas décadas, mas no Brasil, esses estudos ainda são incipientes. Considerando o estado recente do desenvolvimento desse tema e a escassez de trabalhos em língua portuguesa, e feita uma revisão dos aspectos geomorfológicos fundamentais desses rios com base nos estudos atuais. Primeiramente analisa-se o conceito de canais fluviais de leito rochoso. Em segundo lugar são analisados os princípios hidráulicos que governam a erosão em leitos rochosos. Finalmente, os processos erosivos de abrasão, arranque e cavitação são descritos a partir das pesquisas atuais. AbstractThe studies about bedrock rivers have been largely developed in last decades, but in Brazil these studies are still incipient. Considering the recent development of this theme and the scarcity of related research in Portuguese language, it is conducted a revision of fundamental geomorphologic aspects of bedrock rivers based on current studies. First of all, it is analyzed the bedrock river concept and after that, it is analyzed the hydraulic principles that govern the bedrock erosion. Finally, the erosive processes of abrasion, plucking and cavitation are described from current researches.

  10. Geomorphological features and monitoring of a large and complex landslide near Avigliano urban area (South Italy

    Directory of Open Access Journals (Sweden)

    F. Sdao

    2005-01-01

    Full Text Available This paper reports the results of geological and geomorphological surveys and the first results of a still in progress GPS monitoring campaign, taken on a large and ancient landslide located near Avigliano town (Basilicata region, South Italy. The landslide occurs on structurally complex clayey-marly terrains and it is classifiable as a multiple and complex roto-translational-earthflow landslide. In the last years this landslide has been affected by frequent reactivations that have been the cause of grave damages to the urban structures in the area. During January 2004, in order to monitor the present kinematics of the landslide body, a GPS network was installed. Until today several GPS surveys have been carried out. The results of GPS data analysis show centimetres level motions going on the landslide. The final goal of the research will be to define a hazard evaluation and an evolution model of the landslide, using the integrated information coming from GPS and geomorphological surveys.

  11. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam

    Science.gov (United States)

    Stahl, Mason O.; Harvey, Charles F.; van Geen, Alexander; Sun, Jing; Thi Kim Trang, Pham; Mai Lan, Vi; Mai Phuong, Thao; Hung Viet, Pham; Bostick, Benjamin C.

    2016-08-01

    Many aquifers that are highly contaminated by arsenic in South and Southeast Asia are in the floodplains of large river networks. Under natural conditions, these aquifers would discharge into nearby rivers; however, large-scale groundwater pumping has reversed the flow in some areas so that rivers now recharge aquifers. At a field site near Hanoi Vietnam, we find river water recharging the aquifer becomes high in arsenic, reaching concentrations above 1000 µg/L, within the upper meter of recently (50 µg/L) aqueous arsenic concentrations are found in aquifer regions adjacent to zones where the river has recently deposited sediment and low arsenic concentrations are found in aquifer regions adjacent to erosional zones. High arsenic concentrations are even found adjacent to a depositional river reach in a Pleistocene aquifer, a type of aquifer sediment which generally hosts low arsenic water. Using geochemical and isotopic data, we estimate the in situ rate of arsenic release from riverbed sediments to be up to 1000 times the rates calculated on inland aquifer sediments in Vietnam. Geochemical data for riverbed porewater conditions indicate that the reduction of reactive, poorly crystalline iron oxides controls arsenic release. We suggest that aquifers in these regions may be susceptible to further arsenic contamination where riverine recharge drawn into aquifers by extensive groundwater pumping flows through recently deposited river sediments before entering the aquifer.

  12. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  13. The effects of hydraulics, geomorphology, and storm events on metabolism rates in an agricultural river

    Science.gov (United States)

    O'Connor, B. L.; Harvey, J. W.; McPhillips, L. E.

    2009-12-01

    Physical factors such as discharge, geomorphology, and sediment transport strongly influence metabolism rates in agricultural rivers with sparse tree canopies where sunlight is not limiting. These physical processes establish a mosaic of sediment habitats of varying particle sizes, permeabilities, and biological communities that control primary production and respiration rates. In this study, we examined the combined factors of hydraulic conditions, sediment texture, and hyporheic exchange on the spatial and temporal variability of metabolism rates in an agricultural river located in central Iowa. Hydraulic conditions were quantified using field velocity measurements and two-dimensional hydraulic modeling. Sediment texture was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae and fine benthic organic material. Hyporheic exchange potential was quantified using an effective diffusion scaling relationship based on sediment and flow conditions. Patch-scale metabolism rates varied spatially according to patterns in hydraulic and sediment characteristics, but were of the same order of magnitude as reach-scale gross primary productivity and community respiration measurements. Two discharge-related storm perturbation regimes to the reach-scale metabolism rates were identified using diurnal dissolved oxygen data measured at the study reach over three years. Rainfall events of days as a result of increased turbidity, whereas rainfall events of > 3 cm disrupted metabolism rates for several days to weeks due to bed mobilization and the restructuring of the sediment habitats. A combination of hydraulic modeling, habitat mapping, and reach-scale metabolism measurements were used to produce a two-dimensional analysis of a turbidity-related disturbance event that occurred in late fall 2007. Results from this study suggest that physical processes establish, destroy, and restructure hydraulic and sediment

  14. Relating river geomorphology to the abundance of periphyton in New Zealand rivers

    Science.gov (United States)

    Hoyle, Jo; Hicks, Murray; Kilroy, Cathy

    2013-04-01

    Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand

  15. Volcanic and glacial evolution of Chachani-Nocarane complex (Southern Peru) deduced from the geomorphologic map.

    Science.gov (United States)

    Alcalá, J.; Zamorano, J. J.; Palacios, D.

    2012-04-01

    The Chachani-Nocarane (16°11'S; 71°31'W; 6.057 m asl) is a large volcanic complex located in the western Central-Andean Cordillera, South of Peru. The date of the last eruption is not known and there are no registers of recent volcanic activity. The complex is shaped by glacial forms belonging to different phases, and periglacial forms (several generations of rock glaciers) which alternate with volcanic forms. The aim of this research is to establish the glacio-volcanic evolution of the volcanic complex Chachani-Nocarane. In order to do so, a detailed 1:20.000 scale geomorphological map was elaborated by integrating the following techniques: interpretation of the 1:35.000 scale aerial photographs (Instituto Geográfico Nacional de Perú, 1956) and the analysis of satellite images (Mrsid; NASA, 2000). Finally, the cartography was corrected though field work campaigns. Through the geomorphologic analysis of the landforms and their relative position, we have identified twelve phases, seven volcanic and five glacial phases. The most ancient volcanic phase is locate to the north area of the study area and correspond with Nocarane and Chingana volcanoes, alignment NW-SE. Above those ensemble the rest of the large delimited geomorphological units overlap. The most recent is located to the SW and consists of a complex series of domes, lava cones and voluminous lavas. Within the glacial phases, the most ancient one is related to the Last Glacial Maximum during the Pleistocene. Over this period, glaciers formed moraines from 3150 to 3600 m asl. The most recent glacier pulsation corresponds to the Little Ice Age (LIA). The moraines related to that event are the closest to the summits, located between 5.100 and 5.300 m asl, and they represent the last trace of glacial activity on the volcanic complex. Currently, this tropical mountain does not have glaciers. The only solid-state water reserves are found in the form of permafrost, as shown by various generations of rock

  16. Integrating understanding of hydrology, geomorphology and ecology to better predict periphyton abundance in New Zealand rivers

    Science.gov (United States)

    Hoyle, Jo; Kilroy, Cathy; Hicks, Murray

    2015-04-01

    concentration and periphyton biomass data (laboratory measures of chlorophyll a and percentage cover of thin films, filaments and mats/sludge). For each reach we set up a 1-d hydraulic model and established relationships between discharge and a number of hydraulic and geomorphic variables, including the discharge required to partially and fully mobilise the bed sediment. These were then related to the flow and periphyton monitoring records to examine the strength of relationships. Relating periphyton biomass data to antecedent flow data allowed us to identify threshold flows for periphyton removal. These flows were found to be 0.9 - 9.8 times the median flow, depending on the site, with the average across sites being 3.3 times the median flow. Results also showed that general mobility of the gravelly/cobbly bed material was not required to remove periphyton but that mobility of over-passing sand (through its abrasive action) is a key control on periphyton abundance. Relationships between soluble inorganic nitrogen and periphyton abundance were found to be strong at sites where sand is mobilized infrequently but weak at sites where sand is mobilized often. Overall results indicate that integrating understanding of geomorphology, hydrology and ecology can improve prediction of periphyton abundance in New Zealand rivers.

  17. Late Wisconsinan Glacial Geomorphology of the Kent Interlobate Complex, Ohio, USA

    Directory of Open Access Journals (Sweden)

    João Bessa Santos

    2012-06-01

    Full Text Available The northern sector of the Kent Interlobate Complex, created by twomajor ice lobes of the Laurentide Ice Sheet during late Wisconsinan times, dominates the glacial landscape of northeast Ohio. The geomorphology of this impressive complex reveals the presence of large hummocks, kettle lakes and substantial esker chains. The esker chains,usually smaller than 1.3 km long, run parallel to the interlobate complex geographic orientation of northeast-southwest. Gravel pits present on large hummocks display bedded and sorted sedimentary units of gravel, sand and gravel and climbing ripple laminated sand with folds, which demonstrate that the northern sector of the interlobate complex is primarily a glaciofluvial feature. Topping these hummocks is a massive clast-supported diamicton interpreted to be a debris flow. These geomorphic and sedimentary characteristics seem to indicate that hummocks present in the interlobate area are in fact kames and that the entire northern sector of the interlobate complex is a product of late Wisconsinan time transgressive ice stagnation that occurred between two major ice lobes.

  18. The impact of geomorphology of marsh creeks on fish assemblage in Changjiang River estuary

    Science.gov (United States)

    Jin, Binsong; Xu, Wang; Guo, Li; Chen, Jiakuan; Fu, Cuizhang

    2014-03-01

    Tidal marshes are an important habitat and nursery area for fish. In the past few decades, rapid economic development in the coastal areas of China has led to the interruption and destruction of an increasing number of tidal marshes. The growing interest in tidal marsh restoration has increased the need to understand the relationship between geomorphological features and fish assemblages in the design of marsh restoration projects. We studied temporal variations in, and the effects of creek geomorphological features on, the estuarine tidal creek fish community. Using modified channel nets, we sampled fish monthly from March 2007 to February 2008 from seven tidal creeks along an intertidal channel system in Chongming Dongtan National Nature Reserve. Fourteen creek geomorphological variables were measured or derived to characterize intertidal creek geomorphological features. The Gobiidae, with 10 species, was the most speciesrich family. The most abundant fish species were Liza affinis, Chelon haematocheilus, and Lateolabrax maculatus. The fish community was dominated by juvenile marine transients, which comprised about 80% of the total catch. The highest abundance of fish occurred in June and July, and the highest biomass occurred in December. Canonical redundancy analyses demonstrated that depth, steepness, cross-sectional area, and volume significantly affected the fish species assemblage. L. affinis favored small creeks with high elevations. Synechogobius ommaturus, Acanthogobius luridus, and Carassius auratus preferred deep, steep creeks with a large cross-sectional area and volume. These findings indicate that the geomorphological features of tidal creeks should be considered in the conservation and sustainable management of fish species and in the restoration of salt marshes.

  19. River geomorphology and fish barriers affect on spatial and temporal patterns of fish assemblages in the Niobrara River, Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Niobrara River in northern Nebraska traverses the heart of the Great Plains with portions of the river protected under the National Wild and Scenic River system...

  20. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  1. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    Science.gov (United States)

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  2. Hydrology, geomorphology, and flood profiles of the Mendenhall River, Juneau, Alaska

    Science.gov (United States)

    Neal, Edward G.; Host, Randy H.

    1999-01-01

    Water-surface-profile elevations for the 2-, 20-, 25-, 50-, and 100-year floods were computed for the Mendenhall River near Juneau, Alaska, using the U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System model. The peak discharges for the selected recurrence intervals were determined using the standard log-Pearson type III method. Channel cross sections were surveyed at 60 locations to define hydraulic characteristics over a 5.5-mile reach of river beginning at Mendenhall Lake outlet and extending to the river mouth. A peak flow of 12,400 cubic feet per second occurred on the Mendenhall River on October 20, 1998. This discharge is equivalent to about a 10-year flood on the Mendenhall River and floodmarks produced by this flood were surveyed and used to calibrate the model. The study area is currently experiencing land-surface uplift rates of about 0.05 foot per year. This high rate of uplift has the potential to cause incision or downcutting of the river channel through lowering of the base level. Vertical datum used in the study area was established about 37 years before the most recent surveys of river-channel geometry. The resulting difference between land-surface elevations and sea level continues to increase. Continuing incision of the river channel combined with increased land-surface elevations with respect to sea level may result in computed flood profiles that are higher than actual existing conditions in the tidally influenced reach of the river.

  3. Geomorphological approach to surficial material evaluation in the Serang River Basin Kulonprogo, Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutikno .

    2013-07-01

    Among landform units in the studied area which contains a large amount of the materials are: natural levees, river terraces, river bed and hill foot slopes. Generally, the river bed materials decrease in grain size downstreams and increase in sphericity and roundness coefficient. In some cross sections a reversal was found to the general tendency. This situation might be due to human activities for getting material for construction. Due to human activities some environmental impacts occur.

  4. Geomorphological Analysis and Hydrological Potential Zone of Baira River Watershed, Churah in Chamba District of Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Kuldeep Pareta

    2017-03-01

    Full Text Available In the present study, an attempt has been made to study the quantitative geomorphological analysis and hydrological characterization of 95 micro-watersheds (MWS of Baira river watershed in Himachal Pradesh, India with an area of 425.25 Km2. First time in the world, total 173 morphometric parameters have been generated in a single watershed using satellite remote sensing data (i.e. IRS-P6 ResourceSAT-1 LISS-III, LandSAT-7 ETM+, and LandSAT-8 PAN & OLI merge data, digital elevation models (i.e. IRS-P5 CartoSAT-1 DEM, ASTER DEM data, and soI topographical maps of 1: 50,000 scale. The ninety-five micro-watersheds (MWS of Baira river watershed have been prioritized through the morphometric analysis of different morphometric parameters (i.e. drainage network, basin geometry, drainage texture analysis, and relief characterizes . The study has concurrently established the importance of geomorphometry as well as the utility of remote sensing and GIS technology for hydrological characterization of the watershed and there for better resource and environmental managements.

  5. Cataclysms and controversy -- aspects of the geomorphology of the Columbia River Gorge

    Science.gov (United States)

    O'Connor, Jim; Burns, Scott; Madin, Ian; Dorsey, Rebecca

    2009-01-01

    Landslides and floods of lava and water tremendously affected the Columbia River during its long history of transecting the Cascade Volcanic Arc. This field trip touches on aspects of the resulting geology of the scenic Columbia River Gorge, including the river-blocking Bonneville landslide of ~550 years ago and the great late- Pleistocene Missoula floods. Not only did these events create great landscapes, but they inspired great geologists. Mid-nineteenth century observations of the Columbia River and Pacific Northwest by James Dwight Dana and John Strong Newberry helped germinate the “school of fluvial” erosion later expanded upon by the southwestern United States topographic and geologic surveys. Later work on features related to the Missoula floods framed the career of J Harlen Bretz in one of the great geologic controversies of the twentieth century.

  6. The contemporary geomorphology of the Letaba River in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    B.P. Moon

    2001-07-01

    Full Text Available The Letaba River drains part of Northern Province in north-east South Africa. Its catchment has been modified significantly by human activity which has affected the flow regime; it experiences only ephemeral flows through the Kruger National Park to its confluence with the Olifants River. Although the Letaba is similar to the other rivers in the Kruger National Park in that it displays some bedrock influenced channel features, increased sediment delivery from the degraded catchment upstream has resulted in extensive alluviation within the channel. Sections of channel flowing over bedrock with no sediment covering are rare, and the river comprises a series of channel types: mixed anastomosing, alluvial braided, mixed pool-rapid and alluvial single thread. Each is characterised by a different combination of morphological units which relate to the degree of alluviation in the channel. These channel types are described in detail and inferences are made concerning their formation and maintenance from field observation and measurement.

  7. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    Science.gov (United States)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  8. Archaeology, Geomorphology and Historic Surveys in Pools 13-14, Upper Mississippi River. Volume 1

    Science.gov (United States)

    1989-09-01

    counties (Fig. 3.15). Like most of the towns along the river, it traces its origins to a couple of backwoods land sharks, in this case Abraham Mitchell...Middle West. University of Oklahoma Press, Norman. (Interpretive series of essays dealing with regional culture history.] Nasatir, Abraham Phineas...Mississippi River at Isle Pelee (Prairie Island), near present day Red Wing, Minnesota. In 1700, Le Sueur leads an expedition from the Gulf of Mexico to

  9. Linking ecology to hydrology and geomorphology using river reach classification for the Greater Mekong Region

    Science.gov (United States)

    Ouelette Dallaire, Camille; Lehner, Bernhard

    2016-04-01

    Large-scale development projects, such as hydropower dams, in the Greater Mekong Region (GMR) are putting high pressure on freshwater resources. Environmental impact assessments are needed in the region to understand the possible impacts of these projects. These assessments often require biodiversity data that can be costly to acquire both in terms of time and money. It is often assumed that river or ecosystem classes, based on geo-physical characteristics, can be used as biodiversity proxies in large scale assessments to account for a lack of biodiversity data. However, there has been little research to compare the spatial distribution of river classes and fish species. It is unclear how well river classes are able to represent the distribution of fish and, more generally, biodiversity. To address this question, a set of two classifications were compared to a newly available dataset of fish species distribution in the GMR (Allen et al., 2012). The classifications were derived from two different methods to test which could potentially better represent fish assemblages. The first classification is derived using regional expert knowledge and the second using K-mean analysis. Both are using the same geophysical datasets. The two datasets were used in a Redundancy Analysis (RDA) to calculate which proportion of the variability in the fish species data can be explained by the river classes. The RDA resulted in R2 of 0.44 for the supervised classification and 0.41for the statistical classification, showing a moderate correlation between the datasets. Based on these results, using river classes as biodiversity proxy is deemed reasonable. However, some of the variability in the distribution of fish species cannot be related simply to geophysical factors. River classes may capture different elements such as unique habitats and associated, possibly unknown, endemic species that indices based only on biological data do not. Hence, river classes can be a good alternative and

  10. The contemporary geomorphology of the Sabie River in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    G.L. Heritage

    2000-07-01

    Full Text Available The Sabie River in the Kruger National Park has been described as the most pristine in South Africa. It has remained largely free of direct alteration along its 110 km length within the reserve and as such displays a high geomorphic diversity. This physical vari- ability supports a great diversity of flora and fauna including a number of species endemic to the river. The diversity in fluvial form is the result of a high degree of bedrock influence coupled with a rapidly changing energy regime. Steeper bedrockinfluenced areas alternate with more gently sloping alluvial segments to create a series of channel types ranging from bedrock anastomosing through to alluvial single thread and braided sections. Each channel type is part of a continuum that relates to the degree of alluviation of the river on the bedrock template. Descriptions of the characteristic channel types associated with the Sabie River, together with associated morphologic units are given together with the areal extent of the changing morphology in the Kruger National Park. Each morphologic unit is characterised by size, shape, sedimentology and flow influence. Recent research into the degree and direction of morphologic change in the Sabie River is also summarised in the light of possible catchment management.

  11. Reconstruction of cryospheric changes in the Maipo and Juncal river basins, central Andes of Chile: an integrative geomorphological approach

    Science.gov (United States)

    Nussbaumer, Samuel U.; García, Juan L.; Gómez, Gabriel; Vega, Rodrigo M.; Gärtner-Roer, Isabelle; Salzmann, Nadine

    2016-04-01

    Water in the central Andes (32-38° S), a semi-arid mountainous area with elevations over 6000 m asl., is of great importance and a critical resource especially in the dry summer months. Ice bodies, such as glaciers and rock glaciers (permafrost) in the high mountains, provide a substantial part of the fresh-water resources but also for intensive economical use for the lowlands including Santiago metropolitan region, Chile. However the evolution of these ice bodies since the last deglaciation (i.e., Holocene, last ˜12,000 years), and in particular during historical times, and their feedback with climate is fairly unknown. In view of projected climate change, this is striking because it is also unknown whether these natural resources could be used as sustainable fresh-water source in the future. Within the presented project, we develop and apply an integrative geomorphologic approach to study glaciers and their long-term evolution in the central Andes of Chile. Apart from glaciers (with variable debris-coverage), rock glaciers have evolved over time as striking geomorphological landforms in this area. We combine geomorphologic mapping using remote-sensing and in-situ data with an innovative surface exposure dating technique to determine the ages of distinct moraine ridges at three study sites in watersheds of the Santiago region: Juncal Norte, Loma Larga and Nieves Negras glaciers. First results of the project are presented, including a detailed geomorphological mapping and first analysis of the landform dynamics. At all three sites, we distinguished at least three moraine systems of a Holocene putative age. These prominent moraine belts show that glaciers were at least 5 km longer than at present. Deglaciation from these ice marginal positions was gradual and complex in response to the detrital cover on the glaciers. Differences in ice thickness of the main glaciers in the respective valleys amount to about 100 m. Due to the partial, extensive debris coverage, the

  12. The Palimpsest of River-Floodplain Management and the Role of Geomorphology

    NARCIS (Netherlands)

    Hudson, Paul F; Middelkoop, Hans

    2015-01-01

    Embanked floodplains are the status-quo where humans are a major component of the environment, especially across Europe and North America. Effective management of embanked rivers requires a comprehensive knowledge of past and present-day geomorphic processes, including sediment transport and channel

  13. Quaternary Geology and Geomorphology of Terna River Basin in West Central India

    Directory of Open Access Journals (Sweden)

    Mohammad Babar

    2012-12-01

    Full Text Available This paper presents the morphostratigraphy, lithostratigraphy and sedimentary structures of Terna River basin in the Deccan Basaltic Province (DBP of West Central India. These Quaternary deposits have been divided into three informal formations (i dark grey silt formation – Late Holocene, (ii Light grey silt formations – Early Holocene, (iii Dark grayish brown silt formation – Late Pleistocene with the older Quaternary Alluvial deposits of Upper Pleistocene age. The fine clay and silt formations in the lower reaches reflect that the streams are of low gradient and more sinuous. The river shows evidences of channel movement by avulsion, largely controlled by lineaments. Palaeo-levees, in the form 4–5 m high ridges exist along the Terna River floodplain, specifically in the Ter, Killari, Sastur, Dhuta and Makni villages. Several lineaments occur along NE-SW, NW-SE, E-W and WNW-ESE directions, which control the basement structure in the study area. The values of the Topographic Sinuosity Index (TSI indicate rejuvenation of the area leading to the dominance of topography on the sinuosity of the river channels. The break in slope in the long profile is also indication of the Quaternary tectonic uplift of the area. Radiocarbon dating of some charcoal fragments collected from folded beddings indicates that paleoseismic activity might have taken place along the basin between AD 120 and AD 1671.

  14. Geomorphology and environmental dynamics in Save River delta, Mozambique : A cross-timescale perspective

    OpenAIRE

    2016-01-01

    Long-term perspectives on the evolution of river deltas have provided useful knowledge capable of responding to pending questions related to the ongoing climate and environmental changes. Increasing utilization pressure on delta environments has necessitated increased attention to protect the socio-economic and ecological values. As a result, multiple local initiatives have been designed, aimed at mitigating environmental deterioration and implementing adaptive measures, but many such initiat...

  15. The Crati River Basin: geomorphological and stratigraphical data for the Plio–Quaternary evolution of northern Calabria, South Apennines, Italy

    Directory of Open Access Journals (Sweden)

    Robustelli Gaetano

    2017-02-01

    Full Text Available In this paper, we present the results of an integrated geomorphological and stratigraphical study carried out in the eastern side of the Crati River valley (northern Calabria, South Italy. This area is characterized by the occurrence of three order palaeosurfaces that, along with low-sloping palaeovalleys and structural landforms, are striking features of the landscape. The relationships between morpho-tectonic and sedimentary evolution of the Crati Basin has been assessed through sandstone detrital modes, morphostratigraphy and geomorphological correlation with adjacent areas. The two main unconformity surfaces that typify the Quaternary fill were correlated to different steps of landscape evolution. The presence of both erosional and depositional palaeosurfaces has been a useful marker for reconstructing sedimentary and morphogenetic events, and hence to detect drainage network evolution and changes in source sediment area. In particular, we recognized that the study area experienced, during the late Pliocene–Early Pleistocene a period of sub-aerial landscape modelling as suggested by low-sloping palaeovalleys and related fluvial deposits (1st Order Palaeosurface. At that time, the source of the detrital constituents of the PPS Unit sandstones was mainly from the Sila Massif. The onset of Coastal Range identification and uplift (Early Pleistocene marks a change in the geomorphic scenario with tectonic driven stream incision and valley development along the eastern side of Coastal Range, along with the occurrence of depositional and erosional landsurfaces (2nd Order Palaeosurface at footslopes. During this period, the Coastal Range and Sila Massif were the sources for the detrital constituents of the PlS Unit sandstones. The progressive uplift of Coastal Range during late Early Pleistocene and the marked backstepping of the depositional systems along the Sila footslope was accompanied by alternating phases of down-cutting and base

  16. The Crati River Basin: geomorphological and stratigraphical data for the Plio-Quaternary evolution of northern Calabria, South Apennines, Italy

    Science.gov (United States)

    Robustelli, Gaetano; Muto, Francesco

    2017-02-01

    In this paper, we present the results of an integrated geomorphological and stratigraphical study carried out in the eastern side of the Crati River valley (northern Calabria, South Italy). This area is characterized by the occurrence of three order palaeosurfaces that, along with low-sloping palaeovalleys and structural landforms, are striking features of the landscape. The relationships between morpho-tectonic and sedimentary evolution of the Crati Basin has been assessed through sandstone detrital modes, morphostratigraphy and geomorphological correlation with adjacent areas. The two main unconformity surfaces that typify the Quaternary fill were correlated to different steps of landscape evolution. The presence of both erosional and depositional palaeosurfaces has been a useful marker for reconstructing sedimentary and morphogenetic events, and hence to detect drainage network evolution and changes in source sediment area. In particular, we recognized that the study area experienced, during the late Pliocene-Early Pleistocene a period of sub-aerial landscape modelling as suggested by low-sloping palaeovalleys and related fluvial deposits (1st Order Palaeosurface). At that time, the source of the detrital constituents of the PPS Unit sandstones was mainly from the Sila Massif. The onset of Coastal Range identification and uplift (Early Pleistocene) marks a change in the geomorphic scenario with tectonic driven stream incision and valley development along the eastern side of Coastal Range, along with the occurrence of depositional and erosional landsurfaces (2nd Order Palaeosurface) at footslopes. During this period, the Coastal Range and Sila Massif were the sources for the detrital constituents of the PlS Unit sandstones. The progressive uplift of Coastal Range during late Early Pleistocene and the marked backstepping of the depositional systems along the Sila footslope was accompanied by alternating phases of down-cutting and base-level stability resulting in

  17. Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems

    Directory of Open Access Journals (Sweden)

    N. Diodato

    2004-01-01

    Full Text Available Damaging hydrogeomorphological events are defined as one or more simultaneous phenomena (e.g. accelerated erosions, landslides, flash floods and river floods, occurring in a spatially and temporal random way and triggered by rainfall with different intensity and extent. The storm rainfall values are highly dependent on weather condition and relief. However, the impact of rainstorms in Mediterranean mountain environments depend mainly on climatic fluctuations in the short and long term, especially in rainfall quantity. An algorithm for the characterisation of this impact, called Rainfall Hazard Index (RHI, is developed with a less expensive methodology. In RHI modelling, we assume that the river-torrential system has adapted to the natural hydrological regime, and a sudden fluctuation in this regime, especially those exceeding thresholds for an acceptable range of flexibility, may have disastrous consequences for the mountain environment. RHI integrate two rainfall variables based upon storm depth current and historical data, both of a fixed duration, and a one-dimensionless parameter representative of the degree ecosystem flexibility. The approach was applied to a test site in the Benevento river-torrential landscape, Campania (Southern Italy. So, a database including data from 27 events which have occurred during an 77-year period (1926-2002 was compared with Benevento-station RHI(24h, for a qualitative validation. Trends in RHIx for annual maximum storms of duration 1, 3 and 24h were also examined. Little change is observed at the 3- and 24-h duration of a storm, but a significant increase results in hazard of a short and intense storm (RHIx(1h, in agreement with a reduction in return period for extreme rainfall events.

  18. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    Science.gov (United States)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material

  19. Geomorphological Fieldwork

    Science.gov (United States)

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  20. Analysis of the Geomorphology and Environmental Geological Problems of Huzhou on the Yangtze River Delta

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuehua; WANG Jingdong; YUAN Xueyin; WANG Runhua

    2004-01-01

    Geomorphically, Huzhou, which is on the Yangtze River delta is characterized mainly by plains, with small hills. This paper presents a detailed analysis of the environmental geological hazards both natural and those incurred by human activities in different morphologic units. The authors point out that most of the regional environmental geological problems in the natural geologic-morphologic conditions, such as crustal stability, foundation of soft soil, soil waterlogging and soil erosion, have insignificant effects to the society, or related countermeasures of prevention and control have been adopted. But environmental geological problems incurred by human being's economic activities become more and more severe, for example, water and soil pollution and land subsidence in plain areas resulting from overexploitation of groundwater, and landslides, karst collapses and water and soil loss etc. caused by quarrying in hilly areas.

  1. Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA

    Science.gov (United States)

    Connallon, Christopher B.; Schaetzl, Randall J.

    2017-08-01

    We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed

  2. Tectonic geomorphology

    National Research Council Canada - National Science Library

    Burbank, Douglas West; Anderson, Robert S

    2012-01-01

    Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at times scales ranging from days to millions of years...

  3. Forensic geomorphology

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer

    2014-02-01

    Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling scenes of crime and control locations as evidence. Associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have not had similar public exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. Traditional landscape interpretation from aerial photography is used to demonstrate how a geomorphological approach saved police time in the search for a clandestine grave. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law.

  4. Sprague River Oregon Geomorphology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geomorphic mapping establishes the basic context for understanding modern channel conditions by (1) defining major elements of the late Cenozoic geologic history...

  5. MULTI-DECADAL FLUVIO-GEOMORPHOLOGICAL AND BANKLINE CHANGES OF THE GANGA RIVER AROUND BALLIA AND RUDRAPUR USING REMOTE SENSING AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. J. Desai

    2012-09-01

    Full Text Available Fluvial landforms are developed due to river action and these processes help in understanding the development of various landforms on the earth's surface. Gangetic plain is vast alluvial tract made up of sand, silt and clay. This region receives heavy rainfall causing flash floods which results in bank-line shifting as well as various fluvio-geomorphological changes. Fluvial processes such as erosion and deposition not only play an important role in shaping of different fluvial landscapes but also contribute towards the braiding and meandering pattern which causes change in the flow pattern of the river channel. Transportation and deposition of the suspended load also contributes towards such changes. The present work describes various fluvio-geomorphological features and their changes during different time intervals in and around Ballia and Rudrapur. The paper also deals in understanding the problems like bank-line shifting, erosion and deposition caused by the continuous change in the fluvial patterns, bank erosion and sedimentation in this region over past 8 decades.

  6. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  7. Prediction of downstream geomorphological changes after dam construction: A stream power approach

    DEFF Research Database (Denmark)

    Brandt, Anders

    2000-01-01

    physical geography, hydrology, reservoirs, sediment transport, erosion, sedimentation, fluvial geomorphology, dams, river channel geometry......physical geography, hydrology, reservoirs, sediment transport, erosion, sedimentation, fluvial geomorphology, dams, river channel geometry...

  8. Surficial geological tools in fluvial geomorphology

    Science.gov (United States)

    Jacobson, Robert B.; O'connor, James; Oguchi, Takashi

    2016-01-01

    Environmental scientists are increasingly asked how rivers and streams have been altered by past environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored and how they will respond to future environmental changes. These questions present substantive challenges to the discipline of fluvial geomorphology as they require a long-term understanding of river-system dynamics. Complex and non-linear responses of rivers to environmental stresses indicate that synoptic or short-term historical views of rivers will often give an incomplete understanding. Fluvial geomorphologists can address questions involving complex river behaviours by drawing from a tool box that includes the principles and methods of geology applied to the surficial geological record. A central concept in Earth Sciences holds that ‘the present is the key to the past’ (Hutton 1788, cited in Chorley et al. 1964), that is, understanding of current processes permits the interpretation of past deposits. Similarly, an understanding of the past can be key to predicting the future. A river’s depositional history can be indicative of trends or episodic behaviours that can be attributed to particular environmental stresses or forcings. Its history may indicate the role of low-frequency events such as floods or landslides in structuring a river and its floodplain or a river’s depositional history can provide an understanding of its natural characteristics to serve as a reference condition for assessments and restoration. However, the surficial geological record contained in river deposits is incomplete and biased and it presents numerous challenges of interpretation. The stratigraphic record in general has been characterized as ‘ … a lot of holes tied together with sediment’ (Ager 1993). Yet this record is critical in the development of integrated understanding of fluvial geomorphology because it provides information that is not available from other

  9. Flooding ecology of voles, mice and shrews: the importance of geomorphological and vegetational heterogeneity in river floodplains

    NARCIS (Netherlands)

    Wijnhoven, S.; Velde, G. van der; Leuven, R.S.E.W.; Smits, A.J.M.

    2005-01-01

    Since voles, mice and shrews are important animals in food chains of river floodplains, there is a need for data on their spatial and temporal distribution in periodically flooded areas. During a live trapping study between two successive floods in an embanked river floodplain, the ’Afferdensche en

  10. Geomorphological and geophysical investigation of a complex rock glacier system - Morenas Coloradas valley (Cordon del Plata, Mendoza, Argentina)

    Science.gov (United States)

    Otto, Jan-Christoph; Götz, Joachim; Keuschnig, Markus; Hartmeyer, Ingo; Trombotto, Dario; Schrott, Lothar

    2010-05-01

    In the semi-arid high Andes of Argentina and Chile, rock glaciers are more frequent and often larger than glaciers. Aridity and high solar radiation hamper the development of large glaciers, favour permafrost conditions and the generation of rock glaciers. One of the few rock glaciers that have been studied in more detail since more than 20 years is located in the Cordon del Plata range about 60 km west of Mendoza, Argentina. The Morenas Coloradas rock glacier in the Rio Vallecitos catchment can be described as a multilobe, multiunit, multiroot and multipart rock glacier. It is a complex, transitional landform composed of a high altitude glaciated zone, which transforms into a debris covered glacier with thermokarst phenomena followed by various active rock glacier lobes and subsequently, inactive and relict lobes in the lower sections. Its total length is about 5 km. Complex transitional landforms between debris covered glaciers and rock glaciers are frequently observed in semi-arid mountain environments with high sediment production in periglacial areas like the Andes of Argentina but can be found also in other similar mountain ranges like for example Pamir, or Karakorum. However, the evolution and internal characteristics of such landforms are often unknown. Glacial and periglacial landforms of this size represent important water stores that play an essential role in water management and agriculture in the foreland of the Andes of Mendoza. In February 2008 subsurface conditions were investigated at three different altitudes using geophysical methods (ground penetrating radar, electric resistivity tomography). Complemented by digital geomorphological mapping we analyse the complex rock glacier ensemble, to gain insight into landform evolution, sediment flow structures and internal characteristics (permafrost occurrence, active layer depths, ice content, possible ice origin). Geophysical surveying at Morenas Coloradas clearly indicates the existence of frozen

  11. Geographic Information Systems and geomorphological mapping applied to landslide inventory and susceptibility mapping in El Estado river, Pico de Orizaba, Mexico

    Directory of Open Access Journals (Sweden)

    José Fernando Aceves Quesada

    2016-11-01

    -off switching of layers in the GIS system, a base map is created to assist in the digitizing of landslides and the modeling of susceptibility. A landslide inventory is created from aerial photographs, field investigations, and all the above GIS thematic layers. El Estado river watershed on the southwestern flank of Pico de Orizaba volcano has been selected as study area. The watershed is located in the southwestern slope of Citlaltepetl or Pico de Orizaba volcano. Geological (the stream channel of El Estado river erodes Tertiary and Quaternary lavas, disjointed volcanoclastic materials such as pyroclastic flows, fall deposits, lahars deposits, and alluvium and geomorphological factors (steep slopes, energy relief, and vertical erosion in combination with high seasonal rainfall (annual rainfall averages 1000-1100 mm/yr at > 4000 m a.s.l. and 927 mm/yr at <1500 m a.s.l., and the high degree of weathering, make the study area susceptible to landslides. To assess landslide susceptibility, a landslide inventory map and geomorphometric cartography (altimetry, slope and geomorphography were reviewed, and field work was conducted. In the study area, more than one hundred landslides were mapped. Shallow landslides (including debris slides and debris flows are the predominant type. Shallow landslides predominate on hills capped with ash and pyroclastic deposits. The second major landslide process includes rock falls (which occur where the stream erodes lava flows and lahars and deep-seated landslides (which occur in ash and pyroclastic deposits where lava flows act as a slip plane. In parallel, the spatial geodatabase of landslides was constructed from standardized GIS datasets. Pertinent attributes are recorded on a geo-dataset. These include 1 mass wasting process, 2 level of certainty of the observation, 3 photo identification date, 4 landslide size, 5 landslide activity, 6 landslide parts (head, evacuation zone, deposit, 7 slope shape, 8 field slope gradient, 9 map gradient measured

  12. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: impacts of geomorphological parameters and river flow representation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiangyu; Li, Hongyi; Leung, Lai-Yung; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-03-23

    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 – 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients, as

  13. Human Impact on the Geomorphological Evolution of the Opak River Following the 2010 Large Volcanic Event of the Merapi (Indonesia)

    Science.gov (United States)

    Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K. W.; Wibowo, S. B.

    2016-12-01

    During large eruptions, active volcanos may introduce very large quantities of sediment to the drainage system through tephra falls and pyroclastic flows, thus modifying the river system. Once remobilized, the sediment inputs propagate downstream as a sediment wave modifying the channel geometry of the river and reloading the sediment cascade of the catchments. Considering the extreme nature of the volcanic events, the parameters that control the post-eruption evolution of the river system are generally only described as natural and the role played by human activities seems negligible. Communities that live on the volcano slopes and foothills are rather considered to suffer from natural disasters associated with the eruption and its consequences (lahars, etc.) or take advantage of the benefits of the volcanic environment (rich soil, mining and geothermal resources, etc.). This study examines the impact of human influence on the fluvial readjustment of a Javanese river impacted by a major eruption of the Merapi volcano (Indonesia) in October/November 2010. The basin of the Opak River was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking and suspended sediment sampling revealed an important sediment mobilization during efficient flash-floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, the local population massively extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the

  14. 3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology

    CERN Document Server

    Brodu, Nicolas

    2011-01-01

    3D point clouds of natural environments relevant to geomorphology problems (rivers, cliffs...) often require to classify the data into elementary relevant classes. A typical example is the separation of riparian vegetation from soil in fluvial environments, the distinction between fresh surfaces and rockfall in cliff environments, or more generally the classification of surfaces according to their morphology (ripples, grain size...). Natural surfaces are very heterogeneous and their distinctive properties are seldom defined at a unique scale. We have thus defined a multi-scale measure of the point cloud dimensionality around each point. The dimensionality characterizes the local 3D organization of the point cloud and varies from being 1D (points set along a line) to really taking all 3D volume, at each scale. We present the technique and illustrate its efficiency in separating riparian vegetation from ground and classifying a mountain stream in vegetation, rock, gravel and water surface. The superiority of th...

  15. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  16. An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers

    Science.gov (United States)

    Gurnell, A. M.; O'Hare, J. M.; O'Hare, M. T.; Dunbar, M. J.; Scarlett, P. M.

    2010-03-01

    Riparian vegetation, particularly trees and shrubs, can play a crucial role in the construction and turnover of fluvial landforms, but aquatic plants may also act as river ecosystem engineers. Macrophyte and environmental data from 467 British river reaches are used to explore associations between aquatic plant morphotypes and the physical characteristics of the reaches. The abundance of five plant morphotypes (mosses, linear-submerged, patch-submerged, linear emergent, branched emergent) is estimated for each river reach. Cluster analysis is applied to the abundances of the five morphotypes across the 467 reaches to identify six typical assemblages or clusters of the morphotypes. These clusters are found to be associated with statistically significantly different values of seven physical variables (altitude, slope, median annual flood discharge, channel width, mean bed sediment size, percentage cover of sand and silt on the river bed, and unit stream power). Associations between the morphotype clusters and combinations of the physical variables are explored using Canonical Correspondence Analysis and standard slope-discharge-sediment calibre-channel style graphs. Several of the morphotype clusters are discriminated by unit stream power and bed sediment size. In particular, morphotype clusters dominated by emergent and submerged macrophytes are associated with granules, sand, and finer bed sediments and are rarely found where unit stream power exceeds 100 W m - 2 . One cluster characterised by branched emergent species with relatively low cover of submerged morphotypes is confined to sites with unit stream power below 20 W m - 2 ; and another cluster characterised by linear emergents with low cover of submerged morphotypes is associated with particularly extensive, fine bed sediments, suggesting possible smothering of submerged plants. In contrast, mosses reach their highest abundance in two clusters associated with the highest unit stream power and coarsest bed

  17. Biodegradation of Complex Bacteria on Phenolic Derivatives in River Water

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; ZHE SUN

    2009-01-01

    Objective To isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal microbes and co-metabolic degradation of mixed chlorophenols in river water. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water. Results The complex bacteria were identified as Mycopiana, Alcaligenes, Pseudvmonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied. Conclusion The complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.

  18. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

    Science.gov (United States)

    Clement, Alastair J. H.; Nováková, Tereza; Hudson-Edwards, Karen A.; Fuller, Ian C.; Macklin, Mark G.; Fox, Elizabeth G.; Zapico, Ignacio

    2017-10-01

    Between 1875 and 1955 approximately 250,000 Mg yr- 1 of mercury-, arsenic-, and cyanide-contaminated mine tailings were discharged directly into the Ohinemuri River and its tributaries, in the Coromandel Region, North Island, New Zealand. A devastating flood on 14 January 1907 deposited large amounts of mine waste across the floodplain of the Ohinemuri and Waihou rivers in the vicinity of the township of Paeroa. The 1907 mine-waste flood deposit was located as a dirty yellow silt in cores and floodplain profiles, with a thickness ranging from 0.15-0.50 m. Geochemical analysis of the mine waste shows elevated concentrations of Pb ( 200-570 mg kg- 1) and As ( 30-80 mg kg- 1), compared to early Holocene background concentrations (Pb environmental event. The mine-waste material remains in the floodplain today, representing a sizable legacy store of contaminant metals and metalloids that pose a long-term risk to the Ohinemuri and Waihou ecosystems.

  19. Geomorphology of the Urümqi River Valley and the uplift of the Tianshan Mountains in Quaternary

    Institute of Scientific and Technical Information of China (English)

    周尚哲; 焦克勤; 赵井东; 张世强; 崔建新; 许刘兵

    2002-01-01

    The Shaerqiaoke Gravel, more than 400 m in thickness, on the north piedmont of the Tianshan Mountains, is located at the exit of the Urümqi River Valley and belongs to the Molasse construction of the Tianshan Mountains. Another uplift event with the tectonic boundary expansion ended the deposition of the Shaerqiaoke Gravel, and resulted in folding, faulting and down-erosion in the frontier of the deposit. The ESR dating indicates that the top of the Shaerqiaoke Gravel accumulated before 1148 kaBP, probably responding to the Kunlun-Huanghe movement of the Qinghai-Tibetan plateau. After that time, erosion-deposition cycle occurred and 9 terraces developed. The TL and ESR dating techniques were employed to date these terraces, and the results indicate that Terrace 3 was formed at MIS 6. Terrace 2 at Houxia also developed simultaneously. Terraces 5 and 6 were accumulated in 338 kaBP and 562-591 kaBP, respectively. The oldest glaciation, named Gao Wangfeng, correlates to MIS 12.

  20. Annual Narrative Report 2012: Potomac River National Wildlife Refuge Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 2012 calendar year. The report begins with...

  1. Potomac River National Wildlife Refuge Complex: Annual narrative report 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 1983 calendar year. The report begins with...

  2. FIELD TRIP ROADLOG FOR THE BEAR RIVER LANDSLIDE COMPLEX

    OpenAIRE

    McCalpin, James P.

    1987-01-01

    The Bear River Landslide Complex occurs where the unconsolidated sediments of the Bear River Delta have been incised to a depth of 350 to 490 feet (106-150 m) north of Preston, Idaho. The slides are the result of the high pore pressure in confined aquifers in the deltaic sediments. High but variable volumes of groundwater flow and the laterally discontinuous nature of the deltaic sediments result in the varied types of earth movements found within the Landslide Complex. Landslide activity occ...

  3. Eruptive response of oceanic islands to giant landslides: New insights from the geomorphologic evolution of the Teide-Pico Viejo volcanic complex (Tenerife, Canary)

    Science.gov (United States)

    Boulesteix, Thomas; Hildenbrand, Anthony; Gillot, Pierre-Yves; Soler, Vicente

    2012-02-01

    Large sector collapses are a major component of oceanic islands evolution. Here we show that voluminous events such as the Icod landslide on Tenerife (Canary Islands) cause dramatic changes on the magma feeding system and control the subsequent volcanic and geomorphologic evolution of the eruptive complex over a period of more than 150 kyr. Instantaneous unloading by the Icod landslide is marked by the development of a large phonolitic explosive eruption dated at 175 ± 3 ka and interpreted as reflecting the immediate emptying of a shallow pre-existing magma chamber. Geochronological, geomorphological and geochemical analyses, carried out on the post-landslide volcanic succession sampled in a 4.4 km-long underground water-recovery gallery, provide further evidence for an enhanced extrusion of primitive lavas starting in the 10 kyr time interval following the failure. Rapid construction (scar at high eruptive rates (up to 8 km 3 kyr -1) increased the lithostatic pressure which then favored the intermittent storage of basic magma under the edifice. This resulted in more episodic construction evidenced by a significant decrease in output rates and the increasing occurrence of lavas with intermediate composition from 117 ± 7 to 52 ± 7 ka. An apparent volcanic gap is observed between 52 ± 7 and 18 ± 1 ka, after which highly differentiated lavas have been dominantly erupted. We propose that part of the gap can be explained by the individualization of a shallow magma reservoir a few kilometers below the base of the Teide volcano. During recent periods, vertical and lateral extrusions of trachytic and phonolitic viscous bodies from this storage area contributed to increase the slope of the main edifice up to 35°, overall favoring its present-day instability.

  4. The ecological complexity of the Thai-Laos Mekong River: I. Geology, seasonal variation and human impact assessment on river quality.

    Science.gov (United States)

    Udomchoke, Veerasak; Sunthornranun, Patcharee; Songsasen, Apisit; Phanwichien, Kantimanee; Jiwapornkupt, Pongsakorn; Homchan, Unop; Lauhachinda, Nitaya; Sakultantimetha, Arthit; Bangkedphol, Sornnarin; Torrance, Keith; Gibson, Mark D; Gaines, Alec F; Booth, Peter H; Keenan, Helen E

    2010-11-01

    The objective of this study is to assess the variation of pollution in the Thai-Laos Mekong associated with seasonal dynamics concomitant with the natural geological features and human activities that impact on the adverse quality of the river. The complex ecology of the 1500 km stretch of the Thai-Laos Mekong River has been studied in this paper to understand the relationship with the geomorphology, with the sub-tropical monsoonal climate and the impact of human activity. Sub-surface geology controls the nature and extent of the drainage basin and of the river channel. The volume flow of the river varies naturally and dynamically in phase with the rainfall; traditional models based on steady state hydraulics are inappropriate. Continuous erosion of the river banks and bed generates a sediment load of impure silt, mica, quartz and clay minerals that inhibits light penetration and limits the primary productivity of the river. The river separates two countries at different stages of development; it flows through or close to eight non-industrial conurbations (Populations 350,000-2,000,000) but is otherwise sparsely populated. The river is used for subsistence agriculture, village transport, fishing including aquaculture and as a source of domestic water. Hydroelectricity is generated from the Laos tributaries. The river is a depository for partially treated urban waste and untreated village waste, hence populations of E.coli bacteria sometimes render the water unsuitable for drinking unless treated with the highest value of 240/100 ml found at station 7 during the summer season of 2003. Furthermore the river is polluted by trace metals, notably cadmium and mercury, and by Polycyclic Aromatic Hydrocarbons (PAHs), which are particularly concentrated in the sediments. Previous work has shown that cadmium and mercury exceed the Probable Effect Level (PEL) values of Canadian Environmental Quality Guidelines and that the PAH concentrations were also greater than the Interim

  5. The River Mondego terraces at the Figueira da Foz coastal area (western central Portugal): Geomorphological and sedimentological characterization of a terrace staircase affected by differential uplift and glacio-eustasy

    DEFF Research Database (Denmark)

    Ramos, Anabela M.; Cunha, Pedro P.; Cunha, Lúcio. S.

    2012-01-01

    A geomorphological and sedimentological characterization of the River Mondego terraces in the Figueira da Foz coastal area, Portugal, is presented. The relief is dominated by a Pliocene a marine sandy unit ~ 10–15 m thick, reaching ~ 250 m a.s.l., that covers a shore platform surface. The River.......004–0.055 m/ka for the last 3.6 Ma, but 0.017–0.118 m/ka for the last ~ 1.8 Ma (using as references, respectively, the base and the surface of the uppermost sedimentary unit). The facies associations that characterize the older terrace deposits (T1 and T2) consist of poorly sorted fluvial sandy...... and MIS2). Some sandy colluvium deposits on the slopes are probably related with mild-cold and wet climate conditions during the period 60 to 32 ka. The aeolian dunes are younger (cold to temperate dry conditions; MIS2 and MIS1)....

  6. Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA

    Science.gov (United States)

    Peterson, Curt D.; Minor, Rick; Peterson, Gary L.; Gates, Edward B.

    2011-06-01

    Geomorphic landscape development in the pre-Holocene ancestral Columbia River Valley (1-5 km width) in the Portland forearc basin (~ 50 km length) is established from depositional sequences, which pre-date and post-date the glacial Lake Missoula floods. The sequences are observed from selected borehole logs (150 in number) and intact terrace soil profiles (56 in number) in backhoe trenches. Four sequences are widespread, including (1) a vertically aggraded Pleistocene alluvial plain, (2) a steep sided valley that is incised (125-150 m) into the Pleistocene gravel plain, (3) Missoula flood terraces (19-13 ka) abandoned on the sides of the ancestral valley, and (4) Holocene flooding surfaces (11-8 ka) buried at 70-30 m depth in the axial Columbia River Valley. Weathering rims and cementation are used for relative dating of incised Pleistocene gravel units. Soil development on the abandoned Missoula flood terraces is directly related to terrace deposit lithology, including thin Bw horizons in gravel, irregular podzols in sand, and multiple Bw horizons in thicker loess-capping layers. Radiocarbon dating of sand and mud alluvium in the submerged axial valley ties Holocene flooding surfaces to a local sea level curve and establishes Holocene sedimentation rates of 1.5 cm year- 1 during 11-9 ka and 0.3 cm year- 1 during 9-0 ka. The sequences of Pleistocene gravel aggradation, river valley incision, cataclysmic Missoula flooding, and Holocene submergence yield complex geomorphic landscapes in the ancestral lower Columbia River Valley.

  7. Sinkholes and caves related to evaporite dissolution in a stratigraphically and structurally complex setting, Fluvia Valley, eastern Spanish Pyrenees. Geological, geomorphological and environmental implications

    Science.gov (United States)

    Gutiérrez, Francisco; Fabregat, Ivan; Roqué, Carles; Carbonel, Domingo; Guerrero, Jesús; García-Hermoso, Fernando; Zarroca, Mario; Linares, Rogelio

    2016-08-01

    Evaporite karst and sinkhole development is analysed in a geologically complex area of NE Spain, including four evaporite units with different characteristics and affected by compressional and extensional tectonic structures. The exposed paleosinkholes, including remarkable Early Pleistocene paleontological sites, provide valuable information on the subsidence mechanisms and reveal the significant role played by interstratal karstification in the area. These gravitational deformation structures, including hectometre-scale bending folds and oversteepened normal faults, strongly suggest that the present-day compressional regime inferred in previous studies may be largely based on the analysis of non-tectonic structures. Two gypsum caves ca. 1 km long show that passages with restricted cross-sectional area may produce large breccia pipes and sinkholes thanks to the removal of breakdown boulders by high-competence episodic floods. Moreover, the upward progression of cave ceilings by paragenesis and condensation dissolution contributes to increase the probability of sinkhole occurrence. An inventory of 135 sinkholes together with their geological and geomorphological context has been developed. This data base has been used to infer several properties of the sinkholes with practical implications: a magnitude and frequency scaling relationship, spatial distribution patterns, dominant controlling factors and risk implications.

  8. Habitat Complexity Metrics to Guide Restoration of Large Rivers

    Science.gov (United States)

    Jacobson, R. B.; McElroy, B. J.; Elliott, C.; DeLonay, A.

    2011-12-01

    Restoration strategies on large, channelized rivers typically strive to recover lost habitat complexity, based on the assumption complexity and biophysical capacity are directly related. Although definition of links between complexity and biotic responses can be tenuous, complexity metrics have appeal because of their potential utility in quantifying habitat quality, defining reference conditions and design criteria, and measuring restoration progress. Hydroacoustic instruments provide many ways to measure complexity on large rivers, yet substantive questions remain about variables and scale of complexity that are meaningful to biota, and how complexity can be measured and monitored cost effectively. We explore these issues on the Missouri River, using the example of channel re-engineering projects that are intended to aid in recovery of the pallid sturgeon, an endangered benthic fish. We are refining understanding of what habitat complexity means for adult fish by combining hydroacoustic habitat assessments with acoustic telemetry to map locations during reproductive migrations and spawning. These data indicate that migrating sturgeon select points with relatively low velocity but adjacent to areas of high velocity (that is, with high velocity gradients); the integration of points defines pathways which minimize energy expenditures during upstream migrations of 10's to 100's of km. Complexity metrics that efficiently quantify migration potential at the reach scale are therefore directly relevant to channel restoration strategies. We are also exploring complexity as it relates to larval sturgeon dispersal. Larvae may drift for as many as 17 days (100's of km at mean velocities) before using up their yolk sac, after which they "settle" into habitats where they initiate feeding. An assumption underlying channel re-engineering is that additional channel complexity, specifically increased shallow, slow water, is necessary for early feeding and refugia. Development of

  9. Geomorphology of Minnesota

    Data.gov (United States)

    Minnesota Department of Natural Resources — 1:100,000 scale geomorphology data describing a wide variety of conditions related to surficial geology within a hierarchical classification scheme that was devised...

  10. Geomorphological factors of flash floods

    Science.gov (United States)

    Kuznetsova, Yulia

    2016-04-01

    Growing anthropogenic load, rise of extreme meteorological events frequency and total precipitation depth often lead to increasing danger of catastrophic fluvial processes worldwide. Flash floods are one of the most dangerous and less understood types of them. Difficulties of their study are mainly related to short duration of single events, remoteness and hard access to origin areas. Most detailed researches of flash floods focus on hydrological parameters of the flow itself and its meteorological factors. At the same time, importance of the basin geological and geomorphological structure for flash floods generation and the role they play in global sediment redistribution is yet poorly understood. However, understanding and quantitative assessment of these features is a real basis for a complete concept of factors, characteristics and dynamics of flash floods. This work is a review of published data on flash floods, and focuses on the geomorphological factors of the phenomenon. We consider both individual roles and interactions between different geomorphological features (the whole basin parameters, characteristics of the single slopes and valley bottom). Special attention is paid to critical values of certain factors. This approach also highlights the gaps or less studied factors of flash floods. Finally, all data is organized into a complex diagram that may be used for flash floods modeling. This also may help to reach a new level of flash flood predictions and risk assessment.

  11. The reenchantment of geomorphology

    Science.gov (United States)

    Baker, V. R.; Twidale, C. R.

    1991-06-01

    Much of modern Geomorphology lacks the enchantment that the science possessed a century ago. Practical and philosophical impediments are thwarting modern attempts to achieve a satisfying understanding of landforms and their genesis. In recent years, even the security of geomorphologists' academic bases has been threatened within the cognate disciplines of Geography and Geology. During the 1960s these fields experienced so-called "scientific revolutions," which many geomorphologists either uncritically embraced or assumed to be irrelevant. While commendable in spirit, progressive initiatives to establish research traditions in landscape evolution, climatic geomorphology, and process studies all encountered fundamental limitations as unifying themes. More disturbing are ideological impositions that advocate geomorphological concentration on timeless, theoretical, or utilitarian problems. While facilitating precision of explanation and prediction, various geoideological bandwagons may stifle creativity, insight, and intellectual satisfaction. Most insidious is the substitution of elegantly structured methodology and theory for spontaneity, serendipity, and common sense. Hope for the reenchantment of Geomorphology lies in a new connectedness to nature that will facilitate the identification of anomalies and the formulation of outrageous hypotheses of causation. In the words of William Morris Davis, "…violence must be done to many of our accepted principles." Examples of such ideas may be found in fringe areas of the discipline, including planetary geomorphology, tectonic geomorphology, and denudation chronology with emphasis on ancient paleosurfaces. Geomorphologists should consider inverting their belief that they are achieving progressive (timebound) understanding of invariant (timeless) laws in nature. Rather, they may choose a geophysiological view in which the richness of natural history is revealed in a timeless conversation with the Earth.

  12. Coastal hydrodynamics, geomorphology and sedimentary environments of two major Javanese river deltas. Program and preliminary results from the Snellius-II expedition (Indonesia)

    Science.gov (United States)

    Hoekstra, P.; Tiktanata

    River outflow, sediment transport, depositional processes and facies, as well as delta morphology of the rivers Solo and Porong (East Java, Indonesia) have been studied in detail during the Indonesian-Dutch Snellius II expedition (1984-1985). The humid tropical climate of Java in combination with the mountainous relief and the presence of easily erodible volcanic soils in relation to an intensive agriculture, results in a tremendous soil erosion and denudation rates are extremely high. Since river flow in the dry season is strongly reduced, sediment transport is mainly restricted to the wet season. Every wet season large volumes of sediment are carried towards the sea and the surplus of sediment in the coastal zone has resulted in the formation of two major river deltas. The Solo delta, a single-delta, is made up of one straight major channel with only few and small natural crevasses. Prominent natural levees are present; a consequence of the fact that in the wet season maximum outflow of the river coincides with high water. The development of this delta is considered to be a direct response to the high outflow velocities of the river, the huge mudload in the wet season and the low current and wave action. The Porong delta is a half-circular, lobate delta with a multidistributary network of channels which resulted in a regular distribution of sediment. A small part of the delivered sediments in both deltas escapes to sea and is seized by offshore, monsoon-induced coastal currents. The monsoon-type climate has a significant influence on depositional processes by determining river regime and sediment transport, by modifying river outflow and generating a coastal drift of water and suspended sediments.

  13. The Modern Geomorphological Map

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Switzer, A.; Kennedy, D.M.

    2013-01-01

    Classical geomorphological maps are representations of the spatial distribution of landforms, materials and of the processes responsible for their formation, in a single paper map. They contain a wealth of information that is generally documented with the aid of symbol and color legends. Uniformity

  14. Influence of Geological and Geomorphological Characteristics on Groundwater Occurrence in Deccan Basalt Hard Rock Area of Tawarja river Sub-Basin Latur, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Babar

    2012-04-01

    Full Text Available The entire study area is covered by Deccan basalt formations comprising nearly horizontal lava flows of late Cretaceous to early Eocene. There are eight flows of lava found in the area and these flows have been considered to be a result of fissure type lava eruption. The types of basaltic flows occurring in the area are simple basalt (aa type and vesicular-amygdaloidal (Compound pahoehoe type basalt flow and also red bole beds (Tachylitic bands are observed in the exposures, quarries and well sections. The drainage pattern varies from dendritic to sub-dendritic and sub-parallel. The bifurcation ratio is moderate (3.00 to 4.67 and the lower values of drainage density (1.77 km/km2 and stream frequency (1.74 streams/km2 indicates the region is of permeable subsoil strata of the basin. Morphometric attributes like form factor (0.85, circularity ratio (0.37 and elongation ratio (0.63 reflects the early mature stage of erosional development. The groundwater occurrence with reference to hydrogeological and geomorphological characters of the sub-basin is discussed. The groundwater occurrence is good productive in the geomorphic surfaces like moderately dissected plateau and pediplains, moderate in highly dissected plateau and lateritic uplands and poor in denudational hills.

  15. Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S)

    Science.gov (United States)

    Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.

    2014-11-01

    The Tapado catchment is located in the upper Elqui river basin (4000-5550 m) in northern Chile. It comprises the Tapado glacial complex, which is an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier, and moraines). Although the hydrological functioning of this catchment is poorly known, it is assumed to actively supply water to the lower semi-arid areas of the Elqui river basin. To improve our knowledge of the interactions and water transfers between the cryospheric compartment (glacier, debris-covered glacier, and rock glacier) and the hydrological compartment (aquifers, streams), the results of monitoring of meteorological conditions, as well as discharge, conductivity and temperature of streams and springs located in the Tapado catchment were analyzed. The hydrological results are compared to results inferred from a ground penetrating radar (GPR) survey of the underground structure of the glacial foreland. Water production from the Tapado glacier was shown to be highly correlated with daily and monthly weather conditions, particularly solar radiation and temperature. The resulting daily and monthly streamflow cycles were buffered by the glacial foreland, where underground transfers took place through complex flow paths. However, the development of a thermokarst drainage network in a portion of the glacial foreland enabled rapid concentrated water transfers that reduced the buffer effect. The glacial foreland was shown to act as a reservoir, storing water during high melt periods and supplying water to downstream compartments during low melt periods. GPR observations revealed the heterogeneity of the internal structure of the glacial foreland, which is composed of a mixture of ice and rock debris mixture, with variable spatial ice content, including massive ice lenses. This heterogeneity may explain the abovementioned hydrological behaviors. Finally, calculation of a partial hydrological budget confirmed the

  16. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    Science.gov (United States)

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  17. Geomorphological research in Spain

    OpenAIRE

    Gutiérrez, Francisco; Harvey, A.; García-Ruiz, José María; Silva, Pablo; Cendrero, Antonio

    2013-01-01

    We are very grateful to all the referees for their indispensable and unselfish work that greatly contributed to the improvement of the quality of the papers. The Department of the Environment and the Department of Science, Technology and University of the Aragón Government, as well as the Innovation Ministry of the Spanish Government (CGL2011-12465), provided financial support to organise the scientific meeting “Geomorphological Research in Spain” (Zaragoza, September, 2011). We thank the Int...

  18. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  19. FEATURES OF THE ALLUVIUM ON TANGXIAN SURFACE NEAR BAODE-FUGU AND ITS GEOMORPHOLOGIC IMPLICATIONS IN THE NORTHERN JINSHAAN GORGE, YELLOW RIVER%晋陕峡谷北段保德-府谷地区唐县面上冲积物的特征及其地貌意义

    Institute of Scientific and Technical Information of China (English)

    王小燕; 邱维理; 张家富; 李容全; 周力平

    2013-01-01

    Because of its complex history,the Yellow River is a good case for fluvial geomorphology studies.The Jinshaan Gorge is one of the key parts to understand the evolution of the Yellow River.Since 1922,researchers have made great progress in the study of the evolution of the Yellow River in the Jinshaan Gorge area.But there are some disputes still remained about the Tangxian Surface,an erosion surface formed in the Miocene and Pliocene,and the alluvium on it.The main divarication is whether the Tangxian Surface is a terrace of the Yellow River or the alluvium on the Tangxian Surface is formed by the ancient Yellow River.Baode-Fugu area,located in the north part of the Jinshaan Gorge,is famous for the Neogene red clay sediment in which Hipprion fauna is unearthed.The recent studies of red clay offer a chronological data to discuss the age of both the red clay,other contemporaneous sediment and the underneath erosion surface of Tangxian Stage.The present paper is based on the survey of eighteen sediment outcrops on the Tangxian Surface in the BaodeFugu area.Twenty one samples were collected from gravel layers for sediment analysis.A topographic profile across the Yellow River shows that there is a wide bedrock valley stretching along the modern Yellow River,which is about 170m above the river level.According to the previous magnetostratigraphic studies of the red clay and fluvial sediment,the Tangxian Surface was formed at least 8.OMa ago.Gravel statistic result shows that the gravel sitting on the Tangxian Surface is > 1.5 in the complexity index of components and is characterized by an average roundness of ca.2 or >2,i.e.sub-rounded and rounded,with a variance of >0.5.The rock type of the gravels indicates a mixture of distant and local source.Combining the evidences above,it is reasonable to conclude that there used to be a river flowing along a similar course direction of modern Yellow River in this region during the Middle Miocene.Though it is much smaller

  20. Geomorphosites and the history of geomorphology

    Science.gov (United States)

    Giusti, Christian

    2013-04-01

    of rivers, particularly in the Alps (e.g. Maigrauge dam and Sarine valley, Fribourg). The latter has left many sketchbooks preserved in a restricted repository at the Geographic Institute library in Paris, which are the illustrated part (e.g., The Châtelard Valley from Finhaut, Valais, Switzerland) of a huge archive of his theory of glacial erosion in alpine mountains. Both were scientific editors (with E. Chaix) of the first Atlas Photographique des Formes du Relief, published by Boissonas in Geneva, 1914. The presentation will focus on the scientific importance of some geomorphosites for the knowledge on the history of geomorphology and Earth sciences in general.

  1. A Hydro-geomorphological Disaster: Braunsbach Flood 2016

    Science.gov (United States)

    Wendi, D.; Öztürk, U.; Riemer, A.; Agarwal, A.; Hahn, I.; Lopez Tarazon, J. A.; Korup, O.

    2016-12-01

    Following an unusual torrential downpour on 29th May 2016 with a total precipitation of 105 mm fallen in just one day (in contrast to May and June monthly average which varies from 70-80 mm/ month), flood outburst with massive amounts of rubbles and muddy sediments has been witnessed in the south-western German town of Braunsbach. This flash flood, as the combination of surging water and intensive sediment, coming from around 42 landslides, remarkable river bank erosion and river bed incision, was responsible of smashing numerous buildings, cars and town facilities, leaving residents with damage and losses. The event triggered the team of researchers under the research training group NatRiskChange to conduct field surveys, collect available data and analyze the underlying causes, magnitude, process complexity and aftermath problems of the disaster. The present analysis emphasizes on the hydro-geomorphology, in which comparisons of the event and study catchment is made in contrast to similar past events and regional catchments. They include the estimation of removed sediments/ materials, meteorological overview and the assessment hydro-geological characteristics.

  2. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122603 Chen Yixin ( College of Urban and Environmental Sciences,Peking University,Beijing 100871,China );Zhang Mei Fluvial Incision Process and Its Tectonic Implications of Golmud River since Last Glaciation Maximum ( Acta Geographica Sinica,ISSN0375-5444,CN11-1856 / P,66 ( 11 ), 2011,p.1540-1550,5illus.,5tables,40refs. ) Key words:river terraces,erosion surfaces,incised valleys,Qinghai Province

  3. Potomac River National Wildlife Refuge Complex: Annual narrative report: Calendar year 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 1999 calendar year. The report begins with...

  4. Annual Narrative Report FY2007 and 2008: Potomac River National Wildlife Refuge Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 2007 and 2008 fiscal years. The report...

  5. Annual Narrative Report FY2011: Potomac River National Wildlife Refuge Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 2011 fiscal year. The report begins with a...

  6. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  7. Illinois River National Wildlife and Fish Refuges Complex: Annual Narrative Report: Calendar year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Illinois River National Wildlife and Fish Refuges Complex summarizes refuge activities during the 1992 calendar year. The report...

  8. Potomac River National Wildlife Refuge Complex: Annual narrative report 1993-1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 1993-1997 calendar years. The report...

  9. Potomac River National Wildlife Refuge Complex: Annual narrative report: Calendar year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 2000 calendar year. The report begins with...

  10. Potomac River National Wildlife Refuge Complex: Annual narrative report: Calendar year 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 1998 calendar year. The report begins with...

  11. Annual Narrative Report FY2009: Potomac River National Wildlife Refuge Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Potomac River National Wildlife Refuge Complex outlines Refuge accomplishments during the 2009 fiscal year. The report begins with a...

  12. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical...Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...sensing measurements, and USACE projects to create valuable guidance that address geomorphic questions. The present focus of the work unit is a common

  13. Evolución geomorfológica y cronología relativa de los niveles aterrazados del área adyacente a la desembocadura del río Chubut al Atlántico (Provincia del Chubut Geomorphological evolution and relative chronology of terrace levels adjacent to the Chubut River mouth to the Atlantic (Chubut Province.

    Directory of Open Access Journals (Sweden)

    Emilio F González Díaz

    2011-12-01

    that is contested. The methodological recognition of the ancient alluvial fan and its genetic and temporary distinction, were made from geomorphologic analysis and altimetric evaluation. Time assignment is a problem not yet solved. The methodology led to three different geomorphic systems or levels related to successive episodes of aggradation and erosion, with increasing lower positions, which coincide with a complex paleodrainage ancient alluvial fan. its successive developments are linked to proposed proto-rivers Chubut 1, 2, 3 and to a Simpson paleo-valley. Despite the mentioned limitations, we propose that the evolutionary model of ancient alluvial fan responds to a structure of cut and fill which is supported by the poly-formational composition of an ancient alluvial fan, and a gradual southward migration of the paleo-drainage. Based on geomorphologic analysis and altimetric distinction an upper level, composed of the remains of three plains (Pa, Pm and Pb, a middle level with two terraces (T1 and T2 and a complex lower level and five terraces (T3, T4, T5 T6 and T7 were recognized. Relict evidences of paleo-drainages are proposed based on the Estancia Paz and Don Morgan-Saraza paleo-valleys in the upper level. The age of the ancient alluvial fan based on the geomorphic evolution of the study area is tentatively assigned to an uncertain period between the late Pleistocene and late Sangamon interglacial at the end of the last glaciation.

  14. Laser Scanning Applications in Fluvial Geomorphology

    Science.gov (United States)

    Alho, P.

    2014-12-01

    During recent decades, the use of high-resolution laser scanning data in fluvial studies has rapidly increased. Airborne laser scanning (ALS) can be used to extensively map riverine topography. Laser scanning data have great potential to improve the effectiveness of topographical data acquisition and the accuracy and resolution of DTMs (Digital Terrain Models) needed in fluvial geomorphology. Airborne Laser Scanning (ALS) is applicable for mapping areas varying from reach to catchment scale and these data are, therefore, particularly suitable, especially for hydraulic modelling, mapping of flood inundation, and the detection of macro-scale fluvial geomorphology. With Terrestrial Laser Scanning (TLS) a spatial resolution of less than 1 mm and a range accuracy of few millimetres can be achieved. Mobile Laser Scanning (MLS) enables a remarkably faster survey approach compared to the conventional TLS method. One of the newest applications of MLS approaches involves a boat/cart/backpack -based mobile mapping system. This set-up includes laser scanning and imaging from a platform moving along a river course or floodplain and may be used to expand the spatial extent of terrestrial scanning. Detailed DTMs derived from laser scanning data can be used to improve the recognition of fluvial landforms, the geometric data of hydraulic modelling, and the estimation of flood inundation extents and the associated fluvial processes. Fluvial environments also offer challenges for the application of laser scanning techniques. Factors such as vegetation cover, terrain undulation, coarse surface materials and water surfaces may distort a laser scanning survey.

  15. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091217 Chen Jianjun(School of Earth and Space Sciences,Peking University,Beijing 100871,China);Ji Jianqing Formation of the Yarlung Zangbo Grand Canyon,Tibet, China(Geogolical Bulletin of China,ISSN 1671-2552,CN11-4648/P,27(4),2008, p.491-499,5 illus.,2 tables,31 refs.) Key words:canyons,Yarlung Zangbo River

  16. Geomorphology of coal seam fires

    Science.gov (United States)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  17. THE BEAR RIVER LANDSLIDE COMPLEX, PRESTON, IDAHO: GEOLOGIC CONSIDERATIONS AND HISTORICAL PERSPECTIVES

    OpenAIRE

    McCalpin, James P.

    1987-01-01

    The Bear River Landslide Complex is a series of earth movements in northern Cache Valley, north of Preston, Idaho. The landslides occur in unconsolidated sediments of the Pleistocene Bear River Delta which formed where the river entered Lakes Bonneville and Provo. The Lake Bonneville delta deposits are up to 490 feet (150 m) thick and consist of a lower alluvial coarse sand and gravel unit, a middle delta front fine sand and silt unit, and an upper pro-delta clay up to 50 feet (15 m) thick. T...

  18. Geomorphological characterization of conservation agriculture

    Science.gov (United States)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  19. GEOMORPHOLOGIC HAZARD AND DISASTERS IN THE SOUTH AMERICAN ANDES

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Lebedeva

    2014-01-01

    Full Text Available Geological-and-tectonic and physiographical features of the South American Pacific coast caused high intensity of morpholitogenesis including disaster-like way of some geomorphologic processes. Their complex, interaction, and intensity of conductive factors increase the risk of disaster. The Andean terrain morphology and rock lithology, precipitation type, and vegetation status are the main drivers that influence the character and high potential intensity of the geomorphologic processes. The enormous hydrometeorological events, frequent seismic shocks, volcanic eruptions, and human impact cause disasters development. A schematic map of disaster and hazardous processes for the Central sector of Andes was compiled. 16 areas with different spectra of the dominant catastrophic processes were identified. The South American Andes extension allows drawing out principles of geomorphologic disasters of these continental marginal mountains in various natural zones - from temporal to subequatorial latitudes, which are characterized by the individual unique heat-moisture rate, which governs both typical and extreme geomorphologic processes. An important feature of the study area is the asymmetric distribution of geomorphologic processes within coastal and inland slopes of the mountain system, as well as latitudinal zoning of this distribution.

  20. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  1. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    Science.gov (United States)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions

  2. Seismic geomorphological analysis of multi-story submarine channel-belt complexes in the Pliocene succession of the Levant Basin, offshore central Israel

    Science.gov (United States)

    Niyazi, Yakufu; Eruteya, Ovie Emmanuel; Waldmann, Nicolas

    2017-04-01

    In this study we combine the analysis of a high-resolution three-dimensional seismic reflection dataset and well-logs to characterize a distinct succession characterized by moderate to high-amplitude discontinuous to continuous seismic facies. This interval was deposited during ca. Middle - Late Pliocene, and sandwiched between continuous basin series and mass transport deposit (MTD). Our dataset, located at the foot of the continental slope, offshore central Israel reveal this interval is characterized by multi-storey submarine channel-belt complexes spatio-temporally located in the western part of the study area and restricted to the east by the emplacement of a MTD. We further subdivide the channel-belt complexes into a lower and upper system. The channels in both systems trend N-NW and have a width ranging between 150 m to 350 m , while incising up 50 m within the Pliocene sediments at both levels. Greater populations of well-developed and more sinuous channels are identified in the upper part of the channel complex, suggesting that the interplay between the sedimentary processes and the evolution of channels in the studied interval are heterogeneous. In particular, this may emphasize remarkable changes in spatio-temporal variations in flow volume. Yet, the effect of salt tectonics inflicted by the Messinian evaporites substratum on the morphology of the channel-belt complexes can be downplayed since its associated deformation postdates the evolution of the channels. Considering the available chronology obtained from well-logs and through further comparison with other regional and global climate proxies, we suggest the presence of an apparent periodicity in the evolution of the channels through time. We propose the evolution of these channels during the Pliocene is Nile-related. Furthermore, the channel systems described here for the Pliocene interval may extend the current understanding of the development of slope channels under the influence of juvenile

  3. Evolution and selection of river networks: statics, dynamics, and complexity.

    Science.gov (United States)

    Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R; Maritan, Amos; Rodriguez-Iturbe, Ignacio

    2014-02-18

    Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics--every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept.

  4. Contemporary research in aeolian geomorphology

    Science.gov (United States)

    Bauer, B. O.

    2009-04-01

    The first International Conference on Aeolian Geomorphology (ICAR) was held in 1986, and every four years since then, aeolian geomorphologists from around the world have assembled to discuss their research and to showcase recent advancements in understanding and modeling of aeolian processes. A content analysis of the "Bibliography of Aeolian Research" [Stout, J.E., Warren, A., Gill, T.E., 2009. Publication trends in aeolian research: An analysis of the Bibliography of Aeolian Research. Geomorphology 105, 6-17 (this volume)] shows that the number of publications on aeolian topics has increased exponentially from the mid-20th Century with approximately 50 publications per year to about 500 publications per year when the first ICAR was held, to almost 1000 publications per year currently. Areas of focus have shifted historically from initial concerns with aeolian erosion and dust events as isolated phenomenon of localized curiosity or only regional importance, to comprehensive physically-based investigations and modeling of the mechanics of aeolian transport. Recently, more applied studies have been motivated by the recognition of the importance of aeolian processes to dust emissions into the atmosphere (with relevance for human health and for meteorological conditions and climate change) and within regional management contexts (especially on coasts where impending sea-level rise is of great concern and in arid and semi-arid environments given the dependence of sediment surface stability and remobilization on meteorological and ecological conditions). Aeolian geomorphology is a rapidly growing sub-discipline of Geomorphology that offers rich opportunities for interdisciplinary collaborations with colleagues from the Atmospheric Sciences, Climatology, Sedimentology, Quaternary Geology, Fluid Mechanics, Physics, Mathematics, Computer Science, Physical Geography, Ecology, and Agricultural Sciences, as well as our counterparts in fluvial, coastal, and arid

  5. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Science.gov (United States)

    Jensen, Frants H; Rocco, Alice; Mansur, Rubaiyat M; Smith, Brian D; Janik, Vincent M; Madsen, Peter T

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  6. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    Directory of Open Access Journals (Sweden)

    Frants H Jensen

    Full Text Available Toothed whales (Cetacea, odontoceti use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica and Irrawaddy dolphins (Orcaella brevirostris within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191 re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  7. Rapid water quality change in the Elwha River estuary complex during dam removal

    Science.gov (United States)

    Foley, Melissa M.; Duda, Jeffrey J.; Beirne, Matthew M.; Paradis, Rebecca; Ritchie, Andrew; Warrick, Jonathan A.

    2015-01-01

    Dam removal in the United States is increasing as a result of structural concerns, sedimentation of reservoirs, and declining riverine ecosystem conditions. The removal of the 32 m Elwha and 64 m Glines Canyon dams from the Elwha River in Washington, U.S.A., was the largest dam removal project in North American history. During the 3 yr of dam removal—from September 2011 to August 2014—more than ten million cubic meters of sediment was eroded from the former reservoirs, transported downstream, and deposited throughout the lower river, river delta, and nearshore waters of the Strait of Juan de Fuca. Water quality data collected in the estuary complex at the mouth of the Elwha River document how conditions in the estuary changed as a result of sediment deposition over the 3 yr the dams were removed. Rapid and large-scale changes in estuary conditions—including salinity, depth, and turbidity—occurred 1 yr into the dam removal process. Tidal propagation into the estuary ceased following a large sediment deposition event that began in October 2013, resulting in decreased salinity, and increased depth and turbidity in the estuary complex. These changes have persisted in the system through dam removal, significantly altering the structure and functioning of the Elwha River estuary ecosystem.

  8. Review of the Ambrysus stali La Rivers species complex (Heteroptera: Nepomorpha: Naucoridae) with the description of a new species from Mesoamerica.

    Science.gov (United States)

    Sites, Robert W; Reynoso-Velasco, Daniel

    2015-09-15

    The Neotropical Ambrysus stali La Rivers species complex is reviewed and includes A. bifidus La Rivers & Nieser, A. scolius La Rivers, A. stali La Rivers, and A. tricuspis La Rivers. Ambrysus oblongulus Montandon is removed as a member of this complex. Features uniting these species are related to male genitalia and associated structures. Ambrysus maya n. sp. is the fifth species in the complex and is described from Belize, Guatemala, and Mexico based on specimens from recent collecting and museum collections.

  9. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 2: Matching Family-Level Indices to Geomorphological Response Units (GRUs

    Directory of Open Access Journals (Sweden)

    Anna Grace Nostbakken Meissner

    2016-03-01

    Full Text Available Many rivers are intensely managed due to anthropogenic influences such as dams, channelization, and water provision for municipalities, agriculture, and industry. With this growing pressure on fluvial systems comes a greater need to evaluate the state of their ecosystems. The purpose of this research is to use a geospatial model of the Qu’Appelle River in Saskatchewan to distinguish instream macroinvertebrate habitats at the family level. River geomorphology was assessed through the use of ArcGIS and digital elevation models; with these tools, the sinuosity, slope, fractal dimension, and stream width of the river were processed. Subsequently, Principal Component Analysis, a clustering technique, revealed areas with similar sets of geomorphological characteristics. These similar typology sequences were then grouped into geomorphological response units (GRUs, designated a color, and mapped into a geospatial model. Macroinvertebrate data was then incorporated to reveal several relationships to the model. For instance, certain GRUs contained more highly sensitive species and healthier diversity levels than others. Future possibilities for expanding on this project include incorporating stable isotope data to evaluate the food-web structure within the river basin. Although GRUs have been very successful in identifying fish habitats in other studies, the macroinvertebrates may be too sessile and their habitat too localized to be identified by such large river units. Units may need to be much shorter (250 m to better identify macroinvertebrate habitat.

  10. COMPLEX LANDSLIDE IN THE RJEČINA RIVER VALLEY

    Directory of Open Access Journals (Sweden)

    Čedomir Benac

    1999-12-01

    Full Text Available This paper presents the first phase investigation results of the complex landslide situated on north-eastern slope of the Rječina valley, between Valići damm and the village of Pašac. The valley slopes were formed in Paleogene flysch and Quaternary formations. The limestone rocks are present on the top sites, forming the scarps there. The complex landslide formation has been preconditioned by the geological structure and morphogenesis of the Rječina valley. This is the type of complex retrogressive landslide, starting with its development from toe to head. Thirteen individual landslide bodies were discovered on the slope. The material of slope formation and a part of weathering zone is caught by the landsliding. The larger part of landslide body is saturated by underground water penetrating through the covering zone in contact with flysch bedrock. The landsliding is relatively shallow, because there is no visible damage affected by sliding in the hydrotechnical tunnel, situated below the landslide toe. The mega-blocks of the limestone rock have also been moved and, most probably, are sliding down the flysch bedrock. This is a special phenomenon, atypical of the flysch slope landslide type in the area of Rijeka. The limestone rock on a scarp is extremely disintegrated, with new visible fractures in it. The site investigations comprised the surveying, seismic and engineering geological explorations. The surveying was performed by the method of terrestrial photogrammetry. The results are compared with aerial photos from 1981. In this respect, it was possible to discover the changes of slope morphology during the period 1981 — 1997. The photos were also used for the engineering geological mapping supplementation. The seismic surveying was performed by the surface seismic refraction method (the paper is published in Croatian.

  11. Geomorphology of Minnesota - Isolated Landform Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — Geomorphology of Minnesota - Isolated Landform Structures are essentially cartographic arcs representing isolated glacial features that were mapped in conjunction...

  12. ergodicity and chaos in geomorphology

    Science.gov (United States)

    Aadel, S.; Gaiumi, M.

    2009-04-01

    The past three dicades can be considered as a period in which the fundamentals of scientific epistemology have been subjected to drastic revision.The dissemination of the general theory of systems in 1972 , one year after the death of ludwing von Berthalanfi , the proposition of fuzzy logic by Zade, and the foemulation of chaos theory in 1986 by Harison and Biswas allserved to explode the myth that scientific thought was invulnerable. This paper , which has resulted from the theoretical investigation of project based on the paraglicial sediment and glacial evidence on the Zagros-pishkoh to explain the elements of chaos theory and their compatibility with ergodic geomorphology

  13. Being an expert witness in geomorphology

    Science.gov (United States)

    Keller, Edward A.

    2015-02-01

    Gathering your own data and coming to your own conclusion through scientific research and discovery is the most important principle to remember when being an expert witness in geomorphology. You can only be questioned in deposition and trial in your area of expertise. You are qualified as an expert by education, knowledge, and experience. You will have absolutely nothing to fear from cross-examination if you are prepared and confident about your work. Being an expert witness requires good communication skills. When you make a presentation, speak clearly and avoid jargon, especially when addressing a jury. Keep in mind that when you take on a case that may eventually go to court as a lawsuit, the entire process, with appeals and so forth, can take several years. Therefore, being an expert may become a long-term commitment of your time and energy. You may be hired by either side in a dispute, but your job is the same - determine the scientific basis of the case and explain your scientific reasoning to the lawyers, the judge, and the jury. Your work, including pre-trial investigations, often determines what the case will be based on. The use of science in the discovery part of an investigation is demonstrated from a California case involving the Ventura River, where building of a flood control levee restricted flow to a narrower channel, increasing unit stream power as well as potential for bank erosion and landsliding.

  14. Highlighting landslides and other geomorphological features using sediment connectivity maps

    Science.gov (United States)

    Bossi, Giulia; Crema, Stefano; Cavalli, Marco; Marcato, Gianluca; Pasuto, Alessandro

    2016-04-01

    Landslide identification is usually made through interpreting geomorphological features in the field or with remote sensing imagery. In recent years, airborne laser scanning (LiDAR) has enhanced the potentiality of geomorphological investigations by providing a detailed and diffuse representation of the land surface. The development of algorithms for geomorphological analysis based on LiDAR derived high-resolution Digital Terrain Models (DTMs) is increasing. Among them, the sediment connectivity index (IC) has been used to quantify sediment dynamics in alpine catchments. In this work, maps of the sediment connectivity index are used for detecting geomorphological features and processes not exclusively related to water-laden processes or debris flows. The test area is located in the upper Passer Valley in South Tyrol (Italy). Here a 4 km2 Deep-seated Gravitational Slope Deformation (DGSD) with several secondary phenomena has been studied for years. The connectivity index was applied to a well-known study area in order to evaluate its effectiveness as an interpretative layer to assist geomorphological analysis. Results were cross checked with evidence previously identified by means of in situ investigations, photointerpretation and monitoring data. IC was applied to a 2.5 m LiDAR derived DTM using two different scenarios in order to test their effectiveness: i) IC derived on the hydrologically correct DTM; ii) IC derived on the original DTM. In the resulting maps a cluster of low-connectivity areas appears as the deformation of the DGSD induce a convexity in the central part of the phenomenon. The double crests, product of the sagging of the landslide, are extremely evident since in those areas the flow directions diverge from the general drainage pattern, which is directed towards the valley river. In the crown area a rock-slab that shows clear evidence of incumbent detachment is clearly highlighted since the maps emphasize the presence of traction trenches and

  15. Genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River (upper Mekong).

    Science.gov (United States)

    Chen, Weitao; Shen, Yanjun; Gan, Xiaoni; Wang, Xuzhen; He, Shunping

    2016-09-01

    The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai-Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re-examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.

  16. Kinds and problems of geomorphological explanation

    Science.gov (United States)

    Cox, Nicholas J.

    2007-07-01

    What characterises satisfactory explanations in geomorphology is a key methodological question deserving continued analysis. In turn it raises the issue of the role played by methodology within the science. At its best, methodology can provide helpful distinctions, identify key issues and yield guidance for researchers. The substantive context for debates on explanation is the apparent complexity and difficulty of geomorphology as a science, which is arguably no greater than that of other Earth or environmental sciences. The logical view of explanation dominant in the 1950s and 1960s still has value, but a broader view is needed of explanations, related to the questions geomorphologists (and others) ask and to the answers that they find interesting. Answers may be sought in terms of purpose, history, mechanisms and statistics. Arguments over what is supposed to be reductionism can be clarified by underlining that both micro- and macro-explanations may be helpful. Although many geomorphologists aspire to mechanistic explanations, they often stop short at statistical explanations, making use of convenient functional forms such as power laws. Explanations have both social and psychological dimensions, the former much stressed in history of science and recent science studies, the latter deserving greater emphasis at present. Complicated models raise the question of how far it can be said that geomorphologists understand them in totality. A bestiary of poor explanations is needed, so that geomorphologists are not seduced by weak arguments and because they often serve as steps towards better explanations. Circular arguments, ad hoc explanations, and mistaking the name of the problem for the solution are cases in point.

  17. Evaluating the use of augmented reality to support undergraduate student learning in geomorphology

    Science.gov (United States)

    Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.

    2016-12-01

    Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.

  18. Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil

    Science.gov (United States)

    Assine, Mario Luis; Silva, Aguinaldo

    2009-12-01

    The Upper Paraguay drainage basin is situated mainly in west-central Brazil, near the Bolivian border. Flowing from north to south, the Paraguay is the trunk river of an alluvial depositional tract characterized by complex geomorphologic zonation that resulted from an intricate geologic evolution since the Late Pleistocene. This paper focuses on the geomorphology of the Paraguay River at the northwestern border of the Pantanal wetland, where two broad geomorphologic zones were distinguished. North from the Pantanal wetland, the Paraguay River flows in an aggradational fluvial plain, 5 km wide and incised into older alluvial deposits. The river exhibits a meandering style over most of its course, but sinuosity drops from 2.2 to 1.1 near the northwest border of the Pantanal wetland where the river has been forming the Paraguay fluvial megafan since the Late Pleistocene. The river deflects 90° eastward at the entrance into the Pantanal, changing its fluvial style because of a progressive loss of confinement downstream of the point where the river reaches lowland plains. The river becomes more sinuous, adopts a distributary pattern within the wetland and brings about the creation of the modern depositional lobe characterized by higher topographic gradient and active sedimentation likely linked to increased accommodation space allowing progradation. Fluvial discharge diminishes in the Pantanal wetland because of channel overbank flow during the rainy season and frequent levee crevassing. Avulsion belts and channel-levee complex are preserved on the floodplain as relict forms. South of the convergence of the two main channels that define the Taiamã Island, a loss of gradient marks the base of the depositional lobe. Further downstream, the Paraguay River returns to a meandering fluvial style, but crossing a large fluvial plain populated by hundreds of small lakes and seasonally flooded that characterizes the Pantanal wetland.

  19. Geomorphological risk analysis in the Republic of Belarus

    OpenAIRE

    2014-01-01

    Romanenko V. GIS-Mapping and Assessment of Geomorphological Risk in Belarus / V. Romanenko, D. Kurlovich // The geomorphology of natural hazards: mapping, analysis and prevention. Abstract book. 17th Joint Geomorphological Meeting, Liege (Belgium). 1-3 July 2014. – Liege. – P. 116. In the present study an assessment of geomorphological risk in the Republic of Belarus has been made. Geomorphological districts (according to geomorphological zoning) were the objects of the research.

  20. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  1. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    Science.gov (United States)

    Fullerton, Aimee H.; Torgersen, Christian; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling

  2. Splitting rivers at their seams: bifurcations and avulsion

    NARCIS (Netherlands)

    Kleinhans, M.G.; Ferguson, R.I.; Lane, S.N.; Hardy, R.J.

    2012-01-01

    River bifurcations are critical but poorly understood elements of many geomorphological systems. They are integralelements of alluvial fans, braided rivers, fluvial lowland plains, and deltas and control the partitioning of water and sediment throughthese systems. Bifurcations are commonly unstable

  3. Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain): Geomorphological mapping and analysis as a basis for risk management

    Science.gov (United States)

    Galve, J. P.; Gutiérrez, F.; Lucha, P.; Bonachea, J.; Remondo, J.; Cendrero, A.; Gutiérrez, M.; Gimeno, M. J.; Pardo, G.; Sánchez, J. A.

    2009-07-01

    A detailed sinkhole map has been produced in a stretch of the Ebro Valley (40.8 km 2) including the western sector of Zaragoza city (NE Spain). During the last few decades, around 70% of the original sinkhole area has been filled with anthropogenic sediments causing the disappearance of 137 ha of wetlands. The interstratal karstification of salts (halite and glauberite) and a WNW-ESE-trending joint set have played a major control in the development of sinkholes. Three morphometric types of sinkholes have been differentiated, each attributed to a specific subsidence mechanism inferred from the paleosinkholes exposed in the surrounding of Zaragoza city; sagging of bedrock and cover, collapse of bedrock and cover, and collapse of cover material related to the downward migration of particles through dissolutional conduits. Each type of sinkhole is characterised by a distinctive behaviour in terms of controlling factors, spatio-temporal distribution and kinematics, and consequently the proposed differentiation may have a practical utility. The vast majority of the subsidence damage identified in the area occurs within the boundaries of pre-existing sinkholes identifiable in old aerial photographs and topographical maps. This fact demonstrates that the application of preventive planning strategies based on detailed geomorphological maps would have allowed avoidance of most of the large financial losses caused by subsidence in the area, of the order of hundreds of thousands of euros per year.

  4. Geomorphological Hazards in Los Angeles

    Science.gov (United States)

    Hadley, Richard F.

    This is a topical book that deals with the geomorphological and geological engineering problems associated with hillslope processes and sediment transport in the Los Angeles metropolitan area. There are few large cities in the United States where the problems of urban growth include such a distinctive physical environment, as well as the potential hazards of brush fires, earthquakes, and floods that occur in Los Angeles. The research and data used in the book are restricted to Los Angeles County and cover the period 1914-1978. The author has done a commendable job of synthesizing a large mass of data from diverse sources, including federal, state, and local agency reports, plus data from private groups such as professional technical societies and consultants.

  5. Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08‧ S., 69°55‧ W.)

    Science.gov (United States)

    Monnier, Sébastien; Kinnard, Christophe; Surazakov, Arzhan; Bossy, William

    2014-02-01

    We use geomorphological analysis, sedimentological survey, remote sensing, and ground penetrating radar (GPR) in order to understand the complex landform assemblage found in front of the Cerro Tapado glacier in the upper Elqui River catchment, semiarid Andes of Chile. The geomorphological analysis highlights prominent boundaries dividing the landform assemblage into (from the upper part to the lower part) an upper latero-frontal moraine complex, an upper debris-covered glacier, a lower debris-covered glacier, two rock glaciers, and a lower morainic complex. The sedimentological survey highlights the rather small size of the surface debris (in general 400 m) receding of the glacier occurred, along with downslope displacements (dm-m·y- 1) of most of the landform units and a significant evolution of the thermokarst features on the debris-covered glaciers. Considerable surface lowering occurred in the upper part of the assemblage, while localized bulging is seen along the morphological boundaries in the lower units. The GPR profiles highlight spectacular internal structure in the upper debris-covered glacier with up to 80 m of buried ice. In the other landform units, the internal structure is less visible and more heterogeneous. The analysis of the radar wave velocity along the GPR profiles reveals the occurrence of air-filled and moist zones in the internal structure. The geomorphological assemblage is fundamentally characterized by its morphological, structural, and dynamical boundaries and defined as a young (probably rock glaciers do not derive from the present debris-covered glacier but preexist to it.

  6. Validation of a Parcel-Based Reduced-Complexity Model for River Delta Formation (Invited)

    Science.gov (United States)

    Liang, M.; Geleynse, N.; Passalacqua, P.; Edmonds, D. A.; Kim, W.; Voller, V. R.; Paola, C.

    2013-12-01

    Reduced-Complexity Models (RCMs) take an intuitive yet quantitative approach to represent processes with the goal of getting maximum return in emergent system-scale behavior with minimum investment in computational complexity. This approach is in contrast to reductionist models that aim at rigorously solving the governing equations of fluid flow and sediment transport. RCMs have had encouraging successes in modeling a variety of geomorphic systems, such as braided rivers, alluvial fans, and river deltas. Despite the fact that these models are not intended to resolve detailed flow structures, questions remain on how to interpret and validate the output of RCMs beyond qualitative behavior-based descriptions. Here we present a validation of the newly developed RCM for river delta formation with channel dynamics (Liang, 2013). The model uses a parcel-based 'weighted-random-walk' method that resolves the formation of river deltas at the scale of channel dynamics (e.g., avulsions and bifurcations). The main focus of this validation work is the flow routing model component. A set of synthetic test cases were designed to compare hydrodynamic results from the RCM and Delft3D, including flow in a straight channel, around a bump, and flow partitioning at a single bifurcation. Output results, such as water surface slope and flow field, are also compared to field observations collected at Wax Lake Delta. Additionally, we investigate channel avulsion cycles and flow path selection in an alluvial fan with differential styles of subsidence and compare model results to laboratory experiments, as a preliminary effort in pairing up numerical and experimental models to understand channel organization at process scale. Strengths and weaknesses of the RCM are discussed and potential candidates for model application identified.

  7. Should precise numerical dating overrule glacial geomorphology?

    Science.gov (United States)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this

  8. Geomorphology of the Goa Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Wagle, B.G.

    and associated features were useful in identifying fluvial, marine and aeolian features such as tidal flats, river terraces, mesas, wave-cut platforms, old beach ridges, dunes, etc. The drainage network is predominantly in two directions coinciding...

  9. River Flow Forecasting Using Neural Networks and Auto-Calibrated NAM Model with Shuffled Complex Evolution

    Science.gov (United States)

    Zakermoshfegh, M.; Ghodsian, M.; Salehi Neishabouri, S. A. A.; Shakiba, M.

    River flow forecasting is required to provide important information on a wide range of cases related to design and operation of river systems. Since there are a lot of parameters with uncertainties and non-linear relationships, the calibration of conceptual or physically-based models is often a difficult and time consuming procedure. So it is preferred to implement a heuristic black box model to perform a non-linear mapping between the input and output spaces without detailed consideration of the internal structure of the physical process. In this study, the capability of artificial neural networks for stream flow forecasting in Kashkan River in West of Iran is investigated and compared to a NAM model which is a lumped conceptual model with shuffled complex evolution algorithm for auto calibration. Multi Layer Perceptron and Radial Basis Function neural networks are introduced and implemented. The results show that the discharge can be more adequately forecasted by Multi Layer Perceptron neural network, compared to other implemented models, in case of both peak discharge and base flow forecasting.

  10. A reduced complexity discrete particle model for understanding the sediment dynamics of steep upland river confluences

    Science.gov (United States)

    Tancock, M. J.; Lane, S. N.; Hardy, R. J.

    2012-12-01

    There has been a significant amount of research conducted in order to understand the flow fields at natural river confluences. Much of this has been made possible due to advances in the use of Computational Fluid Dynamics (CFD). However, much of this research has been conducted on river confluences with negligible water surface slopes and any understanding of the sediment dynamics is largely implied from the flow fields. Therefore, a key challenge is to understand the flow and sediment dynamics of steep river confluences with dynamic boundaries. Two numerical modelling developments are presented which together are capable of increasing our understanding of the sediment dynamics of steep river confluences. The first is the application of a Height-of-Liquid (HOL) model within a CFD framework to explicitly solve the water surface elevation. This is a time-dependent, multiphase treatment of the fluid dynamics which solves for the change in volume of water and air in each vertical column of the mesh. The second is the development of a reduced complexity discrete particle transport model which uses the change in momentum on a spherical particle to predict the transport paths through the flow field determined from CFD simulations. The performance of the two models is tested using field data from a series of highly dynamic, steep gravel-bed confluences on a braidplain of the Borgne d'Arolla, Switzerland. The HOL model is validated against the water surface elevation and flow velocity data and is demonstrated to provide a reliable representation of the flow field in fast-flowing, supercritical flows. In order to validate the discrete particle model, individual particles were tracked using electronic tacheometry. The model is demonstrated to accurately represent the particle tracks obtained in the field and provides a new methodology to understand the dynamic morphology of braid plains.

  11. Reduced-complexity modeling of braided rivers: Assessing model performance by sensitivity analysis, calibration, and validation

    Science.gov (United States)

    Ziliani, L.; Surian, N.; Coulthard, T. J.; Tarantola, S.

    2013-12-01

    paper addresses an important question of modeling stream dynamics: How may numerical models of braided stream morphodynamics be rigorously and objectively evaluated against a real case study? Using simulations from the Cellular Automaton Evolutionary Slope and River (CAESAR) reduced-complexity model (RCM) of a 33 km reach of a large gravel bed river (the Tagliamento River, Italy), this paper aims to (i) identify a sound strategy for calibration and validation of RCMs, (ii) investigate the effectiveness of multiperformance model assessments, (iii) assess the potential of using CAESAR at mesospatial and mesotemporal scales. The approach used has three main steps: first sensitivity analysis (using a screening method and a variance-based method), then calibration, and finally validation. This approach allowed us to analyze 12 input factors initially and then to focus calibration only on the factors identified as most important. Sensitivity analysis and calibration were performed on a 7.5 km subreach, using a hydrological time series of 20 months, while validation on the whole 33 km study reach over a period of 8 years (2001-2009). CAESAR was able to reproduce the macromorphological changes of the study reach and gave good results as for annual bed load sediment estimates which turned out to be consistent with measurements in other large gravel bed rivers but showed a poorer performance in reproducing the characteristics of the braided channel (e.g., braiding intensity). The approach developed in this study can be effectively applied in other similar RCM contexts, allowing the use of RCMs not only in an explorative manner but also in obtaining quantitative results and scenarios.

  12. Sea floor engineering geomorphology: recent achievements and future directions

    Science.gov (United States)

    Prior, David B.; Hooper, James R.

    1999-12-01

    New mapping technology is providing perspectives of the sea floor "as if there were no ocean", revealing that ocean floors exhibit a wide variety of relief, sediment properties, and active geologic processes such as erosion, faulting, fluid expulsion, and landslides. The development of coastal and offshore resources, such as oil and gas and minerals, involves sea floor engineering in remote, complex, and sometimes hazardous environments. Optimum engineering design and construction practice require detailed surveys of sea floor geomorphology, geologic conditions on the sea bed and to various depths beneath it, combined with geotechnical properties of the sediments and oceanographic information. Integrated site survey models attempt to predict conditions and process frequencies and magnitudes relevant to the engineering design lifetimes of sea floor installations, such as cables, pipelines, production platforms, as well as supporting coastal infrastructure such as jetties, wharves, bridges and harbors. Recent use of deep water areas for oil and gas production, pipelines, and cable routes are also showing that the "world's greatest slopes", beyond the continental shelves contain exciting, exotic, and enigmatic geomorphological features and processes. Safe and cost-effective engineering use of these regions depends upon exciting new technical and conceptual advances for understanding sea floor geomorphology — a task which has barely begun.

  13. Theory of Geoinformatic Mapping of Erosive Geomorphological System

    Directory of Open Access Journals (Sweden)

    Rulev A.S.

    2015-12-01

    Full Text Available The geoinformatic mapping of erosion geomorphologic systems is based on both traditional methods of cartographic representation of information and specific opportunities of computer mapping complexes, including those for analytical processing of data of different types. The study of the characteristics of the erosion geomorphological systems is carried out with the use of aerial and satellite imagery and is based on the results of their geomorphological, geobotanical, soil reclamation, erosion and other surveys. Spatially distributed input data of landscape model should be set as raster electronic maps that characterize relief, soil cover, type of agriculture, vegetation on the catchment area, as well as, morphometry and hydraulic resistance of the channel and floodplain, and also as a set of the attributes describing their characteristics. The use of digital model of relief (DMR while geoinformatic mapping provides the determination of both planning characteristics of the relief and profile ones, including the values of slope angles, inclination, expositions, slopes configuration, etc. As the result of the modelling, the digital maps of flow, outwash and accumulation, and table data defining the process of flow, outwash and water turbidity, as well as, their final values with the use of large-scale topographic and soil maps, and space imaging of high resolution, are developed.

  14. Floodplain restoration on the upper Danube by re-establishing back water dynamics: first results of the hydro-geomorphological monitoring

    Science.gov (United States)

    Fischer, Peter; Hilger, Ludwig; Cyffka, Bernd

    2013-04-01

    Within the framework of a restoration project at the upper Danube, eight working groups of different scientific disciplines have been operating since 2009. They investigate the changes evoked through the accomplished restoration measures, which seek to bring back new dynamics to the floodplain and to reconnect it with the river in order to optimize flood plain ecological functioning. Main object is the identification and analysis of hydro-geomorphological processes and their impact on vegetation and fauna. Hydrology is one of the key factors determining the type and function of flood plains and thus alternating water levels are the motor of riparian ecosystems. Diverse water and groundwater levels and particularly flood events affect and support floodplain typical vegetation and animal species. All floodplain waterbodies (oxbows, floodplain ponds, backwaters and sidearms) are more or less connected by surface or subsurface waterways. Hydrological conditions are mainly influenced by the following measures: a, permanent nature orientated bypass river with a discharge of up to 5 m3/s; b, man controlled ecological flooding (discharge of up to 30 m3/s); c, groundwater drawdown in the eastern project area. These measures shall bring back "former" natural hydrological dynamics to the floodplain. They establish geomorphological processes and forms as well and create a mosaic of typical habitats. River morphology is monitored by terrestrial laser scanning analysing the so attained data sets, erosion and aggregation rates at selected undercut slopes and point bars can be detected with a high resolution. Large scale mapping by a drone and dGPS mapping are very helpful tools for identifing widespread flooding areas. Further methods such as, cross section and bed load measurements complete the research work. The aim is to link the interaction of these abiotic processes with the biotic nature and determine the importance of geomorphological disturbance for floodplain ecosystems

  15. Association and determinacy in geomorphology

    Science.gov (United States)

    Leopold, Luna Bergere; Langbein, Walter Basil; Albritton, Claude C.

    1963-01-01

    You find a rock. It looks like an ordinary piece of flint, broken and rough. On a part of it is a patina whose soft grey color contrasts with the shiny brownish surfaces of conchoidal fracture. You could have found this rock in nearly any kind of an environment almost anyplace in the world. There is nothing distinctive about it.You hand this same piece of rock to a colleague and ask what he can make of it. He considers it soberly before he says, “You know, that could be an artifact.” There springs to mind then a picture of a primitive man, squatting barefoot before a fire warming his hands. The firelight casts his shadow against the cliff below which he crouches. The difference between the reaction before and after the passing thought that this might indeed be the tool of ancient man is the difference between mild disinterest and a kaleidoscope of mental pictures. This difference reflects differences in the associations of thoughts. The present essay is concerned with how associations are used in geologic reasoning, and then with certain philosophic considerations which seem to be influencing the methodology and direction of geomorphology.

  16. Detrital apatite fission track analysis and geomorphologic evolution of the Nujiang River area%怒江河砂岩屑磷灰石裂变径迹结果与流域地貌演化

    Institute of Scientific and Technical Information of China (English)

    孙东霞; 季建清; 刘一多; 李宝龙; 陈建军; 钟大赉

    2013-01-01

    River sand as an averaged product of catchment can reflect the regional thermal histories of the entire river basin. Sampling in different segments of one river is able to obtain more accurate information of the thermal history evolutions. Seven detrital sand samples were collected from different locations of the Nujiang River in western Yunnan to attempt to reveal the thermal history of the entire river basin through the apatite fission track( AFT) method. The samples show the main age peaks of 12. 2 Ma, 12. 8 Ma, 7. 7 Ma, 5. 3 Ma, 4. 4 Ma, 4. 9 Ma, 7.3 Ma respectively, presenting an interesting and extremely special pattern of 'old on the sides and young in the center' . The younger results in the center means the middle segment of Nujiang River got through relative quicker thermal histories. The youngest and special region lies in the three rivers parallel flowing area and water vapor channel of southwest monsoon, resulting in the significantly difference in precipitation patterns between the different segments. We therefore conclude that climate led to its rapid landscape evolution and then caused the youngest samples exposed in the middle segment of Nujiang River. All the AFT age peaks can be divided into five groups; 5.3-4.4 Ma, 7.7-7.3 Ma, 12. 8 ~ 10. 7 Ma, 26. 8 -22. 2 Ma and 48. 7 ~ 30. 1 Ma, documenting the main stages of Cenozoic thermal histories in Nujiang River Basin, western Yunnan. Furthermore, the prominent characters of the detrital river sand are identified, as an indication of segmentation to get more accurate thermal information.%河流搬运沉积的河砂作为流域内地质体的平均产物,可以有效地揭示整个流域内区域性的地质体热史演化.对同一河流进行分段采样能够揭示更为详实的热史演化差异.本文对滇西境内怒江上游至下游采集了7个河砂样品进行磷灰石裂变径迹定年,主要年龄峰值依次为:12.2 Ma和12.8 Ma,7.7 Ma,5.3 Ma、4.4 Ma和4.9 Ma,7.3 Ma;总体上呈现

  17. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  18. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    Science.gov (United States)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  19. The Culex pipiens complex in the Mississippi River basin: identification, distribution, and bloodmeal hosts.

    Science.gov (United States)

    Savage, Harry M; Kothera, Linda

    2012-12-01

    Members of the Culex pipiens complex are the primary vectors of St. Louis encephalitis virus and West Nile virus in the Mississippi River basin (MRB). The Cx. pipiens complex in the MRB is composed of 4 taxa: Cx. p. pipiens form pipiens, Cx. p. quinquefasciatus, hybrids between Cx. p. pipiens f. pipiens and Cx. p. quinquefasciatus, and Cx. p. pipiens form molestus. Three studies on bloodmeal hosts with large sample sizes have been conducted on members of the Cx. pipiens complex in the MRB including 1 each on Cx. p. quinquefasciatus from Louisiana, Cx. p. pipiens-quinquefasciatus hybrids from Tennessee, and Cx. p. pipiens from Illinois. The top 8 bloodmeal hosts from each of the 3 sites accounted for 68-92% of bloodmeals. Only 14 species accounted for the top 8 bloodmeal hosts at each of the 3 sites. The most often utilized bloodmeal hosts for members of the Culex pipiens complex within the MRB are the American robin, Northern cardinal, human, raccoon, common grackle, house sparrow, mourning dove, dog, Northern mockingbird, blue jay, opossum, domestic horse, house finch and European starling. Human feeding varied widely among sites from 1% to 15.7% of bloodmeals. The proportion of bloodmeals taken on humans is an important epidemiological variable and future studies are needed to define the primary genetic and environmental factors that influence host utilization by members of the Cx. pipiens complex.

  20. Tectonic geomorphological characteristics for evolution of the Manas Lake

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Owing to global climatic changes and human activities,the lakes have changed dramatically in the Junggar Basin of Xinjiang in recent 50 years. Based on the remote sensing images from Beijing Satellite No.1 in 2006 together with the measured topographical data in 1999 and other data since the 1950s,this paper analyzes mainly the features of landforms around the Manas Lake and the changes of feeding sources of the lake. The results are as follows:(1) Tectonic movement brought about the fundamental geomorphological basis for lacustrine evolution,and the Manas Lake is one of small lakes broken up from the Old Manas Lake due to tectonic movement and drought climate; the Manas Lake had existed before the Manas River flowed into it in 1915. The geomorphologic evidences for evolution of the Manas Lake include:(a) Diluvial fans and old channels at the north of the lake indicate that the rivers originating from the north mountains of the Junggar Basin had fed the Old Manas Lake and now still feed the lake as seasonal rivers; (b) The Old Manas Lake was fed by many rivers originating from the mountains,except for the Manas River,from the evidence of small lakes around the Manas Lake,old channels,alluvial fans,etc.; (c) The elevations of the alluvial and diluvial fans are near to the 280 m a.s.l. and all of the small lakes and lacustrine plains are within the range of the 280 m a.s.l.,which may prove that the elevation of the Old Manas Lake was about 280 m a.s.l.; (d) Core analysis of the Manas Lake area also indicates that the Manas Lake has existed since Late Pleistocene epoch. (2) Analysis on the feeding relations between the lakes and the lacustrine evolution shows that human activities are one of main driving forces of the lacustrine evolution in recent 50 years,and it is the precondition of restoring and maintaining the lacutrine wetlands in the study area to satisfy the feeding of the Baiyang and Manas rivers to the Manas Lake.

  1. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NARCIS (Netherlands)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans|info:eu-repo/dai/nl/152500693; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985

  2. Vanishing point: Scale independence in geomorphological hierarchies

    Science.gov (United States)

    Phillips, Jonathan D.

    2016-08-01

    Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is "fundamentally different"-that is, what is the "vanishing point" at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.

  3. Hydrodynamics, vegetation transition and geomorphology coevolution in a semi-arid floodplain wetland.

    Science.gov (United States)

    Sandi, Steven; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2016-04-01

    The Macquarie Marshes is a complex system of marshes, swamps and lagoons interconnected by a network of streams in the semi-arid region in north western NSW, Australia. The low-gradient topography of the site leads to channel breakdown processes where the river network becomes practically non-existent. As a result, the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Vegetation in semiarid wetlands are often water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The detrimental state of vegetation in the Macquarie Marshes over the past few decades has been linked to decreasing inundation frequencies. Spatial distribution of flood tolerant overstory species such as River Red Gum and Black Box has not greatly changed since early 1990's, however; the condition of the vegetation patches shows a clear deterioration evidenced by terrestrial species encroachment on the wetland understory. On the other hand, areas of flood dependent species such as Water Couch and Common Reed have undergone complete succession to terrestrial species and dryland. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We presents also the development and assessment of transitional rules to determine if the water conditions have been met for different vegetation

  4. Geomorphology of ice stream beds: recent progress and future challenges

    Science.gov (United States)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and

  5. Sod-podzolic soils with a complex organic profile of the southern Vyatka River basin

    Science.gov (United States)

    Prokashev, A. M.; Soboleva, E. S.; Chepurnov, R. R.; Matushkin, A. S.; Ohorzin, N. D.; Borodaty, I. L.; Zhuikova, I. A.; Alalykina, I. Y.; Russkikh, G. A.; Pupysheva, S. A.; Mokrushin, S. L.; Vartan, I. A.

    2016-08-01

    The article is devoted to the morphology and substantive properties of the sod- podzolic soils with a complex organic profile having the second humus horizons and found on the southern right bank of the lower Vyatka River. The research results of the mineral and organic phases are the evidence of the relict origin of the second humus horizon as well as the evidence of profile polygenicity of the given soils. They went through two fundamentally different pedogenesis stages during the postglacial period: 1) the developmental accumulative evolution stage in the first half of the Holocene and 2) the accumulative-eluvial stage of erasing evolution including the elements of inheriting evolution in the second half of the Holocene. Keywords: granulometric composition, fractional and group composition, humus age, genesis, soil evolution

  6. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    Science.gov (United States)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  7. Geomorphology and the World Wide Web

    Science.gov (United States)

    Shroder, John F.; Bishop, Michael P.; Olsenholler, Jeffrey; Craiger, J. Philip

    2002-10-01

    The Internet and the World Wide Web have brought many dimensions of new technology to education and research in geomorphology. As with other disciplines on the Web, Web-based geomorphology has become an eclectic mix of whatever material an individual deems worthy of presentation, and in many cases is without quality control. Nevertheless, new electronic media can facilitate education and research in geomorphology. For example, virtual field trips can be developed and accessed to reinforce concepts in class. Techniques for evaluating Internet references helps students to write traditional term papers, but professional presentations can also involve student papers that are published on the Web. Faculty can also address plagiarism issues by using search engines. Because of the lack of peer review of much of the content on the Web, care must be exercised in using it for reference searches. Today, however, refereed journals are going online and can be accessed through subscription or payment per article viewed. Library reference desks regularly use the Web for searches of refereed articles. Research on the Web ranges from communication between investigators, data acquisition, scientific visualization, or comprehensive searches of refereed sources, to interactive analyses of remote data sets. The Nanga Parbat and the Global Land Ice Measurements from Space (GLIMS) Projects are two examples of geomorphologic research that are achieving full potential through use of the Web. Teaching and research in geomorphology are undergoing a beneficial, but sometimes problematic, transition with the new technology. The learning curve is steep for some users but the view from the top is bright. Geomorphology can only prosper from the benefits offered by computer technologies.

  8. GEOMORPHOLOGICAL HAZARDS AND RISKS IN JIU DEFILE

    Directory of Open Access Journals (Sweden)

    I. SĂNDULACHE

    2014-05-01

    Full Text Available Jiu Defile has a length of 33 km and is located in the Southern Carpathians, between Parâng Mountains (east and Vâlcan Mountains (west. This paper stars from the analysis of field mapping and measurements (based on topographic maps, scale of 1:25 000, and data from local institutions and other sources (web, press. In Jiu Defile, geomorphological hazards results from the combined action of meteorological conditions and other factors such as geology, geomorphology and socio-economic development. They may affect transport infrastructure, which is at risk especially in spring and summer.

  9. Effectiveness evaluation of flood defence structures in different geomorphological contexts

    Science.gov (United States)

    Morelli, Stefano; Pazzi, Veronica; Fanti, Riccardo

    2017-04-01

    The flood risk in different geomorphological contexts of two less developed countries are investigated in order to evaluate the efficacy of the existing flood defence structures. In particular, a recent floodplain crossed by a wide meandering river and a narrow mountain valley flowed by creek with a torrential regime have been chosen for such analysis in North Albania and central Mexico, respectively. Both areas have been affected by disastrous floods in past years with considerable damages to properties and people. Some safety countermeasures have been performed over time, even if in a non-systematic way. For this reason, the current inclination to flood risk was assessed by means of a freeware software designed to perform one-dimensional (1D) hydraulic modelling for a full network of natural and anthropic channels (HEC-RAS software by Hydrologic Engineering Center River Analysis System). This new analyses take into account: i) the natural morphological variability along the river path, ii) the anthropic interventions on the fluvial dynamics, iii) the landscape appearance after the soil exploitation in the past years, and iv) all the changes induced by an exceeded informal urbanization. The reconstruction of the river and bordering areas geometric data was carried out according to the physical characteristics of the local environment: a bathymetric survey and near-river DGPS acquisitions for the open spaces of the Albanian floodplain, and traditional topographic methods for the highly vegetated Mexican valley. In both cases, the results show that the existing works are, on their own, poorly efficient in containing the predictable floods. Albanians levees seem underdimensioned, while the channelling works are too narrow to contain large amounts of water and solid transport as typical of the Mexican study area. Evidently, a new territorial planning is required in these areas, and some projects are now in place. However, it would be desirable that local authorities

  10. Evaluation of a geomorphology-based conceptual IUH in a mountain watershed

    Science.gov (United States)

    López, J. J.; Gimena, F. N.; Giráldez, J. V.; Ayuso, J. L.; Goñi, M.

    2009-04-01

    Hydrograph generation at a point in the drainage network, as a watershed response to a rainfall event, is a complex process that depends on watershed and storm characteristics. Among the available methods for hydrologic design, the unit hydrograph (UH) is one of those most widely used. It is a conceptual model which assumes the linear systems theory and incorporates the rainfall characteristics in the simulation process. There is, obviously, a close relationship between the geomorphologic characteristics of a watershed and its hydrologic response. During the past years hydrologists and geomorphologists have worked together in a joint effort to characterize the global average watershed response as a function of its geomorphologic properties. Since Rodríguez-Iturbe and Valdés presented the Geomorphological Instantaneous Unit Hydrograph (GIUH) there have been many attempts to propose an Instantaneous Unit Hydrograph (IUH) that incorporates the geomorphological properties of the watershed. Also, linear reservoir models were, and are still, very frequently used for simulating rainfall-runoff processes and, more precisely, for determining the unit hydrograph of a watershed. The fundamental aim of this work is to present and evaluate an Instantaneous Unit Hydrograph based on a cascade of linear Reservoirs obtained by taking the Geomorphology of the watershed (IUHGR). The geomorphological association of reservoirs in this IUH is characterized by means of the sub-basins into which the watershed is divided starting from the drainage network. The formulation of this IUH, obtained from the one set up by López et al.,(2005), has been carried out both for the case of the spatial uniformity of the sub-basins and for that of considering their spatial variability. Also, this model's evaluation was made based on a detailed analysis of it and on a comparative study. For the latter, some IUHs with some similar characteristics to the one proposed and which were sufficiently vouched

  11. Suhard Massif. A geomorphological study

    Directory of Open Access Journals (Sweden)

    Liviu CARP

    2013-03-01

    Full Text Available Suhard Mts., part of the Northern Carpathians, stretch over an area of 323 sq km, in the shape of a  northwest-oriented ridge. This massif is composed of crystalline schists  (meso- and epimetamorphic, as well as sedimentary rocks pertaining to the trans-Carpathian flysch deposits (i.e. various types of sandstone, conglomerates and marls in the southwestern sector. Whereas this region is characterized by the occurrence of a wide range of carbonate rocks, we noted the scarcity of karst forms. Geological survey maps of the area indicate the occurrence of few folded structures; moreover, the massif is mostly part of an ample anticline whereby the axis underlies the valley of Bistrita Aurie river, accompanied by a large syncline underlying Cosna river valley (tributary of Dorna river. The prevalence of crystalline rocks within this anticlinorium results in the overall massif shape of these mountains (hence, the name, which is the foundation for the detail structural and lithological relief forms. The array of structural relief forms includes structural plateaus on sedimentary and crystalline carbonate rocks, and steep slopes in the form of both hogbacks and overthrust scarps. The lithological relief occurs primarily as a result of the contrasting chemical composition of various crystalline rocks, whereas sedimentary rocks seldom generate such forms and solely when favored by the structure, as well. Consequently, carbonate rocks are rather discrete and only stand out in the form of clints (lapies and gorges, or hums. As regards the matter of denudation surfaces, which has proved rather difficult to solve, we were able to determine the presence of an erosion surface ranging from 1200-1300 m to 1500-1600 m, wherein neotectonics played a significant role by fragmenting the original surface, particularly in the northwestern sector, where its fragments descend in the shape of consecutive steps towards Rotunda saddle. Periglacial modeling of the relief

  12. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    Science.gov (United States)

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  13. Multi-Site Calibration of Linear Reservoir Based Geomorphologic Rainfall-Runoff Models

    Directory of Open Access Journals (Sweden)

    Bahram Saeidifarzad

    2014-09-01

    Full Text Available Multi-site optimization of two adapted event-based geomorphologic rainfall-runoff models was presented using Non-dominated Sorting Genetic Algorithm (NSGA-II method for the South Fork Eel River watershed, California. The first model was developed based on Unequal Cascade of Reservoirs (UECR and the second model was presented as a modified version of Geomorphological Unit Hydrograph based on Nash’s model (GUHN. Two calibration strategies were considered as semi-lumped and semi-distributed for imposing (or unimposing the geomorphology relations in the models. The results of models were compared with Nash’s model. Obtained results using the observed data of two stations in the multi-site optimization framework showed reasonable efficiency values in both the calibration and the verification steps. The outcomes also showed that semi-distributed calibration of the modified GUHN model slightly outperformed other models in both upstream and downstream stations during calibration. Both calibration strategies for the developed UECR model during the verification phase showed slightly better performance in the downstream station, but in the upstream station, the modified GUHN model in the semi-lumped strategy slightly outperformed the other models. The semi-lumped calibration strategy could lead to logical lag time parameters related to the basin geomorphology and may be more suitable for data-based statistical analyses of the rainfall-runoff process.

  14. 格尔木河流域面积-高程积分值的地貌学分析%Geomorphologic Analysis of the Golmud River Drainage Basin Based on Hypsometric Integral Value

    Institute of Scientific and Technical Information of China (English)

    张敬春; 李川川; 张梅; 刘耕年

    2011-01-01

    The interaction between tectonics and climate on landform has sparked much interest over years. The hypsometric integral (HI) value could reflect both tectonic activity and climate change, and might be a promising tool that links those two aspects. Based on SRTM - DEM data, this paper withdraws the measuring indicators of the landform and hypsometric integral from the third order basins and some of the second order basins in the Golmud river drainage basin using GIS spatial analysis, discusses the area and space dependence for hypsometric integral, and presents its significance in indicating tectonics, lithology and the degree of glacial erosion. The results show: the HI value depends on area and space; the southern fault of east Kunlun (F4) - Xidatan ( F3 ) fault can be divided into two parts, the east and the west, by the Kunlun Pass; both of them show similar scenario that the activity decrease from the center to the sides; there is no apparent change in the activity of the central fault of east Kunlun (Fl); intrusive rock shows greatest erosion-resistance while schist shows least and carbonate rocks shows modest, respectively; glacial processes could rework the landform and change the degree of erosion; the drainage basin with modern glacier and/or with extensively distributed palco-glacier is of higher HI value and develops U -shaped valley, compared to those without or with limited paleo-glacier.%在sRTM-DEM数据的基础上,运用GIS空间分析技术,系统提取了格尔木河三级流域及部分二级流域地形参数和面积-高程积分值,探讨了面积-高程积分值的面积及空间依赖性,并对面积-高程积分值(HI)对构造活动性、岩性变化、冰川作用强度的指示意义进行了研究.研究表明:HI值具有面积依赖及空间依赖性;东昆南断裂(F4)-西大滩断裂(F3)以昆仑山口为界可以分为东西两部分,各自的活动性都是中间强往两边依次减小,东昆中断裂(F1)的活动性变化不

  15. Landforms as geodiversity (geomorphological natural heritage

    Directory of Open Access Journals (Sweden)

    Bojan Erhartič

    2007-12-01

    Full Text Available This paper highlights different values of the landforms as part of geomorphological heritage and helps to put forward the term geodiversity in Slovenia. The article provides reasons to value geodiversity and is followed by a discussion of the specific types of values: intrinsic, cultural, aesthetic, socio-economic, functional, geosystem, research and educational.

  16. A HYBRID MODEL FOR SIMULATING VELOCITY FIELD OF A RIVER WITH COMPLEX GEOMETRY PLUNGED BY MULTIPLE JETS

    Institute of Scientific and Technical Information of China (English)

    LI Lian-xia; LIAO Hua-sheng; LI Tian-xiang

    2006-01-01

    A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments concerning energy dissipation and scour prevention at the Xiluodu Hydropower Station on the Yangtze River. The calculated results indicate that the complex geometry of the river area has a significant influence on the velocity field, especially on the circulation flow pattern at upstream and downstream of the plunging area and on the asymmetric characteristics of the spiral flow near both banks. The scour characteristics of the downstream river bed caused by the multiple jets were also predicted and analyzed according to the characteristics of the calculated velocity field. The good agreement between the simulated and experimental results indicates that the hybrid model can be used to effectively solve complicated 3-D problems with complex geometric and inlet conditions. Such problems may not easily be solved by using either a physical or a numerical model alone, and therefore the method presented in this article is considered to be a practical and effective way of dealing with this kind of problems.

  17. The Geoclutter Experiment 2001: Remote acoustic imaging of sub-bottom and seafloor geomorphology in continental shelf waters

    Science.gov (United States)

    Makris, Nicholas C.; Ratilal, Purnima; Lai, Yisan; Symonds, Deanelle T.; Ruhlmann, Lilimar A.; Scheer, Edward K.

    2002-11-01

    In the Geoclutter experiment of April-May 2001, an active sonar system was used to remotely and rapidly image geomorphology over wide areas in continental shelf waters by long-range echo sounding. The bistatic system, deployed in the strataform area south of Long Island, imaged extensive networks of buried river channels and inclined subseafloor strata over tens of kilometers in near real time. Bathymetric relief in the strataform area is extremely benign. The vast majority of features imaged apparently correspond to sub-bottom geomorphology that sound waves reach after tunneling as well as propagating through the overlying sediment. Returns from buried river channels were often found to be as discrete and strong as those from calibrated targets placed in the water column. Since buried river channels are expected to be ubiquitous in continental shelf environments, sub-seafloor geomorphology will play a major role in producing ''false alarms'' or clutter in long-range sonar systems that search for submerged objects such as underwater vehicles or marine mammals. Wave guide scattering and propagation are inherent to this new remote sensing technology because source signals are transmitted over hundreds of water-column depths in range to image sub-seafloor and seafloor geomorphology.

  18. THE ARTIFICIAL BOUNDARY CONDITIONS FOR NUMERICAL SIMULATIONS OF THE COMPLEX AMPLITUDE IN A COUPLED BAY-RIVER SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Hou-de Han; Xin Wen

    2004-01-01

    We consider the numerical approximations of the complex amplitude in a coupled bay-river system in this work. One half-circumference is introduced as the artificial boundary in the open sea, and one segment is introduced as the artificial boundary in the river if the river is semi-infinite. On the artificial boundary a sequence of high-order artificial boundary conditions are proposed. Then the original problem is solved in a finite computational domain, which is equivalent to a variational problem. The numerical approximations for the original problem are obtained by solving the variational problem with the finite element method. The numerical examples show that the artificial boundary conditions given in this work are very effective.

  19. First report of major histocompatibility complex class II loci from the Amazon pink river dolphin (genus Inia).

    Science.gov (United States)

    Martínez-Agüero, M; Flores-Ramírez, S; Ruiz-García, M

    2006-07-31

    We report the first major histocompatibility complex (MHC) DQB1 sequences for the two species of pink river dolphins (Inia geoffrensis and Inia boliviensis) inhabiting the Amazon and Orinoco River basins. These sequences were found to be polymorphic within the Inia genus and showed shared homology with cetacean DQB-1 sequences, especially, those of the Monodontidae and Phocoenidae. On the other hand, these sequences were shown to be divergent from those described for other riverine dolphin species, such as Lipotes vexillifer, the Chinese river dolphin. Two main conclusions can be drawn from our results: 1) the Mhc DQB1 sequences seem to evolve more rapidly than other nuclear sequences in cetaceans, and 2) differential positive selective pressures acting on these genes cause concomitant divergent evolutionary histories that derive phylogenetic reconstructions that could be inconsistent with widely accepted intertaxa evolutionary relationships elucidated with other molecular markers subjected to a neutral dynamics.

  20. Platinum group elements in stream sediments of mining zones: The Hex River (Bushveld Igneous Complex, South Africa)

    Science.gov (United States)

    Almécija, Clara; Cobelo-García, Antonio; Wepener, Victor; Prego, Ricardo

    2017-05-01

    Assessment of the environmental impact of platinum group elements (PGE) and other trace elements from mining activities is essential to prevent potential environmental risks. This study evaluates the concentrations of PGE in stream sediments of the Hex River, which drains the mining area of the Bushveld Igneous Complex (South Africa), at four sampling points. Major, minor and trace elements (Fe, Ca, Al, Mg, Mn, V, Cr, Zn, Cu, As, Co, Ni, Cd, and Pb) were analyzed by FAAS and ETAAS in suspended particulate matter and different sediment fractions (rocks. The highest concentrations were observed closer to the mining area, decreasing with distance and in the cycle, increasing the presence of PGE in the fine fraction of river sediments. We propose that indicators such as airborne particulate matter, and soil and river sediment quality, should be added to the protocols for evaluating the sustainability of mining activities.

  1. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies

    Directory of Open Access Journals (Sweden)

    Anna G. N. Meissner

    2016-01-01

    Full Text Available Modern river ecosystems undergo constant stress from disturbances such as bank stabilization, channelization, dams, and municipal, agricultural, and industrial water use. As these anthropogenic water requirements persist, more efficient methods of characterizing river reaches are essential. Benthic macroinvertebrates are helpful when evaluating fluvial health, because they are often the first group to react to contaminants that can then be transferred through them to other trophic levels. Hence, the purpose of this research is to use a geospatial model to differentiate instream macroinvertebrate habitats, and determine if the model is a viable method for stream evaluation. Through the use of ArcGIS and digital elevation models, the fluvial geomorphology of the Qu’Appelle River in Saskatchewan (SK was assessed. Four geomorphological characteristics of the river were isolated (sinuosity, slope, fractal dimension, and stream width and clustered through Principle Component Analysis (PCA, yielding sets of river reaches with similar geomorphological characteristics, called typologies. These typologies were mapped to form a geospatial model of the river. Macroinvertebrate data were aligned to the locations of the typologies, revealing several relationships with the fluvial geomorphology. A Kruskal-Wallis analysis and post hoc pairwise multiple comparisons were completed with the macroinvertebrate data to pinpoint significant genera, as related to the geospatial model.

  2. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  3. Occupancy modeling and estimation of the holiday darter species complex within the Etowah River system

    Science.gov (United States)

    Anderson, Gregory B.; Freeman, Mary C.; Hagler, Megan M.; Freeman, Byron J.

    2012-01-01

    Documenting the status of rare fishes is a crucial step in effectively managing populations and implementing regulatory mechanisms of protection. In recent years, site occupancy has become an increasingly popular metric for assessing populations, but species distribution models that do not account for imperfect detection can underestimate the proportion of sites occupied and the strength of the relationship with a hypothesized covariate. However, valid detection requires temporal or spatial replication, which is often not feasible due to logistical or budget constraints. In this study, we used a method that allowed for spatial replication during a single visit to evaluate the current status of the holiday darter species complex, Etheostoma sp. cf. E. brevirostrum, within the Etowah River system. Moreover, the modeling approach used in this study facilitated comparisons of factors influencing stream occupancy as well as species detection within sites. The results suggest that there is less habitat available for the Etowah holiday darter form (Etheostoma sp. cf. E. brevirostrum B) than for the Amicalola holiday darter form (Etheostoma sp. cf. E. brevirostrum A). Additionally, occupancy models suggest that even small decreases in forest cover within these headwater systems adversely affect holiday darter populations.

  4. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    Science.gov (United States)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  5. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology

    Science.gov (United States)

    Larsen, Annegret; May, Jan-Hendrick

    2016-04-01

    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  6. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    Science.gov (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  7. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2016-07-01

    Full Text Available In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions.

  8. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana

    Science.gov (United States)

    Aboagye, Samuel; Kerber, Sarah; Danso, Emelia; Asante-Poku, Adwoa; Asare, Prince; Parkhill, Julian; Harris, Simon R.; Pluschke, Gerd; Yeboah-Manu, Dorothy; Röltgen, Katharina

    2016-01-01

    In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions. PMID:27434064

  9. Meanders of the Jialing River in China: Morphology and formation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a fundamental category of river system, comparisons in diverse regions and types with quantitative parameters on meander morphology will help to distinguish different characteristics and approach formations and evolutions. It also can provide scientific basis of geomorphology for their protections and exploitation of the meander resources. Based on the images of Google Earth, meanders' parameters are proposed and then measured and calculated. The result suggests that incised meanders in the Jialing River are among the most complex, irregular and sinuous channels. Special river gradient,geological structures, strata and lithology, backwater effect of landform are key factors to shape meanders of the Jialing River. The evolution of meander in the Jialing River obeys the principle of minimum-maximum energy dissipation. Easy acquisitions of remote sensing data make regional and global comparisons possible, and then the differences of formations can be explored. The morphology can probably provide an evidence of antecedent river and demonstrate the channel incisions and crustal uplifts. Meander core in Chinese is named after the isolated hills in the Jialing River. The incised meander is a kind of resource and needs to be protected.

  10. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Miller, Benjamin L.; O' Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations

  11. Physical Heterogeneity and Aquatic Community Function in River Networks

    Science.gov (United States)

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological...

  12. The concept of transport capacity in geomorphology

    Science.gov (United States)

    Wainwright, John; Parsons, Anthony J.; Cooper, James R.; Gao, Peng; Gillies, John A.; Mao, Luca; Orford, Julian D.; Knight, Peter G.

    2015-12-01

    The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems.

  13. Sprague River Oregon Geomorphology, with assessment of subirrigation potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  14. Sprague River Oregon Geomorphology, with assessment of return flow potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  15. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  16. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    Science.gov (United States)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  17. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    Science.gov (United States)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main

  18. Pleistocene and Holocene geomorphological development in the Algarve, southern Portugal

    Science.gov (United States)

    Chester, David K.

    2012-06-01

    A detailed chronological framework for Pleistocene and Holocene geomorphology and landscape evolution in the Algarve is proposed. With regards to the Pleistocene, attention has focused on the origin, dating and stratigraphy of the Ludo Formation. Subsuming the classifications of earlier writers, it is now proposed that during the Pliocene a marine transgression occurred across a tectonically controlled basin that was constrained by the mountains of the Algarve interior to the north. Fluvial sands were then deposited in a regressive phase during the late Pliocene/early Pleistocene, while braided streams operating under semi-arid conditions subsequently laid down sands and gravels in the middle and upper Pleistocene. Lying unconformably over the Ludo Formation is an alluvial deposit (Odiáxere gravels and Loulé sands) of late Pleistocene/early Holocene date that is found within the river valleys of the Algarve. In the early-Holocene (ca.10, 000-ca.7000 BP) and early late-Holocene (ca.5000-ca.3000 BP), the situation in the Algarve was one of climatic amelioration (i.e., warmer and wetter conditions), rising sea levels, vegetation colonization, soil development and towards the end of this period trenching of the Odiáxere gravels and Loulé sands. From ca.3000 BP evidence is abundant that humans became important geomorphological agents either acting on their own or in combination with climatic factors. From around 5000 BP, conditions became dryer and, between ca.3000 BP and ca.700 BP, clearance of land by pre-Roman, Roman, and especially Islamic agricultural settlers caused widespread erosion and the deposition of extensive spreads of topsoil dominated sediment within river valleys (i.e., the Holocene terrace) and in coastal estuaries. A period followed up to 1900 CE when agricultural practices were less damaging to the soil, erosion was reduced and the Holocene terrace - together with coastal and estuarine deposits - was incised. In the past century and under

  19. Illinois River National Wildlife and Fish Refuges Complex: Comprehensive Conservation Plan and Environmental Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Illinois River National Wildlife and Fish Refuges for the next 15 years. This plan...

  20. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    Science.gov (United States)

    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  1. Chronic Wasting Disease Surveillance and Contingency Plan Eastern Virginia Rivers Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan is established to provide a framework for surveillance, monitoring and disease response to Chronic Wasting Disease at the Eastern Virginia Rivers National...

  2. Geotourist itineraries along the Italian territory: examples of mapping the geoheritage in different geomorphological and historical contexts

    Science.gov (United States)

    Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele

    2016-04-01

    In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape

  3. Geomorphological mapping of the Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Giacomini, L.; Massironi, M.; Thomas, N.; Pajola, M.; Cremonese, G.; La Forgia, F.; Ferri, F.; Lazzarin, M.; Barbieri, C.; Bettini, I.; Magrin, S.; Marzari, F.; Naletto, G.; Sierks, H.; Rosetta OSIRIS Team

    OSIRIS, the Scientific Imaging System for Rosetta mission \\citep{keller07} has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since Aug 2014 with a resolution that allows a detailed analysis of its surface. Indeed, data reveal a complex surface morphology that is likely the expression of different processes affecting the cometary nucleus \\citep{thomas15}. In order to characterize these different morphologies and better understand their distribution we performed a geomorphological mapping of the illuminated surface of 67P. For this purpose we used NAC images acquired on August 5-8 with a spatial resolution ranging from 1.5 and 2.4 m/pixel.

  4. Population vulnerability to geomorphological hazards in Reghin Hills.

    Directory of Open Access Journals (Sweden)

    I. A. Irimus

    2017-05-01

    Full Text Available Vulnerability assessment of population to the actual geomorphological processes are an essential tool in disaster management planning, assessment and loss estimation, and is an important aspect in geomorphological risk reduction to the safety of the population, settlements and human activities. In this paper we propose an analysis of Reghin Hills′ population vulnerability to the current geomorphological processes through physical, spatial. and demographic indicators.

  5. Tectonic geomorphology of the Ryukyu Trench-Arc-Backarc System:geological-geophysical exploration and mapping

    Institute of Scientific and Technical Information of China (English)

    FU Mingzuo; LIU Lejun; ZHENG Yanpeng; LIU Baohua; WU Jinlong; XU Xiaowei

    2004-01-01

    Based on an analysis of full-cover multi-beam bathymetric data, seismic and sub-bottom profiling data, and other geological-geophysical data sets, the geomorphologic features of the Ryukyu trench-arc-backarc (T-A-BA) system are delineated, and a geomorphologic map of the system is compiled. The results show that the evolution and spatial distribution patterns of the geomorphologic types of the Ryukyu T-A-BA system are controlled mainly by tectonic movements. The tectonic geomorphologic characteristics of the Ryukyu Arc (RA) differ distinctly from those of the East China Sea (ECS) continental shelf and slope. In term of geological structures, RA consists of the Tokara volcanic ridge,the Ryukyu folded ridge, the fore-arc accretion-wedge ridge and the Amami Depression and the fore-arc depressions between the ridges, which is composed of a complex of alternating island-slope ridges and fault basins. The slope of the ECS is a passive continental margin with stepwise faults. The Okinawa Trough (OT) is a backarc rift in which tectonic movements are intensive, with active volcanic and hydrothermal eruptions and sea floor spreading. The development of geomorphic features of the OT is controlled by the central en echelon spreading axes, the faults along the ECS slope and the marginal faults to the west of the Tokara volcanic ridge.The geomorphic complex of the OT is arranged in the following pattern: the en echelon grabens and volcanic chains formed by rifting and spreading lie in the central part of the trough, the turbidite plains inclining eastwards-southeastwards from the slope foot of the ECS lie in the western-northwestern parts of the OT, and the volcaniclastic deposit plains inclining westward-northwestwards from the western slope foot of the RA lie in the eastern-southeastern parts of the OT. In term of tectonic geomorphology, the OT forms a natural division between the shelf of the ECS and the RA.

  6. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    Science.gov (United States)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  7. Spatial variability in hydrologic connectivity between a coastal river and its floodplain

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.; Hales, B. U.

    2015-12-01

    Significant in the transport and dispersal of energy, matter, and biota within riverine environments, hydrologic connectivity has become fundamental in understanding river-floodplain process and concepts associated with environmental flows. Hydrologic connectivity between a river and its floodplain is dependent on floodplain geomorphology, channel hydraulics, land cover, and groundwater dynamics. In this study, we examine the floodplain morphology of the Mission River on the Coastal Bend of Texas. Utilizing a LiDAR-derived digital elevation model, we develop a relative digital elevation model (RDEM), with respect to river-stage, for a reach of the river-floodplain system. To assess the dominant flow directions, and thus, characterize the connectivity within the floodplain, we determine hydrological facets—landscape patches with their own respective outlet and high internal surface water connectivity. Guided by historical streamflow records, we systematically threshold the RDEM to determine the spatial characteristics of floodplain inundation under various river-stages. The increasing aerial extent of floodplain inundation from increases in river-stage results in distinct patterns of river channel-floodplain connectivity. We analyze the spatial arrangement of facets with regard to inundation in order to quantify floodplain connectivity and complexity at various river-stages using graph theory and landscape metrics. Our results indicate that floodplain connectivity and complexity change nonlinearly with increases in river-stage; with the greatest increases in connectivity and complexity occurring well below bankfull discharge. Floodplains provide valuable ecosystem services and this study helps improve our understanding of process-form relationships in river-floodplain systems' that informs environmental policy for effective management of these services.

  8. Basin Scale Assessment of Landslides Geomorphological Setting by Advanced InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Francesca Bozzano

    2017-03-01

    Full Text Available An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010 have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space.

  9. Smart "geomorphological" map browsing - a tale about geomorphological maps and the internet

    Science.gov (United States)

    Geilhausen, M.; Otto, J.-C.

    2012-04-01

    With the digital production of geomorphological maps, the dissemination of research outputs now extends beyond simple paper products. Internet technologies can contribute to both, the dissemination of geomorphological maps and access to geomorphologic data and help to make geomorphological knowledge available to a greater public. Indeed, many national geological surveys employ end-to-end digital workflows from data capture in the field to final map production and dissemination. This paper deals with the potential of web mapping applications and interactive, portable georeferenced PDF maps for the distribution of geomorphological information. Web mapping applications such as Google Maps have become very popular and widespread and increased the interest and access to mapping. They link the Internet with GIS technology and are a common way of presenting dynamic maps online. The GIS processing is performed online and maps are visualised in interactive web viewers characterised by different capabilities such as zooming, panning or adding further thematic layers, with the map refreshed after each task. Depending on the system architecture and the components used, advanced symbology, map overlays from different applications and sources and their integration into a Desktop GIS are possible. This interoperability is achieved through the use of international open standards that include mechanisms for the integration and visualisation of information from multiple sources. The portable document format (PDF) is commonly used for printing and is a standard format that can be processed by many graphic software and printers without loss of information. A GeoPDF enables the sharing of geospatial maps and data in PDF documents. Multiple, independent map frames with individual spatial reference systems are possible within a GeoPDF, for example, for map overlays or insets. Geospatial functionality of a GeoPDF includes scalable map display, layer visibility control, access to attribute

  10. A tentative classification of paleoweathering formations based on geomorphological criteria

    Science.gov (United States)

    Battiau-Queney, Yvonne

    1996-05-01

    A geomorphological classification is proposed that emphasizes the usefulness of paleoweathering records in any reconstruction of past landscapes. Four main paleoweathering records are recognized: 1. Paleoweathering formations buried beneath a sedimentary or volcanic cover. Most of them are saprolites, sometimes with preserved overlying soils. Ages range from Archean to late Cenozoic times; 2. Paleoweathering formations trapped in karst: some of them have buried pre-existent karst landforms, others have developed simultaneously with the subjacent karst; 3. Relict paleoweathering formations: although inherited, they belong to the present landscape. Some of them are indurated (duricrusts, silcretes, ferricretes,…); others are not and owe their preservation to a stable morphotectonic environment; 4. Polyphased weathering mantles: weathering has taken place in changing geochemical conditions. After examples of each type are provided, the paper considers the relations between chemical weathering and landform development. The climatic significance of paleoweathering formations is discussed. Some remote morphogenic systems have no present equivalent. It is doubtful that chemical weathering alone might lead to widespread planation surfaces. Moreover, classical theories based on sea-level and rivers as the main factors of erosion are not really adequate to explain the observed landscapes.

  11. The geomorphology of a glaciated continental shelf, Western Scotland, UK

    Science.gov (United States)

    Howe, John; Dove, Dayton; Bradwell, Tom

    2013-04-01

    We present recently collected swath bathymetry and legacy seismic data from two regions of the north-west UK continental shelf: the Sea of the Hebrides; and the Firth of Lorn, western Scotland. Both regions have experienced extensive Pleistocene ice sheet glaciation and both provide abundant geomorphological evidence of subglacial and postglacial processes. The Sea of the Hebrides bathymetry data cover 2200 km2 and provide new geomorphological evidence for an ice stream flowing from western Scotland and the Inner Hebrides focusing towards a trough-mouth fan (the Barra Fan) at the continental shelf break during the height of the last glaciation. Notably, bedrock structures provide a control on the location and orientation of glacially overdeepened basins and troughs on the inner shelf. Whilst around the Islands of Canna and Rum, convergent seabed glacial lineations and other subglacially streamlined features eroded in bedrock preserve the direction of ice sheet movement - indicating ice streaming in a south-westerly direction across the continental shelf. We propose that this fast-flow zone formed part of a larger convergent ice stream system draining much of western Scotland and the north of Ireland. The Firth of Lorn bathymetry acquisition comprises 553km2 of data, collected as part of the INIS Hydro program (Ireland, Northern Ireland and Scotland Hydrographic Survey). This region of nearshore continental shelf is revealed as predominantly bedrock-dominated seabed, characterised by a series of narrow, strongly fault-controlled troughs, part of the Great Glen Fault Zone complex. Evidence for glaciation is widespread and well preserved in the Firth of Lorn and surrounding seabed with moraines, bedrock lineations (?megagrooves?) and overdeepened basins common across the area. Initial mapping shows that our understanding of the configuration and style of deglaciation in these sectors of the former British-Irish Ice Sheet can be greatly improved by the collection of

  12. The most-cited works in Geomorphology

    Science.gov (United States)

    Doyle, Martin W.; Julian, Jason P.

    2005-12-01

    We conducted a review and analysis of the references cited in articles published (1995-2004) in the journal Geomorphology and also solicited comments from the authors of the most-cited works on their major influences. Of the 31,696 unique works cited in the journal, only 22 were referenced at least 20 times, with the vast majority (92%) cited only once or twice. We divided the citations into the 10 most-cited books (i.e., complete volumes) and 10 most-cited papers (i.e., journal articles, book chapters, reports). A total of 23 different researchers were responsible for the 20 works, with one (Wolman) being an author or co-author of a quarter of them. Seven of the ten most-cited papers were based on work in the USGS in the mid-twentieth century, indicating a particularly fruitful time of geomorphic research and a particularly important cohort of scientists. Based on our citation analysis and author commentaries, we suggest that classic works in geomorphology are most likely to be those that provide useful knowledge and those that incorporate interdisciplinary perspectives.

  13. 4D geomorphological evolution of intertropical islands

    Science.gov (United States)

    Pastier, Anne-Morwenn; Bezos, Antoine; Husson, Laurent; Pedoja, Kevin; Arias, Camilo; Elliot, Mary; Lacroix, Pascal; Imran, Andi Muhammad

    2017-04-01

    Coral reef terraces record joint variations of sea level and surface elevation. U/Th ratings on corals along with topographic/bathymetric profiles and eustatic reconstitutions allow to locally determine the vertical rate of ground motion, while numerical modelling of reef sequences allows to unravel the processes controlling the architecture of sequences, and high-resolution DEMs facilitates the detailed mapping of the sequences of reef terraces. Alltogether, these methods allow to extrapolate the local vertical rates towards an unprecedented resolution for 4D kinematics. We applied our method to uplifting islands of the tectonically active Buton Archipelago, SE Sulawesi, Indonesia. The area undergoes a general uplift revealed by the ubiquitous occurrence of uplifted and folded reef sequences. We dated some 40 samples using U/Th, acquired sonar and dGPS profiles, and constructed high-res DEMs (Pleiades). Local vertical rates (from 0.2 to 0.28 mm/yr) were determined. Detailed geomorphological mapping of the lateral variations of the terraces are converted into time and space variations of uplift rates. Extrapolating the higher, undated terraces permits to reconstruct the overall 4D geomorphology history over the last Ma. In turns, these results give a unique view on the structural kinematics.

  14. The Foote House (10-AA-96), An Historic Archaeological Complex in the Boise River Canyon, Idaho.

    Science.gov (United States)

    1982-01-01

    about her family’s life in the Boise River canyon, and that personal note is appreciated. Diana Rigg and Christin Fuhrman provided assistance with the...than a passing -: interest in the lady [Paul 1976:31. Thus, the Lydle Gulch stone foundations have significance in terms of both Arthur De Wint and Mary

  15. Geomorphological development of Eastern Mongolian plain, Mongolia

    Science.gov (United States)

    khukhuudei, Ulambadrakh; otgonbayar, Orolzodmaa

    2016-04-01

    Several summaries and investigations of the geomorphological description and feature for Eastern Mongolian plain (EMP), the one of the largest geomorphological district, fully covering east side of Mongolia (Murzayev, 1949; Vlodavets, 1950, 1955; Marinov, Khasin, 1954; Marinov, 1966; Nikolayeva, 1971; Selivanov, 1972; Chichagov, 1974, 1976; Grigorov, 1975; Korjuyev, 1982; Syirnev, 1982, 1984) had been publishing continuously. But literature for geomorphology of EMP have been not appeared during over the past 20 years. However, we re-combine the geomorphological development of EMP, according to the results of many publications for surrounding regions of Russia and China and unpublished maps. Main morphology of EMP has the plain, containing with aeolian, fluvial and lacustrine landforms. Plain morphology defined that denudation plains to North Kherlen, South Kherlen, Baruun Urt, Uulbayan, Delgerekh and other which developed on the Paleozoic rocks, layered plain to Choibalsan, Tamsag, Ongon, Gert, Sumiin nuur and Torey- on the Late Cretaceous and Neogene sediments and accumulation plain with alluvial and lacustrine origin such as Menen, Buir nuur, Tamsagbulag, Khalzan and other. These plains of EMP related with tectonics and structure of region and inherited the development of the Mesozoic, particularly Late Mesozoic structure. Large basins of EMP are Tamsag, Choibalsan and Torey and other small basins - from 7-10 km to 25-30 km width and rather a several 10 km extend, cutting a basement. The origin of plain morphology for EMP is interpreted as two main stages of the geomorphological development model, based on geology. In first stage or Late Jurassic (?) - Lower Cretaceous period, there was developed rift basin, then, in second stage or since Late Cretaceous period, plain morphology originated from the intermountain basin that dominated by exogenic process and kept in current EMP area. Data relevant to the development history of EMP are following. 1. Rift volcanism

  16. Hydraulic complexity, larval drift, and endangered species recovery in the Upper Missouri River

    Science.gov (United States)

    Erwin, S. O.; Bulliner, E. A., IV; Jacobson, R. B.; Fischenich, C. J.; Braaten, P.

    2016-12-01

    Connectivity is recognized as an important attribute of river ecosystems. In highly fragmented rivers restoring longitudinal connectivity is often difficult or impossible. In systems where removal of dams is not viable and bypass does not address needs of target fish species, manipulation of flows to meet requirements of aquatic organisms may aid species recovery. Such is the case in the Missouri River basin, where dams and reservoirs impede fish migration and larval drift, critical life history events for many species, notably the endangered pallid sturgeon. In 2016, we conducted a large-scale dye-trace experiment in the Upper Missouri River downstream from Fort Peck Reservoir, MT. A slug injection of Rhodamine WT was tracked and measured over a 135-km reach. Direct measurements of downstream dye concentrations were used to calibrate a one-dimensional advection-dispersion model, which is being used to explore alternative reservoir operations for Fort Peck and the downstream reservoir, Lake Sakakawea. Results are used to evaluate the effects of flow regulation on dispersal of endangered sturgeon larvae. Additionally, we employ a two-dimensional hydrodynamic model to evaluate particle residence times and inform understanding of hydraulic processes that may control the shape of breakthrough curves observed from the field experiment. Lateral connectivity also has a potential role in river management and species recovery. Reservoir management can determine whether flow is contained within the channel, where dispersion is low, or laterally connected to rough floodplains which can result in high dispersion, long-tailed particle residence times, and greater opportunities for drifting larvae to transition to exogenous feeding and survive. We discuss our findings in the context of basin-wide restoration efforts and highlight the critical contributions of both large-scale field experiments and numerical modeling to inform management.

  17. Disobedient sediments can feedback on their transportation, deposition and geomorphology

    Science.gov (United States)

    Ginsburg, Robert N.

    2005-04-01

    Most sediments are obedient to the winds, waves and currents, which direct their transportation and deposition. It has long been recognized however, that the grain size, and/or grain kind, of sediments can feedback on the processes of their own transportation, deposition and geomorphology as well as that of succeeding deposits. This note is to review three examples of marine sediments in which a single grain size or grain kind produces multiple feedbacks. Tidal bars of Holocene ooid sands on Great Bahama Bank are an example of multiple feedbacks of one grain kind on tidal currents, wave action and accumulations. These feedbacks are responsible for the distinctive pattern of elongated bars and channels, which in turn amplify tidal currents. The near constant movement of grains on the shallow bars and in the channels is where pellet nuclei are coated to form ooids; thus the development and growth of bars feeds back to produce more ooids. Regional encrinites, which consist predominantly of the disarticulated highly porous skeletons of crinoids, are common from Ordovician to Jurassic during blooms of these filter feeders. The resulting grains, which are equivalent to quartz grains a tenth of their size, can be entrained by currents as low as a knot (ca 0.5 m/s). The resulting mobile substrate deters other invertebrates (taphonomic feedback) and results in the prevalence of layering produced by traction transport of low velocity. The belt of mud extending for some 1600 km between the Amazon and Orinocco rivers is a special example of the feedback of mud on depositional processes, sedimentary structures and geomorphology of the accumulations. The clay-rich mud from the Amazon produces fluid mud which dampens and transforms wave action from the open sea to promote its own accumulation in giant bars in the inner shelf and shoreline with a variety of familiar laminations. The result is a wedge of mud-rich deposits some 24 m thick and 30 km wide capped with cheniers of sand

  18. Applying fluvial geomorphological riffle-pool sequences concept when rebuilding the existing drop hydraulic structure

    Directory of Open Access Journals (Sweden)

    Artur RADECKI-PAWLIK

    2015-01-01

    Full Text Available The paper deals with the problem of  rebuilding  the existing water straight drop  structure in Brenna on the Brennica river (Polish Carpathian mountains, which was changed into the rapid hydraulic structure. The technical project was set up in 1988 and finished in the same year. The structure was rebuilt in the field in the early autumn of 1990. One of the concepts of applied fluvial geomorphological solution was used to improve the river channel bed condition. In that case it was found that the existing hydraulic structure reducing river slope and stabilizing river bed can be changed without any harm in to semi-natural riffle structure which could be tolerated by river and organisms living in.  Artificial roughness of the slope plate of the rapid hydraulic structure was obtained by placing cobbles along all the slope apron of the structure. The diameter of cobbles was calculated applying various methods, and the optimum value for that dimension was chosen. The cobbles, used for rebuilding purposes, were taken directly from the riverbed, so that the structure is environmentally similar to the site. All work was done due to European Framework Directive for Rivers.

  19. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  20. Climate or land-use change? Complexities in the attribution of trends in river flow records

    Science.gov (United States)

    Harrigan, S.; Murphy, C.; Noone, S.; Wilby, R. L.; Hall, J.

    2012-12-01

    Uncertainty associated with projections of regional climate change and the challenge of developing adaptation responses are heightening interest in trend detection from observations. In many studies, attribution of detected trends in river flow has been based on the assessment of correlations with large scale modes of climate variability, with too little emphasis being placed on understanding non-climatic changes within the catchment. The River Boyne in Ireland has been cited as exhibiting a climate driven increase in river flows associated with a shift towards positive anomalies in the North Atlantic Oscillation Index (NAOI) from the mid to late 1970s. However, metadata suggests that the catchment was subjected to extensive arterial drainage during the period 1969-86. This was installed to improve land drainage and reduce the frequency/ extent of overland flooding, particularly through river straightening and channel deepening, complicating the attribution of change linked to climatic drivers. This study uses river flow records from the pre-drainage period along with meteorological data to calibrate conceptual rainfall runoff models in order to reconstruct continuous flow series spanning the pre- and post-drainage eras. Model parameter and structure uncertainties were explored via a suite of conceptually and structurally diverse models. Archival rainfall records dating from the late 1800s were used to further extend the flow series. Reconstructed flows are analyzed for both monotonic and step changes using a variety of statistical tests. Emphasis is placed on a moving windows approach to assess the evolution of trends throughout the reconstructed series. Our results show that the variability of trends (direction, magnitude and significance) is heavily dependent on the choice of record start and end dates. Rather than being associated with a change point in the NAOI, the mid 1970s step change is shown to coincide with the documented changes in arterial drainage

  1. Geomorphological diversity of Dong-Sha Atoll based on spectrum and texture analysis in high resolution remote sensing imagery

    Science.gov (United States)

    Chen, Jianyu; Mao, Zhihua; He, Xianqiang

    2009-01-01

    Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.

  2. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  3. Geomorphology and habitat diversity in the Pantanal.

    Science.gov (United States)

    Mercante, M A; Rodrigues, S C; Ross, J L S

    2011-04-01

    The present study deals with the inter-relations in the relief which forms the Bacia do Alto Rio Paraguay (BAP) in mid-west Brazil. The overall aim is to discuss the relationship between relief forms and the biodiversity of the Pantanal. The BAP is a natural environmental system with contrasts in two of the compartments on which it is formed: the plateau, the most elevated compartment, highly transformed by human activities, and the plain which forms the Pantanal, which is more preserved and less transformed in relation to productive activities. The analysis was performed based on publications with a geomorphologic focus, examining the different relief units of the BAP and the dynamics of the revealing processes of landscape change which the Pantanal has undergone since the end of the Pleistocene.

  4. Planetary geomorphology: Some historical/analytical perspectives

    Science.gov (United States)

    Baker, V. R.

    2015-07-01

    Three broad themes from the history of planetary geomorphology provide lessons in regard to the logic (valid reasoning processes) for the doing of that science. The long controversy over the origin of lunar craters, which was dominated for three centuries by the volcanic hypothesis, provides examples of reasoning on the basis of authority and a priori presumptions. Percival Lowell's controversy with geologists over the nature of linear markings on the surface of Mars illustrates the role of tenacity in regard to the beliefs of some individual scientists. Finally, modern controversies over the role of water in shaping the surface of Mars illustrate how the a priori method, i.e., belief produced according to reason, can seductively cloud the scientific openness to the importance of brute facts that deviate from a prevailing paradigm.

  5. Illinois River NWFR HMP

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Illinois River National Wildlife and Fish Refuges Complex stretches along 124 miles of the Illinois River in west central Illinois. The Complex includes three...

  6. Coastal geomorphology through the looking glass

    Science.gov (United States)

    Sherman, Douglas J.; Bauer, Bernard O.

    1993-07-01

    Coastal geomorphology will gain future prominence as environmentally sound coastal zone management strategies, requiring scientific information, begin to supplant engineered shoreline stabilization schemes for amelioration of coastal hazards. We anticipate substantial change and progress over the next two decades, but we do not predict revolutionary advances in theoretical understanding of coastal geomorphic systems. Paradigm shifts will not occur; knowledge will advance incrementally. We offer predictions for specific coastal systems delineated according to scale. For the surf zone, we predict advances in wave shoaling theory, but not for wave breaking. We also predict greater understanding of turbulent processes, and substantive improvements in surf-zone circulation and radiation stress models. Very few of these improvements are expected to be incorporated in geomorphic models of coastal processes. We do not envision improvements in the theory of sediment transport, although some new and exciting empirical observations are probable. At the beach and nearshore scale, we predict the development of theoretically-based, two- and three-dimensional morphodynamical models that account for non-linear, time-dependent feedback processes using empirically calibrated modules. Most of the geomorphic research effort, however, will be concentrated at the scale of littoral cells. This scale is appropriate for coastal zone management because processes at this scale are manageable using traditional geomorphic techniques. At the largest scale, little advance will occur in our understanding of how coastlines evolve. Any empirical knowledge that is gained will accrue indirectly. Finally, we contend that anthropogenic influences, directly and indirectly, will be powerful forces in steering the future of Coastal Geomorphology. "If you should suddenly feel the need for a lesson in humility, try forecasting the future…" (Kleppner, 1991, p. 10).

  7. Causal Loop Analysis of coastal geomorphological systems

    Science.gov (United States)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a

  8. Geomorphology and geomorphological heritage of the Ifrane-Azrou region (Middle Atlas, Morocco)

    Science.gov (United States)

    de Waele, Jo; Melis, Maria Teresa

    2009-08-01

    Geomorphological heritage is a widely used term in European and North-American countries, but is still scarcely mentioned in Africa. Nevertheless, the attractiveness of the African countries is often intimately connected to its breathtaking and endless geological landscapes. Morocco is one of those countries that has the widest diversity in landscapes and landforms, ranging from the Mediterranean and Atlantic coasts over the Rif, Middle Atlas, High Atlas and Anti-Atlas mountain chains to the great rocky and sandy deserts in the South. A wide variety of geological units hosting different types of important economic mineral deposits cover a temporal range from Late Precambrian to Quaternary. A detailed geomorphological study has been carried out in the region of Ifrane and Azrou (Middle Atlas, Central Morocco) using a combination of high resolution satellite data and direct field observations integrated by geological maps and scientific literature. In order to describe and evaluate the geomorphological heritage of this area, 40 geomorphosites have been selected comprising springs, karst landforms (polje, dolines, caves, sinkholes, stone forests, cryptokarstic dolines), carbonate depositional landforms (travertines and waterfalls), fluvial landforms (meanders, canyons, palaeo-valleys, etc.), structural landforms (triangular facets, hogbacks, cuestas, residual outcrops, etc.) and volcanic landforms (volcanoes, caldeira, pyroclastic cones, lava tube). The results of this research have been summarised in a thematic map, representing the geomorphosites related to various landscape units.

  9. Microstructural and magnetic investigations of pseudotachylyte and ultracataclasite in the Hoping River, Tananao Complex, Eastern Taiwan

    Science.gov (United States)

    Kuo, Ruo-Lin; Chou, Yu-Min; Ferré, Eric. C.; Yeh, En-Chao; Chu, Hao-Tsu; Hu, Jyr-Ching

    2016-04-01

    Here we investigate seismic rupture processes through the microstructural and magnetic study of pseudotachylyte and ultracataclasite from the Hoping River area. Unlike other fault rocks, pseudotachylytes form through friction-related melting during an earthquake. Therefore, these rocks, regarded as earthquake fossils potentially hold valuable information on seismic deformation. Paradoxically, although Taiwan is a seismically active zone, reports of pseudotachylyte outcrops in Taiwan remain rare. Previous studies reported the first pseudotachylyte outcrop in the Hoping River from which the magnitude, direction and sense of seismic slip were subsequently determined. In this study, we apply new microstructural and magnetic approaches to investigate the pseudotachylyte veins. X- ray fluorescence (XRF) geochemical analyses show that the pseudotachylyte melt, formed by incongruent melting, is depleted in SiO2, Al2O3, Na2O and enriched in Fe2O3, K2O compared with the ultracataclasite and host rock. This observation suggests selective melting of biotite. Scanning electron microscopy (SEM) and transmission X-ray microscopy (TXM) supports the melt origin of the pseudotachylyte although melting occurred only in small spots, manifested by a few microcrystalline aggregates, with low melt percentage (≈10%). Small iron-oxide grains are discovered under TXM, which may be formed by the breakdown of biotite in the host rock during melting. The presence of iron oxide grains appears restricted to the pseudotachylyte. Since the iron content of the pseudotachylyte is slightly higher (4 wt. %) than the ultracataclasite and granitic host rock, magnetic hysteresis measurements were performed under high field (up to 1 Tesla) using a vibrating sample magnetometer (VSM) to determine the nature of ferromagnetic minerals. Magnetic hysteresis curves show the pseudotachylyte veins of the Hoping River are dominated by paramagnetic phases, with a very weak saturation isothermal remanent

  10. Multilevel approach to the geomorphological setting of an alluvial plain in the Alpine environment

    Science.gov (United States)

    Minciotti, Nancy A.; Brivio, Pietro A.; Zilioli, Eugenio

    1995-11-01

    This paper presents an integrated use of cartography and remote sensing imagery supplied by satellite and aircraft to study the geomorphological aspects of an alluvial plain for archaeological purposes. The study area is located at the confluence of the Valtellina (Adda River) and Lower Mera River valleys in northern Italy. Landsat data and aerial photographs were used to study the partial filling of the Lake Como lacustrine basin resulting from the progradation of the Adda River delta. Different soil humidity content, related to variable grain size of the alluvial deposits is an indicator of ancient river beds which were formed in this area before the nineteenth century artificial rectification of the River Adda's final stretch. Profiles coincident with geological sections gained by geophysical sounding were performed on the remote sensing imagery to verify eventual correspondence of depositional features with different analysis techniques. The integration of remote sensing multilevel data with cartography and archaeological evidences has been useful for the assessment of the paleoenvironment which conditioned human settlements.

  11. Karst geomorphology: From hydrological functioning to palaeoenvironmental reconstructions. Part II

    Science.gov (United States)

    De Waele, Jo; Gutierrez, Francisco; Audra, Philippe

    2015-10-01

    In January 2015, the first part of the special issue on karst, entitled "Karst geomorphology: From hydrological functioning to palaeoenvironmental reconstructions" was published (Geomorphology, Vol. 229). This second part of the special issue comprises seven research papers covering a broad geographical canvas including Japan, Slovenia, France, Spain, Croatia, and Poland-Ukraine. Both issues mainly emanate from the contributions presented in the Karst session of the 8th International Conference of Geomorphology (International Association of Geomorphologists), held in Paris in August 2013, enriched with some invited papers.

  12. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  13. Seasonal nutrient chemistry in mountainous river systems of tropical Western Peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Pradhan, U.K; Wu, Y.; Shirodkar, P.V.; Zhang, J.

    to the estuarine water were dependent upon the geomorphological feature of river catchment and on prevalent anthropogenic activities. The significant observed contribution of DON to total dissolved nitrogen in Mandovi (62%), Zuari (83%) and Netravati (69...

  14. Synthetic River Valleys

    Science.gov (United States)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  15. Splitting rivers at their seams: bifurcations and avulsion

    NARCIS (Netherlands)

    Kleinhans, M.G.; Ferguson, R.I.; Lane, S.N.; Hardy, R.J.

    2012-01-01

    River bifurcations are critical but poorly understood elements of many geomorphological systems. They are integral elements of alluvial fans, braided rivers, fluvial lowland plains, and deltas and control the partitioning of water and sediment through these systems. Bifurcations are commonly unstabl

  16. Transferring measured discharge time series: Large-scale comparison of Top-kriging to geomorphology-based inverse modeling

    Science.gov (United States)

    de Lavenne, A.; Skøien, J. O.; Cudennec, C.; Curie, F.; Moatar, F.

    2016-07-01

    Few methods directly transfer streamflow measurements for continuous prediction of ungauged catchments. Top-kriging has been used mainly to predict the statistical properties of runoff but has been shown to outperform traditional regionalization approaches of rainfall-runoff models. We applied the Top-kriging approach across the Loire River basin and compared predictions to a geomorphology-based approach. Whereas Top-kriging uses spatial correlation, the other approach has the advantage of being more physically based by using a well-known geomorphology-based hydrological model (WFIUH) and its inversion. Both approaches require an equal degree of calibration and provide similar performances. We also demonstrate that the Ghosh distance, which considers the nested nature of catchments, can be used efficiently to calculate weights and to identify the suitability of gauged catchments for use as donor catchments. This result is particularly relevant for catchments with Strahler orders above five, i.e., where donor catchments are more strongly nested.

  17. Geomorphology of Goa and Goa Coast. A review

    Digital Repository Service at National Institute of Oceanography (India)

    Wagle, B.G.

    This review on the geomorphology of Goa and the Goa coast included studies on the interpretation of LANDSAT images, aerial photographs and extensive field work. Physiographically the region can be broadly classified into: 1) the coastal tract; 2...

  18. Geomorphological analysis of sinkhole and landslide hazard in a karst area of the Venetian Prealps- Italy

    Science.gov (United States)

    Tiberi, Valentina

    2010-05-01

    In the pedemountain area of the Asiago Plateau (Venetian Prealps - NE Italy) sinkholes and landslides represent in many cases a complex response to karst processes. Field survey showed that both soil and bedrock are involved, mainly represented by colluvial-alluvial sediments and carbonate rocks. Preliminary observations also reveal the key role of piping and cave-collapse phenomena and the importance of human remedial measures. Within study area, these processes cause damage mainly to agricultural and pasture activities and expose peoples and farm animals to very high hazards. This work provides preliminary results of geomorphological analysis carried out to define sinkhole and landslide hazard and his connections with karst processes. During first phases of the research program, an inventory of interesting phenomena has been elaborated employing GIS technologies. The database has been constantly revised and enriched with new field measurements and thematic maps (i.e. geomorphological, geo-structural, hydrogeological, caves development maps). Specifically, field survey focused on the morphodynamic definition of instability elements allowing to recognize a wide range of morphotypes (mainly with regard to sinkholes) and polygenic morphologies (i.e. mixed sinkholes-landslides configurations). Geomorphological analysis also revealed specific evolutionary trends of instability processes; they could be useful employed to program more effective mitigation strategies.

  19. THE HÂRTIBACIU TABLELAND. GEOMORPHOLOGICAL RISKS

    Directory of Open Access Journals (Sweden)

    Florina Grecu

    2012-01-01

    Full Text Available The Hârtibaciu Tableland (4,000 sqkm, 80 km long an d 50 km wide is a distinct subunit of the Transylvanian Tableland. Sarmatian and Panno nian sedimentary formations represent an alternation of impermeable marly-claey strata and p ermeable strata of sands, loosely cemented sandstones and conglomerates with a monocline struct ure, locally disturbed by folds of a general E-W or N-S orientation. The grade of fragmentation in point of energy and density of slopes, geodeclivity, climate and edaphic conditions, as wel l as human intervention reflect in the diversity of present-day geomorphic processes. A hierarchy of geomorphic risk classes – high, moderate and low, has been established based on slope dynamic s, as the outcome of a combination of main criteria (type of dominant process, volume of mater ial dislodged by erosion, landslides and human activity. Transition from one class to anoth er has rather a limited value for predicting process evolution. The normal evolution of natural processes in agreement with slope balance at a certain moment, tends to stabilise the terrain. Whenever ex treme natural phenomena cause imbalances on slope, bringing about changes of relief configuration and producing material damage or casualties, geomorphological hazards develop.

  20. Landslide geomorphology: An argument for recognition, with examples from New Zealand

    Science.gov (United States)

    Crozier, M. J.

    2010-08-01

    The role and significance that have been ascribed to landsliding within geomorphology were examined with respect to some of the influential historical concepts of landform evolution. Landsliding was almost completely ignored as a geomorphic process in the earliest models of landform evolution. While there has been a growing acknowledgement of landsliding as a hillslope process capable of performing significant erosion and transportation, it has received only sparse recognition as a formative process in its own right. Notable exceptions are the rarely referenced model of relief development of Skempton, A.W., 1953. Soil mechanics in relation to geology. Proceedings of the Yorkshire Geological Society 29 (3), 33-62 Pt.1 and the reply of Selby, M.J., 1974. Dominant geomorphic events in landform evolution. Bulletin International Association of Engineering Geology 9, 85-89 to the frequency-magnitude findings of Wolman, M.G., Miller, J.P., 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68 (1), 54-74. Together, these two contributions provide a sound basis of geomechanical theory and ample empirical evidence to indicate that landslides have the potential to control landform evolution. It is proposed that landslide geomorphology systems exist, within which landslides dominate form and process by governing the mechanisms, rhythm, and pace of geomorphic change, in time and space. A review of New Zealand terrain suggests that these criteria are met in six distinctive landslide geomorphology systems. Each of these can be characterised not only by the landslide regime but also by the fundamental pre-conditions of tectonic setting and geology. It is argued that the existence of such systems and the complex interrelations involved require the recognition of a landslide geomorphology in its own right.

  1. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    Science.gov (United States)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  2. How do animals communicate in complex hydrodynamic environments? Linking hydraulics and ecology in rivers.

    Science.gov (United States)

    Johnson, Matthew; Rice, Stephen

    2015-04-01

    turbulence exceeded that generated by living crayfish. This was particularly the case at low relative submergence. These results demonstrate the importance of the fluvial environment in controlling the transmission of sensory information and suggest that the ability of organisms to sense the presence of crayfish from their hydraulic signature is likely to be limited in many situations in rivers. Thus, animals in rivers may have to rely on other senses, such as sight or hearing, especially where depth is low relative to substrate roughness and where velocities are relatively high.

  3. Paramecium aurelia species complex in the catchment area of the River Raba mountain course (the Carpathians).

    Science.gov (United States)

    Komala, Z

    2001-01-01

    In the water bodies of the Beskid Wyspowy Mts three species of the Paramecium aurelia complex have been found, i.e. P. biaurelia, P. tetraurelia and P. novaurelia. P. tetraurelia, which in Europe is a very rare species, was for the first time recorded in this region of the Carpathians.

  4. Orthodontic Treatment Need and Complexity among Nigerian Adolescents in Rivers State, Nigeria

    Directory of Open Access Journals (Sweden)

    Elfleda Angelina Aikins

    2011-01-01

    Full Text Available Introduction. The assessment of orthodontic treatment need and complexity are necessary for informed planning of orthodontic services. The aim of this cross-sectional study was to assess these parameters using the Index of Complexity, Outcome, and Need (ICON in a Nigerian adolescent population in a region where orthodontic services are just being established. Methods. Six hundred and twelve randomly selected Nigerian adolescents aged 12 to 18 years were examined using the ICON in their school compounds. Descriptive statistics were employed in the data analysis. Results. Out of a total of 38.1% of the population found to need orthodontic treatment, there were more males and older adolescents. The overall mean ICON score for the population was 39.7±25.3 SD with males having statistically higher mean ICON score. The grades of complexity of the population were 21.6% for very difficult and difficult, 7.5% moderate, and 70.9% mild/easy. Conclusions. Although just over a third of the adolescents were found to have a need for treatment, about a quarter of them were found to have difficult and very difficult complexity grades indicating a need for specialist care. The authors recommend the training of more specialist orthodontists in this region.

  5. Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela

    Science.gov (United States)

    Warne, Andrew G.; Meade, Robert H.; White, William A.; Guevara, Edgar H.; Gibeaut, James; Smyth, Rebecca C.; Aslan, Andres; Tremblay, Thomas

    2002-05-01

    Interacting river discharge, tidal oscillation, and tropical rainfall across the 22,000 km 2 Orinoco delta plain support diverse fresh and brackish water ecosystems. To develop environmental baseline information for this largely unpopulated region, we evaluate major coastal plain, shallow marine, and river systems of northeastern South America, which serves to identify principal sources and controls of water and sediment flow into, through, and out of the Orinoco Delta. The regional analysis includes a summary of the geology, hydrodynamics, sediment dynamics, and geomorphic characteristics of the Orinoco drainage basin, river, and delta system. Because the Amazon River is a major source of sediment deposited along the Orinoco coast, we summarize Amazon water and sediment input to the northeastern South American littoral zone. We investigate sediment dynamics and geomorphology of the Guiana coast, where marine processes and Holocene history are similar to the Orinoco coast. Major factors controlling Orinoco Delta water and sediment dynamics include the pronounced annual flood discharge; the uneven distribution of water and sediment discharge across the delta plain; discharge of large volumes of water with low sediment concentrations through the Rı´o Grande and Araguao distributaries; water and sediment dynamics associated with the Guayana littoral current along the northeastern South American coast; inflow of large volumes of Amazon sediment to the Orinoco coast; development of a fresh water plume seaward of Boca Grande; disruption of the Guayana Current by Trinidad, Boca de Serpientes, and Gulf of Paria; and the constriction at Boca de Serpientes.

  6. Hydrogeological processes in the Paris Basin: climate and geomorphologic impacts of the last five million years

    Energy Technology Data Exchange (ETDEWEB)

    Jost, A.; Violette, S.; Goncalves, J.; Marsily, G. de [Universite Pierre et Marie Curie, Sisyphe (UNIR CNRS 7619), 75 - Paris (France); Ledoux, E. [Ecole des Mines de Paris, Sisyphe (UNIR CNRS 7619, CIG, ENSMP), 77 - Fontainebleau (France); Guyomard, Y.; Robin, C.; Bonnet, St.; Guillocheau, F. [Rennes-1 Univ., Geosciences Rennes (UNIR CNRS 6118), 35 (France); Kageyama, M.; Ramstein, G. [Laboratoire des Sciences du Climat et de l' Environnement (UMR CEA-CNRS), Orme des Merisiers, 91 - Gif sur Yvette (France); Fauquette, S. [Montpellier-2 Univ., Institut des Sciences de l' Evolution de Montpellier (UNIR CNRS 5554) 34 (France); Favreb, E.; Such, J.P. [Universite Claude Bernard Lyon-1, PaleoEnvironnements et PaleobioSphere (UNIR CNRS 5125), 69 - Villeurbanne (France); Michelot, J.L. [OrsayTerre, FRE 2566, Faculte des Sciences, 91 - Orsay (France)

    2005-07-01

    The aim of the present study is to investigate the response of the Paris basin aquifer system to variations in its hydrodynamic boundary conditions on a time scale of several million years, trying to determine if the system has kept the memory of these past changes. Recent changes at a boundary are more especially of importance when considering its effects on groundwater flow in low-diffusivity regions, as it can generate a lasting transient flow, potentially responsible for abnormal pressures creation. For the purpose of this work, a 3D transient modelling of the Paris basin groundwater system has been developed using the code NEWSAM (ENSMP). The geometry and hydrodynamic input data of the model originate from previous studies on a basin model, NEWBAS (ENSMP), built to simulate the 248 My geological history of the basin. Both a geomorphologic and climatic scenarios have been established. Geomorphologic evolution is deduced from digital elevation model analysis, which allows to reconstruct the paleo-topography and measure river-valley incision and alpine orogenesis. Climate forcing results from a suite of paleo-climate modelling experiments using the LMDz atmospheric general circulation model (IPSL) with a refined spatial resolution centered on Paris, for the present, the Last Glacial Maximum (21 kyr BP) and the Middle Pliocene (3 My). The water balance is computed by a distributed hydrologic model, MODSUR (ENSMP). We present the simulated evolution of the transfers in the aquifer system in response to the altered boundary conditions induced by atmospheric and geomorphologic forcing, in the course of the last five million years. (authors)

  7. Geomorphological context of the basins of Northwestern Peninsular Malaysia

    Science.gov (United States)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2014-05-01

    Geomorphological context of the basins of Northwestern Peninsular Malaysia Benjamin Sautter, Manuel Pubellier, David Menier Department of Petroleum Geosciences, Universiti Teknologi PETRONAS CNRS-UMR 8538, Ecole Normale Supérieure, 24, Rue Lhomond, 75231, Paris Cedex 05, France Petroleum basins of Western Malaysia are poorly known and their formation is controlled by the Tertiary stress variations applied on Mesozoic basement structures. Among these are the Paleozoic-Mesozoic Bentong Raub, Inthanon, and Nan suture zones. By the end of Mesozoic times, the arrival of Indian plate was accompanied by strike slip deformation, accommodated by several Major Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults). Due to changes in the boundary forces, these areas of weakness (faults) were reactivated during the Tertiary, leading to the opening of basins in most of Sundaland. Within this framework, while most of the Sundaland records stretching of the crust and opening of basins (SCS, Malay, Penyu, Natuna, Mergui) during the Cenozoics, Peninsular Malaysia and the Strait of Malacca are considered to be in tectonic quiescence by most of the authors. We present the geomorphology of the Northwestern Malaysia Peninsula with emphasis on the deformations onshore from the Bentong Raub Suture Zone to the Bok Bak Fault, via the Kinta Valley, and offshore from the Port Klang Graben to the North Penang Graben. By analyzing Digital Elevation Model from ASTER and SRTM data, two main directions of fractures in the granitic plutons are highlighted: NW-SE to W-E sigmoidal faults and N-S to NE-SW linear fractures which seem to cross-cut the others. In the field in the area of the Kinta Valley (Western Belt, NW Peninsular Malaysia), granitic bodies show intense fracturation reflecting several stages of deformation. The granites are generally syntectonic and do not cut fully across the Late Paleozoic platform limestone. Two sets of fractures (NW-SE and NE

  8. Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado

    Science.gov (United States)

    Pulwarty, R. S.

    2008-12-01

    Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand

  9. An Archeological Overview and Management Plan for the Green River Launch Complex.

    Science.gov (United States)

    1984-03-29

    region ( Branson et al. 1967). The vegetation is dominated by several species of low growing, salt-tolerant shrubs. Vegetative cover ranges from 2 to 5...had their beginnings in the northern plains (cf. Marwitt 1973) or in the migration of Pueblo II people from the Virgin branch of the Anasazi, ca. 950...Test Complex. Utah Historical Quarterly. 34:121-137.* Ambler, Richard J. 1969. The Temporal Span of the Fremont. Southwestern Lore. 34(4):107-117

  10. Soil Stratigraphy from Three Pleistocene Archaeological Sites of the Middle Ter River Valley, Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Sayantani NEOGI

    2010-01-01

    Full Text Available This dissertation summarizes the stratigraphic description of three Pleistocene archaeological sites inthe middle Ter river valley. A long history of archaeological research in this region suggests thepossibility of developing contextual studies. This work is basically an investigation of two soilformation processes from the deep soil horizons of the Mediterranean region: clay illuviation andcarbonatation. This approach has been developed by soil micromorphology, a technique well suitedfor this type of record, supplemented by fundamental field descriptions and basic cartography of the geomorphological terraces of the middle Ter river valley. The soil stratigraphy of archaeological sites and Pleistocene landscapes opens the opportunity to investigate a complex subject of study. The soils and paleosols are a source of information for palaeoecology and human occupations. It has been attempted here only to lay the groundwork for the interpretation of genetic factors pointing to the classification of soils.

  11. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    D. Molden

    2012-11-01

    Full Text Available Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i a resource base sheet, (ii a consumption sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change and internal influences (e.g. infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  12. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i a resource base sheet, (ii an evapotranspiration sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change and internal influences (e.g., infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  13. The Geomorphological Effects of Old Routes

    Science.gov (United States)

    Martinek, Jan; Bíl, Michal

    2017-04-01

    The communication network in rural areas in the historical Czech Lands predominantly consisted of unpaved routes prior to the eighteenth century. Certain parts of the network were transformed gradually into the current roads and are now being used by motor traffic. The majority of the old routes form, however, an abandoned network the remnants of which (abandoned during the Middle Ages or even earlier) are currently being discovered. Certain segments of used unpaved routes were, over the course of time, transformed into holloways (sunken lanes) and consequently also abandoned. The degree of incision of the holloway into the soil was determined by local geological conditions. Routes, which were abandoned due to more difficult transport in holloways, have distinct linear forms and can often be found as a grouping of parallel holloways. This indicates that these routes were frequently used or localized on low-resistant ground. Analyses of the precise digital elevation models, derived from LIDAR data, can reveal the distinct pattern of an old route network quite often interacting with other geomorphological phenomena (e.g., landslides, streams) or old human constructions (e.g., fortified settlements). We will present several cases where old paths interacted with landslides. These facts can consequently be used for dating the purposes of both the landslides and the old path sections. General erosion impacts, the degree of incision of the old transportation lines, can also be quantified through analyses of digital elevation models taking into consideration the former and new, incised, surface. We will demonstrate the methodology used for these analyses and the preliminary results.

  14. The educational value of the history of geomorphology

    Science.gov (United States)

    Sack, Dorothy

    2002-10-01

    The history of geomorphology can be a valuable tool for educating students of geomorphology. The largest and most available record of what geomorphologists thought and did in the past is their original published work. Also available are some fine papers on the history of geomorphology that review and analyze primary sources and past events in the discipline in order to generalize, explain trends, and reveal historical associations. Interest in the history of the discipline varies widely, of course, among geomorphologists. Nevertheless, several educational benefits, in addition to explaining the academic affiliation of geomorphology with two separate disciplines, can be derived from incorporating the history of geomorphology into university-level geomorphology courses. History is a popular subject,and presenting some geomorphic concepts using a historical approach can help to maintain or stimulate student interest. Because of the tendency for older literature to contain more qualitative description and methodological detail than more recent literature, undergraduate students may comprehend some concepts better from older papers. By reading the original literature, students determine for themselves what previous practitioners accomplished, rather than relying solely on the interpretations of others. Reading original literature also helps students realize that older does not mean less intelligent, and that like the critical reading of recent geomorphic literature, the critical reading of historic geomorphic papers can provide a wealth of new research ideas. A thematic set of the historic literature can be used to demonstrate to students the scientific method, the origin, testing, and evolution of hypotheses, how explanations develop in this field, and that science proceeds through individuals working in a sociological context. Including history of geomorphology in the curriculum helps to place contemporary research in the perspective of the past as well as the

  15. Multi-scale controls on spatial variability in river biogeochemical cycling

    Science.gov (United States)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load

  16. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    Science.gov (United States)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be

  17. Flow around an individual morphologically complex plant: investigating the role of plant aspect in the numerical prediction of complex river flow

    Science.gov (United States)

    Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.

    2015-12-01

    Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.

  18. Stochastic Geomorphology: Indexing Climate Change Through Shifts in Probability Densities of Erosion, Sediment Flux, Storage and Habitats

    Science.gov (United States)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and storage are described by their probability densities. The conceptual and numerical framework can generate a series of general principles (hypotheses) on how basin-scale erosion and sedimentation regimes, viewed through the lens of probability distributions, change with variations in climate, topography, geology, vegetation, basin scale, and network topology; for more detail on the general principles see AGU session EP02. The conceptual and numerical framework of stochastic geomorphology is well suited for forecasting and interpreting affects of climate change on geomorphological systems, including the habitats associated with them. Climate change involves shifts in probability distributions of precipitation (rain and snow), fires, and wind. Consequently, shifts in distributions of precipitation frequency and magnitude or wildfire frequency, intensity and size should lead to shifts in erosion, sediment flux and sedimentation distributions. Shifts could include either a greater or lesser skew of their attendant probability densities. For example, increasing the frequency of fires in a stochastic simulation model of erosion and sedimentation will lead to altered frequency and magnitude of hillslope erosion in the form of pulses of sediment through the river network. This will be reflected in shifts in the probability densities of erosion and sedimentation and also how sediment flux and storage distributions evolve downstream in river networks. Heightened erosion frequency and magnitude due to climate change can increase Hurst Effects in time series of sediment flux and thus an increase in depletion of hillslope stores of sediment can result in temporally lingering sedimentation affects throughout river networks, even if climate relaxed to pre-change conditions. Similarly, heightened hillslope

  19. Riparian trees as common denominators across the river flow spectrum: are ecophysiological methods useful tools in environmental flow assessments?

    CSIR Research Space (South Africa)

    Schachtschneider, K

    2014-04-01

    Full Text Available , geohydrological and geomorphological conditions. This paper tests physiological differences among trees along rivers with varying flow regimes. In this study 3 parameters were selected and tested, namely wood density, specific leaf area and water use efficiency...

  20. Operational Considerations for Geomorphological and Ecological Forecasting

    Science.gov (United States)

    Costanza, Katelyn

    2015-04-01

    Applying predictive models beyond weather and water has become a relatively new topic of research in the operational setting. It has become increasingly important to provide answers related to: • fate and transport of pollutants and hazardous wastes • shoaling and impacts to navigation • water quality and its potential impacts to ecology • deltaic processes. The Water Institute and Deltares are currently working on a pilot project to develop a system that will potentially answer these questions. The Mississippi River Delta is the area of focus for this pilot project. This project is utilizing and enhancing the capabilities of the Flood Early Warning System (FEWS). The Mississippi River Delta has been devastated by anthropogenic influences over the last century. These influences in conjunction with subsidence and sea level rise have caused astounding land loss rates. Government agencies are in the process of developing innovative ways to reconnect the river with the dying delta. One of the alternatives being planned is a system of sediment diversion projects. These diversions are much like flood water diversions which already exist along the river today. These planned diversions provide Deltares and The Water Institute of the Gulf the perfect case scenario to test both morphology and ecological models within an operational system. In order to build an operational system such as this, it was necessary to use FEWS as a platform to analyze multivariate and disparate sources of environmental data. This was necessary for monitoring the delta and providing boundary conditions to the models. Applying morphological models in a predictive manner is a new concept. Researchers from Deltares and The Water Institute have had to develop new methods to provide predictive boundaries and warm states to the models. It is intended that this system will ultimately be used to provide forecasted guidance on the optimal operation of the diversions to reduce the impacts to

  1. COMPLEX ANALYSIS IN THE RIVER BASIN OF TOPLIŢA AND TECHNOLOGICAL SOLUTIONS FOR SLOPES STABILIZATION

    Directory of Open Access Journals (Sweden)

    Dănuţ Tanislav

    2010-01-01

    Full Text Available Landslides distribution is differentiated function of various causal factors or conditions (litology, declivity, land use,precipitations. For each factor, it can be depicted some homogeneous areas, with numerical coefficients, in a incresingsuccession (1 – very high; … 5 – very low, using the GIS. The complex arrangement involves the analysis and diagnosisof watershed planning, establishing its vulnerability to the action of natural and anthropogenic factors. New technologiesfor earth reinforcement with other engineering works to stabilize the slopes, are durable works because the chemicalproperties of high density polyethylene, which does not react with any other environmental component (ex. earth geogridreinforcement. New technologies for earth reinforcement executed in complex with other engineering works to stabilizethe slopes, are durable works because the chemical properties of high density polyethylene, which does not react withany other environmental component. Using special technology to stabilize determined substantial time and cost savingscompared to traditional solutions. The landscape of slopes reinforced with geogrids, due to external quality topsoil isclearly superior to the classical solutions of stabilization.

  2. Magmatism as a response to exhumation of the Priest River complex, northern Idaho: Constraints from zircon U-Pb geochronology and Hf isotopes

    Science.gov (United States)

    Stevens, L. M.; Baldwin, J. A.; Crowley, J. L.; Fisher, C. M.; Vervoort, J. D.

    2016-10-01

    Zircon and monazite U-Pb geochronology and zircon Hf isotopes place constraints on the temporal and source relationships between crustal anatexis, magmatism, and exhumation of the Priest River metamorphic core complex, northern Idaho. Granitoids that intruded the migmatitic, pelitic Hauser Lake gneiss include the pluton emplacement in the Priest River complex indicates that it was primarily a response to decompression rather than a cause. The mylonitized Silver Point and undeformed Wrencoe plutons bracket the end of a rapid phase of exhumation to c. 50-48 Ma. Zircon εHf(i) values and Lu-Hf isotope evolution indicate that the Silver Point and Wrencoe plutons crystallized from homogeneous magmas sourced from Archean-Proterozoic basement orthogneisses, whereas the Spokane granite and two leucocratic units appear to have been produced by partial melting of the Hauser Lake gneiss. Comparison of the Priest River complex with other deeply exhumed northern Cordilleran complexes indicates variability in the timing and, therefore, relative influences of partial melting and magmatism on the initiation of exhumation, which must be accounted for in numerical models of metamorphic core complex formation and evolution.

  3. Possibilities for a valorisation of geomorphologic research deliverables

    Science.gov (United States)

    Geilhausen, M.; Götz, J.; Otto, J.-C.; Schrott, L.

    2009-04-01

    Many geomorphological studies focus on fundamental research questions in large parts, although there are lots of applied fields like landslide hazard assessment or water framework directive. As fundamental research is a common property, their outcomes should be more "open" and accessible to the public. This means that scientists have to find new ways presenting their results and outcomes besides publishing in scientific journals. This paper shows possibilities for a valorisation of geomorphologic research deliverables using print as well as digital media. Geotrails explain remarkable and exciting landscape features using information boards and become more and more popular and important for tourism in many parts of the world. With the growing interest in environmental change and outdoor activities, print media like field guides reach an increasing number of people. Field guides and Geotrails can be coupled in order to arise awareness about geomorphological landforms and to deliver more specific information on the site beyond the information given on the boards in the field. As field guides are designed for the general public they can be used for educational purposes as well. Today, this information can also be found in the internet offering virtual trips through landscapes using dynamic maps. Here, server side GIS technologies (WebGIS) using standardised interfaces provide new possibilities to show geomorphic data to the public and to share them with the scientific community. Furthermore, data formats like XML or KML are powerful tools for data exchange and can be used in interactive data viewers like Google Earth. We will present the Geotrail "Geomorphologischer Lehrpfad am Fuße der Zugspitze. Das Reintal - Eine Wanderung durch Raum und Zeit" (Bavarian Alps, Germany). Additionally, three geomorphologic WebGIS applications (Geomorphologic map Turtmanntal, Permafrostmap of Austria, Geomorphologic maps of Germany) will exemplify how geomorphologic information and

  4. Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry

    Science.gov (United States)

    Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.

    2015-12-01

    Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.

  5. Structure and contents of a new geomorphological GIS database linked to a geomorphological map — With an example from Liden, central Sweden

    Science.gov (United States)

    Gustavsson, Marcus; Seijmonsbergen, Arie C.; Kolstrup, Else

    2008-03-01

    This paper presents the structure and contents of a standardised geomorphological GIS database that stores comprehensive scientific geomorphological data and constitutes the basis for processing and extracting spatial thematic data. The geodatabase contains spatial information on morphography/morphometry, hydrography, lithology, genesis, processes and age. A unique characteristic of the GIS geodatabase is that it is constructed in parallel with a new comprehensive geomorphological mapping system designed with GIS applications in mind. This close coupling enables easy digitalisation of the information from the geomorphological map into the GIS database for use in both scientific and practical applications. The selected platform, in which the geomorphological vector, raster and tabular data are stored, is the ESRI Personal geodatabase. Additional data such as an image of the original geomorphological map, DEMs or aerial orthographic images are also included in the database. The structure of the geomorphological database presented in this paper is exemplified for a study site around Liden, central Sweden.

  6. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.

    Science.gov (United States)

    Dong, Wenming; Tokunaga, Tetsu K; Davis, James A; Wan, Jiamin

    2012-02-07

    The mobility of an acidic uranium waste plume in the F-Area of Savannah River Site is of great concern. In order to understand and predict uranium mobility, U(VI) adsorption experiments were performed as a function of pH using background F-Area aquifer sediments and reference goethite and kaolinite (major reactive phases of F-Area sediments), and a component-additivity (CA) based surface complexation model (SCM) was developed. Our experimental results indicate that the fine fractions (≤45 μm) in sediments control U(VI) adsorption due to their large surface area, although the quartz sands show a stronger adsorption ability per unit surface area than the fine fractions at pH 4.0. Our CA model combines an existing U(VI) SCM for goethite and a modified U(VI) SCM for kaolinite along with estimated relative surface area abundances of these component minerals. The modeling approach successfully predicts U(VI) adsorption behavior by the background F-Area sediments. The model suggests that exchange sites on kaolinite dominate U(VI) adsorption at pH 6.0.

  7. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  8. Geomorphology and Depositional Subenvironments of Gulf Islands National Seashore, Mississippi

    Science.gov (United States)

    Morton, Robert A.; Rogers, Bryan E.

    2010-01-01

    The U.S. Geological Survey (USGS) is studying coastal hazards and coastal change to improve our understanding of coastal ecosystems and to develop better capabilities of predicting future coastal change. One approach to understanding the dynamics of coastal systems is to monitor changes in barrier-island subenvironments through time. This involves examining morphological and topographic change at temporal scales ranging from millennia to years and spatial scales ranging from tens of kilometers to meters. Of particular interest are the processes that produce those changes and the determination of whether or not those processes are likely to persist into the future. In these analyses of hazards and change, both natural and anthropogenic influences are considered. Quantifying past magnitudes and rates of coastal change and knowing the principal factors that govern those changes are critical to predicting what changes are likely to occur under different scenarios, such as short-term impacts of extreme storms or long-term impacts of sea-level rise. Gulf Islands National Seashore was selected for detailed mapping of barrier-island morphology and topography because the islands offer a diversity of depositional subenvironments and the islands' areas and positions have changed substantially in historical time. The geomorphologic and subenvironmental maps emphasize the processes that formed the surficial features and also serve as a basis for documenting which subenvironments are relatively stable, such as the beach ridge complex, and those which are highly dynamic, such as the beach and active overwash zones. The primary mapping procedures used supervised functions within a Geographic Information System (GIS) that classified depositional subenvironments and features (map units) and delineated boundaries of the features (shapefiles). The GIS classified units on the basis of tonal patterns of a feature in contrast to adjacent features observed on georeferenced aerial

  9. Discriminating impacts of geomorphological and human factors on vineyard soil erosion (Burgundy, France)

    Science.gov (United States)

    Chevigny, Emmanuel; Quiquerez, Amélie; Petit, Christophe; Curmi, Pierre

    2014-05-01

    The Burgundy vineyards have been recognized for the high diversity of Terroirs, controlled by complex interactions between natural features, historical parameters and soil management practices. Vineyards are known to undergo substantial soil loss in comparison with other types of agricultural land. Hydric erosion on vineyards is controlled by complex interactions of natural and anthropogenic factors leading to intra-plot spatial heterogeneities of topsoil at a scale of a metre. Studying the relationship between soils and their degradation is crucial in this situation where soil sustainability is threatened. This study explores the relative influences of historical and present-day anthropogenic factors and geomorphological processes controlling soil erosion on vineyard hillslopes. The selected area was located in the Monthelie vineyard (Côte de Beaune, France) where intensive erosion occurred during high-intensity rainfall events. Soil erosion quantification was performed at a square-metre scale using dendrogeomorphology. This method is based on the measurement of the unearthing of the stock located on the vine plants, considered as a passive marker of soil-surface vertical displacement since the year of plantation. The obtained maps, together with various complementary datasets, such as geological and geomorphological data, but also historical documents (cadastral plans, cadastral matrices and old aerial photographs) allow landscape evolution to be assessed. The combination of all these data shows that spatial distribution and intensity of erosion are controlled mainly by lithology and slope value. However, our study highlights that the sediment dynamics in this vineyard plot is highly related to historical former plot limits and present-day management practices. Nonetheless, quantification of sediment dynamic for the last decade reveals that the impacts of historical structures are disappearing gradually, in response to present-day management practices and

  10. Oxidative stress and hypermethylation induced by exposure of Oreochromis niloticus to complex environmental mixtures of river water from Cubatão do Sul, Brazil.

    Science.gov (United States)

    Fuzinatto, Cristiane Funghetto; Flohr, Letícia; Melegari, Sílvia Pedroso; Matias, William Gerson

    2015-04-01

    In this study, we investigated the effects of oxidative stress and hypermethylation through lipid peroxidation and DNA methylation, respectively, in erythrocytes of Oreochromis niloticus exposed to environmental complex mixture of water from Cubatão do Sul River throughout the year. This river is the source of drinking water for the region of Florianópolis, the capital of Santa Catarina State, Brazil. Lipid peroxidation was quantified by the rate of malondialdehyde (MDA) formation, and DNA methylation was quantified by the rate of 5-methyldeoxycytosine (m(5)dC) formation. In all studied sites, the river water samples caused metabolic changes in O. niloticus. MDA formation rates were significantly different when compared to the negative control (except for samples from Site 1 during spring 2010, summer 2011 and fall 2011). All samples (except Site 1, spring 2010) induced increases in the m(5)dC formation rates, and at the end of the study, the values were near the values found in the positive control (potassium dichromate 2.5mg/L). The results showed that samples of environmental complex mixtures of water from Cubatão do Sul River are capable of inducing high levels of oxidative damage and hypermethylation in O. niloticus.

  11. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  12. Spatial distribution of river dolphins, Inia geoffrensis (Iniidae), in the Araguaia River (central Brazil)

    OpenAIRE

    ARAÚJO, CLARYANA COSTA; Vera Maria Ferreira da Silva

    2014-01-01

    This study aimed to characterize the distribution of botos, Inia geoffrensis, along a 530 km stretch in the middle reaches of the Araguaia River (central Brazil). Data collection was conducted in May (lowering water season) and September (dry season) of 2009. The location and group size of botos were recorded, and the relative density was calculated. The river was divided into nine areas according to geomorphological features; these areas were later grouped into two (low and high) levels of s...

  13. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    Science.gov (United States)

    Patel, L. K.; Pillai, J.

    2011-12-01

    Himalayan region consist many glaciers and glacier-fed rivers. About 17% of the Indian Himalayan Region (IHR) is under permanent cover of Ice and snow and have more than 9000 glaciers and high altitude fresh water lakes. Stream runoff originating from the glaciers has direct implication in geomorphology of the region. Present study is an attempt to find out the stages in the geomorphic development of a higher altitudinal river basin, Pindari river basin. Development of a landscape is equal to the some total of the development of each individual drainage basin of which it is composed. Morphometric parameters of the river basin had been identified viz. linear, areal and relief aspect and examined. Pindari river basin is a 5th order high altitudinal, sub-dendratic, parallel and perennial tributary of Alaknanda River, formed by three main tributaries (Sunderdhunga, Pindari and Kafini). It has the catchment area above 557.63 Km2. This river originates from combined action of rain and snow fall from Pindari glacier which is part of Nanda Devi Biosphere Reserve (a world heritage site). Pindari river basin is located between 1600 m to 6880 m elevation ,and 300 03' 23" -300 19' 04" N Latitude and 790 45' 59" - 80 0 04' 13"E Longitude. Due to microclimatic conditions Pindari river basin generally dry with low annual precipitation. There is heavy rainfall during monsoon season. The approximate variation in the precipitation is from 750 mm to 2000 mm. For estimating the Morphometric parameter SOI toposheet on 1:50000 scale and Landsat data (ETM+) having 15m resolution were georectified in RS and GIS environment. SRTM data was used in analysis of elevation and slope range of the study area. Extensive field study was held on during the year 2010. Morphometric parameters (linear, aerial and relief) of the study area had been estimated. It is observed that Pindari river basin is a sub-dendratic, higher relief, youth, fine texture; elongated basin has peak flow, high discharge, and

  14. Semi-automated identification and extraction of geomorphological features using digital elevation data

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Hengl, T.; Anders, N.S.; Smith, M.J.; Paron, P.; Griffiths, J.S.

    2011-01-01

    Geomorphological maps that are automatically extracted from digital elevation data are gradually replacing classical geomorphological maps. Commonly, digital mapping projects are based upon statistical techniques, object-based protocols or both. In addition to digital elevation data, expert knowledg

  15. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or

  16. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study for Fuzhou city, China

    Directory of Open Access Journals (Sweden)

    J. J. Lian

    2012-06-01

    Full Text Available Coastal cities are particularly vulnerable to flood under the combined effect of multivariable variables, such as heavy rainfall, high sea level and large waves. For better assessment and management of flood risk the combined effect and joint probability should be considered. This paper aims to study the joint impact of rainfall and tidal level on flood risk by estimating the combined risk degree of flood and the joint flood probability. The area of case study is a typical coastal city in China, which has a complex river system. The flood in this city is mainly caused by inundation of river system. In this paper, the combined risk degree of flood is assessed by analyzing the behavior of the complex river network of the city under the combined effect of rainfall and tidal level with diverse return periods. The hydraulic model of the complex drainage network is established using HEC-RAS and verified by comparing the simulation results with the observed data during Typhoon "Longwang". The joint distribution and combined risk probability of rainfall and tidal level are estimated using the optimal copula function. The work carried out in this paper would facilitate assessment of flood risk significantly, which can be referred for the similar cities.

  17. Impact of resolution on regional climate modeling in the source region of Yellow River with complex terrain using RegCM3

    Science.gov (United States)

    Hui, Pinhong; Tang, Jianping; Wang, Shuyu; Wu, Jian; Niu, Xiaorui; Kang, Yue

    2016-07-01

    This paper presents results from a 20-year (1990-2009) simulation by RegCM3 with both 45- and 15-km horizontal resolutions. The research focuses on the source region of Yellow River and its surrounding area, which is located on the northeast edge of the Tibetan Plateau with its very complex topography. Driven by the ECMWF ERA-interim reanalysis data, RegCM3 displays reasonable ability to reproduce the spatial patterns, annual cycles, and the interannual variabilities of regional surface climate, though the model shows wet and cold bias. The model's performance is more close to observation for the source region of Yellow River than the other part of the analysis region, and the application of high resolution of 15 km demonstrates better skill with less bias for mean climate and larger correlation coefficients for interannual variability at most stations. However, the high-resolution simulation shows little advantage for reproducing the variations of precipitation and surface air temperature with altitude. The RegCM3 model also generally reproduces the probability distribution functions (PDFs) of surface climate and, consequently, the occurrence of climatic extremes and extreme indices. The simulation with high resolution again proves to be more reliable to generate climatic extremes over complex terrain of the source region of the Yellow River, related to its better representation of complex terrain and local processes.

  18. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento–San Joaquin River Delta, California, USA

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  19. How geomorphology and groundwater level affect the spatio-temporal variability of riverine cold water patches?

    Science.gov (United States)

    Wawrzyniak, Vincent; Piégay, Hervé; Allemand, Pascal; Vaudor, Lise; Goma, Régis; Grandjean, Philippe

    2016-04-01

    Temperature is a key factor for river ecosystems. In summer, patches of cold water are formed in the river by groundwater seepage. These patches have strong ecological significance and extend to the surface water in a well-mixed riverine system. These patches can serve as thermal refuges for some fish species during summer. In this study, the temporal variability and spatial distribution of cold water patches were explored along a 50 km river reach (the lower Ain River, France) using thermal infrared airborne remote sensing. This study examines a new range of processes acting on cold water patches at different scales that have not previously been touched upon in the literature. Three airborne campaigns were conducted during the summers of 2010, 2011 and 2014. Based on these images, a large number of cold water patches were identified using an automated method. Four types of patches were observed: tributary plumes, cold side channels (former channels or point-bar backwater channels), side seeps (located directly in the river channel) and gravel bar seeps (occurring at the downstream end of gravel bars). Logistic regression was used to analyse the longitudinal distribution of cold water patches according to geomorphologic indicators reflecting current or past fluvial process. Side seeps were found to be related to the local geology. Cold side channels were correlated to contemporary and past lateral river mobility. Gravel bar seeps were related to the current development of bars and are more prevalent in wandering reaches than in single-bed incised and paved reaches. The logistic model was subsequently used to evaluate gravel bar seep variability in the past. The model suggests larger numbers of seeps in the mid-20th century when bar surface area was higher. Interannual variability in the occurrence and spatial extent of side seeps and gravel bar seeps appear to be related to groundwater level fluctuations. Cold side channels exhibited greater interannual stability

  20. Zinc complexing ligands in rivers in pristine peatland areas in Borneo, and rivers with agricultural and industrial anthropogenic influence in Tropical South East Asia: Elucidating the connection to oceanic regional and global distributions of Zinc ligands and bioavailable Zinc

    Science.gov (United States)

    Carrasco, G. G.; Chen, M.

    2016-02-01

    Organic complexing ligands dominate the chemical speciation of Zn in seawater globally, affecting its bioavailability and regulating its micronutrient role. We have shown that intermediate water masses in the West Pacific indicate a connection between point sources related to marginal seas, riverine matter, benthic fluxes, and continental shelves, with ligand concentrations and binding strengths evolving along water mass trajectories. Here we will present results from recent studies in tropical South East Asia that explore rivers in pristine peatland areas in Borneo, and rivers near and around agricultural and industrial anthropogenic influence in Borneo, Singapore and Malaysia, with the aim of elucidating the importance of relatively fresh natural and agricultural land-based plant material and industrial anthropogenic material in the organic matter mix that the ligands are a part of. These results track the ligand concentration and binding strength of different sources of Zn complexing ligands obtained using ASV and modern comprehensive mathematical methods We will compare records of humic substances from coral cores near the mouth of these rivers, with the goal of ascertaining a possible link of humic substance concentrations and metal complexing ligands in the region. We will compare the results from these large sources of organic matter with the ligands observed in continental shelves, where the organic matter has suffered biochemical processes, with ligands observed in the West Pacific, after decades of bacterial respiration while travelling along water masses. We aim to compare these ligand in order to assess the relevance of these sources of complexing ligands to regulate regional and global distribution of Zn ligands and its bioavailable concentrations.

  1. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach

    Science.gov (United States)

    Mechal, Abraham; Birk, Steffen; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra; Kebede, Seifu

    2017-03-01

    Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000-2,320 mg/l) and fluoride concentrations (6-15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.

  2. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    Science.gov (United States)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  3. Geomorphologic mapping of titan's polar terrains: Constraining surface processes and landscape evolution

    Science.gov (United States)

    Birch, S. P. D.; Hayes, A. G.; Dietrich, W. E.; Howard, A. D.; Bristow, C. S.; Malaska, M. J.; Moore, J. M.; Mastrogiuseppe, M.; Hofgartner, J. D.; Williams, D. A.; White, O. L.; Soderblom, J. M.; Barnes, J. W.; Turtle, E. P.; Lunine, J. I.; Wood, C. A.; Neish, C. D.; Kirk, R. L.; Stofan, E. R.; Lorenz, R. D.; Lopes, R. M. C.

    2017-01-01

    We present a geomorphologic map of Titan's polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surficial units that slope towards the seas, suggestive of subsequent overland transport of sediment. From estimates of the depths of the embedded empty depressions and canyons that drain into the seas, the SAR-dark plains must be >600 m thick in places, though the thickness may vary across the poles. At the lowest elevations of each polar region, there are large seas, which are currently liquid methane/ethane filled at the north and empty at the south. The large plains deposits and the surrounding hillslopes may represent remnant landforms that are a result of previously vast polar oceans, where larger liquid bodies may have allowed for a sustained accumulation of soluble and insoluble sediments, potentially forming layered sedimentary deposits. Coupled with vertical crustal movements, the resulting layers would be of varying solubilities and erosional resistances, allowing formation of the complex landscape that we observe today.

  4. 块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例%Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin

    Institute of Scientific and Technical Information of China (English)

    李磊; 李彬; 王英民; 李冬

    2013-01-01

    Based on the study of Pearl River Mouth basin and Niger Delta Basin,making use of high-resolution 3-D seismic data,drilling and logging data as well as regional geological data,the sedimentary architectures of the MTDs were discussed.The results show that three type MTDs are identified; slide blocks originated from the failures of continental slope(type-Ⅰ),slide blocks of submarine channel wall (type-Ⅱ) and slide-debris flow deposits complex(type-Ⅲ).The same type MTDs have certain similarities in geometry,internal texture,physical property,and stacking pattern.Type-Ⅰ displays a lobate form.There is listric slump escarpment at the tail of the slide.Rotated blocks lie above a detachment surface.Listric fans are observed within the rotated blocks.The geometry and internal texture of the type-Ⅱ are same with the type-Ⅱ.But they have different distribution range,slide direction,and strike of the slump escarpment.The linear basal scars of the type-Ⅱ represent the stronger erosion capability.The rough topography of the MTDs is caused by the inner deformation which is indicated by thrust faults.%基于珠江口盆地和尼日尔三角洲盆地的高分辨率三维地震资料和钻测井资料,对块体搬运沉积体系的沉积构型进行研究.研究结果表明:识别出陆坡滑塌形成的滑块体(Ⅰ)、水道壁滑塌形成的滑块体(Ⅱ)以及滑块体与碎屑流沉积物复合体(Ⅲ)3类块体搬运沉积体系.同一类块体搬运沉积体系的外部形态、内部结构、物理性质以及叠置样式具有一定相似性;Ⅰ类具有朵状几何外形,滑块体后部发育铲状滑塌槽.滑块体顺滑脱面滑动,并发生一定程度的旋转,内部具有铲式扇特征;Ⅱ类外部形态和内部结构与Ⅰ类的类似,但两者的分布区域、滑动方向及其所形成的滑塌槽走向差异较大;Ⅲ类具有较强的侵蚀能力,底部具有线性擦痕;其内部变形发育叠瓦逆冲构造,表面形态往往起伏不平.

  5. North Mississippi Refuges Complex : Tallahatchie, Dahomey, Coldwater River National Wildlife Refuge : Annual Narrative Report : Calendar Year 2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Tallahatchie, Dahomey, and Coldwater River NWR outlines Refuge accomplishments during the 2004 calendar year. The report begins with...

  6. An Environmental Quality Assessment of Clarks River National Wildlife Refuge: A component of the Tennessee National Wildlife Refuge Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study, Project ID No. 4N62, was initiated in September 2000. Habitat and fish community assessments were completed at seven sites in the Clarks River watershed...

  7. North Mississippi Refuges Complex : Tallahatchie, Dahomey, and Coldwater River National Wildlife Refuge : Annual Narrative Report : Calendar Year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Tallahatchie, Dahomey, and Coldwater River NWR outlines Refuge accomplishments during the 2003 calendar year. The report begins with...

  8. North Mississippi Refuges Complex: Tallahatchie and Dahomey and Coldwater River National Wildlife Refuge : Annual Narrative Report : Calendar Year 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Tallahatchie, Dahomey, and Coldwater River NWR outlines Refuge accomplishments during the 2002 calendar year. The report begins with...

  9. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife &...

  10. Summary Report for the 2003 Breeding Season Avian Point Count Survey at the Long Island Complex, Mississippi River Pool 21

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the 2003 breeding season, a point count survey project was conducted in Pool 21 of the Upper Mississippi River, Adams County, Illinois. The study area was the...

  11. North Mississippi Refuges Complex: Tallahatchie, Dahomey, and Coldwater River National Wildlife Refuge : Annual Narrative Report : Calendar Year 2013

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Tallahatchie, Dahomey, and Coldwater River NWRs outlines Refuge accomplishments during the 2013 calendar year. The report begins...

  12. Geomorphological Characterization of Atenquique Basin in the Eastern Sector of the Volcan-Nevado-Colima, Jalisco, Mexico, As an Input to the Risk Assessment of Debris Flows.

    Science.gov (United States)

    Flores-Pena, S.; Suarez-Plascencia, C.

    2014-12-01

    The Atenquique river basin drains the eastern sector of the Volcanic Complex (VC) Volcan-Nevado de Colima, located on the border of the states of Jalisco and Colima. To use the digital geomorphological analysis 1:50000 scale mapping provided by INEGI and Landsat images, manipulating it in ArcGIS 10.2 developing the DEM that was the basis for morphometric characterization. The results show that the basin is divided into five sub-basins, with the main Atenquique (SAT) and Arroyo Seco (SAS), calculating the compactness coefficient (Kc) and the coefficient of sinuosity indicate that SAT is the most prone to floods due to straight and slightly sinuous channels. However, the density of dissection shows a more developed drainage network on the SAT, with slopes up to 84° and 600 m deep. The drainage basin has its source at an altitude of 4260 m and its mouth is in the Tuxpan River at 1040 m, which has a relative height of 2800 m; has a funnel-shaped elongated west-east, its outstanding average in the sector are Mountain 44° and 10° the piedmont. The SAT has a total area of 81.8 km2, with a dendritic river network, where the first order streams reach an 82.99%, and second order streams are the 13.4% of the total, these values show that most of the slopes of the basin have incipient development valleys and steep slopes. The basin has had 3 debris flows in recent 58 years; these are formed by large volumes of rock and mud that covered the town of Atenquique and paper mill located at the mouth of the Tuxpan River, caused deaths and significant economic damage. Its genesis is associated with the end of the summer rainy season, so he also worked in the hydrological analysis in order to determine the volume of runoff in the basin. The results of this work are used as input for the determining the risk levels in the study area, and may also be used by the municipality of Tuxpan, in order to define policies to manage risk and reduce future risks to the industrial town of

  13. Analysis of node criticality in complex river network%复杂河流网络节点重要度分析

    Institute of Scientific and Technical Information of China (English)

    吴学文; 李玲; 方国华

    2013-01-01

    Rivers, intersections, water conservancy facilities possesses a certain hydraulic connection and criss - crossly form a complex river network. The paper applied the theory of complex networks to build a river network model and describes the vital nodes. It applied the model to Haihe River basin and set up the network of 565 nodes, and calculated degree centrality and betweenness centrality of Haihe River basin network. Degree centrality is divided into eight levels and Betweenness Centrality is divided into twelve levels to analyze vital nodes of different level. After comparative analysis of degree centrality and betweenness centrality, betweenness centrality is proved to be more accurate in describing the vital node, the analysis of node criticality in complex river network can provide a theoretical basis for the plan of water resources.%流域中,具有一定水力联系的河流、交叉口、水利工程设施等纵横交错地构成了一个复杂的河流网络.应用复杂网络理论,建立了河流网络模型,并描述了节点的重要度.将该网络模型应用于海河流域,建立了含有565个节点的海河流域网络.计算了海河流域网络节点的度指标和介数指标,并分别划分为8个等级和12个等级,对不同等级的节点进行节点重要度分析.通过对比分析节点的度指标和介数指标,证明了介数指标更能准确刻画河流网络节点的重要性.复杂网络中节点重要度分析可以为水利规划提供理论依据.

  14. Fluvial geomorphological response along the upland sediment cascade during the record-breaking December 2015 floods, Cumbria, UK

    Science.gov (United States)

    Russell, Andrew; Perks, Matthew; Large, Andrew; Dunning, Stuart; Warburton, Jeff

    2016-04-01

    Between 0900 GMT on 4th December and 0900 GMT on 6th December 2015, Atlantic Storm Desmond produced over 260 mm of rainfall in Cumbria, northwest England, representing a new UK 48 hour rainfall maximum, and breaking previous records set in 2005 and 2009. The December 2015 event resulted in a number of rivers significantly exceeding their 2009 levels, over-topping recently-commissioned flood defences, destroying bridges and flooding thousands of homes. Our research aim is to identify factors controlling significant geomorphological and sedimentary response during Storm Desmond along the upland sediment cascade including: Rattling Beck (Glenridding), a high gradient upland stream draining the flanks of Helvellyn (950 m.a.o.d.), and a 25km extended reach of the lower gradient piedmont Derwent River corridor downstream of Bassenthwaite Lake. Rattling Beck descends steeply from the eastern slopes of the Helvellyn massif draining across an alluvial fan into Lake Ullswater. On 5th December 2015 the village of Glenridding was severely impacted by flooding which deposited boulder-sized sediment within the centre of the village, completely blocking the pre-existing stream course and causing avulsion of waning stage flows through riverside properties. A major new sediment lobe was deposited on the existing alluvial fan downstream of the village, grading to the temporarily raised lake water level. Although a number of hillslope failures occurred in the higher catchment, the majority of the sediment transported by Rattling Beck and impacting the village was acquired within a 2km reach upstream of Glenridding through erosion of older glacial and alluvial sediments. Lateral channel erosion was enhanced by inability of flood flows to rework highly resistant boulder bar lag deposits related to a previous mine tailings dam failure in 1927. The River Derwent corridor extends for 30km downstream of Bassenthwaite Lake to the Irish Sea at Workington and has a sinuous course ranging in

  15. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    Science.gov (United States)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  16. Fluvial geomorphology: where do we go from here?

    Science.gov (United States)

    Smith, Derald G.

    1993-07-01

    The evolution of geomorphology and in particular, fluvial geomorphology, is at a crossroads. Currently, the discipline is dismally organized, without focus or direction, and is practised by individualists who rarely collaborate in numbers significant enough to generate major research initiatives. If the discipline is to mature and to prosper, we must make some very difficult decisions that will require major changes in our ways of thinking and operating. Either the field stays in its current operational mode and becomes a backwater science, or it moves forward and adopts the ways of the more competitive sectors of the earth and biosciences. For the discipline to evolve, fluvial geomorphologists must first organize an association within North America or at the international level. The 3rd International Geomorphology Conference may be a start, but within that organization we must develop our own divisional and/or regional organizations. Within the Quaternary geology/geomorphology divisions of the Geological Socieity of America (GSA), Association of American Geographers (AAG), American Geophysical Union (AGU) and British Geomorphology Research Group (BGRG) the voice of fluvial geomorphology is lost in a sea of diverse and competitive interests, though there is reason for hope resulting from some recent initiatives. In Canada, we have no national geomorphology organization per se; our closest organization is Canqua (Canadian Quaternary Association). Next, fluvial researchers must collaborate, by whatever means, to develop "scientific critical mass" in order to generate ideas and long-range goals of modest and major scientific importance. These projects will help secure major research funding without which, research opportunities will diminish and initiating major new research will become nearly impossible. Currently, we are being surpassed by the glaciologists, remote sensors, ecologists, oceanographers, climatologists-atmospheric researchers and some Quaternary

  17. Geomorphological features of active tectonics and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India

    Indian Academy of Sciences (India)

    Vivekanand Pathak; Charu C Pant; Gopal Singh Darmwal

    2015-08-01

    The northeastern part of Kumaun Lesser Himalaya, Uttarakhand, India, lying between the rupture zones of 1905, Kangra and 1934, Bihar–Nepal earthquakes and known as ‘central seismic gap’ is a segment of an active fault known to produce significant earthquakes and has not slipped in an unusually long time when compared to other segments. The studied section forms a part of this seismic gap and is seismically an active segment of the Himalayan arc, as compared to the remaining part of the Kumaun Lesser Himalaya and it is evident by active geomorphological features and seismicity data. The geomorphological features of various river valley transects suggest that the region had a history of tectonic rejuvenation which is testified by the deposition of various levels of terraces and their relative uplift, shifting and ponding of river channels, uplifted potholes, triangular facets on fault planes, fault scarps, etc. Further, the seismic data of five-station digital telemetered seismic network along with two stand alone systems show the distribution of earthquakes in or along the analyzed fault transects. It is observed that the microseismic earthquakes (magnitude 1.0–3.0) frequently occur in the region and hypocenters of these earthquakes are confined to shallow depths (10–20 km), with low stress drop values (1.0–10 bar) and higher peak ground velocity (PGV). The cluster of events is observed in the region, sandwiched between the Berinag Thrust (BT) in south and Main Central Thrust (MCT) in north. The occurrences of shallow focus earthquakes and the surface deformational features in the different river valley transect indicates that the region is undergoing neotectonic rejuvenation. In absence of chronology of the deposits it is difficult to relate it with extant seismicity, but from the geomorphic and seismic observations it may be concluded that the region is still tectonically active. The information would be very important in identifying the areas of

  18. Tectonic and climatic controls on historical landscape modifications: The avulsion of the lower Cecina River (Tuscany, central Italy)

    Science.gov (United States)

    Benvenuti, Marco; Bonini, Marco; Moratti, Giovanna; Ricci, Marianna; Tanini, Chiara

    2008-08-01

    Integration of geomorphology, stratigraphy, sedimentology and morphotectonics in the analysis of the lower Cecina River reach, coastal Tuscany, reveals an undocumented historical channel avulsion. Geomorphological evidence and radiocarbon dating support that, from the Last Glacial Maximum until the end of the 16th century, the Cecina River flowed north of the present course and formed a well-developed cuspate delta. Two concurrent factors, active tectonics as a preparing factor and discharge regime as an activation factor, are thus inferred to have favored the avulsion of Cecina River. Fragmentary archaeological and historical records indicate that the late Holocene Cecina River plain was virtually unpopulated until the latest 16th century. This seems the main reason why high-magnitude hydrological events and prominent river channel avulsions were not reported in historical chronicles. From this perspective, geomorphological data may provide important knowledge and understanding of recent dynamics of environmental change when historical record is lacking or missing.

  19. Geomorphologic evolution and environmental changes in the Shaluli Mountain region during the Quaternary

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shangzhe; XU Liubing; CUI Jianxin; ZHANG Xiaowei; ZHAO Jingdong

    2005-01-01

    Geologic and geomorphologic evidence from the Shaluli Mountain indicates that the planation surface that formed in the Late Tertiary disintegrated during the Late Pliocene-Early Quaternary. At the same time, rift basins appeared on some parts of the planation surface, and began to accumulate fluvial-lacustrine sediment. These are interpreted as being the response of this region to Phase-A of the Qingzang Tectonic Movement. After this, the Shaluli Mountain continued to rise in several pulses. Faulting and incision by some large tributaries of the Jinsha and Yalong Rivers resulted in several rift river valleys and the earliest terraces. Generally, the planation surface in this region had been uplifted to about 3500-3700 m a.s.l. no later than 550-600 ka BP, after the Kunlun-Huanghe Tectonic Movement, and coupled with global glacial climate, and resulted in the earliest glaciation recognized so far in the Hengduan Mountains. At the same time, loess was deposited in the Ganzi area of the northern Shaluli Mountain. During the last glacial period, the Shaluli Mountain approached its present altitude and developed several large ice caps, such as the Daocheng Ice Cap and Xinlong Ice Cap, as well as several huge valley glaciers. These paleoglaciers produced some of the most spectacular glacial topography on the Tibetan Plateau.

  20. Long- to short-term denudation rates in the southern Apennines: geomorphological markers and chronological constraints

    Science.gov (United States)

    Gioia, Dario; Martino, Claudio; Schiattarella, Marcello

    2011-02-01

    Age constraints of geomorphological markers and consequent estimates of long- to short-term denudation rates from southern Italy are given here. Geomorphic analysis of the valley of the Tanagro River combined with apatite fission track data and radiometric dating provided useful information on the ages and evolution of some significant morphotectonic markers such as regional planated landscapes, erosional land surfaces and fluvial terraces. Reconstruction of paleotopography and estimation of the eroded volumes were perfomed starting from the plano-altimetric distribution of several orders of erosional land surfaces surveyed in the study area. Additional data about denudation rates related to the recent and/or active geomorphological system have been obtained by estimating the amount of suspended sediment yield at the outlet of some catchments using empirical relationships based on the hierarchical arrangement of the drainage network. Denudation rates obtained through these methods have been compared with the sedimentation rates calculated for two adjacent basins (the Pantano di San Gregorio and the Vallo di Diano), on the basis of published tephrochronological constraints. These rates have also been compared with those calculated for the historical sediment accumulation in a small catchment located to the north of the study area, with long-term exhumation data from thermochronometry, and with uplift rates from the study area. Long- and short-term denudation rates are included between 0.1 and 0.2 mm/yr, in good agreement with regional data and long-term sedimentation rates from the Vallo di Diano and the Pantano di San Gregorio Magno basins. On the other hand, higher values of exhumation rates from thermochronometry suggest the existence of past erosional processes faster than the recent and present-day exogenic dismantling. Finally, the comparison between uplift and denudation rates indicates that the fluvial erosion did not match the tectonic uplift during the

  1. Predicting groundwater flow system discharge in the river network at the watershed scale

    Science.gov (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-04-01

    discharge and the pathway transit time distribution exhibit exponential tailing at river-watershed scale. These findings denote that the topographic conformation of the whole basin contributes to determine the spatial complexity of the groundwater flow field together with the geomorphological river configuration. This complexity reflects on the depth and the intensity of the hyporheic exchange since the hyporheic zone is confined and embedded by the groundwater system. The evaluation of the spatial distribution of water fluxes from and to the river network is useful to relate water quality and nutrient fluxes to anthropogenic activity in a watershed.

  2. Geoconservation mapping using digital geomorphological maps in Vorarlberg, Austria

    Science.gov (United States)

    Seijmonsbergen, A. C.; De Jong, M. G. G.; de Graaff, L. W. S.; Anders, N. S.

    2012-04-01

    Geomorphological inventories are being made in the State of Vorarlberg (Austria) since the mid-1950s by the University of Amsterdam. Starting as an academic training fieldwork for undergraduate geomorphology students, PhD students and staff members soon recognized the research potential of the unique alpine landscape. In particular, landforms and deposits of the ice-marginal environment and pollen records preserved in peat provide valuable proxies for climate reconstruction and give detailed insight in the former growth and decay of the Rhine glacier network and of local glaciers, and assist in reconstructing landscape development in general. A project was started in 2007 to prepare community wide inventory maps of potential geoconservation areas, based on digital geomorphological mapping in a Geographical Information System (GIS). A stepwise protocol was designed for the identification of potential geoconservation areas in the landscape, comprising: 1. Preparing digital geomorphological maps, using a morphogenetic classification scheme 2. Assigning values for selected geoconservation assessment criteria to types of geomorphological features 3. Ranking the criteria assessment values into three categories of potential geoconservation value, and 4. Storing, visualizing and describing the geoconservation data. Four major traits are used in the weighting and ranking protocol (steps 2 and 3): scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The process of assigning values and of ranking the landforms and deposits has been automated in GIS. For the evaluation of disturbance we use digital infrastructure layers in GIS which can be intersected with the potential geoconservation areas to determine the level of disturbance. The proposed method is demonstrated for the municipality of Lech, a well-known winter skiing resort. To illustrate the loss of high-rank potential geoconservation areas due to human influence over the last 50

  3. Quantifying Precipitation Variability on Titan Using a GCM and Implications for Observed Geomorphology

    Science.gov (United States)

    Faulk, Sean P.; Mitchell, Jonathan L.; Moon, Seulgi; Lora, Juan Manuel

    2016-10-01

    Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.

  4. Controles hidrogeomorfológicos nas unidades vegetacionais da planície aluvial do rio Araguaia, Brasil - DOI: 10.4025/actascibiolsci.v30i4.5871 Hydro-geomorphologic controls in the vegetation of the Araguaia river floodplain, Brazil - DOI: 10.4025/actascibiolsci.v30i4.5871

    Directory of Open Access Journals (Sweden)

    Samia Aquino

    2008-11-01

    of the channel that consume the alluvial plain removed in particular large arboreal vegetation types, and the high rates of sedimentation contribute to the formation of the most recent geomorphologic unit of the plain, which is being colonized especially by herbaceous species.

  5. Análisis geomorfológico del tramo medio e inferior de la cuenca de drenaje del río Curri Leuvú, Neuquén Geomorphologic analysis of the lower and middle section of the drainage basin of the Curri Leuvú river, Neuquén

    Directory of Open Access Journals (Sweden)

    Emilio f González Díaz

    2011-03-01

    Full Text Available Se describen las geoformas individualizadas en el área de la cuenca de drenaje que tiene como eje el valle del río Curri Leuvú. El estudio ha permitido no sólo explicar las características del relieve de la región, sino también diferenciar algunas formaciones no consideradas en previas investigaciones, demostrando la utilidad de la investigación geomórfica para la distinción de unidades geológicas más jóvenes, en particular aquellas cuaternarias. Se han diferenciado trece grandes unidades geomorfoló-gicas, las que generadas por diversos procesos geomórficos, han determinado el carácter complejo del paisaje regional. Se reconoció una concentración de la morfogénesis glaciaria en la zona occidental correspondiente a la cordillera del Viento; un paisaje volcánico que predomina en los sectores norte y este y un control estructural que ha determinado la morfología que expone el proceso fluvial en el área centro-sur. Un importante deslizamiento es localizado en las cercanías de Tricao Malal. La metodología empleada ha sugerido la incorporación de nuevas formaciones al cuadro geológico regional del área de estudio.The geomorphologic analysis of the study area led to distinguish some formations not considered in previous geological research, as well as to explain the characteristics of the present relief. Thirteen principal geomorphic units produced by different geomorphic processes are recognized. Their variety and incidence through the time are expressed in the glacial morphogenesis concentrated in the western part of the Cordillera del Viento, in the volcanic landscape that predominates in the northern and eastern sectors (calderas, volcanoes, lava flows, in the structural control that defines the morphology of the fluvial process in the central zone and a firstly recognized important landslide to the north of Tricao Malal. As a result of the methodology employed two geological units of different age in the western part of

  6. THE USE OF MORPHOMETRIC ANALYSIS IN DETERMINING GEOMORPHOLOGICAL FEATURES OF ULUDERE BASIN

    Directory of Open Access Journals (Sweden)

    Vedat AVCI

    2015-12-01

    Full Text Available In this study geomorphological features of Uludere Basin and the factors that are effective on gaining these features have been determined using morphometric indices. Morphometric analyses have been obtained from digital elevation model produced by the digitization of 1/25000 scale maps. In this study profile, slope, aspect, hipsographic analyses, relative reliefs and elevation frequency analysis have been done. Tectonic lines have determined the slope distribution, and the slope values in the west of the basin have increased accordingly. Active fault's cutting the basin in NW-SE direction has led to a difference in aspect between hillsides. Tectonism has caused the NNW-SSE hillsides to cover large areas in the field. A large number of small streams feeding the river basins take their sources from sharp hillsides and these streams have been offset due to the tectonic movements. Basin’s tectonically oriented has enabled it to gain a shape, as a result of this the area feeding the stream from the east has expanded. Uludere draining the basin’s streams indicates the feature of a subsekant stream because it has settled on tectonic lines. According to the elevation frequency analysis, in the basin, where relative relief goes up to 538 m in the west and falls below 100 m in the east, the most repeated elevation range is between 2600-2700 m and this is thought to be caused by young tectonic movements. The decline in relative relief in the east of the basin is related to the volcanic plains covering large areas. Noticeable elevation differences and asymmetry in transverse profiles indicate that the effect of tectonics is obvious on basin’s taking a shape and that the basin is in its early phase. Uludere Basin, geomorphology, morphometric analyses, tectonics.

  7. Exploring the Geomorphology of the Amazon's Planalto and Understanding the Origin of the Modern Amazon Basin with Imaging Radar:

    Science.gov (United States)

    Islam, R.; McDonald, K. C.; Azarderakhsh, M.; Campbell, K.; Cracraft, J.; Carnaval, A. C.

    2015-12-01

    The Amazon basin is a biodiversity biome and plays a significant role into shaping the earth's climate, ocean and atmospheric gases. Understanding the history of the formation of the basin is essential to our understanding of the region's biodiversity loss and response to climate change. Ancient River channels in lowland Amazonia exhibit right angle branching structures as well as intricately intertwined channels. Past research has attributed these characteristic as a result of subsurface faults but makes it difficult to validate this augment due to dense vegetation and sedimentation. We seek to employ remote sensing techniques for examining geomorphological features and the relationship to evolutionary processes that shaped biodiversity in the modern Amazon River Basin. We utilize UAVSAR imagery gathered from the NASA/JPL airborne imaging radar over the Planalto, in the Madre de Dios region of Southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and geologic processes through deep time. In the late Neogene, the Amazonian lowlands comprised either a series of independent basins or a single sedimentary basin. The Amazonian Planalto is variously described as either erosional surface or a surface of deposition. We employ UAVSAR data collection to assess (1) the utility of these radar data for use in identifying associated geomorphologic features, and (2) UAVSAR's utility in aiding interpretation of ALOS PALSAR and STRM datasets to support a basin-wide characterization. We derive maps of river networks using a canny based edge detection method applied on the UAVSAR backscatter images. We develop an algorithm, which separates the river networks into various catchments based on connected component and then calculates angles at each branch point. We then assess distribution of right angle branching structure throughout the entire region. The results of the analysis will have a major impact on

  8. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy

    Directory of Open Access Journals (Sweden)

    P. Brandolini

    2006-01-01

    Full Text Available The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  9. SOILS VULNERABILITY OF CATCHMENT ALMAŞ AT GEOMORPHOLOGIC CONTEMPORARY PROCESSES

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA-IOANA RUS

    2015-03-01

    Full Text Available Soils vulnerability of the Catchment Almas geomorphologic processes. Almas Basin, signed lower lithologic Miocene soils deposits, shows six classes: Cernisols, Cambisols, Luvisols, Hydrosols, Pelisols, Protosols (after SRTS, 2003. The largest share is attributed to Luvisols class (60%, followed by undeveloped soil represented by Protosols and Antrisols (15%, followed by the remaining classes with lower weights: Cambisols (13%, Cernisols (7%, Pelisols (4%, Hydrosols (1%. Contemporary geomorphological processes (surface and deep erosion, mass movements change agricultural areas and forest ratio or flow out of economic network tens of hectares annually. Soil vulnerability to the manifestation of these processes is expressed by disturbing soil horizons, coastal springs appearance and growth of the adjoining excess moisture, soil sealing productive by dropping or by alienation.

  10. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    Science.gov (United States)

    Brandolini, P.; Faccini, F.; Piccazzo, M.

    2006-06-01

    The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  11. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    OpenAIRE

    Brandolini, P.; F. Faccini; Piccazzo, M.

    2006-01-01

    International audience; The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are consi...

  12. Actual geomorphological processes on steep hillslope vineyards. A comparison of Ruwertal (Germany) with the Montes de Málaga (Spain).

    Science.gov (United States)

    Rodrigo Comino, Jesús; Damián Ruiz Sinoga, José; María Senciales González, José; Guerra Merchán, Antonio; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Nowadays, steep hillslope viticulture areas are one of the most complex agricultural eco-geomorphological systems in Europe. Precisely, the vineyards of the Ruwer-Mosel valley (Germany) and Montes de Málaga-Axarquía (Spain) are one clear example. Both regions are characterized by frequent heavy rainfall events, concentrated in summer (Germany) and autumn-winter (Spain), and intensive and not conservative land use managements on the soil (application of vine training systems, herbicides, non ecological amendments, anthropic rills generated by wheel traffic, footsteps in Germany and built by hoes or shovels in Spain). The goals of this work were: i) to determine and to quantify the hydrological and erosive phenomena in two traditional hillslope vineyards in Waldrach (Ruwer-Mosel valley, Germany) and Almáchar (Montes de Málaga-Axarquía, Spain); ii) to compare the geomorphological and hydrological dynamics of these study areas during diverse seasons and under different management conditions (Mediterranean and Continental climatic contexts, application of machineries, traditional protection measures...). For this purpose, a combined methodology performed by Trier and Málaga Universities with soil analysis, sediment traps, rainfall simulations and Guelph permeameter were applied. The main results showed high soil erosion and similar variations in the runoff and infiltration rates. In both study areas, geomorphological and hydrological dynamics registered several spatiotemporal variations along the upper, middle and foot slope, and during different seasons (before and after the vintage, and between the dry and humid period).

  13. Tectonic geomorphology of the 21 May 2003 Zemmouri earthquake area (Mw 6.8, Tell Atlas, Algeria) : An analysis of the long-term coastal uplift

    Science.gov (United States)

    Bagdi-Issaad, Souhila; Meghraoui, Mustapha; Nedjari, Ahmed

    2017-04-01

    Geomorphological, geological and structural markers attest for successive uplift during the late Quaternary along the Algerian coastal region, a section of the Africa-Eurasia plate boundary. Large and moderate shallow earthquakes with Mw ≥ 6 occurred on E-W to NE-SW active thrust-related-fold structures an among them the 21 May 2003 Zemmouri earthquake (Mw 6.8) that caused 0.5 m uplift on 55 km coastal. In this work, we study the correlation between the 2003 coseismic uplift with the long-term active deformation using the distribution of Quaternary marine and alluvial terraces where indicators show three pre-2003 main notch levels formed in the last 21.9 ka along with five alluvial terrace levels formed in Pleistocene. The analysis of drainage system and related tectonic geomorphology along the coastal area show over 500 small and large rivers that document the trend of present-day and past stream channels, their longitudinal profiles, the arrangement of Quaternary deposits and the response of river mouths to the successive past and recent uplift. The analysis of remote sensing images combined with high-resolution Digital Elevation Model and field observations reveal concave downward shape of most river profiles and river mouth deflections near the coastline. Data previously obtained on the coseismic deformation using coastal tectonics, seismology and geodetic (InSAR and GPS) investigations are combined to our analysis of coastal deformation. The results confirm the impact of the offshore thrust fault responsible of the coastal deformation through successive coseismic uplift with an estimated average 0.9 to 2.1 mm/year during the late Pleistocene - Holocene (Maouche et al.,2011). The short-term and long-term deformation and related surface slip distribution controls the drainage system and related distribution of Quaternary deposits. Our results indicate how the tectonic geomorphology can be a decisive marker for the identification of coastal active faults and

  14. Glacial geomorphology of the foreland of Nordenskiöldbreen, Svalbard

    Science.gov (United States)

    Ewertowski, Marek; Dominiczak, Aleksander; Evans, David; Roberts, David; Tomczyk, Aleksandra

    2015-04-01

    The Nordenskiöldbreen (78°39'N, 16°55'E) is the only one tidewater glacier in the Billefjorden area, central part of Spitsbergen. Since the end of the Little Ice Age, the glacier margin retreated by 1490 m (north wing) and 3100 m (south wing). Glacier recession exposed complex landform assemblages including moraines, flutes and bedrock expositions. Glacier recession and landforms' development in the terrestrial parts of the foreland were quantified using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite images from 2013. Additionally, detailed analyses of a case study area were performed based on unmanned aerial vehicle (UAV) imagery (3 cm resolution). A time-series of 1:5,000 geomorphological maps of the whole foreland, together with 1:300 map of a sample area of non-linear flutes and results of sedimentological analysis, enable us to assess the evolution of glacial landform assemblages. The maps reveal outer zone of latero-frontal moraine arcs and inner zone comprising bedrock draped by linear and non-linear flutes. North wing is characterised by a very limited supraglacial debris cover, which allows for exhibition of subglacial till (partly deposited in subaquatic condition). The pattern of landforms, including cross-cutting linear and non-linear flutes, suggests complexity and overlapping of subglacial processes during the glacier advance. The following recession of the glacier with very limited debris cover allows for preservation of the large part of this landform assemblage. Geomorphology of the southern part of the glacier foreland is more complex and, in addition to flutes, comprises areas of ice-cored moraines, small eskers and debris ridges networks, interpreted as infilling of crevasses due to ice hydrofracturing. This can be related to the potential surging activity or blocking of meltwater under a warm-base part of the polythermal glacier by its frozen

  15. Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River

    Science.gov (United States)

    Milde, Amanda S.

    2017-01-01

    Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River (UMR) is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (1) How do suspended particle characteristics (e.g., size and morphology) vary temporally and spatially? and (2) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the UMR. A FlowCAM particle imaging system was used to enumerate and measure particles 53–300 µm in diameter for size and shape characteristics (e.g., volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3-) and soluble reactive phosphorous (SRP). Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorous were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients) which drive suspended particle dynamics in large rivers.

  16. Use of complex hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River

    Science.gov (United States)

    Steuer, J.J.; Newton, T.J.; Zigler, S.J.

    2008-01-01

    Previous attempts to predict the importance of abiotic and biotic factors to unionids in large rivers have been largely unsuccessful. Many simple physical habitat descriptors (e.g., current velocity, substrate particle size, and water depth) have limited ability to predict unionid density. However, more recent studies have found that complex hydraulic variables (e.g., shear velocity, boundary shear stress, and Reynolds number) may be more useful predictors of unionid density. We performed a retrospective analysis with unionid density, current velocity, and substrate particle size data from 1987 to 1988 in a 6-km reach of the Upper Mississippi River near Prairie du Chien, Wisconsin. We used these data to model simple and complex hydraulic variables under low and high flow conditions. We then used classification and regression tree analysis to examine the relationships between hydraulic variables and unionid density. We found that boundary Reynolds number, Froude number, boundary shear stress, and grain size were the best predictors of density. Models with complex hydraulic variables were a substantial improvement over previously published discriminant models and correctly classified 65-88% of the observations for the total mussel fauna and six species. These data suggest that unionid beds may be constrained by threshold limits at both ends of the flow regime. Under low flow, mussels may require a minimum hydraulic variable (Rez.ast;, Fr) to transport nutrients, oxygen, and waste products. Under high flow, areas with relatively low boundary shear stress may provide a hydraulic refuge for mussels. Data on hydraulic preferences and identification of other conditions that constitute unionid habitat are needed to help restore and enhance habitats for unionids in rivers. ?? 2008 Springer Science+Business Media B.V.

  17. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s

    National Research Council Canada - National Science Library

    Caputo, Beniamino; Nwakanma, Davis; Jawara, Musa; Adiamoh, Majidah; Dia, Ibrahima; Konate, Lassana; Petrarca, Vincenzo; Conway, David J; della Torre, Alessandra

    2008-01-01

    .... females were carried out along a ca. 400 km west to east transect following the River Gambia from the western coastal region of The Gambia to south-eastern Senegal during 2005 end of rainy season/early dry season and the 2006 rainy season...

  18. A New Approach to Quantify Shallow Water Hydrologic Exchanges in a Large Regulated River Reach

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian; Huang, Maoyi; Bao, Jie; Hou, Zhangshuan; Arntzen, Evan V.; Mackley, Robert D.; Crump, Alex R.; Goldman, Amy E.; Song, Xuehang; Xu, Yi; Zachara, John M.

    2017-09-15

    Hyporheic exchange is a crucial component in the water cycle. The strength of the exchange directly affects the biogeochemical and ecological processes occurred in the hyporheic zone from micro to reach scale. Hyporheic fluxes can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods are limited by accessibility, the difficulty of performing representative sampling, and complexity of geomorphologic features and subsurface properties. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events, featured by hourly to daily variations in flow and river stages created by dam operations(Hancock 2002). In this study, we developed and validated methods that based on field measurements to estimate shallow water hyporheic fluxes across the river bed at five locations along the shoreline of the Columbia River. Vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradients derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. The results suggested that the hyporheic exchange rate had high spatial and temporal heterogeneities over the riverbed, with predicted flux rate varies from +1×10-6 m s-1 to -1.5×10-6 m s-1 under various flow conditions at the some locations, and with a magnitude of fluxes 6-9 times higher in the primary channel than that in the secondary channel. The variations on shallow water hyporheic flow dynamics may further lead to different biogeochemical and ecological consequences at different river segments.

  19. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    Science.gov (United States)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  20. River predisposition to ice jams: a simplified geospatial model

    OpenAIRE

    Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2016-01-01

    The goal of this work was to develop a simplified geospatial model to estimate the predisposition of any river channel to ice jams. Rather than predicting river ice break up, the main question here was to predict where the broken up ice is susceptible to jam based on the river’s geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, ...

  1. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China

    Directory of Open Access Journals (Sweden)

    J. J. Lian

    2013-02-01

    Full Text Available Coastal cities are particularly vulnerable to flood under multivariable conditions, such as heavy precipitation, high sea levels, and storms. The combined effect of multiple sources and the joint probability of extremes should be considered to assess and manage flood risk better. This paper aims to study the combined effect of rainfall and the tidal level of the receiving water body on flood probability and severity in Fuzhou City, which has a complex river network. Flood severity under a range of precipitation intensities, with return periods (RPs of 5 yr to 100 yr, and tidal levels was assessed through a hydrodynamic model verified by data observed during Typhoon Longwang in 2005. According to the percentages of the river network where flooding occurred, the threshold conditions for flood severity were estimated in two scenarios: with and without working pumps. In Fuzhou City, working pumps efficiently reduce flood risk from precipitation within a 20-yr RP. However, the pumps may not work efficiently when rainfall exceeds a 100-yr RP because of the limited conveyance capacity of the river network. Joint risk probability was estimated through the optimal copula. The joint probability of rainfall and tidal level both exceeding their threshold values is very low, and the greatest threat in Fuzhou comes from heavy rainfall. However, the tidal level poses an extra risk of flood. Given that this extra risk is ignored in the design of flood defense in Fuzhou, flood frequency and severity may be higher than understood during design.

  2. Geomorphology and volcanology of Maat Mons, Venus

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2016-10-01

    Full-resolution (FMIDR) Magellan radar backscatter images have been used to characterize the geology and volcanology of the volcano Maat Mons on Venus. This volcano has often been identified by remote sensing techniques as one of the volcanoes on the planet that could have been recently active, and is the highest volcano on Venus with a relief of ∼9 km. The summit of Maat Mons is characterized by a caldera complex ∼26 × 30 km in diameter with at least six remnant pit craters ∼10 km in diameter preserved in the walls of the caldera, suggesting that multiple small volume (lava flow types, described as "digitate flows", "sheet flows", "fan flows" and "filamentary flows", can be identified on the flanks. Three rift zones can be identified from the distribution of 217 pit craters >1 km in diameter on the flanks. These pits appear to have formed by collapse with no effusive activity associated with their formation. No evidence for explosive volcanism can be identified, despite the (relatively) low atmospheric pressure (∼55 bar) near the summit. There is also a lack of evidence for lava channels, deformation features within the caldera, and thrust faults on the flanks, indicating that the physical volcanology of Maat Mons is simpler than that of typical martian and terrestrial shield volcanoes. Preservation of fine-scale (3-4 pixels) structures within the pit craters and summit pits is consistent with geologically very recent activity, but no evidence for current activity can be identified.

  3. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  4. Directions in Geoheritage Studies: Suggestions from the Italian Geomorphological Community

    Science.gov (United States)

    Panizza, Valeria

    2015-04-01

    More and more attention has been focused on geological and geomorphological heritage in the past years, leading to several researches in the framework of conservation projects, both at administrative and at scientific level, involving national and international research groups whose purposes are the promotion of Earth Sciences knowledge and the conservation of geological heritage. This paper presents an overview of research and conservation projects in Italy, mainly focused on the geomorphological heritage. Members of the AIGEO Working Group on geomorphosites and cultural landscape analyzed the historical development, methodological issues and main results of these research projects in order to identify possible innovation lines to improve the awareness and knowledge on geodiversity and geoheritage by a wide public, including education, tourism and conservation sectors. In Italy numerous projects of research have been realized with the main aim of geomorphosites inventory and the proposal of assessment methodologies, and so to the improvement and to the analysis of risks and impacts related to their fruition. At an international level, many Italian researchers have also been involved in studies carried out in the Working Group "Geomorphological sites" of the International Association of Geomorphologists (IAG). At a national level several research lines are under development, offering different responses to methodological issues within the general topic of geodiversity and geoheritage: Geosites inventories and assessment activities are performed with powerful digital techniques and new reference models: among these, the investigation on the ecologic support role for increasing geomorphosites global value and the elaboration of quantitative assessment methods of the scientific quality of Geomorphosites, carried out specifically for territorial planning. Improvements in field data collection and visual representation of landforms lead to new findings in

  5. Network topology, Transport dynamics, and Vulnerability Analysis in River Deltas: A Graph-Theoretic Approach

    Science.gov (United States)

    Tejedor, A.; Foufoula-Georgiou, E.; Longjas, A.; Zaliapin, I. V.

    2014-12-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external factors causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying river delta topology and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in quantifying the complexity of the delta network topology, computing its steady state fluxes, and identifying upstream (contributing) and downstream (nourishment) areas from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way of systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  6. Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: A geomorphological approach

    Science.gov (United States)

    Molin, P.; Fubelli, G.; Nocentini, M.; Sperini, S.; Ignat, P.; Grecu, F.; Dramis, F.

    2012-06-01

    Tectonic processes and dynamic mantle flow impart a unique imprint on topography and geomorphic responses over time scales of 104 to 106 yr. First-order topographic features in a tectonically active landscape represent ways to quantitatively characterise the interaction between crustal tectonics, mantle dynamics, and geomorphology, providing a basis for modelling landscape evolution. We analysed the topographic features of the Romanian Carpathians, a mountain range characterised by two straight segments connected by a narrow curvature zone. The deformation started in the Late Jurassic and includes two collisional phases during the Cretaceous and Miocene. We examined the tectonic geomorphology of the Romanian Carpathians focusing on regional and local topographic setting, drainage pattern, and river long profiles. Our main database is composed of DEM-based topographic analysis, supplemented with field investigations in the Slănic River basin, located in the Carpathian curvature zone. The longitudinal profiles of rivers draining the southern Carpathians are close to the equilibrium shape, in agreement with the older emersion of the chain. The longitudinal profiles of the rivers draining the eastern and southeastern Carpathians are in a transient state of disequilibrium as a consequence of a more recent emersion of the chain and of the Pliocene-Pleistocene tectonic activity in the Bend Zone. Filtering the topography at different wavelengths, we observe a relative depression in correspondence with the Carpathian Bend, where mantle seismicity and a high-velocity zone in tomography data are located and commonly interpreted as related to an almost inactive and dying subduction zone. Contrastingly, the filtered topography presents a high in the Transylvanian basin, where tomography data show a low-velocity area, interpreted as upwelling of hot asthenospheric materials. We hypothesise that local mantle convection generates positive and negative dynamic topographies. In the

  7. A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows

    Science.gov (United States)

    Parkin, G.; Birkinshaw, S. J.; Younger, P. L.; Rao, Z.; Kirk, S.

    2007-06-01

    SummaryEvaluation of the impacts of groundwater abstractions on surface water systems is a necessary task in integrated water resources management. A range of hydrological, hydrogeological, and geomorphological factors influence the complex processes of interaction between groundwater and rivers. This paper presents an approach which uses numerical modeling of generic river-aquifer systems to represent the interaction processes, and neural networks to capture the impacts of the different controlling factors. The generic models describe hydrogeological settings representing most river-aquifer systems in England and Wales: high diffusivity (e.g. Chalk) and low diffusivity (e.g. Triassic Sandstone) aquifers with flow to rivers mediated by alluvial gravels; the same aquifers where they are in direct connection with the river; and shallow alluvial aquifers which are disconnected from regional aquifers. Numerical model simulations using the SHETRAN integrated catchment modeling system provided outputs including time-series and spatial variations in river flow depletion, and spatially distributed groundwater levels. Artificial neural network models were trained using input parameters describing the controlling factors and the outputs from the numerical model simulations, providing an efficient tool for representing the impacts of groundwater abstractions across a wide range of conditions. There are very few field data sets of accurately quantified river flow depletion as a result of groundwater abstraction under controlled conditions. One such data set from an experimental study carried out in 1967 on the Winterbourne stream in the Lambourne catchment over a Chalk aquifer was used successfully to test the modeling tool. This modeling approach provides a general methodology for rapid simulations of complex hydrogeological systems which preserves the physical consistency between multiple and diverse model outputs.

  8. The "Geomorphologic Diagonal" of Central Europe - towards a new morphotectonic interpretation of macroforms in average mountains

    Science.gov (United States)

    Zoeller, Ludwig

    2016-04-01

    Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it

  9. phylogeography of the phrynocephalus vlangalii species complex in the upper reaches of the yellow river inferred from mtdna nd4-trnaleu segments

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    the ching hai toad-headed agama (phrynocephalus vlangalii) complex is a small toad-headed viviparous lizard that is endemic to the qinghai-tibetan plateau.a fragment of mtdna nd4-trnaleu from 189 samples in 26 populations was used to infer the phylogeographic history of this species complex in the upper reaches of the yellow river.phylogenetic analyses revealed that p.vlangalii and another proposed species (p.putjatia) do not form a monophyletic mtdna clade,which in contrast with a previous study,includes p.theobaldi and p forsythii.lineage diversification occurred in the middle pleistocene for p.vlangali (ca.0.95 ma) and in the early pleistocene for p.putjatia (ca.1.78 ma).the uplift of the a'nyemaqen mountains and glaciations since the mid-late pleistocene,especially during the kunlun glaciation,are considered to have promoted the allopartric divergence of p vlangalii.the diversification of p.putjatia may be triggered by the tectonic movement in the huangshui river valley during the c phase of qingzang movement.subsequently,the glacial climate throughout the pleistocene may have continuedto impede the gene flow of p.putjatia,eventually resulting in the genetic divergence of p.putjatia in the allopatric regions.demographic estimates revealed weak population expansion in one lineage of p vlangalii (a2,the qaidam basin lineage) and one lineage of p.putjatia (b2,the north qinghai lake lineage) after approximately 42 000 years before present.however,constant population size through time was inferred for two lineages (a1 and b1),the source of yellow river lineage of p.vlangalii and the southeast of qinghai lake lineage of p putjatia,possibly due to stable populations persisting in areas unaffected by glacial advances.our results also suggest:1) at least four differentiated lineages of p.vlangalii complex may have evolved allopatrically in different regions during the pleistocene glaciation events; 2) in support of several recent studies,p.putjatia is a valid species

  10. Integrated Floodplain Management, Environmental Change, and Geomorphology: Problems and Prospects

    NARCIS (Netherlands)

    Hudson, Paul F; Middelkoop, Hans

    2015-01-01

    Recognition of the failure of old perspectives on river management and the need to enhance environmental sustainability has stimulated a new approach to river management over the past couple of decades. The manner that river restoration and integrated management are implemented, however, requires a

  11. SOME GEOMORPHOLOGICAL AND GEOECOLOGICAL IMPACTS OF THE 2010 EXTREME RAINFALLS IN HUNGARY

    Directory of Open Access Journals (Sweden)

    DÉNES LÓCZY

    2012-03-01

    Full Text Available Some geomorphological and geoecological impacts of the 2010 extreme rainfalls in Hungary. The extreme rainfall events in the unusually wet year of 2010 brought about major changes in the floodplains of several streams in Hungary. On the small watercourses in low mountain or hill environments flash floods were generated. In the floodplains of medium-sized rivers, like the Kapos River in Southern Transdanubia, lasting inundations transformed the landscape. The system of wetlands preceeding the 19th-century river regulation and land drainage measures was restored by natural processes and within a very short time as excess water filled the entire broad valley sections in a shallow layer temporarily, for some weeks, and the former oxbows for several months. The nature conservation value of the river valley increased: reed and sedge beds and the brooding colonies of aquatic birds extended. There are, however, unfavorable impacts as well. Denser wetland vegetation significantly contributes to the organic filling of floodplain landforms. The spreading of invasive plants (allergetic ragweed, Ambrosia artemisiifolia, in the first place was promoted by the prolonged survival of extensive bare but moist silt surfaces in the floodplain. The long-term effects of this colonization on floodplain communities are unpredictable. A delayed and indirect impact of extreme rainfalls was the breach of a red sludge reservoir near the Ajka alumina plant in October, 2010 and the resulting environmental disaster. After the gradual accumulation of rainwater in the reservoir, the dyke breach happened, released 600-700 thousand m3 of basic (up to pH 13! sludge over the floodplain of the Torna Stream, a tributary of the Marcal and Rába rivers in an area of ca 40 km2. The emergency mitigation measures (spreading gypsum from power plants to neutralize the strong base over the layer of red sludge accumulation proved unfortunate as it prevented that the sludge should be washed

  12. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers.

    Science.gov (United States)

    Radinger, Johannes; Essl, Franz; Hölker, Franz; Horký, Pavel; Slavík, Ondřej; Wolter, Christian

    2017-05-13

    The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use-driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species-specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up- vs. downstream) of predicted habitat shifts under coupled "moderate" and "severe" climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller-bodied fishes and to contract for larger-bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller-bodied fish (species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller-bodied species are rather restricted by their specific dispersal ability. © 2017 John Wiley & Sons Ltd.

  13. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    Science.gov (United States)

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples.

  14. The surface geology and geomorphology of Phobos

    Science.gov (United States)

    Basilevsky, A. T.; Lorenz, C. A.; Shingareva, T. V.; Head, J. W.; Ramsley, K. R.; Zubarev, A. E.

    2014-11-01

    The martian moon Phobos is 26 km×22.8 km×18.2 km in size, and the major landforms on its surface are craters and grooves. We analyzed the visible craters on the surface of Phobos where ~1300 craters≥200 m in diameter, ~70 craters≥1 km, and ~30 craters≥2 km are identified; Stickney, the largest crater on Phobos, is about 8 km in diameter. Most craters are undoubtedly of impact origin although some small craters may be pits formed by drainage of regolith into subsurface fractures. The presence of the observed impact crater population implies that the upper hundreds of meters to a few kilometers of Phobos are heavily fractured. Using the available digital terrain model of Phobos (the dynamic version), the 24 craters larger than 2 km in diameter have been subdivided into three morphologic classes on the basis of their prominence; they are characterized by the following values of d/D ratios and maximum steepness of their inner slopes: >0.1 and >20°:9 craters; 0.05-0.1 and 10-20°:7 craters; and flat-bottomed and with central-mounds. The size of these craters with complex morphology is indicative of layering in the target material, both regolith covering bedrock and layers within the regolith. The thickness of the regolith estimated by different techniques varies from ~5 to 100 m. Layering within the regolith does not appear to be continuous, but more lens-like. The regolith of Phobos obviously accumulated by direct crater ejecta deposition and through the return of the ejecta high-velocity fraction that escaped to near-Mars space during the impact events. The Phobos regolith may be deficient in the meters to kilometers in size, commonly on crater inner slopes and sometimes on the outer slopes of crater rims. The albedo streaks are probably traces of geologically recent talus and avalanche emplacement. The mounds are interpreted to be landslide deposits. The different degrees of mound morphologic sharpness may be considered as an indication of their different

  15. Complex

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  16. Changes to channel sediments resulting from complex human impacts in a gravel-bed river, Polish Carpathians

    Science.gov (United States)

    Zawiejska, Joanna; Wyżga, Bartłomiej; Hajdukiewicz, Hanna; Radecki-Pawlik, Artur; Mikuś, Paweł

    2016-04-01

    During the second half of the twentieth century, many sections of the Czarny Dunajec River, Polish Carpathians, were considerably modified by channelization as well as gravel-mining and the resultant channel incision (up to 3.5 m). This paper examines changes to the longitudinal pattern of grain size and sorting of bed material in an 18-km-long river reach. Surface bed-material grain size was established on 47 gravel bars and compared with a reference downstream fining trend of bar sediments derived from the sites with average river width and a vertically stable channel. Contrary to expectations, the extraction of cobbles from the channel bed in the upper part of the study reach, conducted in the past decades, has resulted in the marked coarsening of bed material in this river section. The extraction facilitated entrainment of exposed finer grains and has led to rapid bed degradation, whereas the concentration of flood flows in the increasingly deep and narrow channel has increased their competence and enabled a delivery of the coarse particles previously typical of the upstream reach. The middle section of the study reach, channelized to prevent sediment delivery to a downstream reservoir, now transfers the bed material flushed out from the incising upstream section. With considerably increased transport capacity of the river and with sediment delivery from bank erosion eliminated by bank reinforcements, bar sediments in the channelized section are typified by increased size of the finer fraction and better-than-average sorting. In the wide, multi-thread channel in the lower part of the reach, low unit stream power and high channel-form roughness facilitate sediment deposition and are reflected in relatively fine grades of bar gravels. The study showed that selective extraction of larger particles from the channel bed leads to channel incision at and upstream of the mining site. However, unlike bulk gravel mining, selective extraction does not result in sediment

  17. Detailed geomorphological map sheet Bela Palanka at scale 1:100,000

    Directory of Open Access Journals (Sweden)

    Menković Ljubomir

    2011-01-01

    Full Text Available The Geomorphological Map Sheet Bela Palanka is a graphical representation of landforms in the area covered by the Topographical Map Sheet Bela Palanka at scale 1:100,000. The map is published in 2008 by the Serbian Academy of Sciences and Arts (SASA and the SASA Geodynamics Board. It is the first detailed geomorphological map edited in Serbia. This paper presents the methods used in preparing the geomorphological map, the contents and the mode of data presentation, geologic structure, genetic types of landforms and the subtypes, and the geomorphological history since the Neogene.

  18. Short-term geomorphological evolution of proglacial systems

    Science.gov (United States)

    Carrivick, Jonathan L.; Heckmann, Tobias

    2017-06-01

    Proglacial systems are amongst the most rapidly changing landscapes on Earth, as glacier mass loss, permafrost degradation and more episodes of intense rainfall progress with climate change. This review addresses the urgent need to quantitatively define proglacial systems not only in terms of spatial extent but also in terms of functional processes. It firstly provides a critical appraisal of prevailing conceptual models of proglacial systems, and uses this to justify compiling data on rates of landform change in terms of planform, horizontal motion, elevation changes and sediment budgets. These data permit us to produce novel summary conceptual diagrams that consider proglacial landscape evolution in terms of a balance of longitudinal and lateral water and sediment fluxes. Throughout, we give examples of newly emerging datasets and data processing methods because these have the potential to assist with the issues of: (i) a lack of knowledge of proglacial systems within high-mountain, arctic and polar regions, (ii) considerable inter- and intra-catchment variability in the geomorphology and functioning of proglacial systems, (iii) problems with the magnitude of short-term geomorphological changes being at the threshold of detection, (iv) separating short-term variability from longer-term trends, and (v) of the representativeness of plot-scale field measurements for regionalisation and for upscaling. We consider that understanding of future climate change effects on proglacial systems requires holistic process-based modelling to explicitly consider feedbacks and linkages, especially between hillslope and valley-floor components. Such modelling must be informed by a new generation of repeated distributed topographic surveys to detect and quantify short-term geomorphological changes.

  19. Stream piracy in the Black Hills: A geomorphology lab exercise

    Science.gov (United States)

    Zaprowski, B.J.; Evenson, E.B.; Epstein, J.B.

    2002-01-01

    The Black Hills of South Dakota exhibits many fine examples of stream piracy that are very suitable for teaching geomorphology lab exercises. This lab goes beyond standard topographic map interpretation by using geologic maps, well logs, gravel provenance and other types of data to teach students about stream piracy. Using a step-by-step method in which the lab exercises ramp up in difficulty, students hone their skills in deductive reasoning and data assimilation. The first exercises deal with the identification of stream piracy at a variety of spatial scales and the lab culminates with an exercise on landscape evolution and drainage rearrangement.

  20. Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems

    Science.gov (United States)

    Estrany, Joan; Grimalt, Miquel

    2014-10-01

    Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of

  1. Eco-geomorphological Response of an Estuarine Wetland to Changes in the Hydraulic Regime

    Science.gov (United States)

    Howe, A.; Rodrí Guez, J.

    2006-12-01

    In the Hunter Estuary, NSW, Australia, tidal regimes of numerous wetlands have been affected by extensive anthropomorphic intervention, including harbour dredging, land reclamation, and construction of infrastructure. The importance of these wetlands to ecosystem services such as primary productivity, flood attenuation and water quality enhancement has led to an increased effort to rehabilitate degraded sites by reintroduction of tidal flows. Because of the complex and dynamics interactions among hydraulic regime, vegetation and geomorphology, it is difficult to predict how wetlands will respond to the reintroduction of these flows and whether the resulting habitat distribution will achieve desired management outcomes. Eco-geomorphology research conducted at a rehabilitated wetland comprised of mangrove forest and saltmarsh has tracked the response of estuarine vegetation distribution and wetland geomorphology to reinstatement of tidal flows following removal of impediments in 1995. The wetland is an important site for migratory shorebirds and is highly compartmentalized due to the presence of roads and culverts. Our research methodology integrates historical analysis, field measurements and laboratory experiments. Historical analysis matched vegetation evolution obtained from aerial photography to bird roosting habitat use, which is in decline. Field data collection carried out in the last two years included topographic, vegetation and soil surveys; velocity, water quality and water level profiling; and high precision measurements of substrate shallow subsidence and vertical accretion. Laboratory studies focussed on the effects of estuarine vegetation on flow resistance. All this information has allowed for the characterization and conceptualization of the system, which includes zones with different tidal attenuation levels and vegetation distribution. It was found that an increased tidal frame resulting from hydraulic manipulation lead to a landward shift in

  2. River restoration: separating myths from reality

    Science.gov (United States)

    Friberg, N.; Woodward, G.

    2015-12-01

    River restorations are a social construct where degraded systems are physically modified to obtain a pre-disturbance set of attributes. These can be purely esthetic but are often linked to some kind of biotic recovery or the provision of important ecosystem services such as flood control or self-purification. The social setting of restoration projects, with a range of potential conflicts, significantly reduces scale of most interventions to a size with little room, or wish, for natural processes. We show that projects sizes are still very small and that the restoration target is not to recover natural geomorphic processes but rather to fulfil human perception of what a nice stream looks like. One case from Danish lowland streams, using a space-for-time substitution approach, shows excess use of pebble and gravel when restoring channelized sandy bottom streams, de-coupling the link between energy and substrate characteristics that are found in natural lowland systems. This has implication for both the biological structure and functioning of these systems as a direct link between substrate heterogeneity and macroinvertebrate diversity was not found in restored streams, while the density of grazer increased indicating an increased use of periphyton as a basal resource. Another case of adding woody debris to UK lowland streams, using a BACI study design, showed very little effect on the macroinvertebrate community even after a 100-year flood, which indicate that added tree trunks did not provide additional flow refugia. We suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers.

  3. Role of ground water in geomorphology, geology, and paleoclimate of the Southern High Plains, USA.

    Science.gov (United States)

    Wood, Warren W

    2002-01-01

    Study of ground water in the Southern High Plains is central to an understanding of the geomorphology, deposition of economic minerals, and climate change record in the area. Ground water has controlled the course of the Canadian and Pecos rivers that isolated the Southern High Plains from the Great Plains and has contributed significantly to the continuing retreat of the westward escarpment. Evaporative and dissolution processes are responsible for current plateau topography and the development of the signature 20,000 small playa basins and 40 to 50 large saline lake basins in the area. In conjunction with eolian processes, ground water transport controls the mineralogy of commercially valuable mineral deposits and sets up the distribution of fine efflorescent salts that adversely affect water quality. As the water table rises and retreats, lunette and tufa formation provides valuable paleoclimate data for the Southern High Plains. In all these cases, an understanding of ground water processes contributes valuable information to a broad range of geological topics, well beyond traditional interest in water supply and environmental issues.

  4. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  5. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    Science.gov (United States)

    Ding, R.

    2014-12-01

    analysis of offset strata of the trench, we conform that the middle segment of the fault scarp is made by 1679 earthquake; 4) The fault scarp strikes along with the Ju river at the northeast segment of the Xiadian fault which course the asymmetrical valley geomorphology.

  6. Quantitative Geomorphology: How computers have revolutionized the way we think about landscapes

    Science.gov (United States)

    Braun, Jean; Davy, Philippe; Bonnet, Stéphane; Lundbek Egholm, David; Pelletier, Jon D.; Tucker, Gregory E.

    2015-04-01

    The field of geomorphology has seen a real revolution in the past 30 years in great part due to the development of landscape evolution models (LEMs). These models are based on the solution of a wide variety of equations including the stream power law to represent the incision by channelized flow, the under-capacity model that includes the effect of sediment flux on the stream erosional efficiency, various forms of the diffusion equation to represent the transport of material on hillslopes, and various other equations to represent the flow and erosion of ice, the dissolution of carbonate rocks to form karstic landscapes or eolian transport. The strength of the majority of these models is that they integrate in space and time the effects of processes described at the local scale. Most algorithms use classical methods to solve partial differential equations, like the finite difference, finite element or the finite volume technique; some use more exotic methods such as neural networks, statistical or automaton techniques. In this presentation, I will briefly present the variety of processes that have been simulated using LEMs, the basic equations that are solved as well as the techniques used to compute their solution. In a second step, I will review the principal results that have been obtained using LEMs and how they have influenced the way we now think about landscape evolution and its interactions with tectonics and climate. In particular, I will show how steady-state landforms have been be used to extract information about the underlying tectonics (uplift), I will describe how we think horizontal tectonic advection affects landform evolution and explain how the complex interactions between fluvial, glacial and hillslope processes during the recent glacial cycles are responsible for the formation of most mountainous landscapes. I will then briefly enumerate what are regarded as the main shortcomings of our models and describe some of the on-going developments in

  7. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    Science.gov (United States)

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 debris dams were in the range 103 debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  8. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia

    Science.gov (United States)

    Pereira, S.; Ramos, A. M.; Zêzere, J. L.; Trigo, R. M.; Vaquero, J. M.

    2016-02-01

    According to the DISASTER database the 20-28 December 1909 event was the hydro-geomorphologic event with the highest number of flood and landslide cases that occurred in Portugal in the period 1865-2010 (Zêzere et al., 2014). This event also caused important social impacts over the Spanish territory, especially in the Douro Basin, having triggered the highest floods in more than 100 years at the river's mouth in the city of Oporto. This work has a dual purpose: (i) to characterize the spatial distribution and social impacts of the December 1909 hydro-geomorphologic DISASTER event over Portugal and Spain; (ii) to analyse the meteorological conditions that triggered the event and the spatial distribution of the precipitation anomalies. Social impacts that occurred in Portugal were obtained from the Disaster database (Zêzere et al., 2014) whereas the data collection for Spain was supported by the systematic analysis of Spanish daily newspapers. In addition, the meteorological conditions that triggered the event are analysed using the 20th Century Reanalysis data set from NOAA and precipitation data from Iberian meteorological stations. The Iberian Peninsula was spatially affected during this event along the SW-NE direction spanning from Lisbon, Santarém, Oporto, and Guarda (in Portugal), to Salamanca, Valladolid, Zamora, Orense, León, and Palencia (in Spain). In Iberia, 134 DISASTER cases were recorded (130 flood cases; 4 landslides cases) having caused 89 casualties (57 due to floods and 32 due to landslides) and a further total of 3876 affected people, including fatalities, injured, missing, evacuated, and homeless people. This event was associated with outstanding precipitation registered at Guarda (Portugal) on 22 December 1909 and unusual meteorological conditions characterized by the presence of a deep low-pressure system located over the NW Iberian Peninsula with a stationary frontal system striking the western Iberian Peninsula. The presence of an upper

  9. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    Science.gov (United States)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    The Ohre River springs in the Eastern Germany and it is a tributary of the Labe (Elbe) River in Northwest Bohemia. The river received pollution from several sources during the last five centuries. Most of the pollution sources located along the upper and middle reaches, where the depositional and erosional pattern of the river is highly variable. The upper part of the catchment consists of mainly felsic rocks and the river has a broad floodplain. The middle reach and its right-bank tributaries are deeply incised into the Doupovske Hory Mts., which consists of mafic volcanic rocks; whereas the left-bank tributaries are incised into intrusive and metamorphic rocks of the Krusne Hory Mts. (Ore mountains) with several local ore mines (Ag, Pb and U) in particular in around Olovi and Jachymov. Due to the geologic and geomorphologic complexity, deposition of historical sediments in the middle reach has been spatially limited and uneven, and anomalous background concentrations of risk elements are expected. As a consequence, in the middle reach of the Ohre River it is difficult to find a useful sedimentary archive of historical pollution, though it is desired for two main reasons: (1) to decipher the undocumented and poorly described pollution history from the Krusne Hory Mts. and (2) to better understand the retention of pollutants in the transport zones of a confined river system. Based on historical maps we identified a side-bar (35x320 m) in the middle reach of the river near Straz on Ohre and aimed to describe its formation, its recent erosion/deposition history and to evaluate its sedimentary archive value. In the first half of the 19th century it was an island separated from the valley edge by a side channel. Since then there has been no apparent lateral accretion of the bar (its shape has not been changed), but the upstream part of the side channel aggraded by a sediment plug. We evaluated the current bar topography and geomorphology by a detailed field survey

  10. Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy

    Science.gov (United States)

    Shah, Babar Ali

    2016-09-01

    A groundwater arsenic (As) distribution in Faizabad, Gonda, and Basti districts of Uttar Pradesh is shown in the entrenched channels and floodplains of the Ghaghara River. Tubewell water samples were analysed for As through flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) system. About 38, 61, and 42 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As >10 µg/l (WHO guideline). Moreover, 15, 45, and 26 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As above 50 µg/l. About 86, 69, and 35 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, are from shallow depth (21-45 m), and it is worth noticing that 47 % As-contaminated (As >10 µg/l) tubewells in these three districts are located within the depth of 10-35 m in Holocene Newer Alluvium aquifers. The high content of As (7.11 mg/kg) is measured in suspended river sediments of the Ghaghara River. Most of the As-contaminated villages in the Ghaghara Basin are located close to abandoned or present meander channels and floodplains of the Ghaghara River. In contrast, tubewells in Faizabad, Ayodhya, and Nawabganj towns are As-safe because of their positions on the Pleistocene Older Alluvium upland surfaces. Quaternary geomorphology plays an important role in groundwater arsenic contamination in the Ghaghara Basin. The sources of groundwater arsenic are geogenic and perennial mountainous rivers in the Ghaghara Basin supplied high sediment loads. The arsenic in groundwater of Ghaghara Basin is getting released from associated sediments which were likely deposited from the Himalayas. The process of release of groundwater arsenic is reductive dissolution of iron hydroxides.

  11. Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy

    Science.gov (United States)

    Shah, Babar Ali

    2017-09-01

    A groundwater arsenic (As) distribution in Faizabad, Gonda, and Basti districts of Uttar Pradesh is shown in the entrenched channels and floodplains of the Ghaghara River. Tubewell water samples were analysed for As through flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) system. About 38, 61, and 42 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As >10 µg/l (WHO guideline). Moreover, 15, 45, and 26 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As above 50 µg/l. About 86, 69, and 35 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, are from shallow depth (21-45 m), and it is worth noticing that 47 % As-contaminated (As >10 µg/l) tubewells in these three districts are located within the depth of 10-35 m in Holocene Newer Alluvium aquifers. The high content of As (7.11 mg/kg) is measured in suspended river sediments of the Ghaghara River. Most of the As-contaminated villages in the Ghaghara Basin are located close to abandoned or present meander channels and floodplains of the Ghaghara River. In contrast, tubewells in Faizabad, Ayodhya, and Nawabganj towns are As-safe because of their positions on the Pleistocene Older Alluvium upland surfaces. Quaternary geomorphology plays an important role in groundwater arsenic contamination in the Ghaghara Basin. The sources of groundwater arsenic are geogenic and perennial mountainous rivers in the Ghaghara Basin supplied high sediment loads. The arsenic in groundwater of Ghaghara Basin is getting released from associated sediments which were likely deposited from the Himalayas. The process of release of groundwater arsenic is reductive dissolution of iron hydroxides.

  12. GEOMORPHOLOGICAL MAPPING OF A SAHARAN REGION, THE STILL LANDS NORTH EAST SAHARA

    Directory of Open Access Journals (Sweden)

    Belkacem BOUMARAF

    2016-09-01

    Full Text Available This study is a first in a Saharan region. Following a collaboration between soil scientists and geomorphologists a geomorphological mapping was realized. This work aims to understand the evolution of Saharan soils .The result we obtained demonstrated the presence of five geomorphological soil level. Each level and defined as soil with special chemical, physical and genetic characteristic.

  13. Geomorphological change detection using object-based feature extraction from multi-temporal LIDAR data

    NARCIS (Netherlands)

    Seijmonsbergen, A.C.; Anders, N.S.; Bouten, W.; Feitosa, R.Q.; da Costa, G.A.O.P.; de Almeida, C.M.; Fonseca, L.M.G.; Kux, H.J.H.

    2012-01-01

    Multi-temporal LiDAR DTMs are used for the development and testing of a method for geomorphological change analysis in western Austria. Our test area is located on a mountain slope in the Gargellen Valley in western Austria. Six geomorphological features were mapped by using stratified Object-Based

  14. Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska

    Science.gov (United States)

    McGinnis, R. N.; Dinwiddie, C. L.; Stillman, D.; Bjella, K.; Hooper, D. M.; Grimm, R. E.

    2010-12-01

    Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often warm-climate dune fields devoid of frozen volatiles, but cold-climate dunes offer a better analog for polar dunes on Mars. The cold-climate Great Kobuk Sand Dunes (GKSD) of Kobuk Valley National Park, Alaska, are a high-latitude, slowly migrating analog for polar, inter- and intracrater dune fields on Mars. The 67°N latitude, 62 km2 GKSD consist of moderately well sorted, fine-grained sands deposited within the Kobuk River valley ~50 km north of the Arctic Circle and ~160 km inland from Kotzebue Sound. Winds at the GKSD are influenced significantly by complex surrounding topography, an influence that is similar to many high-latitude inter- and intracrater dune fields on Mars. Average annual temperature and precipitation at the GKSD are -5°C and 430 mm. The dune field is generally resistant to atmospheric forcing (wind) for a significant portion of the year because of snowcover, similar to the effect that seasonal CO2 and H2O frost mantling have on Martian polar dunes. The dune field, which ranges in elevation from 33 to 170 m above mean sea level, consists of sand sheets as well as climbing and reversing barchanoid, transverse, longitudinal, and star dunes. Several tributaries to the Kobuk River bound and dissect the GKSD, producing cutbank exposures and alcoves that reveal internal structure. We report results from our detailed geophysical and geomorphological site characterization field study, which was conducted near peak freeze conditions from March 15 through April 2, 2010. We used multifrequency ground-penetrating radar (25, 50, 100, 250, 500, 1000 MHz) and capacitively coupled resistivity methods to image the internal structure of representative dunes, and performed ground truthing using a sampling auger, natural exposures, and Real-Time Kinematic Differential GPS. Data from twenty

  15. On geo-basis of river regulation-A case study for the middle reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    LIU GuoWei

    2008-01-01

    From the point of view that people have to obey the river's geo-attributes in the river regulation,the definition and the meaning of the geo-attributes of a river are discussed.The geo-basis of the river regulation of the middle reaches of the Yangtze River is expounded in five aspects,including the structural geomorphol-ogy environment of flood storage and discharge,the distribution characteristics of subsidence and the sedimentation areas of Dongting Basin,the history evolution of Jianghan Basin,the function of Jianghan Basin and Dongting Basin as the flood water detention areas of Jingjiang River reach in ancient time,and the geological characteristic of Jingjiang River reach.Based on the geo-attributes of the middle reaches of the Yangtze River,some ideas about the middle reach regulation of the Yangtze River are put forward:to process the interchange between the lakes and diked marsh areas in Dongting Basin,to canal the new river route as the flood di-version channel of Jingjiang River reach with the paleo river,to recover the func-tion of Jianghan Basin as flood detention area of the middle reaches.And we should take into consideration the geo-environment of the whole Yangtze River in the river regulation of middle reaches.

  16. High-resolution topography and geomorphology of select archeological sites in Glen Canyon National Recreation Area, Arizona

    Science.gov (United States)

    Collins, Brian D.; Corbett, Skye C.; Sankey, Joel B.; Fairley, Helen C.

    2014-01-01

    Along the Colorado River corridor between Glen Canyon Dam and Lees Ferry, Arizona, located some 25 km downstream from the dam, archaeological sites dating from 8,000 years before present through the modern era are located within and on top of fluvial and alluvial terraces of the prehistorically undammed river. These terraces are known to have undergone significant erosion and retreat since emplacement of Glen Canyon Dam in 1963. Land managers and policy makers associated with managing the flow of the Colorado River are interested in understanding how the operations of Glen Canyon Dam have affected the archeological sites associated with these terraces and how dam-controlled flows currently interact with other landscape-shaping processes. In 2012, the U.S. Geological Survey initiated a research project in Glen Canyon to study the types and causes of erosion of the terraces. This report provides the first step towards this understanding by presenting comparative analyses on several types of high-resolution topographic data (airborne lidar, terrestrial lidar, and airborne photogrammetry) that can be used in the future to document and analyze changes to terrace-based archaeological sites. Herein, we present topographic and geomorphologic data of four archaeological sites within a 14 km segment of Glen Canyon using each of the three data sources. In addition to comparing each method’s suitability for adequately representing the topography of the sites, we also analyze the data within each site’s context and describe the geomorphological processes responsible for erosion. Our results show that each method has its own strengths and weaknesses, and that terrestrial and airborne lidar are essentially interchangeable for many important topographic characterization and monitoring purposes. However, whereas terrestrial lidar provides enhanced capacity for feature recognition and gully morphology delineation, airborne methods (whether by way of laser or optical sensors) are

  17. Geomorphological implications of engineering bed sediments by lotic animals

    Science.gov (United States)

    Statzner, Bernhard

    2012-07-01

    Recent developments in zoogeomorphology in combination with the increasing interest of ecologists in ecosystem engineering by organisms initiated considerable research on the impact of running water (i.e., lotic) animals (and other organisms) on fluvial bed sediments and the transport of solids. This research provided multiple evidence from field and laboratory observations and experiments that many species among mammals, amphibians, fish, insects, crustaceans, mollusks, and worms engineer bed sediments of running waters with diverse mechanistic "tools", thereby perturbing or consolidating the sediments in many types of running waters across continents, seasons, habitat types, particle sizes, and discharge levels (baseflow vs. flood). Furthermore, many animals modify the bed-sediment engineering by plants (algae, larger macrophytes, riparian vegetation). Modeling effects of bioturbating lotic animals across species and relatively simple environmental conditions (in mesocosms) provided highly significant results (P-range: abundance in combination with physical variables, such as baseflow shear stress or gravel size, explained between ~ 70 and ~ 90% of the variability in sediment responses such as the overall baseflow sediment transport and, as a result of the baseflow sediment-surface engineering by the animals, the flood-induced gravel or sand transport. Confronting these seemingly encouraging experimental results with real world conditions, however, illustrates considerable problems to unravel the complexity of biotic and physical factors that vary temporally and interfere/interact non-linearly in a patchy pattern in small parts of real river beds, where baseflow bed-sediment engineering by lotic animals prevents or fosters mass erosion during subsequent floods. Despite these complications, these problems must be solved, as bioturbators such as crayfish and bioconsolidators such as silk-spinning caddisflies may locally modify (i) rates of transport of fluvial

  18. Geomorphological inventory of rock landforms on Mt. Kamenec in the Novohradské hory Mts. (the Czech Republic)

    OpenAIRE

    Rypl, J.; Kirchner, K. (Karel); Dvořáčková, S.

    2014-01-01

    This paper deals with the cryogenic granite landforms on Mt. Kamenec (1 072 m a.s.l.) located in the Novohradské hory Mts (southern Bohemia). Detailed geomorphological distribution and description of cryogenic landforms were obtained with using detailed geomorphological mapping. On the basis of field research the geomorphological map of the study locality was elaborated. Using of geomorphological inventory enabled the evaluation of landforms in study area and providing of proposal for nature ...

  19. sUAS and their application in observing geomorphological processes

    Science.gov (United States)

    Gallik, Jozef; Bolešová, Lenka

    2016-07-01

    Methodologies and procedures in processing gained data vary based on possibilities and needs of scientific projects. This paper should help to get a general overview in the choice of small unmanned aircraft systems (sUAS - commonly known as drones) for scientific purposes, namely remote sensing of geomorphologic processes such as soil degradation in high mountainous areas that are hard to access and have unfavourable weather conditions. All high mountain areas in European countries are legislatively protected, and so various permissions and observation of strict procedures are needed in order to not have a negative influence on the environment. Nowadays, several types of UAS exist that could effectively help us in such protection, as well as in full-fledged utilization when answering scientific questions about the alpine lake genesis. We demonstrate it here with selected examples of our photo documentation.

  20. Geomorphological facies reconstruction of Late Quaternary alluvia by the application of fluvial architecture concepts

    Science.gov (United States)

    Houben, Peter

    2007-04-01

    .g., the sharpness of channel element geometry and the underlying ordering of bounding surfaces. Moreover, it is shown that the analytical process resembles an iterative looping process that is led by deduction. Many geomorphologists and multi-disciplinary floodplain researchers collect sedimentary data but still neglect utilizing the potential of architectural analysis. The study makes clear that sedimentological approaches used in 'big river' floodplains also apply to small valleys; in fact, the procedures for facies reconstruction need to be adjusted to each individual case study. Alluvial architecture analysis provides the tools to reveal interconnectedness (or disconnectedness) of channel, near-channel, and overbank fluvial landforms, which is essential for a geomorphological understanding of floodplain evolution.

  1. Rainfall event profiles: importance in ecohydrology, geomorphology, and soil management

    Science.gov (United States)

    Dunkerley, D.

    2012-04-01

    The importance of the temporal structure of rainfall events is widely, but not universally, recognised. In agricultural research, the role of event structure has been quite well explored (e.g. in relation to leachates from manure, or in agrochemical washoff). However, in dryland hydrology, and in soil erosion research, much less attention has been paid to the role of aspects such as intensity variations or rain intermittency. Moreover, changes in rainfall event profiles form a little-explored aspect of ongoing climatic change, but one that may have great significance in ecohydrology and in geomorphology. The importance of rain event structure is clearly demonstrated from rainfall simulation experiments on dryland soils in arid NSW Australia. A series of small plot experiments using drop-forming rainfall simulation was established in order to explore the effects of varying event profiles on infiltration and the generation of runoff. Experiments all had the same rain event duration, the same mean rain rate, and the same total event depth. However, event profile, including peak intensity, and intermittency, were varied by using computer-controlled pumps. The rain rates and event profiles were designed to mimic the character of natural rainfall events in the study area. Results show that events with uniform rainfall rates, as widely used in rainfall simulations in soil erosion research and in hydrology, yield the highest apparent soil infiltrability and the least runoff volume. Events with peak intensity late in the event, when soils are already wet, yield the lowest apparent infiltrability and the highest runoff volume, as well as the highest runoff intensity. These results need to be confirmed for other soil types, but suggest that event profile is an important determinant of soil hydraulic behaviour that warrants increased attention in many fields, including ecohydrology, geomorphology, and soil management.

  2. The Mattole River Estuary: Restoration Efforts in a Dynamic System

    Science.gov (United States)

    Barber, D.; Liquori, M.

    2010-12-01

    Despite extensive scientific advancement integrating our understanding of hydrology, geomorphology, and ecology in recent decades, the application of restoration in the field has been slow to evolve. This presentation will highlight 20 years of restoration practices in the Mattole River Estuary and how these practices have informed our understanding of this complex system. The Mattole River Watershed is a 304 square-mile basin located near the Mendocino Triple Junction in a remote region of California known as the “The Lost Coast” for its rugged mountains and undeveloped coastline. In addition to numerous species of fish, mammals, and over 250 bird species, the Mattole Watershed is home to three Federally-listed Threatened salmonids: California Coastal Chinook salmon, Southern Oregon/Northern California Coasts coho salmon, and Northern California steelhead trout. The 64 mile-long river meets the Pacific Ocean at the northern end of the 64,000 acre King Range National Conservation Area (KRNCA), managed by the Bureau of Land Management (BLM). The watershed is dynamic, with some of the nation’s highest annual rainfall (mean = 158 cm/yr), naturally occurring steep slopes, erosive sedimentary geology, and frequent earthquakes. All of these factors have amplified the negative effects of extensive logging and associated road building between 1945 and 1970, which left a legacy of increased sediment loads and high water temperatures that have yet to recover to pre-disturbance levels, severely impairing riparian and aquatic habitats. Prior to major land disturbances, the Mattole estuary/lagoon was notable for its deep, thermally-stratified pools and numerous functioning north and south bank slough channels that flushed sediments from the river and received marine water. As flows decline in late spring, a sandbar closes off surface flow from the river to the Pacific Ocean, forming a lagoon, which persists until flows increase in the fall. Today, the estuary is poor

  3. Interaction between rivers and bridges in Tuscany (Italy)

    Science.gov (United States)

    Tartaglia, V.; Caporali, E.

    2003-04-01

    The natural adjustment phenomena of the rivers next to the crossing infrastructures, often due to the interaction with the structures themselves, cause damage risk conditions for a high number of structures. About 30 railway bridge sites in Tuscany, interested in the last 30 years by river bed instability, have been monitored. A standardized Bridge Site Inspection Form have been defined and used for the inspections to ensure data reliability and a computer-aided system for data collection have been developed. The system is composed by two components: (1) a GIS that contain the hydrological and geomorphological data layers; (2) a DBMS on which the geomorphological characteristics of the sites and the geometrical and structural characteristics of the bridges are stored with a relational structure. The observed damage mechanisms suggest to schematise the bridge-river interaction as the sum of two instability processes: (a) the lateral instability, when long term evolution of the stream or localized collapse phenomena of the banks can undermine the lateral bridge structures not meant to be exposed to flow (piers whit shallow foundation in the floodplain, long abutments, etc.); (b) vertical instability processes, when the river bed level degradation given by the sum of geomorphological phenomena at the basin scale (general scour) and at the site scale (contraction scour and local scour) can undermine the bridge foundations. To express synthetically the damage risk of bridges, due to instability phenomena of their crossed rivers, the use of a Risk Index is here proposed. The RI is calculated with a semi-qualitative method derived from the geomorphological observations and from the calculated values of some hydraulic variables, obtained by the regional frequency analysis of flood in Tuscany. The RI allows, even in lack of foundation depth data, to individuate the critical sites and to rank them for protection planning. Besides a threshold value of the Risk Index has been

  4. The geomorphology of Patagonian ice dammed lake basins: Insights from remote sensing of a modern lake and reconstruction of a Late Quaternary lake drainage event

    Science.gov (United States)

    Thorndycraft, Varyl

    2016-04-01

    The geomorphology of ice dammed lake basins can be complex due to geomorphic responses to multiple base level changes from repeated filling and emptying, as well as the potential for catastrophic drainage events. Refining landscape models of Quaternary ice dammed palaeolake systems has the potential to improve our understanding of glacier and meltwater dynamics during deglaciation phases. In this poster two case studies are presented to shed light on the range of geomorphic processes exhibited within ice dammed lake basins. Using Google Earth Pro and repeat LANDSAT imagery the geomorphology resulting from multiple base level changes of an ice dammed lake of the Viedma Glacier (Southern Patagonia Icefield) is presented. The LANDSAT imagery shows transgressive lake phases inundating already formed delta and terrace surfaces, whilst the high resolution Google Earth Pro images reveal a complex suite of incised terrace levels developed on the valley floor following lake drainage events. Secondly, the impact of catastrophic drainage of the Late Pleistocene Palaeolake Cochrane (Northern Patagonia Icefield) is investigated through geomorphological mapping. Here an outburst flood and rapid lowering of the lake has led to large scale eddy scouring of glacio-lacustrine sediments, with scarp slopes of ca. 30-40 m in height, and the formation of boulder bars during the final stages of lake fall. The implications of the mapping for interpretations of Late Quaternary palaeolake sediment-landform assemblages and rates of landscape change are discussed.

  5. On geo-basis of river regulation——A case study for the middle reaches of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    From the point of view that people have to obey the river’s geo-attributes in the river regulation, the definition and the meaning of the geo-attributes of a river are discussed. The geo-basis of the river regulation of the middle reaches of the Yangtze River is expounded in five aspects, including the structural geomorphology environment of flood storage and discharge, the distribution characteristics of subsidence and the sedimentation areas of Dongting Basin, the history evolution of Jianghan Basin, the function of Jianghan Basin and Dongting Basin as the flood water detention areas of Jingjiang River reach in ancient time, and the geological characteristic of Jingjiang River reach. Based on the geo-attributes of the middle reaches of the Yangtze River, some ideas about the middle reach regulation of the Yangtze River are put forward: to process the interchange between the lakes and diked marsh areas in Dongting Basin, to canal the new river route as the flood diversion channel of Jingjiang River reach with the paleo river, to recover the function of Jianghan Basin as flood detention area of the middle reaches. And we should take into consideration the geo-environment of the whole Yangtze River in the river regulation of middle reaches.

  6. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  7. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    Science.gov (United States)

    Hochella, M.F.; Moore, J.N.; Putnis, C.V.; Putnis, A.; Kasama, T.; Eberl, D.D.

    2005-01-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems. Copyright ?? 2005 Elsevier Ltd.

  8. Geomorphological map and preliminary analysis of Quaternary sediments in the Planica-Tamar valley (Julian Alps, NW Slovenia)

    Science.gov (United States)

    Novak, Andrej; Šmuc, Andrej

    2016-04-01

    The Planica-Tamar valley is located in the Julian Alps in north-west Slovenia. The Planica-Tamar valley represents typical mountain glacial valley bounded by steep, mainly carbonate cliffs with some glacial deposits still preserved. The valley is currently being filled with numerous Holocene sediments deposited by rock falls, landslides, mass gravity flows and fluvial flows. These deposits are forming active or inactive interfingering talus slopes, alluvial and debris-flow fans, all of them with a complex history of sedimentation and erosion forming unconformity bounded sedimentary units. In order to make a thorough analysis of these deposits a detailed geomorphological map in a scale of 1:10 000 has been made. Six different types of sedimentary deposits were defined and mapped. These are moraines, lacustrine sediments, fluvio-glacial deposits, talus slopes, debris fans and alluvial fans. Other mapped features also include shape of ravines, their depths, ridges and direction of sedimentary flow. Additionally areas of active, semi-active and inactive sedimentation were marked. Moraines forms a ridge in the bottom of the valleys and are composed of unconsolidated, poorly sorted, subangular grains ranging from clay size to a few cubic meters big blocks. Lacustrine sediments are represented by laminated well sorted sand and silt, while fluvio-glacial deposits are composed of washed out subrounded sands and gravels. Talus slope deposits are characterised by clast-supported poorly sorted very angular gravel. Debris flow fans are represented by extremely poorly sorted matrix-supported gravels with grain size ranging from clay to few cubic meters big blocks. Alluvial fans are composed by variety of sedimentary textures. Sediments at the fan apex are clast-supported poorly sorted very angular gravels with up to a few cubic meters big block. In the middle part of the fan the sieve deposits are common, while in the distal parts a few centimeters thick layers of sand and

  9. Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change

    Directory of Open Access Journals (Sweden)

    J. D. Phillips

    2006-04-01

    Full Text Available Geomorphic systems are typically nonlinear, owing largely to their threshold-dominated nature (but due to other factors as well. Nonlinear geomorphic systems may exhibit complex behaviors not possible in linear systems, including dynamical instability and deterministic chaos. The latter are common in geomorphology, indicating that small, short-lived changes may produce disproportionately large and long-lived results; that evidence of geomorphic change may not reflect proportionally large external forcings; and that geomorphic systems may have multiple potential response trajectories or modes of adjustment to change. Instability and chaos do not preclude predictability, but do modify the context of predictability. The presence of chaotic dynamics inhibits or excludes some forms of predicability and prediction techniques, but does not preclude, and enables, others. These dynamics also make spatial and historical contingency inevitable: geography and history matter. Geomorphic systems are thus governed by a combination of ''global'' laws, generalizations and relationships that are largely (if not wholly independent of time and place, and ''local'' place and/or time-contingent factors. The more factors incorporated in the representation of any geomorphic system, the more singular the results or description are. Generalization is enhanced by reducing rather than increasing the number of factors considered. Prediction of geomorphic responses calls for a recursive approach whereby global laws and local contingencies are used to constrain each other. More specifically a methodology whereby local details are embedded within simple but more highly general phenomenological models is advocated. As landscapes and landforms change in response to climate and other forcings, it cannot be assumed that geomorphic systems progress along any particular pathway. Geomorphic systems are evolutionary in the sense of being path

  10. Historic (1940 to present) changes in Lillooet River planform (BC, Canada)

    Science.gov (United States)

    Zei, Caterina

    2017-04-01

    Historic (1940 to present) changes in Lillooet River planform (BC, Canada) Zei C.*, Giardino M.*, Perotti L.*, Roberti G.***, **Ward B.C.**, Clague J.J.** *Department of Earth Sciences, Geositlab, Università degli Studi di Torino, Torino, Italia; **Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada ***Université Blaise Pascal - Laboratoire Magmas et Volcans Clermont-Ferrand, France We conducted a geomorphological study of changes in the planform of Lillooet River (Coast Mountain, British Columbia, Canada) over the past 75 years. The study involved identification and interpretations of channel changes in the reach of the river between Mount Meager (the source of the landslide) and Pemberton Meadows. Lillooet River flows about 95 km southeast from its headwaters at Lillooet Glacier to Lillooet Lake near Pemberton, the largest community in the valley. Between the mouth of Meager Creek and Pemberton Meadows, the river is unregulated and has a braided planform resulting from the very high delivery of sediment due to frequent landslides and debris flows sourced on the Mount Meager volcanic complex. Below Pemberton Meadows, the river occupies a single channel confined between dikes. A rich archive of historical vertical aerial photographs exists for the study area, In addition, a high-resolution digital elevation model was produced from LiDAR data acquired in 2015. We processed each set of photos dating back to 1940 with the software Agisoft Photoscan to produce high resolution orthophotos. Analysis of these datasets, complemented with field investigation, showed that the river channel in the braided reach shifted laterally up to 550 m between 1981 and 2010; likely caused in part by five floods with peak discharges of more than 800 m^3/s and four landslides on the flanks of Mount Meager massif with volumes up to 13 x 106 m^3. Channel avulsions were probably triggered by accumulation of in-channel rafts of coarse woody debris and are

  11. Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River

    Science.gov (United States)

    Milde, Amanda S.; Richardson, William B.; Strauss, Eric A.; Larson, James H.; Vallazza, Jon; Knights, Brent C.

    2017-01-01

    Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (i) How do suspended particle characteristics (e.g. size and morphology) vary temporally and spatially? and (ii) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the Upper Mississippi River. A FlowCAM® (Flow Cytometer and Microscope) particle imaging system was used to enumerate and measure particles 53–300 μm in diameter for size and shape characteristics (e.g. volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3−) and soluble reactive phosphorus. Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorus were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients), which drive suspended particle dynamics in large rivers.

  12. The Quaternary N-Apennine tectonics recorded in the Po Basin: stratigraphic and geomorphological evidences along a N-S traverse in Lombardy (Italy)

    Science.gov (United States)

    Bersezio, Riccardo; Zuffetti, Chiara; Cavalli, Emmanuele; Baio, Mariangelo; Cantone, Martino; Inzoli, Silvia; Mele, Mauro; Pavia, Fabrizio; Rigato, Valentina; Rusnighi, Yuri; Rodondi, Cecilia; Sozzi, Samuele

    2016-04-01

    The stratigraphy and geomorphology of the Quaternary Po Basin fill record the tectonic evolution of the foreland shared by Apennine and Alpine mountain ranges. The study of N-S, 3-D cross-sections, orthogonal to the average axial strike of the basin, permits to investigate the interplay between the tectonics of the Apennine fold and thrust belt (the Quaternary southern active range of the basin) and the glacial-related dynamics along the Alpine side (the northern main source of sediments), that drove the evolution of the depositional systems and landscapes of the interposed basin. Here we present a 25-50 Km wide, 3-D cross-section that parallels the Adda river course, connecting the Southern Alps foothills with the northernmost relieves of the Apennines, close to the present-day Po river. The GIS-based work integrates surface geology (1:10.000 mapping) with subsurface correlation of about 1000 borehole data points (20 to >1000 m deep, most ranging between 100-200 m b.g.s.) and geophysical surveys (VES, ERGI, GPR; about 200 data points, maximum investigation depth of about 300 m b.g.s.). Some radiocarbon and OSL age determinations, integrated by micropaleontological and petrographic analyses, brought additional constraints to the available stratigraphic calibration of the tectono-sedimentary evolution. The first release of the 3-D architectural model yields some suggestions: 1) In the Early Pleistocene, the northward propagation of the Apennine blind thrusts shaped the southern and central parts of the basin in a complex pattern of fault-propagation folds and intervening depocentres. The contemporary bulging of the northern Alpine side induced the progressive southward entrenchment and filling of alluvial valleys into the Plio-Pleistocene shallow marine units. A terraced landscape was confined to this northernmost part of the basin. In the depocentre, the coarse-grained depositional systems, fed by the Southern Alps, interfingered with the sands delivered by the

  13. Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain. [Tennessee River Valley

    Science.gov (United States)

    Koepf, D.; Frost, W.

    1981-01-01

    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.

  14. Hydrological and geomorphological controls on a mangrove forest maintenance during the dry season in the Pacific Coast of Nicaragua

    Science.gov (United States)

    Calderon, Heyddy; Weeda, Ruben; Uhlenbrook, Stefan

    2014-05-01

    Hydrological and geomorphological processes are key to mangrove forest growth and development. However, very few studies have been carried out in Central American mangroves to understand their hydrological functioning. Here, a small mangrove forest (0.2 km2) in the South Pacific coast of Nicaragua was investigated to determine sources of freshwater inputs and fluxes of water and nutrients to the sea during the dry season. The general groundwater flow direction is from NE to SW towards the sea. The aquifer is composed of clay and alluvial deposits overlying a fractured shale unit. Shallow groundwater is influenced by a nearby town through infiltration of grey water and pit latrines. Groundwater from the mangrove showed Mn2+ and Fe2+ presence indicating occurrence of denitrification and the role of the mangrove as a nutrient sink. Also, refreshening and salinization processes were identified near the river, indicated by different water facies. Freshwater inputs from precipitation and groundwater discharge maintain adequate salt gradients. The water balance showed an increase of around 619 m3 d-1 in storage during a 22 study period during the dry season, which is reflected by increased hydraulic heads and river stage. Water storage is fostered by low conductivity soil materials and beach ridges parallel to the coast line, whereby the latter occassionally breach due to overtopping of surface water. These conditions favor forest subsistence during the dry season, allowing the mangrove to continue to provide ecological and economic benefits in terms of protection against flooding, habitat for numerous species and tourist attraction.

  15. Geomorphological evidences of post-LGM glacial advancements in the Himalaya: A study from Chorabari Glacier, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    Manish Mehta; Zahid Majeed; D P Dobhal; Pradeep Srivastava

    2012-02-01

    Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating from the Mandakini river valley of the Garhwal Himalaya enabled identification of four major glacial events; Rambara Glacial Stage (RGS) (13 ± 2 ka), Ghindurpani Glacial Stage (GhGS) (9 ± 1 ka), Garuriya Glacial Stage (GGS) (7 ± 1 ka) and Kedarnath Glacial Stage (KGS) (5 ± 1 ka). RGS was the most extensive glaciation extending for ∼6 km down the valley from the present day snout and lowered to an altitude of 2800 m asl at Rambara covering around ∼31 km2 area of the Mandakini river valley. Compared to this, the other three glaciations (viz., GhGS, GGS and KGS) were of lower magnitudes terminating around ∼3000, ∼3300 and ∼3500 m asl, respectively. It was also observed that the mean equilibrium line altitude (ELA) during RGS was lowered to 4747 m asl compared to the present level of 5120 m asl. This implies an ELA depression of ∼373 m during the RGS which would correspond to a lowering of ∼2°C summer temperature during the RGS. The results are comparable to that of the adjacent western and central Himalaya implying a common forcing factor that we attribute to the insolation-driven monsoon precipitation in the western and central Himalaya.

  16. Hidden gully erosion - detection and characterization of piping systems using geomorphological and geophysical methods (GPR, ERT)

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-04-01

    The significance of piping in gully formation and hillslope hydrology has been discussed for many years. However, piping as a subsurface erosion caused by water flowing through the soil is still considered as one of the most difficult erosion processes to study, because it occurs below the soil surface and traces of piping become visible on the surface only when a pipe roof collapses, or a pipe inlet or a pipe outlet has been located. Detection of pipes and their complex characterization is still a methodological challenge. Therefore, this study aims at a better detection and characterization of piping systems in a mountainous area under a temperate climate using geomorphological mapping and geophysical methods (ground penetrating radar and electrical resistivity tomography). The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mts. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a depth ranging from ca 0.70 to 1.00 m. The geomorphological mapping was carried out in the in the whole catchment (2.96 km2), whereas the geophysical survey was limited to two zones (zone A - ca 32 x 82 m, zone B - ca 58 x 115 m). In this study a standard RAMAC GPR system (Malå GeoScience) with shielded 500 MHz antenna was used. The electrical resistivity tomography (ERT) was performed using electrical imaging system LUND with Terrameter SAS 4000 produced by company ABEM. The ERT and GPR data were interpreted in the RES2DINV (Geotomo Software) and RadExplorer software (DECO Geophysical Ltd) respectively. In total, 3 longitudinal and 26 transverse GPR profiles and five ERTs were performed. The used geophysical techniques are shown to be successful in identifying pipes tested in the pilot catchment. Pipes identified by GPR and ERT were verified by the surface indicators (i.e. lowering of surface above pipes). The GPR and ERT applications suggest that piping systems density is much greater than could be detected from surface observation alone

  17. Relationships of vascular epiphytes with environmental factors along the Tibagi River forests, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Annete Bonnet

    2010-09-01

    Full Text Available The aim of this work was to evaluate the relationships of vascular epiphyte richness with climatic, geomorphologic, pedologic and forest structural factors, that change along the Tibagi River. The floristic turnover of the 188 registered species was high, indicating the singularity and importance of the communities to the conservation of epiphytes in the river basin. The similarity was greater between geographically closer areas, which made possible the creation of three groups of epiphytic communities distributed along the river. The greatest richness of epiphytes was registered in the medium Tibagi, where the phytogeographic units are in liaison and the forests present the best conservation status. The increase of epiphytic richness is only significantly and positively related to the maximal diameter of trees, an important environmental factor of the enlargement of alpha diversity. The beta diversity results, probably, from environmental heterogeneity which is principally represented by distinctive geomorphologic patterns and climatic conditions between study areas and different environmental regions of the river.

  18. Modelling changes in the coastal geomorphology of Unst, Shetland and the implications for understanding High to Late Medieval harbour changes in the Norse North Atlantic

    Science.gov (United States)

    Preston, John; Dugmore, Andrew; Newton, Anthony; Mudd, Simon

    2016-04-01

    The Norse settlement of the North Atlantic islands relied upon a network of harbours that also played a key role in the development of North European economies through the late Middle Ages. However, many of these harbours fell into disuse, their locations are uncertain and the reasons for this are unclear. A crucial geomorphological characteristic of a successful harbour is structural equilibrium. A harbour must have physical stability (or a dynamic equilibrium in the case of a beach) for boats to use it safely season to season, year on year. In the absence of a major civil engineering effort, something that was not possible in the pre-modern Atlantic islands, the geomorphology of a harbour is a key indicator of its physical equilibrium (or otherwise). Should the harbour be located on a changeable coastline (or one that becomes changeable) it may become unviable. Conversely, a harbour may be located on a coastline stable over centennial timescales, where little geomorphological change occurs, infrastructure can endure and many aspects of the physical environment remain predictable. The geomorphological setting of Norse harbours in the Atlantic is variable, with contrasting landform stability over short, medium and long time scales. We assess geomorphological change on the island of Unst, the most northerly of the British Isles, a coastline used by the Norse as well as earlier and later societies. This island offers a complex coastline of deep fjords and arcuate embayments and thus significant differences in forces acting upon the coastline. There is also evidence for instability in the beaches used by the Norse that could have been driven by the changes in climate conditions from the Medieval Climatic Anomaly to the Little Age and the present day. We model coastlines using the sediment dynamics model MIKE21. Model results agree well with the location of extant sandy beaches on Unst, but model runs with modern environmental drivers also build sandy beaches where

  19. The Inter-city Rail Transit Planning Scheme for Jiangsu Cities Complex along Yangtze River%江苏省沿江城市群城际轨道交通线网规划方案研究

    Institute of Scientific and Technical Information of China (English)

    邓振林

    2012-01-01

    城际轨道交通的规划建设是城市群发展的必然要求,江苏沿江城市群是我国城市化进程过程中重点发展的区域。根据沿江地区城市群的特征,把沿江地区城际轨道交通线网分为主骨架城际网和都市圈城际网两个层次进行规划,重点研究沿江地区都市圈内部中心城市之间以及中心城市与中小城市之间的城际轨道交通通勤线网。%Plan and construction of intercity rail transit is an inevitable demand for the development of urban complexes to meet the requirements of increasing demand of passengers and freight traffic.Jiangsu cities complex along Yangtze River is a key concern during the process of China’s urbanization process.Based on the economic characteristics of cities complex along Yangtze River,the urban rain transit network planning along Yangtze River is classified into two levels: backbone inter-city network and metropolitan area inter-city network,key research is carried out on the intercity rail way network among the center cities and between the central city and medium and small city of the metropolitan area along Yangtze River.This paper is designed to put forward a more reasonable network planning of inter-city rail transit for Jiangsu cities complex along Yangtze River,but also provides some reference for the inter-city rail transit network planning of other urban agglomerations,which has a positive theoretical and practical significance.

  20. Archaeology and Geomorphology of Red Oak Ridge Island, Navigation Pool 7, Upper Mississippi River Valley.

    Science.gov (United States)

    1986-02-01

    Stevenson 1980, Gallagher Rodell and Stevenson 1982, and Sasso 1984) have contributed to a better under- • .standing of late prehistoric Oneota...surface and losses of eluvial humus down through the profile (Bockheim 1980, Buol, Hole, * and McCracken 1980: 13). Parsons, Scholtes, and Riecken i (1962...minor silt (loamy sand) v. weak .0 med. subangular blocky structure breaking to single grain, friable ,"s 1.0 e 95 mois translocated humus down root

  1. Geomorphologic proxies for bedrock rivers: A case study from the Rwenzori Mountains, East African Rift system

    Science.gov (United States)

    Xue, Liang; Gani, Nahid D.; Abdelsalam, Mohamed G.

    2017-05-01

    Geomorphic proxies yield useful insights into understanding long-term endogenic and exogenic response to erosion and/or rock uplift rates. By evaluating areal proxies (including asymmetry factor (AF), mountain front sinuosity (Smf), hypsometric integral (HI), geophysical relief, and shape factor (Shp), and linear proxies (including normalized steepness index (ksn), length-gradient index (SLk) and Chi gradient (Mχ), the erosion and/or rock uplift rates can be quantified. We carried out morphotectonic analysis in the Rwenzori Mountains, which represents an anomalously uplifted Precambrian horst within the western branch of the East African Rift system (EARS). This study aims to: (1) evaluate the relationship between geomorphic proxies and drainage basin's maturity; (2) evaluate the usefulness of geomorphic proxies as recorders of erosion and/or rock uplift rates; (3) evaluate the sensitivity of each geomorphic proxy to the drainage basin size and geometry, stream order, glaciers extent, and local structures; (4) explore internal correlation within the geomorphic proxies; and (5) contribute to the understanding of morphotectonic evolution of the Rwenzori Mountains. For this, we computed the stream's 'Good of Fitness' (R2, an indicator of the drainage basin's maturity) and geomorphic proxies for the drainage basins and their streams in the Rwenzori Mountains from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Subsequently, we correlated the areal geomorphic proxies with each other and with R2. Also, we correlated the linear geomorphic proxies with each other and with published erosion rates obtained from cosmogenic 10Be analysis. Our results show that the areal geomorphic proxies (AF, Smf, HI, relief, and Shp) - considering the drainage basin size and geometry, stream order, glacier extent, and local structures - can be applied to locally evaluate the maturity of the drainage basin. We also found that the linear geomorphic proxies (ksn, SLk, and Mχ) have strong positive correlation with the erosion rates, they are effective in detecting fault activities, and some of them (ksn and Mχ) are highly correlated with each other. Additionally, our geomorphic proxy results suggest that the north and south sectors of the Rwenzori Mountains are in relative tectonic quiescence but that the central sector is experiencing higher levels of erosion and rock uplift.

  2. The segetal flora of the Bug river geomorphological territories in Podlasie region

    Directory of Open Access Journals (Sweden)

    Janina Skrzyczyńska

    2013-12-01

    Full Text Available Studies on segetal flora of the „Podlaski Przełom Bugu'' Landscape Park were carried out between 1994 and 1998 on the area of 110 localities situated in 16 communes. The list of segetal flora of the area under study and its differentiation as to occurrence frequency, origin of species, persistence of species and biological spectrum is presented in the paper. The segetal flora of the ,,Podlaski Przełom Bugu'' Landscape Park is composed of 346 taxa belonging to 39 families and 193 genera. The dominant group are species occurring very rare, rare and fairly rare. In analyzed flora apophytes prevail (65,3 % over antropophytes (34,7 % and annual and biennial species (56,4 % over perennial species (43,6 %. As to biological spectrum of the studied flora - 52,5 % of total number of species are terophytes, 52,3 % hemicryptophytes and 11,0 % geophytes. 39 species threatened extinction in Poland were found in agrocenosis of "Podlaski Przełom Bugu'' Landscape Park. Some of them occur frequently or commonly in the studied area, others are rare in cultivation and most frequently occur in adjacent natural communities. Among segetal flora of the studied mesoregion 7 species are actually endangered extinction: Valerianella dentata, Melampyrum arvense, Polycnemum arvense, Herniaria hirsuta, Camelina sativa, Stachys annua, Spergula arvensis subsp. maxima.

  3. Use of the catena principle in geomorphological impact assessment: a functional approach

    NARCIS (Netherlands)

    Wolfert, H.P.

    1995-01-01

    An integral method for assessing geomorphological landscape qualities is presented, to be used in environmental impact assessments. Five groups of landform functions are distinguished in the Netherlands, an area of low relief: orientation functions, information functions, ordering functions,

  4. Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are a qualitatively derived interpretive polygon shapefile defining surficial sediment type and distribution, and geomorphology, for nearly 1,400 square...

  5. Geomorphological evolution of volcanic fluvial channels: Eighteen years of morphological monitoring of the upper strect of the Tenenepanco Gorge, Popocatépetl volcano, Mexico

    Science.gov (United States)

    Tanarro, Luis Miguel; Juan Zamorano, Jose; Andres, Nuria; Palacios, David

    2015-04-01

    During volcanic eruptions a significant volume of material accumulates on the slopes and pre-existing gorges of the stratovolcanoes. This abundance of loose and unconsolidated material is very likely to be mobilized by rapid flows or lahars generated by sudden heavy rain or melting snow and ice. Thus, volcanic gorges are affected by complex cycles of incision, filling and widening, altering the equilibrium of river systems due to the major changes that lahars cause in channel morphology. These geomorphological dynamics characterize the gorges located on the north flank of the Popocatépetl volcano (19°02' N, 98°62' W, 5424 m). This volcano, located in the centre of the Trans-Mexican Volcanic Belt, began its most recent eruptive period in December 1994, when a glacier partially covered the northern slope. Since then, the interaction of volcanic and glacier activity triggered the formation of lahars in the gorges, causing significant morphological changes in the channel (especially in April 1995, July 1997 and January 2001). The most recent major eruption at Popocatépetl took place on 19 July 2003, and since then a series of smaller eruptions has reduced the glacier to near extinction. The aim of this study is to assess the morphological response of the Tenenepanco channel over an 18-year period, from 1995-2013, where two main scenarios can be observed: a) the period from 1995 to 2001 of volcanic activity and glacier retreat with the formation of flows and b) the period from 2002 to 2013 of relative volcanic calm, the almost complete extinction of the glacier, and the formation of secondary lahars associated with heavy rainfall. Monitoring of the gorge has consisted in the elaboration of 14 geomorphological maps during field studies (November 14, 1995, December 5, 1997, February 7, 1998, October 6, 2001, November 14, 1995, December 5, 1997, February 7, 1998, October 6, 2001, Julio 16, 2002, February 11, 2004, September 8, 2004, February 5, 2006, November 2, 2008

  6. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  7. Terrain Modelling with GIS for Tectonic Geomorphology : Numerical Methods and Applications

    OpenAIRE

    Jordan, Gyözö

    2004-01-01

    Analysis of digital elevation models (DEMs) by means of geomorphometry provides means of recognising fractures and characterising the morphotectonics of an area in a quantitative way. The objective of the thesis is to develop numerical methods and a consistent GIS methodology for tectonic geomorphology and apply it to test sites. Based on the study of landforms related to faults, geomorphological characteristics are translated into mathematical and numerical algorithms. The methodology is bas...

  8. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    Science.gov (United States)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  9. Landscapes of human evolution: models and methods of tectonic geomorphology and the reconstruction of hominin landscapes.

    Science.gov (United States)

    Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P

    2011-03-01

    This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats.

  10. A model for the geomorphology of the Carolina Bays

    Science.gov (United States)

    Zamora, Antonio

    2017-04-01

    Geometrical analysis of the Carolina Bays using Google Earth in combination with LiDAR data makes it possible to postulate that the bays formed as the result of impacts, rather than from eolian and lacustrine processes. The Carolina Bays are elliptical conic sections with width-to-length ratios averaging 0.58 that are radially oriented toward the Great Lakes region. The radial distribution of ejecta is one characteristic of impacts, and the width-to-length ratios of the ellipses correspond to cones inclined at approximately 35°, which is consistent with ballistic trajectories from the point of convergence. These observations, and the fact that these geomorphological features occur only on unconsolidated soil close to the water table, make it plausible to propose that the Carolina Bays are the remodeled remains of oblique conical craters formed on ground liquefied by the seismic shock waves of secondary impacts of glacier ice boulders ejected by an extraterrestrial impact on the Laurentide Ice Sheet. Mathematical analysis using ballistic equations and scaling laws relating yield energy to crater size provide clues about the magnitude of the extraterrestrial event. An experimental model elucidates the remodeling mechanisms and provides an explanation for the morphology and the diverse dates of the bays.

  11. Geomorphological evidence for ground ice on dwarf planet Ceres

    Science.gov (United States)

    Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.

    2017-01-01

    Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.

  12. Interactions between soil biota and the effects on geomorphological features

    Science.gov (United States)

    Zaitlin, Beryl; Hayashi, Masaki

    2012-07-01

    The interaction of animals with abiotic features of their environment has long been known to cause alterations to geomorphic features, and these interactions may cause feedback loops that further alter geomorphic features and animal communities. This paper samples the literature on selected burrowing animals in western North America, and discusses the interactions of animals with abiotic features of the environment and with each other, and the resulting impacts on geomorphic features and each other. As expected, burrowing characteristics of animals influence geomorphological processes. For example, pocket gophers and certain ground squirrels that burrow horizontal tunnels on sloping grounds seem to have significant impacts on horizontal movement of soils, whereas prairie dogs and harvester ants have more impact on vertical movement of soils. Burrowing animals, in general, increase the patchiness of the environment, which creates localized patch habitat for other plants and animals, thereby increasing biodiversity at the landscape scale. Burrowing animals influence and are influenced by microbes: sylvatic plague wiped out large populations of prairie dogs, earthworms cause major changes in soil microflora, pocket gophers and harvester ants cause changes in mycorrhizal communities, which in turn impact plant communities.

  13. Applicative limitations of sediment transport on predictive modeling in geomorphology

    Institute of Scientific and Technical Information of China (English)

    WEIXiang; LIZhanbin

    2004-01-01

    Sources of uncertainty or error that arise in attempting to scale up the results of laboratory-scale sediment transport studies for predictive modeling of geomorphic systems include: (i) model imperfection, (ii) omission of important processes, (iii) lack of knowledge of initial conditions, (iv) sensitivity to initial conditions, (v) unresolved heterogeneity, (vi) occurrence of external forcing, and (vii) inapplicability of the factor of safety concept. Sources of uncertainty that are unimportant or that can be controlled at small scales and over short time scales become important in large-scale applications and over long time scales. Control and repeatability, hallmarks of laboratory-scale experiments, are usually lacking at the large scales characteristic of geomorphology. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. Periodic data collection, feedback, and model updating are essential where site-specific prediction is required.

  14. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    Science.gov (United States)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary

  15. A Geomorphologically Driven Conditional Assessment for the Study of Urban Stone Decay

    Science.gov (United States)

    Johnston, Brian; McKinley, Jennifer; Warke, Patricia; Ruffell, Alastair

    2017-04-01

    into consideration these limitations by undertaking two conditional assessments, using differing techniques, of wall sections at Fitzroy Presbyterian Church in Belfast. These assessments will be undertaken using a classification system focusing upon percentage of surface alteration. Initially, an assessment was carried out focussing on classifying each block individually. This was then followed by observations in a regular grid of 10x10cm squares across the wall sections. Results suggest that decay features develop beyond the extents of a single stone when situated within a larger built structure, with mortar and blocks providing both interconnectivity and barriers that influence the spread of decay. The results suggest the presence of three wall scale processes; urban microclimatic influencing capillary rise of ground water, architectural features creating a barrier and the passage of moisture through deteriorating mortar. Probe permeametry, GPR and 3D modelling of the wall sections were used to provide support for these findings. For the conservationist, application of a gridded observation approach is time consuming and of little use when deciding upon the remediation of individual blocks. However, in geomorphologically focused studies it facilitates a greater understanding of processes that extend beyond a single block, particularly when considering sites where the development of decay appears to be spatially complex.

  16. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses

    Science.gov (United States)

    Harris, Charles; Arenson, Lukas U.; Christiansen, Hanne H.; Etzelmüller, Bernd; Frauenfelder, Regula; Gruber, Stephan; Haeberli, Wilfried; Hauck, Christian; Hölzle, Martin; Humlum, Ole; Isaksen, Ketil; Kääb, Andreas; Kern-Lütschg, Martina A.; Lehning, Michael; Matsuoka, Norikazu; Murton, Julian B.; Nötzli, Jeanette; Phillips, Marcia; Ross, Neil; Seppälä, Matti; Springman, Sarah M.; Vonder Mühll, Daniel

    2009-02-01

    We present a review of the changing state of European permafrost within a spatial zone that includes the continuous high latitude arctic permafrost of Svalbard and the discontinuous high altitude mountain permafrost of Iceland, Fennoscandia and the Alps. The paper focuses on methodological developments and data collection over the last decade or so, including research associated with the continent-scale network of instrumented permafrost boreholes established between 1998 and 2001 under the European Union PACE project. Data indicate recent warming trends, with greatest warming at higher latitudes. Equally important are the impacts of shorter-term extreme climatic events, most immediately reflected in changes in active layer thickness. A large number of complex variables, including altitude, topography, insolation and snow distribution, determine permafrost temperatures. The development of regionally calibrated empirical-statistical models, and physically based process-oriented models, is described, and it is shown that, though more complex and data dependent, process-oriented approaches are better suited to estimating transient effects of climate change in complex mountain topography. Mapping and characterisation of permafrost depth and distribution requires integrated multiple geophysical approaches and recent advances are discussed. We report on recent research into ground ice formation, including ice segregation within bedrock and vein ice formation within ice wedge systems. The potential impacts of climate change on rock weathering, permafrost creep, landslides, rock falls, debris flows and slow mass movements are also discussed. Recent engineering responses to the potentially damaging effects of climate warming are outlined, and risk assessment strategies to minimise geological hazards are described. We conclude that forecasting changes in hazard occurrence, magnitude and frequency is likely to depend on process-based modelling, demanding improved

  17. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  18. Columbia River Estuary Ecosystem Classification Hydrogeomorphic Reach

    Science.gov (United States)

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  19. Columbia River Estuary Ecosystem Classification Geomorphic Catena

    Science.gov (United States)

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  20. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    Science.gov (United States)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43- but failed in the prediction of Si desorption. These results indicate that the prediction of As mobility, by using SCMs for synthetic Fe-oxides, will be strongly dependent on the model chosen. The SCM based on the Pleistocene aquifer sediment predicts the desorption of As(III), PO43- and Si quite superiorly, as compared to the SCMs for ferrihydrite and goethite, even though Si desorption is still somewhat under-predicted. The observation that a SCM calibrated on a different sediment can predict our field results so well suggests that sediment based SCMs may be a

  1. Geometric properties of river cross sections and associated hydrodynamic implications in Wuhan-Jiujiang river reach, the Yangtze River%长江中游武汉-九江河段河道形态及水动力学特征

    Institute of Scientific and Technical Information of China (English)

    张强; 施雅风; 熊明

    2009-01-01

    Based on measured hydrological data by using ship-mounted Acoustic Doppler Current Profiler (ADCP) instrument, we analyzed shapes of river cross sections of the middle Yangtze River basin (mainly focusing on Makou and Tianjiazhen river reach). Hydrodynamic properties of river channels were also discussed. The research results indicate that nonlinear relationships can be identified between river-width/river-depth ratio (W/D ratio), sizes of cross section and mean flow velocity. Positive relations are detected between W/D ratio and mean flow velocity when W/D<1; and negative relations are observed when W/D>1. Adverse relationships can be obtained between W/D ratio and cross-section area. Geomorphologic and geologic survey indicates different components of river banks in the wider and narrower river reaches respectively. These may be the main driving factors causing unique hydrological properties of river channels in the middle Yangtze River basin. Narrower river cross sections tend to raise water level in the upstream river reach near narrower river channel, giving rise to backwater effects. River knots can cause serious backwater effects, which is harmful for flood mitigation. However river knots will also stabilize river channel and this will be beneficial for river channel management. The results of this paper may be helpful for flood mitigation and river channel management in the middle Yangtze River basin.

  2. The Scientific Challenges of Yellow River Study

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaoyan; Sun Yangbo

    2005-01-01

    @@ The Yellow River is famous for its complex and unique physical conditions which give great challenges to the river management. Based on the study and analysis of the existing problems and research progress, this paper indicated that the most significant challenges of Yellow River studies are: long term hydrological and morphological changes; the optimized hydrology and sediment conditions to maintain the healthy life of the River; and simulation of Yellow River through mathematical model and physical models.

  3. Project to construct a hydroelectric complex on the Romaine River : public inquiry report; Projet d'amenagement d'un complexe hydroelectrique sur la riviere Romaine : rapport d'enquete et d'audience publique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-02-15

    Hydro-Quebec is proposing to build a 1,550 MW hydroelectric complex on the Romaine River, north of Havre-Saint-Pierre, Quebec. The complex would comprise a rockfill dam, a spillway, and a power plant with two generating units. The proposed development is subject to an environmental evaluation process and public consultation. Quebec's environmental public hearing board held a public hearing on the draft development of the project to hear the concerns and views of the public and stakeholders. The hearing focused on a number issues, such as reasons for the project, its location and socio-economic impacts. The cumulative environmental effects of the project were also examined. However, electric transmission lines to connect the hydroelectric project network constitute a separate environmental assessment. In its analysis, the public hearing board found that the project meets 3 objectives of Quebec's energy strategy, notably to strengthen the security of energy supply, use more energy as lever for economic development, and give more power to local communities and First Nations regarding energy development. The Board suggested that given that 4 reservoirs will be created, mitigative measures are required to protect forest birds, waterfowl, salmon and their habitat. The project will likely create many local jobs and the need for additional commercial and social services. This stimulation will provide economic opportunities in municipalities and First Nation communities. The Board concluded that the project is not likely to cause significant adverse environmental effects. However, this conclusion is conditional on the implementation of mitigation measures, compensation and monitoring provided by the developer. 24 refs., 13 tabs., 11 figs.

  4. Exploration of hydro-geomorphological indices for coastal floodplain ...

    African Journals Online (AJOL)

    of River Niger (leading to release of water from Kanji and Shiroro Dams) and ... With the anticipated changes in climate there is the likelihood of an increase in the ... Dominant ecological zones of the State include Mangrove forest and coastal ...

  5. Hybrid geomorphological maps as the basis for assessing geoconservation potential in Lech, Vorarlberg (Austria)

    Science.gov (United States)

    Seijmonsbergen, Harry; de Jong, Mat; Anders, Niels; de Graaff, Leo; Cammeraat, Erik

    2013-04-01

    Geoconservation potential is, in our approach, closely linked to the spatial distribution of geomorphological sites and thus, geomorphological inventories. Detailed geomorphological maps are translated, using a standardized workflow, into polygonal maps showing the potential geoconservation value of landforms. A new development is to semi-automatically extract in a GIS geomorphological information from high resolution topographical data, such as LiDAR, and combine this with conventional data types (e.g. airphotos, geological maps) into geomorphological maps. Such hybrid digital geomorphological maps are also easily translated into digital information layers which show the geoconservation potential in an area. We present a protocol for digital geomorphological mapping illustrated with an example for the municipality of Lech in Vorarlberg (Austria). The protocol consists of 5 steps: 1. data preparation, 2. generating training and validation samples, 3. parameterization, 4. feature extraction, and 5. assessing classification accuracy. The resulting semi-automated digital geomorphological map is then further validated, in two ways. Firstly, the map is manually checked with the help of a series of digital datasets (e.g. airphotos) in a digital 3D environment, such as ArcScene. The second validation is field visit, which preferably occurs in parallel to the digital evaluation, so that updates are quickly achieved. The final digital and coded geomorphological information layer is converted into a potential geoconservation map by weighting and ranking the landforms based on four criteria: scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The criteria with predefined scores for the various landform types are stored in a separate GIS attribute table, which is joined to the attribute table of the hybrid geomorphological information layer in an automated procedure. The results of the assessment can be displayed as the potential

  6. Environment and Economic Activity of the Pestretsy 2 Site Inhabitants on the Mesha River

    Directory of Open Access Journals (Sweden)

    Galimova Madina Sh.

    2016-09-01

    Full Text Available Preliminary results of integrated archaeological and paleo-ecological research in the multilayer site Pestretsy 2 on the Mesha river (Middle Volga region are discussed in the article. As a result of geology and geomorphology studies, it was found that cultural layers of the Bronze and Early Iron Ages occurred in the buried soil complex, which was coated by river fresh deposits formed in 19th–20th centuries. According paleo-geography data, the site was situated on elevated plot in the lake-marsh basin, the basin, which radiocarbon age is about 4 thousand years ago. The site seems to be the remnants of the Late Bronze long-term settlement (at least in excavated part belonging to so called Zaymishche cultural type as shown by stratigraphy, planigraphy and stone artifacts data. The shouldered arrowhead with barbs and triangular stem of the Seyma type found in this layer allows us to refer it to the 18th–16thth centuries. As for the subsequent Ananyino and Azelino cultural layers, they were apparently short-term camps. Numerous faunal remains studied using archaeo-zoological methods, demonstrated animal husbandry practice houses adjoining (so called “forest” type combined with highly developed hunting and seasonal fishing. Use-wear analysis of stone inventory confirms the authors conclusion.

  7. The pragmatic roots of American Quaternary geology and geomorphology

    Science.gov (United States)

    Baker, Victor R.

    1996-07-01

    hypotheses, the latter having been suggested by experience with nature itself rather than by our theories of nature. These distinctions and methods were described in G.K. Gilbert's papers on "The Inculcation of Scientific Method by Example" (1886) and "the Origin of Hypotheses" (1896). Portions were elaborated in T.C. Chamberlin's "Method of Multiple Working Hypotheses" (1890) and his "method of the Earth Sciences" (1904); in W.M. Davis's "Value of Outrageous Geological Hypotheses" (1926); and in D. Johnson's "Role of Analysis in Scientific Investigation" (1933). American Quaternary geology and geomorphology have their philosophical roots in the pragmatic tradition, enunciated most clearly by C.S. Peirce, now recognized as the greatest American philosopher and considered by Sir Karl Popper to be one of the greatest philosophers of all time. Quaternary geology and geomorphology afford numerous examples of Peirce's "method" of science, which might be termed "the critical philosophy of common sense". The most obvious influence of pragmatism in geology, however, has largely been conveyed by the tradition of its scientific community. The elements of this tradition include a reverence for field work, a humility before the "facts" of nature, a continuing effort "to discriminate the phenomena observed from the observer's inference in regard to them", a propensity to pose hypotheses, and a willingness to abandon them when their consequences are contradicted by reality.

  8. Geomorphologic Structures on the South Cretan Margin, Greece

    Science.gov (United States)

    Nomikou, Paraskevi; Lykousis, Vasilis; Alexandri, Matina; Rousakis, Grigoris; Sakellariou, Dimitris; Lampridou, Danai; Alves, Tiago; Ballas, Dionysios

    2015-04-01

    Geomorphologic Structures on the South Cretan Margin, Greece Nomikou P.1, Lykousis V.2, Alexandri M.2, Rousakis G.2, Sakellariou D.2, Lampridou D.1 , Alves T.3, Ballas D.2 1University of Athens, Department of Geology and Geoenvironment, Panepistimioupoli Zografou, 15784 Athens, Greece. 2Inst. of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece. 33D Seismic Laboratory, School of Earth and Ocean Sciences, Cardiff University, Main Building-Park Place, CF10 3AT Cardiff, UK. The swath bathymetric survey of the South Cretan Margin has been conducted during the HERMES-1 (May-June 2005) and HERMES-2 (September-October 2005) cruises onboard R/V "AEGAEO" using the 20 kHz, SEABEAM 2120 system. High-resolution multibeam bathymetry outlines in unprecedented detail the shape and the morphological features of the region. One of the most dominant geomorphological structures of the southwest Cretan slope is the submarine Samaria Canyon (Western Cretan Trough) which is characterized by high relief steep walls and V-shaped cross sections. Despite the fact that the trough trends predominantly northeastward, with a central axis oriented from east to west, the head displays a north-trending hook termination on the continental shelf. The minimum depth of its axis is 1400 m and the thalweg ranges from 1500 to 3500m. In addition, abrupt alternation in the axial trend of the canyon is observed, accompanied by sharp changes in axial gradient and in the geometry of the canyon profile ending in a flat area of 3600 m depth. From Paleochora up to Sindonia, numerous small canyons trending N-S crosscut the steep Cretan southern margin, that reaches the 2000 m isobath. These are transversal to the main direction E-W of the slope. Furthermore, the detailed bathymetric map reveals the morphology of several troughs bounded by steep flanks. Their flat bottom may reach up to 3000m water depth. The most characteristic one, Ptolemy trough (eastern South Cretan Trough), is located in

  9. Comparison of planform multi-channel network characteristics of alluvial and bedrock constrained large rivers

    Science.gov (United States)

    Carling, P. A.; Meshkova, L.; Robinson, R. A.

    2011-12-01

    The Mekong River in northern Cambodia is an multi-channel mixed bedrock-alluvial river but it was poorly researched until present. Preliminary study of the Mekong geomorphology was conducted by gathering existing knowledge of its geological and tectonic settings, specific riparian vegetation and ancient alluvial terraces in which the river has incised since the Holocene. Altogether this process has allowed a geomorphological portrait of the river to be composed within the Quaternary context. Following this outline, the planform characteristics of the Mekong River network are compared, using analysis of channel network and islands configurations, with the fluvial patterns of the Orange River (South Africa), Upper Columbia River (Canada) and the Ganga River (India, Bangladesh). These rivers are selected as examples of multi-channel mixed bedrock alluvial, anastomosed alluvial and braided alluvial rivers respectively. Network parameters such as channel bifurcation angles asymmetry, sinuosity, braid intensity and island morphometric shape metrics are compared and contrasted between bedrock and alluvial systems. In addition, regional and local topographic trend surfaces produced for each river planform help explain the local changes in river direction and the degree of anastomosis, and distinguish the bedrock-alluvial rivers from the alluvial rivers. Variations between planform characteristics are to be explained by channel forming processes and in the case of mixed bedrock-alluvial rivers mediated by structural control. Channel metrics (derived at the reach-scale) provide some discrimination between different multi-channel patterns but are not always robust when considered singly. In contrast, island shape metrics (obtained at subreach-scale) allow robust discrimination between alluvial and bedrock systems.

  10. Interactions among hydrology, geomorphology and vegetation on dryland hillslopes

    Science.gov (United States)

    Parsons, Anthony

    2016-04-01

    On dryland hillslopes vegetation is typically patchy, and areas bare of vegetation are likely to be either stony or crusted. These bare areas promote Hortonian runoff, the pathways of which interact with the patchy vegetation. This interaction leads to a characteristic microrelief. On hillslopes dominated by woody shrubs there is a pronounced across-slope microrelief in which shrubs sit atop mounds and intershrub areas form swales. This microrelief concentrates runoff into the swales resulting in relatively efficient, connected runoff pathways which concentrates erosion and sediment transport within the swales. On hillslopes dominated by grass there is a pronounced downslope microrelief of small steps and risers. These steps create a disconnected pattern of runoff that traps runoff and sediment behind clumps of grass providing both water and nutrients to the grass. Both ecosystems are dominated by positive feedbacks implying stability; yet records show that locations may switch from one ecosystem to the other. To understand the conditions under which such switches may occur we have developed a modelling framework for the analysis of ecosystem change in drylands that is rooted in the concept of connectivity and is derived from a detailed process-based understanding of interactions among hydrology, geomorphology and vegetation. The model has been implemented in the deserts of the American Southwest both to test hypotheses of the causes of the invasion of woody shrubs, and to test its ability to reproduce observed spatial differences in response to drought in the 20th century. The modelling results show the importance of local conditions in determining the susceptibility of a location to ecosystem change and the significance of grazing in causing such changes.

  11. Erosional nitrogen losses in a geomorphologically dynamic wet tropical watershed

    Science.gov (United States)

    Weintraub, S. R.; Stallard, R. F.; Taylor, P.; Asner, G. P.; Townsend, A. R.

    2013-12-01

    In erosion-prone watersheds, the loss of nutrients associated with eroding topsoil can be substantial. Previous studies in a geomorphologically dynamic wet-tropical study site demonstrated elevated nitrogen availability, characterized by larger nitrate pools, higher 15-N enrichment, and higher rates of net and potential nitrification, on stable ridge-tops compared to N-poor steep hillslopes. In the current study, we sought to test whether these pronounced differences in N availability were correlated with spatial patterns of erosional N-export. In order to characterize N transport patterns within a small (12-hectare) forested watershed, we buried Gerlach troughs at approximately 15-meter intervals along a 100-meter long study hillslope, beginning at the ridge-slope break and continuing downslope toward the stream. We recovered and analyzed all soil, water, and detritus collected by these troughs over the course of one year and concurrently monitored rainfall and stream discharge. We also measured soil mineralogy, texture, and permeability (Ksat) at the topographic locations where troughs were installed. We observed distinct patterns in the nature and timing of downslope N transport, with shifts in the contribution of dissolved versus particulate losses both across the hillslope and with intensification of wet-season precipitation. Unlike the flat ridge-top, steeper downslope segments exported a substantial amount of N during the late wet season, approximately 85% of which was in particulate form. These slope fluxes help account for much of the watershed- scale losses of > 10 kg particulate N per hectare per year, quantified in a nearby stream. Soil mineralogic and hydraulic characteristics varied in concert with general N export patterns, implying different degrees of soil stability and the dominance of different soil water flowpaths in steeper versus flatter areas. In this forested landscape, geomorphic position determines overland N fluxes and likely couples N

  12. Upscaling river biomass using dimensional analysis and hydrogeomorphic scaling

    Science.gov (United States)

    Barnes, Elizabeth A.; Power, Mary E.; Foufoula-Georgiou, Efi; Hondzo, Miki; Dietrich, William E.

    2007-12-01

    We propose a methodology for upscaling biomass in a river using a combination of dimensional analysis and hydro-geomorphologic scaling laws. We first demonstrate the use of dimensional analysis for determining local scaling relationships between Nostoc biomass and hydrologic and geomorphic variables. We then combine these relationships with hydraulic geometry and streamflow scaling in order to upscale biomass from point to reach-averaged quantities. The methodology is demonstrated through an illustrative example using an 18 year dataset of seasonal monitoring of biomass of a stream cyanobacterium (Nostoc parmeloides) in a northern California river.

  13. River network modeling and analysis based on complex network theory%基于复杂网络理论的河流网络建模与分析

    Institute of Scientific and Technical Information of China (English)

    吴学文; 瞿永钢; 李玲

    2014-01-01

    In this study, we developed a river network model based on the complex network theory. Taking the Haihe River system as an example, we constructed two river network models, Model Ⅰ and Model II. Model Ⅰ included natural vertices and Model II included both natural vertices and artificial vertices. Based on the properties of the vertices and edges in river networks, we propose the vertex weight index and edge weight index to assess the vertex importance and edge importance, respectively, and analyze and compare the vertex importance and edge importance of the Haihe River Network. Finally, we summarize the key parameters of the proposed river network model and discuss the future development of the model.%应用复杂网络理论建立河流网络模型,并以海河水系为例,建立了2个网络模型:模型Ⅰ和模型Ⅱ。模型Ⅰ只包含自然节点;而模型Ⅱ既包含自然节点,也包含人工节点。针对河流网络节点和边的自身特殊性,提出了河流网络节点重要性的权值指标和边重要性的权值指标,并研究和比较海河网络的节点及边的重要性;最后,对所建河网模型和提出的重要参数指标进行总结与展望。

  14. Oceanic Transform Fault-Zone Geomorphology in the Gulf of California from High-Resolution Bathymetric Data

    Science.gov (United States)

    Hilley, G. E.; Aron, F.; Baden, C. W.; Castillo, C. M.; Johnstone, S. A.; Nevitt, J. M.; McHargue, T.; Paull, C. K.; Sare, R.; Shumaker, L.; Young, H.

    2015-12-01

    We use high-resolution, deep-water bathymetry to examine the structure of, and offset along, transform faults in the Gulf of California. These data provide detailed observations of fault-zone geomorphology of an active transform fault hosted in an area transitioning from continental to oceanic crust. Bathymetric data were collected by an autonomous underwater vehicle deployed by the Monterey Bay Aquarium Research Institute in 2012. Dense ocean-bottom point clouds allowed construction of an ~1-m-resolution digital terrain model, which provides comparable spatial resolution to early airborne laser swath mapping surveys. The data reveal a set of complex, multi-stranded fault zones, whose morphologies suggest a temporal migration of deformation between individual strands contained within an up to 1 km wide zone, similar to complex fault zones observed within continental crust in subaerial environments. Individual fault strands show restraining steps that create positive relief along the ocean floor in their vicinity. Although the depositional nature of these deep-water systems makes identification of offset features challenging, we found a series of offset fans along a fault strand with consistent right-lateral offsets of 17-21 m. These are likely multi-event offsets, given the length of the transform segments and magnitudes of historically recorded earthquakes in the region. The consistency of these multi-event offsets suggests that an external process predating the displacement of the fans, such as seismic shaking due to large earthquakes, may be responsible for the synchroneity of these features. Our study demonstrates that the fault-zone geomorphology of oceanic transform faults in the Gulf of California bears resemblance to that of terrestrial strike-slip faults hosted in continental crust, and that high-resolution, deep water bathymetry can provide information about the earthquake history of these environments.

  15. Geomorphological mapping in arid regions supported by the analysis of shrub patterns

    Science.gov (United States)

    Hikel, H.; Jarmer, T.; Schwanghart, W.; Kuhn, N. J.; Yair, Y.; Shoshani, M.

    2012-04-01

    Arid and semi-arid areas are often covered by sparse and patchy vegetation with spatial patterns being related to water scarcity. The patterns are governed to a high degree by topography and substrate that in turn reflect prevalent geomorphological and hydrological processes. We hypothesize that this relation can be utilized to support geomorphological mapping in dryland areas. The aim of this study is to develop an approach towards automated geomorphological mapping in drylands at the hillslope scale. Geomorphological mapping was carried out at the experimental catchment site nearby Sede Boqer, Israel, along two hillslope transects. Twenty rectangular plots were surveyed to determine the percent vegetation cover. A ground based hyperspectral camera was used to image the transects with a spatial resolution of 0.05 cm. Plant canopy was obtained using a supervised classification. In addition, an aerial photo with a spatial resolution of 0.5 m was utilize to map plants at a larger spatial extent. Both datasets were used to calculate spatial pattern indices such as vegetation density, lacunarity, bare area fragmentation index and patch upslope side length/area ratio. All indices were investigated regarding their scale invariance with respect to the differently resolved datasets. Indices with a high degree of explanatory power and scale invariance were then used as variables in a decision tree model for automated geomorphological mapping. Preliminary results indicate that the spatial pattern indices can be used as an identification tool of geomorphological units and ecohydrological environments. The result suggests that geomorphological mapping in arid and semi-arid areas can be supported by vegetation detection using remote sensing and digital image processing.

  16. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy)

    Science.gov (United States)

    Liguori, V.; Manno, G.

    2009-04-01

    The coast of Sicily region stretches about 1400 km, bathing three different seas: the North tract, from Messina to Capo San Vito wash to the Tyrrhenian Sea, the oriental side, from Messina to Capo Passero, wash to the Ionian Sea, and finally the southern side wash to the Mediterranean. Of these, 395 km are made up of beaches and 970 km from rocky shores. The coastal morph-type were analyzed in relation to their evolutionary trend (backspace or advancement of the seaside), can be summarized as follows: a low shores of torrent plain (Messina), low shores with salt (Trapani), low shores beaches edged with dunal systems, subject to backspace, where urbanization has reduced or eliminated the internal sand dunes, shores on marine terraces, with beaches at the foot (Agrigento) and high shores non-affected of real phenomena of backspace, but subject to often dangerous events of detachment and collapse of blocks (high rocky shores). The marine and coastal environment is a complex and articulated, in balance with the Earth's environment, in which live together, but through different dynamics strongly interacting, ecosystems and marine ecosystems typically transition. The increasing density of population concentrated along the shores, the gradual expansion of activities related to the use of marine and coastal resources, are some of the issues that threaten the delicate balance of nature and the sea coast. The sicilian coastal areas most subject to erosion are those in Ragusa shores areas in south-eastern of Sicily, where the critical areas interesting low coastline and high shores. Following the coast, between Capo Peloro and Milazzo (Messina),where the erosion affects the coast with a low of about 23 km. In the coastal between Capo St. Marco and Capo Feto (Trapani) the critical areas interesting the low coastline and, in part erodible bluffs. One of this case is localized in the town of Mazara del Vallo. In general, the phenomenon erosive affects almost all the sicilian

  17. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    Science.gov (United States)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  18. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: spectroscopic evidence of two different excited species.

    Science.gov (United States)

    Reiller, Pascal E; Brevet, Julien

    2010-02-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the (5)D(0)-->(7)F(0) and (5)D(0)-->(7)F(2) luminescent transitions are occurring between 10 and 300 micros delay. First, the (5)D(0)-->(7)F(0) transition is decreasing relative to the (5)D(0)-->(7)F(1) showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the (5)D(0)-->(7)F(2) transition is also evidencing a slightly different ligand field splitting. No significant modification of the (5)D(0)-->(7)F(1) magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The (5)D(0)-->(7)F(0) transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  20. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: Spectroscopic evidence of two different excited species

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P. E.; Brevet, J. [CEA, CE Saclay, DEN, DANS, DPC, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Reiller, P. E.; Brevet, J. [Univ Evry Val Essonne, Lab Anal and Environm Biol abd Environm, CNRS, UMR 8587, F-91025 Evry (France)

    2010-07-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the {sup 5}D{sub 0} -> {sup 7}F{sub 0} and {sup 5}D{sub 0} -> {sup 7}F{sub 2} luminescent transitions are occurring between 10 and 300 {mu}s delay. First, the {sup 5}D{sub 0} -> {sup 7}F{sub 0} transition is decreasing relative to the {sup 5}D{sub 0} -> {sup 7}F{sub 1} showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the {sup 5}D{sub 0} -> {sup 7}F{sub 2} transition is also evidencing a slightly different ligand field splitting. No significant modification of the {sup 5}D{sub 0} -> {sup 7}F{sub 1} magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The {sup 5}D{sub 0} -> {sup 7}F{sub 0} transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components. (authors)

  1. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  2. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California.

    Science.gov (United States)

    Hartwell Welsh; Garth Hodgson

    2010-01-01

    We investigated the aquatic and riparian herpetofauna in a 789 km² river catchment in northwest California to examine competing theories of biotic community structuring in catchment stream networks. Research in fluvial geomorphology has resulted in multi-scale models of dynamic processes that cyclically create, maintain, and destroy environments in stream...

  3. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran

    Science.gov (United States)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland

    2013-04-01

    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and

  4. Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning

    Science.gov (United States)

    Hämmerle, Martin; Forbriger, Markus; Höfle, Bernhard

    2013-04-01

    LiDAR is a state of the art method for directly capturing 3D geodata. A laser beam is emitted in a known direction. The time of flight of the laser pulse is recorded and transformed into the distance between sensor and scanned object. The result of the scanning process is a 3D laser point cloud densely covering the surveyed area. LiDAR is used in a vast variety of research fields. In this study, the focus is on the application of terrestrial laser scanning (TLS), the static and ground-based LiDAR operation, in a multitemporal analysis of fluvial geomorphology. Within the framework of two study projects in 2011/2012, two TLS surveys were carried out. The surveys covered a gravel bar of about 150 m × 25 m size in a side branch of the Neckar River near Heidelberg (49°28'36''N, 8°34'32''E) located in a nature reserve with natural river characteristics. The first survey was performed in November 2011, the second in June 2012. Due to seasonally changing water levels, the gravel bar was flooded and the morphology changed. For the field campaigns, a Riegl VZ-400 was available. Height control points and tie points for registration and georeferencing were obtained with a total station and GPS equipment. The first survey was done from 6 scan positions (77 million points) and the second from 5 positions (89 million points). The point spacing for each single scan was set to 3 mm at 10 m distance. Co-registration of the individual campaigns was done via an Iterative Closest Point algorithm. Thereafter, co-registration and fine georeferencing of both epochs was performed using manually selected tie points and least-squares adjustment. After filtering of vegetation in the 3D point cloud in the software OPALS, a digital terrain model (DTM) with 0.25 m by 0.25 m cell size was generated for each epoch. A difference raster model of the two DTMs for assessing the changes was derived excluding water surface areas using the signal amplitude recorded for each echo. From the mean

  5. Detecting impact of land use change on river flow, sediment and nutrient through distributed hydrological simulation

    Science.gov (United States)

    Lihua, T.; Yang, D.

    2009-12-01

    Change in land use has significant impact on river flow, sediment and nutrient losses of the watershed. This paper presents a process-based hydrological model, GBNP (Geomorphology-Based Non-point source Pollution model), coupling erosion, sediment and nutrient processes into the distributed hydrological model GBHM (Geomorphology-Based Hydrological Model). The proposed model is able to take into account the physical processes of non-point source pollution with rainfall-runoff, soil erosion, sediment transportation, pollutant flushing off from soil and transportation in river. Moreover the calculation unit division is based on geomorphological features of the watershed. Because of the distributed depiction of landscape condition and physically-based description of all processes, the model can be used to detect the hydrological responses of runoff, erosion and non-point source pollution under changing condition. After calibration and validation, the GBNP model is applied to the Chaobai River basin in northern China to detect the impact of land use change on runoff, sediment and pollutant loads. The results showed that the land use change reduced the river flow, sediment and nutrient losses from 1980 to 2005, moreover the land use change has different impacts on river flow, sediment and nutrient loads.

  6. Network analysis of sediment cascades derived from a digital geomorphological map - an example from the Gradenbach catchment (Schober Mountains, Austrian Alps)

    Science.gov (United States)

    Götz, Joachim; Heckmann, Tobias; Schrott, Lothar

    2013-04-01

    A detailed geomorphological map of the Gradenbach catchment (32 km², Schober Mountains, Austrian Alps) is presented that focuses on the sediment transfer system. Data were acquired in the field and by the interpretation of orthophotos, LIDAR data and derivatives (slope, curvature, aspect, shaded relief). The resulting digital geomorphological map contains polygon representations of landforms together with their morphometric parameters and an assessment of recent geomorphic activity. Special attention was paid to landform coupling, i.e. an additional table was constructed that indicates recently observable coupling between specific landforms (based on their ID in the database). From these data, we can obtain sediment cascades as a succession of coupled landforms along which sediment transfer occurs through the activity of various geomorphic processes. Based on this digital landform inventory the sediment transfer system is analysed using graph theory. As a rather new approach in geomorphology (already established within several disciplines; e.g. hydrology, biogeography), graph theory provides a promising framework for connectivity analysis in geomorphologic systems and powerful tools to visualise and analyse catchment-wide sediment transfer networks. Since the concept is arbitrarily scalable it can be applied to discrete land surface units (e.g. mapped landforms) or to continuous surface data (e.g. grid cells). In combination with geomorphological mapping, the concept allows for the (abstracted) visualisation of complex coupling relationships between multiple sediment storage landforms. Graph networks can be analysed at the level of nodes (e.g. the number of incoming and/or outgoing edges and their character as sediment source, sink or link), edges (e.g. importance within the network as conveyors of sediment from different sources), pathways (e.g. edge sequences leading to the catchment outlet or to storage landforms; these can be termed sediment cascades), or the

  7. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana Interim Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife &...

  8. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana Interim Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife...

  9. Geo-Morphological Analyses of the Gakkel Ridge and the Southwest Indian Ridge

    Science.gov (United States)

    Dorschel, B.; Schlindwein, V. S. N.; Eagles, G.

    2014-12-01

    The Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge in the Southwest Indian Ocean between Africa and Antarctica are ultraslow-spreading (intersticial melt migration) by which material rises to fill the space vacated by plate divergence. These ridges are characterised by non-orthogonal spreading. Transform faults, typical of faster spreading mid ocean ridges, are far less common at ultraslow spreading mid ocean ridges. Thus in return, detailed geo-statistical analyses of the geo-morphology of ultraslow-spreading mid ocean ridges can provide valuable information towards a better understanding of these slowest of spreading ridges. We have generated high resolution bathymetric grids for the Gakkel and Southwest Indian ridges based on high resolution multibeam echosounder data from various expeditions with RV Polarstern. On the basis of these grids, geo-statistical analyses allow for an assessment of the geo-morphological elements of the ridges on various scales. The results of these analyses show that, approximately 200 km long medium-scale sections of the ridges can be characterised by the lengths and orientations of the short-scale (hundreds of meters to tens of kilometres) ridges and troughs. The geomorphologies of short-scale ridges and troughs situated at the junctions between medium scale sections often exhibit a mixture of the geomorphological elements seen in the neighbouring sections. These geo-morphological patterns provide insights into the overall spreading-geometry along the Gakkel Ridge and the Southwest Indian Ridge.

  10. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science?

    Science.gov (United States)

    Viles, Heather

    2016-10-01

    In recent years technological developments have revolutionized our ability to collect data in geomorphology. Enhanced data collection not only enables us to provide deeper answers to a wider range of fundamental questions about the Earth's surface, but also encourages us to pose new questions. This paper considers in more detail the relationships between science, technology and the development of geomorphological tools and techniques, reviews the spectrum of tools and techniques now available to geomorphologists, and critically assesses what impact 'new technologies' are having on geomorphology. It focuses on the role of technology in biogeomorphology and weathering research, and how it is advancing theoretical, empirical and applied dimensions of these growing sub-fields of geomorphology. Five areas of important technological development are reviewed: remote sensing, dating, geophysical techniques, field and laboratory based analysis and sensing of physical and chemical characteristics, and field and laboratory based analysis of biological properties. There is good evidence that, taken together, technological developments are revolutionizing geomorphology through opening the doors to better cross-scalar investigations, blurring the boundaries between laboratory, field and computer model, and facilitating cross-disciplinary and democratized research.

  11. Application Development: AN Interactive, Non-Technical Perspective of the Geology and Geomorphology of the Ouray Perimeter Tail, CO.

    Science.gov (United States)

    Allen, H. M.; Giardino, J. R.

    2015-12-01

    Each year people seek respite from their busy lifestyles by traveling to state or national parks, national forests or wilderness areas. The majority of these parks were established in order to help preserve our natural heritage, including wildlife, forests, and the beauty of landscapes formed from thousands of years of geologic/geomorphologic processes. Whilst being able to enjoy the tranquility of nature, tourists are being robbed of a more in-depth experience as a result of the lack of a geologic background. One such location that attracts a large number of summer tourists is the perimeter trail in Ouray, Colorado. Located in the Southwestern portion of Colorado, Ouray is situated in the beautiful San Juan Mountain range along the "Million Dollar Highway." The Perimeter trail is a six-mile trail loop that circles the city of Ouray. The city is a very popular place for summertime tourism because of its unparalleled scenery. Ouray is situated in an area that is riddled with textbook angular unconformities, metasedimentary, sedimentary, and volcanic rocks. In the study area, The San Juans have been beautifully sculpted by an array of major faulting events, glacial activity and volcanics. With the understanding that technology is ever expanding, we think there is no better way to experience the Perimeter Trail than to have an interactive application that will be both educational as well as interesting. This application is a non-technical way of looking at the geology and geomorphology of the perimeter trail. Additionally, a paper brochure shows the most noteworthy points of interest. The brochure contains a brief geologic history of the San Juan Mountains accompanied with annotated photographs to illustrate the complex geology/geomorphology encountered on the trail. The application is based on an interactive three-dimensional map, which can be zoomed to various scales. The app hosts a locational service that uses the phone's GPS to communicate location of the hiker

  12. The aeolian sedimentary system in the northern Qilian Shan and Hexi Corridor (N-China) - geomorphologic, sedimentologic and climatic drivers

    Science.gov (United States)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg

    2015-04-01

    The formation of aeolian deposits depends on the influence of climatic factors but also on non-climatic controls, such as local geomorphological setting and tectonic activity. Unravelling the environmental history needs a careful consideration of a set of sections to capture spatial variability and a detailed investigation of depositing processes and chronology. Along the northern margin of the Qilian Shan mountain range 22 OSL-dated loess and aeolian sand sections and additional surface samples reveal the interactions between climatic, geomorphologic and sedimentologic factors. Thin loess covers (~1-2 m) occur in elevations of 2000 to 3800 m asl, which were mainly accumulated during the Holocene. End-member modelling of loess grain size data exhibits three dominant aeolian transport pathways representing local transport from fluvial storages, dust storm contribution and background dust deposition. Their relative contributions show a clear dependence on geomorphological setting, and additionally, synchronous trends throughout the Holocene. Their relative changes allow conclusions about Holocene environmental conditions. Discontinuous archives (aeolian sand, lacustrine, and alluvial deposition) in the lower forelands of the Qilian Shan show a distinct spatial pattern contrasting western and eastern forelands. The comparison of OSL ages exhibits high sediment accumulation (~2 m/ka) in the drier western part during the Late Glacial, while the lack of Holocene ages indicates sediment discharge / deflation. In contrast, moister areas in the eastern foreland yield scattered Holocene ages. This indicates high sediment dynamics, benefiting from fluvial reworking and thus provided sediment availability. Fluvial sediment supply plays an important role in sediment recycling. Meanwhile, western forelands lack efficient sand sources and fluvial reworking agents. The study exemplifies the complex sedimentary systems acting along mountain to foreland transects which often host

  13. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone–Ganga alluvial tract in Middle Ganga Plain, India

    Indian Academy of Sciences (India)

    Sudarsan Sahu; Dipankar Saha

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone–Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur–Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width–depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE–SW direction.

  14. Flood Prevention and Sustainable Spatial Planning. The Case of the River Diakoniaris in Patras Authors: D. Vespiniadou, E. Athanasopoulou

    OpenAIRE

    2006-01-01

    The danger of floods from overflow of rivers that crosses urban regions is a frequent phenomenon that concerns many of European countries. In the framework of Sustainable Spatial Planning arise some serious questions for the way that should such phenomena be handled, apart from the purely hydraulic conventional interventions. Noteworthy that at his flow a river runs through usually at all the length completely dissimilar regions as long as they concern in geomorphology but also their urban ch...

  15. Bridging arctic pathways: Integrating hydrology, geomorphology and remote sensing in the north

    Science.gov (United States)

    Trochim, Erin D.

    This work presents improved approaches for integrating patterns and processes within hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed on addressing fundamental interdisciplinary questions using robust, repeatable methods. Water tracks were examined in the foothills of the Brooks Range to ascertain their role within the range of features that transport water in Arctic regions. Classes of water tracks were developed using multiple factor analysis based on their geomorphic, soil and vegetation characteristics. These classes were validated to verify that they were repeatable. Water tracks represented a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrated a new approach to better understanding regional hydrological patterns. The locations of the water track classes were mapped using a combination method where intermediate processing of spectral classifications, texture and topography were fed into random forests to identify the water track classes. Overall, the water track classes were best visualized where they were the most discrete from the background landscape in terms of both shape and content. Issues with overlapping and imbalances between water track classes were the biggest challenges. Resolving the spatial locations of different water tracks represents a significant step forward for understanding periglacial landscape dynamics. Leaf area index (LAI) calculations using the gap-method were optimized using normalized difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The study design used groups to separate the effects of surficial drainage networks and the relative magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and for each sensor and group combination the distribution of LAI values was unique. This study indicated that there are tradeoffs between increased spatial resolution and the ability

  16. Geomorphology of MODIS-Visible Dust Plumes in the Chihuahuan Desert - Preliminary Results

    Science.gov (United States)

    Gill, T. E.; Mbuh, M. J.; Dominguez, M. A.; Lee, J. A.; Baddock, M. C.; Lee, C. E.; Whitehead, S. C.; Rivera Rivera, N. I.; Peinado, P.

    2009-12-01

    We identified 28 days since 2001 when blowing dust impacted El Paso, Texas and dust plumes were visible on NASA MODIS Terra/Aqua satellite images in the surrounding Chihuahuan Desert. Initiation points of >270 individual plumes were located on the MODIS images. Land use/land cover for each point was determined by field work, aerial photography, and/or soil/geological maps, and points were assigned to the geomorphic classes proposed by Bullard et al. (this session). Although dust plume identification is subjective (weak plumes, plumes obscured by clouds, and plumes occurring when the satellites are not overhead will be missed), these data provide preliminary information on the relationship between geomorphology and the initiation of major dust storms in the Chihuahuan Desert. Ephemeral lakes and alluvial low-relief non-incised lands are roughly equal producers of satellite-visible dust plumes in the Chihuahuan Desert. Anthropogenic modification of alluvial floodplains for cropping (primarily in the Casas Grandes and Del Carmen river basins) impacts dust generation, since about 2/3 of alluvial low-relief sites show evidence of agriculture. These agricultural fields are generally fallow during the November- April windy season. Not including agricultural lands, playas represent ~2x the number of sources as low-relief alluvial deposits. Aeolian sand deposits (predominantly coppice dunes and sand sheets overlaying alluvial or lacustrine sediments) account for about 1/7 of the points. These sands may act as erosional agents, providing saltating particles for sandblasting and bombardment of other sediments exposed nearby. Edges of ephemeral lakes are proportionally important sources (~10% of the points), likely due to the convergence of saltating sand, fine lacustrine sediments, and low roughness lengths of playa surfaces. Alluvial fans and alluvial uplands are minor dust sources compared to their overall prevalence in the region. Gobi/gibber/stony deposits are known dust

  17. Geomorphological survey and remote sensing analysis: a multidisciplinary approach to reconstruct triggering factors of a DSGSD in Maso Corto (South Tyrol, Italy)

    Science.gov (United States)

    Amato, Gabriele; Fubelli, Giandomenico; Piccin, Gianluca; Chinellato, Giulia; Iasio, Christian; Mosna, David; Morelli, Corrado

    2015-04-01

    Deformation that affects the outcropping metamorphic rocks throughout most part of the slope. Deformation facing southeast is extremely slow, reaching a maximum average speed of 10-15 mm/y. A clearly visible sliding surface, rising further upstream, separates stable bedrock by the deformed layer. Structural-Geomorphological Survey allowed to understand the boundaries of the DSGSD that is located on the east flank of the mountain north of the town, where the adjacent re-incised N-S glacial valley rises the maximum deep. Finally, GPS data measured 34 mm/y as the maximum horizontal velocity value of the rock glaciers in the study area. This low displacement rate let us assume that discontinuous, shallow, hot and thin permafrost may be present in the area. The overall analysis of composite survey suggests that the DSGSD formation may result as consequence of deglaciation, subsequent river incision and presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might have triggered or increased the velocity of the movement. Keywords: integrated monitoring, permafrost, DSGSD, InSAR, GPS, Rock Glacier, Geomorphological Survey, Alps

  18. Geomorphologic Mapping of Titan's Polar Terrains: Constraining Surface Processes and Landscape Evolution

    CERN Document Server

    Birch, Samuel; Dietrich, William; Howard, Alan; Bristow, Charlie; Malaska, Michael; Moore, Jeff; Mastrogiuseppe, Marco; Hofgartner, Jason; Williams, David; White, Oliver; Soderblom, Jason; Barnes, Jason; Turtle, Elizabeth; Lunine, Jonathan; Wood, Charles; Neish, Catherine; Kirk, Randy; Stofan, Ellen; Lorenz, Ralph; Lopes, Rosaly

    2016-01-01

    We present a geomorphologic map of Titan's polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surfici...

  19. Outer shelf seafloor geomorphology along a carbonate escarpment: The eastern Malta Plateau, Mediterranean Sea

    Science.gov (United States)

    Micallef, Aaron; Georgiopoulou, Aggeliki; Mountjoy, Joshu; Huvenne, Veerle A. I.; Iacono, Claudio Lo; Le Bas, Timothy; Del Carlo, Paola; Otero, Daniel Cunarro

    2016-12-01

    Submarine carbonate escarpments, documented in numerous sites around the world, consist of thick exposures of Mesozoic shallow water carbonate sequences - primarily limestones and dolomites - with reliefs of >1 km and slope gradients of >70°. Whilst most research efforts have focused on the processes that shaped carbonate escarpments into complex and extreme terrains, little attention has been paid to the geomorphology of shelves upslope of carbonate escarpments. In this study we investigate high resolution geophysical, sedimentological and visual data acquired from the eastern Malta Plateau, central Mediterranean Sea, to demonstrate that the outer shelf of a carbonate escarpment is directly influenced by escarpment-forming processes. We document forty eight erosional scars, six long channels and numerous smaller-scale channels, three elongate mounds, and an elongate ridge across the eastern Malta Plateau. By analysing their morphology, seismic character, and sedimentological properties, we infer that the seafloor of the eastern Malta Plateau has been modified by three key processes: (i) Mass movements - in the form of translational slides, spreading and debris flows - that mobilised stratified Plio-Pleistocene hemipelagic mud along the shelf break and that were likely triggered by seismicity and loss of support due to canyon erosion across the upper Malta Escarpment; (ii) NNW-SSE trending sinistral strike-slip deformation in Cenozoic carbonates - resulting from the development of a mega-hinge fault system along the Malta Escarpment since the Late Mesozoic, and SE-NW directed horizontal shortening since the Late Miocene - which gave rise to NW-SE oriented extensional grabens and a NNW-SSE horst; (iii) Flow of bottom currents perpendicular and parallel to the Malta Escarpment, associated with either Modified Atlantic Water flows during sea level lowstands and/or Levantine Intermediate Water flows at present, which was responsible for sediment erosion and deposition

  20. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    Science.gov (United States)

    Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.

    2017-02-01

    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.

  1. Impact of geology and geomorphology on fluoride contaminated groundwater in hard rock terrain of India using geoinformatics approach

    Science.gov (United States)

    Shekhar, Shashank; Ghosh, Mili; Pandey, A. C.; Tirkey, Anamika Shalini

    2017-08-01

    The present study demonstrates a GIS-based spatial evaluation of fluoride contamination (FC) in groundwater vis-a-vis geology and geomorphology of the area using analytical hierarchy process and weighted sum method in Palamu district of Jharkhand. The integration and analyses of the various thematic databases along with the field sampled fluoride data proved useful in delineating the FC zones. The FC index ranged between 141 and 707, and was classified into four zones, viz., low, moderate, high, and very high zones of FC. The FC index map showed that a total of 49.75% of the study area lies between high to very high FC zone. The very high FC zone is found in the moderately weathered plateau with granitic terrain, whereas the high and moderately FC zones covering 49.31 and 36.41% of the study area are dominated by plateau weathered shallow, pediment-inselberg complex, pediplain moderately weathered, pediplain shallow weathered, and inselberg which have high fluoride. The lowest FC zone covers an area of 193.27 sq. km (13.84%). The spatial analysis of geology with fluoride showed that groundwater within granitic gneiss exhibits high FC followed by granitoid gneiss and alluvium. Geomorphologically highest FC was recorded in plateau weathered moderate (91.67%) followed by plateau weathered shallow (71.43%), flood plain (41.76%), inselberg (27.27%), and pediment (25%). The spatial analysis of groundwater yield with fluoride showed that regions having good yield exhibit maximum FC thereby accelerating the vulnerability of the population to fluorosis.

  2. Geomorphological and sedimentological characteristics of cyclone-generated landforms and washover deposits along the coasts of NW Australia

    Science.gov (United States)

    May, Simon Matthias; Engel, Max; Brückner, Helmut; Pint, Anna; Kelletat, Dieter; Scheffers, Anja; Squire, Peter

    2013-04-01

    Palaeotempestology, the study of prehistoric storms, uses sedimentary evidence to enlarge the temporal frame of storm occurrence patterns given by historical records. Different sedimentary archives storing traces of tropical cyclone impact (washover fans and sediments, beach ridge systems) were investigated along the coasts of the Exmouth Gulf and the NW Cape(W Australia) in order to evaluate their use for palaeotempestological research. (1) Along the W coast of the Exmouth Gulf, distinct lobate washover fans exhibit washover terraces, channel systems and delta-type sedimentation patterns. Their stratigraphy consists of shell debris layers, sand, coarse coral fragments and entire shells. Multiple reactivation of the washover fans is inferred from their complex pattern of accumulation and incision and a minimum of three palaeosols, each of them indicating one depositional event and a subsequent period of geomorphologic stability. (2) In Giralia Bay, S Exmouth Gulf, sandy chenier-like beach ridges characterize the landward boundary of extensive mud flats. Their geomorphology and stratigraphical architecture reflect the influence of intermittent phases of morphodynamic activity due to littoral-type processes and are assumed to record recurring cyclone impact. (3) Along the W coast of the NW Cape, subrecent tsunami sediments detected in back-barrier archives contain reworked foraminifers from the shelf and the littoral zone and are most likely related to the 1994 Java Tsunami. Below, several thin clastic sand layers intercalate carbonate mud sediments. In contrast to the mud units, most of the sandy layers are reflected by increased mean grain size and contain reworked foraminifers from the shelf and littoral zone. Underlying mud sediments and mangrove remains reflect coastal and palaeoenvironmental changes on Holocene time scales. Our preliminary findings suggest that the investigated sedimentary archives have a high potential for improving extreme wave histories

  3. Analysis on River Sediment Changes of the Upper Reaches of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiang-hao; SHI Guo-yu; XU Quan-xi; CHEN Ze-fang; LIU Shu-zhen

    2005-01-01

    The sediment load and river sedimentation of the upper reaches of Yangtze River has been undergoing constant changes as complex landform, large mountain area and plentiful precipitation make the drainage area of Yangtze River very vulnerable to water erosion and gravity erosion. Through analyzing the hydrological and sediment load statistics recorded by major hydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annual runoff volume and annual sediment load, we find out that the suspended-sediment of Yangtze river has been decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei Hydrological Station on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and Gaochang Hydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Station along Yangtze River mainstream share the same experience too. But the statistics obtained at Pingshan Hydrological Station on Jinshajiang River shows the sediment load there has increased. Taking ecological construction, hydraulic engineering construction and precipitation changes into consideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River, Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation for further study of river sediment changes of the upper reaches of Yangtze River, and measures to control river sedimentation.

  4. Morphodynamics and anabranching patterns generated in the Madeira River, Brazil

    Science.gov (United States)

    Latrubesse, E. M.; Bonthius, C.; Abad, J. D.; Stevaux, J.; Filizola, N.; Frias, C. E.

    2013-12-01

    The Madeira River is the largest tributary in water discharge and sediment transport of the Amazon River. At present, this river is at the center of a controversial political discussion because the Brazilian government is building two hydroelectric plants on the Bolivia-Brazil border, flooding a long reach from near Cachuela Esperanza in the tributary Beni River, close to the Brazil-Bolivia border, up to Porto Velho. We present results from three field expeditions carried out in July-August 2011, December 2012 and March 2013. The main scope of this article is to disseminate the environmental threat suffered by the Madeira from regulation/disruption, and to present preliminary results on the geomorphologic characteristics of the Madeira channel and floodplain. Using historical radar and satellite imagery, the floodplain morpho-sedimentary units and morphology of the channel were assessed and quantified. Sediment bed and bank sampling, bathymetric surveys and velocity measurements were recorded using a single beam echo sounder and an acoustic Doppler current profiler (ADCP), respectively. Velocity data were analyzed using TRDI's WinRiverII and a MATLAB-based software package Velocity Mapping Tool. We consider that the Madeira River offers some ideal conditions to provide information on critical conditions and geomorphologic thresholds in mega-rivers. The Madeira River has been classified as a simple to moderate anabranching low-sinuosity river. The Madeira flows through a relatively simple pattern, alternating straight reaches with others that exhibit an incipient tendency to anabranch. Single beam and ADCP data yields insight into the bathymetry and flow characteristics in the channel through straight, pseudo-meandering, and anabranching stretches. We studied in detail three selected three reaches zones where three primary mechanisms for anabranching were identified: a) branches upstream and downstream in box shape pseudo-meanders; b) simple branch patterns

  5. GEOMORPHOLOGICAL MAPPING AND GEODIVERSITY: STUDY AT THE MINAS DO CAMAQUÃ GEOSITE PROTECTION AREA (BRAZIL

    Directory of Open Access Journals (Sweden)

    Maurício Mendes Von Ahn

    2017-05-01

    Full Text Available Geomorphological mapping allows the evaluation of geoheritage and subsidizes geoconservation efforts. This work aimed at identifying and analyzing the landforms at the Minas do Camaquã Geosite Protection Area (MCGPA – Rio Grande do Sul state – Brazil, emphasizing the anthropogenic morphologies to subsidize the conservation of the studied area’s geomorphological heritage. A geomorphological map (2015 of the MCGPA was made (1:25.000 to recognize and identify the natural and anthropogenic landforms. Based on this map, four sectors were identified according to the representativeness of the landforms: (1 Mineral extraction sector; (2 Tailings deposition sector; (3 Structural features sector; and (4 Boundary sector. The mining activities were the main reason for the geomorphological alterations and the creation of anthropogenic morphologies in the site. Despite the significant disturbance caused by the mining activity, there are still features of geologic-geomorphological interest fairly preserved. The identified and analyzed anthropogenic morphologies can describe the history of the mining activities that took place in the area and which formed a set of landforms currently present in the MCGPA. Although the surface features are not originated from natural morphogenesis, they belong to the area’s geodiversity. Furthermore, considering these features as geoheritage would create the need for management aiming at avoiding the collapse and degradation of these forms. Nowadays, the mining activities have remained inactive, and this set of anthropogenic morphologies need to be understood under a geomorphological point of view which will allow future exploitation of its potential touristic, scientific, pedagogical and cultural uses. The best way to promote and develop strategies of geoconservation for this place is to create and foment geotourism in this area.

  6. Geomorphological mapping and geophysical profiling for the evaluation of natural hazards in an alpine catchment

    Directory of Open Access Journals (Sweden)

    A. C. Seijmonsbergen

    2006-01-01

    Full Text Available Liechtenstein has faced an increasing number of natural hazards over recent decades: debris flows, slides, snow avalanches and floods repeatedly endanger the local infrastructure. Geomorphological field mapping and geo-electrical profiling was used to assess hazards near Malbun, a village potentially endangered by landslides, and especially debris flows. The area is located on the tectonic contacts of four different nappe slices. The bedrock consists of anhydrite and gypsum, dolomite, shale, marl, and limestone. The spatial distribution and occurrence of debris flows and slides is evaluated through a combination of geomorphological expert knowledge, and detailed visualization in a geographical information system. In a geo-database a symbol-based 1:3000 scale geomorphological map has been digitized and rectified into polygons. The polygons include information on the main geomorphological environment, the Quaternary material distribution and of geomorphological processes, which are stored in attribute tables. The spatial distribution of these attributes is then combined with geophysical information and displacement rates interpolated from benchmark measurements. On one of the landslides two geo-electrical profiles show that the distance to a potential failure plane varies between 10-20 m and that the topography of the failure plane is influenced by subterranean gypsum karst features. The displacement measurements show that this landslide actively disintegrates into minor slides and is not, therefore, a risk to the village of Malbun. The hazard zonation indicates that debris flows can pose a risk if no countermeasures are taken. Gypsum karst may locally accelerate the landslide activity. In contrast, the impact of debris flows is diminished because collapse dolines may act as sediment traps for the debris flow materials. This research illustrates how geomorphological expert knowledge can be integrated in a GIS for the evaluation of natural hazards

  7. Contested Rivers

    DEFF Research Database (Denmark)

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  8. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the

  9. Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations

    Science.gov (United States)

    Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe

    2017-04-01

    The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and

  10. Peak discharge evaluation of five exceptional winter flash floods of 2004-2008 in Central-East Sardinian karst areas and their geomorphological effectiveness (Italy)

    Science.gov (United States)

    Cossu, Q. A.; de Waele, J.; Bodini, A.; Sanna, L.; Cabras, S.

    2009-04-01

    In five subsequent winters (2004-2008) extreme meteorological events have occurred in karst areas of Central East Sardinia, leading to flash floods in several watersheds. Codula Ilune and Flumineddu experienced the most severe flash flood in December 2004, Codula Fuili in December 2006 and Codula Sisine in December 2008. The scars of these flash floods are still well visible in the river bed morphology, caused by the huge quantities of water that have passed the river reaches during these extreme floods. Since no gauges are present in none of these watersheds, the only possible way of estimating the peak flow is a combination of geomorphological and hydraulic observations. Three different methods for the estimation of peak flow velocity have been applied in several river reaches of 4 karstic watersheds (Codula Ilune, Codula Fuili and Codula Sisine in the Gulf of Orosei and Riu Flumineddu in Supramonte), using the Manning's equation, the similar Jarrett's formula and the Costa's method (1983) that make use of the mean diameter of the biggest by the flood water transported boulders. These estimates allow to quantify the peak flow of the floods in different river reaches, and also to have an idea of where and how much water penetrates into the karst aquifer, thus feeding the underground karst river network. Based on measurements from raingauges close to the study area, a statistical analysis of the rainfalls that have caused these flash floods has been also carried out. Total volume of water has been estimated for these four watersheds in the 5 events.

  11. A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development

    NARCIS (Netherlands)

    Gustavvson, M.; Kolstrup, E.; Seijmonsbergen, A.C.

    2006-01-01

    Abstract This paper presents a comprehensive and flexible new geomorphological combination legend that expands the possibilities of current geomorphological mapping concepts. The new legend is presented here at scale of 1:10,000 and it combines symbols for hydrography, morphometry/morphography,

  12. Multi-scale and object-oriented image analysis of high-res LiDAR data for geomorphological mapping in alpine mountains

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.; Purves, R.; Gruber, S.; Hengl, T.; Straumann, R.

    2009-01-01

    Geomorphological maps are useful to a wide variety of applications, such as hazard risk analysis (Seijmonsbergen 1992), forest ecological research (Van Noord 1996) and geoconservation evaluation studies (Seijmonsbergen et al. in press). Traditional field-based geomorphological mapping strategies are

  13. Multi-scale and object-oriented image analysis of high-res LiDAR data for geomorphological mapping in alpine mountains

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.; Purves, R.; Gruber, S.; Hengl, T.; Straumann, R.

    2009-01-01

    Geomorphological maps are useful to a wide variety of applications, such as hazard risk analysis (Seijmonsbergen 1992), forest ecological research (Van Noord 1996) and geoconservation evaluation studies (Seijmonsbergen et al. in press). Traditional field-based geomorphological mapping strategies are

  14. Geomorphological and Spectrophotometric Study of Philae Landing Site A

    Science.gov (United States)

    Pajola, M.; La Forgia, F.; Giacomini, L.; Oklay, N.; Massironi, M.; Bertini, I.; Simioni, E.; Marzari, F.; Barbieri, C.; Naletto, G.; Groussin, O.; Lazzarin, M.; Scholten, F.; Preusker, F.; Fornasier, S.; Vincent, J. B.; Sierks, H.

    2015-10-01

    5 finalists, this site has the unique value to provide detailed analysis of the multiple fractures present on its cliff and on the neighboring Hathor. Figure 1: Site A as imaged by the OSIRIS NAC camera on 6 August 2014 at 02:20:12 UT. The distance from the comet center is 117.24 km, the scale is 2.17 m/px. EPSC Abstracts Vol. 10, EPSC2015-526, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress We here present the geomorphological map coupled with the size-frequency distributions of boulders # 2 m located on the different types of terrains here identified, such as outcropping layered terrains, gravitational accumulation deposits, taluses and fine particle deposits. Gravitational slopes, derived through the 67P shape model by assuming uniform density, have been used to characterize and better interpret the various terrains. Moreover, we show the spectrophotometric properties of the area, studied through images taken by OSIRIS NAC with a scale of 50 cm/px. Albedo maps, as well as surface reflectance spectra have been obtained by taking advantage of the shape model and DTM in order to correct for the illumination and observing conditions of the terrain. This multidisciplinary analysis highlights that different types of deposits show different photometric properties.

  15. Assessment of metallic mineral resources in the Humboldt River Basin, Northern Nevada, with a section on Platinum-Group-Element (PGE) Potential of the Humboldt Mafic Complex

    Science.gov (United States)

    Wallace, Alan R.; Ludington, Steve; Mihalasky, Mark J.; Peters, Stephen G.; Theodore, Ted G.; Ponce, David A.; John, David A.; and Berger, Byron R.; Zientek, Michael L.; Sidder, Gary B.; Zierenberg, Robert A.

    2004-01-01

    The Humboldt River Basin is an arid to semiarid, internally drained basin that covers approximately 43,000 km2 in northern Nevada. The basin contains a wide variety of metallic and nonmetallic mineral deposits