WorldWideScience

Sample records for complex geometry components

  1. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  2. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  3. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  4. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  5. Emergent complex network geometry.

    Science.gov (United States)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-18

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  6. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust parame...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners.......The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...

  7. GEOMETRY AND COMPLEXITY IN ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    RUSU Maria Ana

    2015-06-01

    Full Text Available As Constantin Brancuși (1876-1956 said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design.

  8. Producing Zirconium Diboride Components with Complex, Near-Net Shape Geometries by Aqueous Room-Temperature Injection Molding

    Science.gov (United States)

    Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney

    2014-01-01

    Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.

  9. Blow-Ups in Generalized Complex Geometry

    NARCIS (Netherlands)

    van der Leer Duran, J.L.

    2016-01-01

    Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around 2002. In this thesis we address the following question: given a generalized complex manifold together with a submanifold, does

  10. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  11. Complexity and Shock Wave Geometries

    OpenAIRE

    Stanford, Douglas; Susskind, Leonard

    2014-01-01

    In this paper we refine a conjecture relating the time-dependent size of an Einstein-Rosen bridge to the computational complexity of the of the dual quantum state. Our refinement states that the complexity is proportional to the spatial volume of the ERB. More precisely, up to an ambiguous numerical coefficient, we propose that the complexity is the regularized volume of the largest codimension one surface crossing the bridge, divided by $G_N l_{AdS}$. We test this conjecture against a wide v...

  12. Density and geometry of single component plasmas

    CERN Document Server

    Speck, A; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; McConnell, R; Wrubel, J; Grzonka, D; Oelert, W; Sefzick, T; Zhang, Z; Comeau, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Walz, J

    2007-01-01

    The density and geometry of p¯ and e+ plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H¯) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.

  13. KAWA lecture notes on complex hyperbolic geometry

    OpenAIRE

    Rousseau, Erwan

    2016-01-01

    These lecture notes are based on a mini-course given at the fifth KAWA Winter School on March 24-29, 2014 at CIRM, Marseille. They provide an introduction to hyperbolicity of complex algebraic varieties namely the geometry of entire curves, and a description of some recent developments.

  14. An introduction to complex analysis and geometry

    CERN Document Server

    D'Angelo, John P

    2010-01-01

    An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary

  15. Conference on Complex Geometry and Mirror Symmetry

    CERN Document Server

    Vinet, Luc; Yau, Shing-Tung; Mirror Symmetry III

    1999-01-01

    This book presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathématiques (CRM, University of Montréal). The volume is in some sense a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), copublished by the AMS and International Press. Included are recent developments in the theory of mirror manifolds and the related areas of complex and symplectic geometry. The long introductory articles explain the key physical ideas and motivation, namely conformal field theory, supersymmetry, and string theory. Open problems are emphasized. Thus the book provides an efficient way for a very broad audience of mathematicians and physicists to reach the frontier of research in this fast expanding area. - See more at: http://bookstore.ams.org/amsip-10#sthash.DbxEFJDx.dpuf

  16. Chemotactic droplet swimmers in complex geometries

    Science.gov (United States)

    Jin, Chenyu; Hokmabad, Babak V.; Baldwin, Kyle A.; Maass, Corinna C.

    2018-02-01

    Chemotaxis1 and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behaviour. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. We present a well-controlled, tunable artificial model to study chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of self-propelling oil droplets in an aqueous surfactant solution (Herminghaus et al 2014 Soft Matter 10 7008–22 Krüger et al 2016 Phys. Rev. Lett. 117). Droplets propel via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled micelles act as a chemical repellent by diffusive phoretic gradient forces. We have studied these chemotactic effects in a series of microfluidic geometries, as published in Jin et al (2017 Proc. Natl Acad. Sci. 114 5089–94): first, droplets are guided along the shortest path through a maze by surfactant diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical Langevin model matching the experimental data. In a previously unpublished experiment, pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and, in the case of attachment, bending its trajectory and forcing it to revert to its own trail. We observe different behaviours based on the interplay of wall curvature and negative autochemotaxis, i.e. no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit.

  17. Differential and complex geometry origins, abstractions and embeddings

    CERN Document Server

    Wells, Jr , Raymond O

    2017-01-01

    Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.

  18. Low-Complexity Geometry-Based MIMO Channel Simulation

    Directory of Open Access Journals (Sweden)

    Christoph W. Ueberhuber

    2007-01-01

    Full Text Available The simulation of electromagnetic wave propagation in time-variant wideband multiple-input multiple-output mobile radio channels using a geometry-based channel model (GCM is computationally expensive. Due to multipath propagation, a large number of complex exponentials must be evaluated and summed up. We present a low-complexity algorithm for the implementation of a GCM on a hardware channel simulator. Our algorithm takes advantage of the limited numerical precision of the channel simulator by using a truncated subspace representation of the channel transfer function based on multidimensional discrete prolate spheroidal (DPS sequences. The DPS subspace representation offers two advantages. Firstly, only a small subspace dimension is required to achieve the numerical accuracy of the hardware channel simulator. Secondly, the computational complexity of the subspace representation is independent of the number of multipath components (MPCs. Moreover, we present an algorithm for the projection of each MPC onto the DPS subspace in 𝒪(1 operations. Thus the computational complexity of the DPS subspace algorithm compared to a conventional implementation is reduced by more than one order of magnitude on a hardware channel simulator with 14-bit precision.

  19. Input graph: the hidden geometry in controlling complex networks

    Science.gov (United States)

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-11-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.

  20. Introduction to the geometry of complex numbers

    CERN Document Server

    Deaux, Roland

    2008-01-01

    Geared toward readers unfamiliar with complex numbers, this text explains how to solve problems that frequently arise in the applied sciences and emphasizes constructions related to algebraic operations. 1956 edition.

  1. Quantifying networks complexity from information geometry viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Domenico, E-mail: domenico.felice@unicam.it; Mancini, Stefano [School of Science and Technology, University of Camerino, I-62032 Camerino (Italy); INFN-Sezione di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Pettini, Marco [Centre de Physique Théorique, UMR7332, and Aix-Marseille University, Luminy Case 907, 13288 Marseille (France)

    2014-04-15

    We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy on simplexes and find that it monotonically increases with their dimension.

  2. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    Science.gov (United States)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  3. A Simple Quality Triangulation Algorithm for Complex Geometries

    Science.gov (United States)

    This paper presents a new and simple algorithm for quality triangulation in complex geometries. The proposed algorithm is based on an initial equilateral triangle mesh covering the whole domain. The mesh nodes close to the boundary edges satisfy the so-called non-encroaching criterion: the distance ...

  4. Numerical simulations and mathematical models of flows in complex geometries

    DEFF Research Database (Denmark)

    Hernandez Garcia, Anier

    The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...

  5. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.

    2007-06-29

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.

  6. A study of complexity of oral mucosa using fractal geometry

    OpenAIRE

    S R Shenoi; Payal Peshwani; Anup Garg; Rohit Moharil

    2017-01-01

    Background: The oral mucosa lining the oral cavity is composed of epithelium supported by connective tissue. The shape of the epithelial-connective tissue interface has traditionally been used to describe physiological and pathological changes in the oral mucosa. Aim: The aim is to evaluate the morphometric complexity in normal, dysplastic, well-differentiated, and moderately differentiated squamous cell carcinoma (SCC) of the oral mucosa using fractal geometry. Materials and Methods: A total...

  7. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  8. A dissipative particle dynamics method for arbitrarily complex geometries

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its

  9. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components; Contribution au developpement et a la modelisation d'un traducteur ultrasonore multielements conformable pour l'inspection au contact de composants a geometrie complexe 3D

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, O

    2005-04-15

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  10. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  11. Additive manufacturing method for SRF components of various geometries

    Science.gov (United States)

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  12. A computational approach to modeling cellular-scale blood flow in complex geometry

    Science.gov (United States)

    Balogh, Peter; Bagchi, Prosenjit

    2017-04-01

    We present a computational methodology for modeling cellular-scale blood flow in arbitrary and highly complex geometry. Our approach is based on immersed-boundary methods, which allow modeling flows in arbitrary geometry while resolving the large deformation and dynamics of every blood cell with high fidelity. The present methodology seamlessly integrates different modeling components dealing with stationary rigid boundaries of complex shape, moving rigid bodies, and highly deformable interfaces governed by nonlinear elasticity. Thus it enables us to simulate 'whole' blood suspensions flowing through physiologically realistic microvascular networks that are characterized by multiple bifurcating and merging vessels, as well as geometrically complex lab-on-chip devices. The focus of the present work is on the development of a versatile numerical technique that is able to consider deformable cells and rigid bodies flowing in three-dimensional arbitrarily complex geometries over a diverse range of scenarios. After describing the methodology, a series of validation studies are presented against analytical theory, experimental data, and previous numerical results. Then, the capability of the methodology is demonstrated by simulating flows of deformable blood cells and heterogeneous cell suspensions in both physiologically realistic microvascular networks and geometrically intricate microfluidic devices. It is shown that the methodology can predict several complex microhemodynamic phenomena observed in vascular networks and microfluidic devices. The present methodology is robust and versatile, and has the potential to scale up to very large microvascular networks at organ levels.

  13. Stability analysis of underground mining openings with complex geometry

    Science.gov (United States)

    Cała, Marek; Stopkowicz, Agnieszka; Kowalski, Michał; Blajer, Mateusz; Cyran, Katarzyna; D'obyrn, Kajetan

    2016-03-01

    Stability of mining openings requires consideration of a number of factors, such as: geological structure, the geometry of the underground mining workings, mechanical properties of the rock mass, changes in stress caused by the influence of neighbouring workings. Long-term prediction and estimation of workings state can be analysed with the use of numerical methods. Application of 3D numerical modelling in stability estimation of workings with complex geometry was described with the example of Crystal Caves in Wieliczka Salt Mine. Preservation of the Crystal Caves reserve is particularly important in view of their unique character and the protection of adjacent galleries which are a part of tourist attraction included in UNESCO list. A detailed 3D model of Crystal Caves and neighbouring workings was built. Application of FLAC3D modelling techniques enabled indication of the areas which are in danger of stability loss. Moreover, the area in which protective actions should be taken as well as recommendations concerning the convergence monitoring were proposed.

  14. A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P

    2003-12-15

    We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.

  15. Measurement of Geometry of Small Axisymmetric Sheet Metal Component after Forming

    Directory of Open Access Journals (Sweden)

    Henri Lend

    2015-09-01

    Full Text Available Axisymmetric small components shape has many 3 dimensional curves, diagonals and “hidden” areas that are subject to changes during production and these changes are necessary to detect. Measurement with required accuracy may be challenging because of limitations connected with one measurement method. Component geometry and deformation is necessary to observe for several reasons. Modelling the forming process requires the feedback from production of components with real geometry, deformations and even changes in sheet metal thickness. These values can change during production process because of changes in tool condition, material properties, coating and sheet metal thickness. Changes in part geometry and deformations affects the final product properties that is important to study. The purpose of the study is to improve the product reliability and control the geometry of the components during the manufacturing process. In present study different components are measured with different methods and compared to each other. Metallographic cross-sectioning method is developed to get reliable results of sheet thickness and hidden areas geometry of the component assembly. Results show that some 3D scanning methods can provide accurate measurements and can be used as reasonable labour-intensive method for the most of the measurements. However combined measurements are used to get all necessary data from the component. Metallographic cross-section method is necessary especially for assembly measurement.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7384

  16. Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Phillip, B.

    2000-07-24

    Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.

  17. An adaptive fast multipole accelerated Poisson solver for complex geometries

    Science.gov (United States)

    Askham, T.; Cerfon, A. J.

    2017-09-01

    We present a fast, direct and adaptive Poisson solver for complex two-dimensional geometries based on potential theory and fast multipole acceleration. More precisely, the solver relies on the standard decomposition of the solution as the sum of a volume integral to account for the source distribution and a layer potential to enforce the desired boundary condition. The volume integral is computed by applying the FMM on a square box that encloses the domain of interest. For the sake of efficiency and convergence acceleration, we first extend the source distribution (the right-hand side in the Poisson equation) to the enclosing box as a C0 function using a fast, boundary integral-based method. We demonstrate on multiply connected domains with irregular boundaries that this continuous extension leads to high accuracy without excessive adaptive refinement near the boundary and, as a result, to an extremely efficient "black box" fast solver.

  18. A study of complexity of oral mucosa using fractal geometry

    Directory of Open Access Journals (Sweden)

    S R Shenoi

    2017-01-01

    Full Text Available Background: The oral mucosa lining the oral cavity is composed of epithelium supported by connective tissue. The shape of the epithelial-connective tissue interface has traditionally been used to describe physiological and pathological changes in the oral mucosa. Aim: The aim is to evaluate the morphometric complexity in normal, dysplastic, well-differentiated, and moderately differentiated squamous cell carcinoma (SCC of the oral mucosa using fractal geometry. Materials and Methods: A total of 80 periodic acid–Schiff stained histological images of four groups: normal mucosa, dysplasia, well-differentiated SCC, and moderately differentiated SCC were verified by the gold standard. These images were then subjected to fractal analysis. Statistical Analysis: ANOVA and post hoc test: Bonferroni was applied. Results: Fractal dimension (FD increases as the complexity increases from normal to dysplasia and then to SCC. Normal buccal mucosa was found to be significantly different from dysplasia and the two grades of SCC (P < 0.05. ANOVA of fractal scores of four morphometrically different groups of buccal mucosa was significantly different with F (3,76 = 23.720 and P< 0.01. However, FD of dysplasia was not significantly different from well-differentiated and moderately differentiated SCC (P = 1.000 and P = 0.382, respectively. Conclusion: This study establishes FD as a newer tool in differentiating normal tissue from dysplastic and neoplastic tissue. Fractal geometry is useful in the study of both physiological and pathological changes in the oral mucosa. A new grading system based on FD may emerge as an adjuvant aid in cancer diagnosis.

  19. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  20. Geometry

    Indian Academy of Sciences (India)

    of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying ... dimensions up to and including three it is difficult to think of dimensions beyond except abstractly -in one's .... form I. gij ai aj is positive for any collection of numbers. (aI, ... , an). Moreover, the given form can easily ...

  1. Elements for measuring the complexity of 3D structural models: Connectivity and geometry

    Science.gov (United States)

    Pellerin, Jeanne; Caumon, Guillaume; Julio, Charline; Mejia-Herrera, Pablo; Botella, Arnaud

    2015-03-01

    The reliable modeling of three-dimensional complex geological structures can have a major impact on forecasting and managing natural resources and on predicting seismic and geomechanical hazards. However, the qualification of a model as structurally complex is often qualitative and subjective making the comparison of the capabilities and performances of various geomodeling methods or software difficult. In this paper, we consider the notion of structural complexity from a geometrical point of view and argue that it can be characterized using general metrics computed on three-dimensional sealed structural models. We propose global and local measures of the connectivity and of the geometry of the model components and show how they permit to classify nine 3D synthetic structural models. Depending on the complexity elements favored, the classification varies. The models we introduce could be used as benchmark models for geomodeling algorithms.

  2. Multiphase flows in complex geometries: a UQ perspective

    KAUST Repository

    Icardi, Matteo

    2015-01-07

    Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.

  3. Meeting on flows of granular materials in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Passman, S.L.; Fukushima, E.; Evans, R.E. [eds.

    1994-11-01

    The International Energy Agency Fossil Fuel Multiphase Flow Sciences Agreement has been in effect since 1986. The traditional mechanism for the effort has been information exchange, effected by the inclusion of scientists in annual Executive committee meetings, by exchange of reports and papers, and by visits of scientists to one another`s institutions. In a sequence of informal meetings and at the 1993 Executive committee meeting, held in Pittsburgh, US in March 1994, it was decided that more intensive interactions could be productive. A candidate for such interactions would be specific projects. Each of these would be initiated through a meeting of scientists in which feasibility of the particular project was decided, followed by relatively intense international co-operation in which the work would be done. This is a report of the first of these meetings. Official or unofficial representatives from Canada, italy, japan, mexico, the United Kingdom, and the US met in Albuquerque, New Mexico, US, to consider the subject Flows of Granular Materials in Complex Geometries. Representatives of several other countries expressed interest but were unable to attend this meeting. Sixteen lectures were given on aspects of this topic. It was decided that a co-operative effort was desirable and possible. The most likely candidate for the area of study would be flows in bins and hoppers. Each of the countries wishing to co-operate will pursue funding for its effort. This report contains extended abstracts of the sixteen presentations and a transcription of the final discussion.

  4. Droplet swimmers in complex geometries: Autochemotaxis and trapping at pillars.

    Science.gov (United States)

    Maass, Corinna; Jin, Chenyu; Krueger, Carsten; Vajdi Hokmabad, Babak

    Autochemotaxis is a key feature of communication between microorganisms, via their emission of a slowly diffusing chemoattractant or repellent. We present a well-controlled, tunable artificial model to study autochemotaxis in complex geometries, using microfluidic assays of self-propelling liquid crystal droplets in an aqueous surfactant solution. Droplets gain propulsion energy by micellar solubilisation, with filled micelles acting as a chemical repellent by diffusive phoretic gradient forces. We can tune the key parameters swimmer size, velocity and persistence length. If a swimming droplet approaches a wall, it will provide a boundary to both the hydrodynamic flow field and the spread of phoretic gradients, determining the interaction between swimmer and wall. Pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and in the case of attachment bending its trajectory and forcing it to revert to its own trail. We observe different behavior based on the interplay of wall curvature and negative auto-chemotaxis, i. e., no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit. Work funded by the DFG SPP 1726 ''Microswimmers''.

  5. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [ODU, JLAB; Deitrick, Kirsten E. [ODU, JLAB; Delayen, Jean R. [ODU, JLAB

    2013-12-01

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  6. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  7. MM99.81 Projection welding of complex geometries

    DEFF Research Database (Denmark)

    Kristensen, Lars

    The objective of this work has been to establish a profound knowledge about design rules for projection welding geometries dependent of the actual material combination.Design rules and recommendations for geometries and projections in projection welding given in literature is summarised...... and these are catalogued into geometry-classes. A simulation software, SORPAS, based on the finite element method (FEM) is chosen as tool to investigate projection weld quality. SORPAS needs input of the material flow stress as function of strain, strain rate and temperature. Flow stress experiments are performed using...... been investigated.Two different welding geometries, disc with triangular ring projection welded to ring and hat welded to inside hole in ring, are both experimentally and numerically used to investigate the influence of different geometric parameters (thicknesses and angles) on weldability and weld...

  8. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    With this research the current architectural knowledge base has been advanced in terms of complex geometry thin-walled GFRC for building envelopes. The identified solutions should allow building with complex geometries to be realised using thin-walled GFRC as the envelope cladding.

  9. Theory of diffusion-influenced reactions in complex geometries

    CERN Document Server

    Galanti, Marta; Piazza, Francesco

    2015-01-01

    Chemical reactions involving diffusion of reactants and subsequent chemical fixation steps are generally termed "diffusion-influenced" (DI). Virtually all biochemical processes in living media can be counted among them, together with those occurring in an ever-growing number of emerging nano-technologies. The role of the environment's geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) is key in modulating the rate constants of DI reactions, and is therefore a prime design parameter. Yet, it is a formidable challenge to build a comprehensive theory able to describe the environment's "reactive geometry". Here we show that such a theory can be built by unfolding this many-body problem through addition theorems for special functions. Our method is powerful and general and allows one to study a given DI reaction occurring in arbitrary "reactive landscapes", made of multiple spherical boundaries of given size and reactivity. Importantly, ready-to-use analytical form...

  10. Overture: Object-Oriented Tools for Application with Complex Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.; Henshaw, B.; Quinlan, D.

    1999-05-31

    The Overture framework is an object-oriented environment for solving partial differential equations in two and three space dimensions. It is a collection of C++ libraries that enables the use of finite difference and finite volume methods at a level that hides the details of the associated data structures. Overture can be used to solve problems in complicated, moving geometries using the method of overlapping grids. It has support for grid generation, difference operators, boundary conditions, data-base access and graphics. Short sample code segments are presented to show the power of this approach.

  11. Equilibrium between Different Coordination Geometries in Oxidovanadium(IV) Complexes

    Science.gov (United States)

    Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele

    2015-01-01

    In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…

  12. Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry

    Science.gov (United States)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.

  13. Compound complex curves: the authentic geometry of esthetic dentistry.

    Science.gov (United States)

    Scoble, Han O; White, Shane N

    2014-06-01

    Observers are drawn to the intricate and unpredictable way light reflects off the compound complex curved surfaces seen in nature, art, and industry. Teeth are no exception, containing as they do such detail in their gross anatomy, fine anatomic detail, and surface texture. Compound complex curves are particularly important when engineered materials are used to mimic naturally occurring objects, including prosthetic teeth, and they can provide both authenticity and beauty. The purpose of this article was to describe the nature of compound complex curves, their historical context, and their importance in creating natural-looking prostheses. Classically, such curves have been described by using descriptive qualitative methods or quantitative mathematical methods; now these approaches merge. Natural tooth anatomy contains interlinked features at different levels of scale from gross to fine surface texture detail. These curves should be created appropriately for individual restorative treatments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry

    Directory of Open Access Journals (Sweden)

    Mikdam Jamal

    2017-12-01

    Full Text Available Metal additive manufacturing (AM is increasingly used to create complex 3D components at near net shape. However, the surface finish (SF of the metal AM part is uneven, with surface roughness being variable over the facets of the design. Standard post-processing methods such as grinding and linishing often meet with major challenges in finishing parts of complex shape. This paper reports on research that demonstrated that mass finishing (MF processes are able to deliver high-quality surface finishes (Ra and Sa on AM-generated parts of a relatively complex geometry (both internal features and external facets under select conditions. Four processes were studied in this work: stream finishing, high-energy (HE centrifuge, drag finishing and disc finishing. Optimisation of the drag finishing process was then studied using a structured design of experiments (DOE. The effects of a range of finishing parameters were evaluated and optimal parameters and conditions were determined. The study established that the proposed method can be successfully applied in drag finishing to optimise the surface roughness in an industrial application and that it is an economical way of obtaining the maximum amount of information in a short period of time with a small number of tests. The study has also provided an important step in helping understand the requirements of MF to deliver AM-generated parts to a target quality finish and cycle time.

  15. Development of a numerical methodology for flowforming process simulation of complex geometry tubes

    Science.gov (United States)

    Varela, Sonia; Santos, Maite; Arroyo, Amaia; Pérez, Iñaki; Puigjaner, Joan Francesc; Puigjaner, Blanca

    2017-10-01

    Nowadays, the incremental flowforming process is widely explored because of the usage of complex tubular products is increasing due to the light-weighting trend and the use of expensive materials. The enhanced mechanical properties of finished parts combined with the process efficiency in terms of raw material and energy consumption are the key factors for its competitiveness and sustainability, which is consistent with EU industry policy. As a promising technology, additional steps for extending the existing flowforming limits in the production of tubular products are required. The objective of the present research is to further expand the current state of the art regarding limitations on tube thickness and diameter, exploring the feasibility to flowform complex geometries as tubes of elevated thickness of up to 60 mm. In this study, the analysis of the backward flowforming process of 7075 aluminum tubular preform is carried out to define the optimum process parameters, machine requirements and tooling geometry as demonstration case. Numerical simulation studies on flowforming of thin walled tubular components have been considered to increase the knowledge of the technology. The calculation of the rotational movement of the mesh preform, the high ratio thickness/length and the thermomechanical condition increase significantly the computation time of the numerical simulation model. This means that efficient and reliable tools able to predict the forming loads and the quality of flowformed thick tubes are not available. This paper aims to overcome this situation by developing a simulation methodology based on FEM simulation code including new strategies. Material characterization has also been performed through tensile test to able to design the process. Finally, to check the reliability of the model, flowforming tests at industrial environment have been developed.

  16. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    Science.gov (United States)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  17. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...

  18. Mitigation of Bias in Inversion of Complex Earthquake without Prior Information of Detailed Fault Geometry

    Science.gov (United States)

    Kasahara, A.; Yagi, Y.

    2014-12-01

    Rupture process of earthquake derived from geophysical observations is important information to understand nature of earthquake and assess seismic hazard. Finite fault inversion is a commonly applied method to construct seismic source model. In conventional inversion, fault is approximated by a simple fault surface even if rupture of real earthquake should propagate along non-planar complex fault. In the conventional inversion, complex rupture kinematics is approximated by limited model parameters that only represent slip on a simple fault surface. This over simplification may cause biased and hence misleading solution. MW 7.7 left-lateral strike-slip earthquake occurred in southwestern Pakistan on 2013-09-24 might be one of exemplar event to demonstrate the bias. For this earthquake, northeastward rupture propagation was suggested by a finite fault inversion of teleseismic body and long period surface waves with a single planer fault (USGS). However, surface displacement field measured from cross-correlation of optical satellite images and back-projection imaging revealed that rupture was unilaterally propagated toward southwest on a non-planer fault (Avouac et.al., 2014). To mitigate the bias, more flexible source parameterization should be employed. We extended multi-time window finite fault method to represent rupture kinematics on a complex fault. Each spatio-temporal knot has five degrees of freedom and is able to represent arbitrary strike, dip, rake, moment release rate and CLVD component. Detailed fault geometry for a source fault is not required in our method. The method considers data covariance matrix with uncertainty of Green's function (Yagi and Fukahata, 2011) to obtain stable solution. Preliminary results show southwestward rupture propagation and focal mechanism change that is consistent with fault trace. The result suggests usefulness of the flexible source parameterization for inversion of complex events.

  19. Six-Coordinate Ln(III Complexes with Various Coordination Geometries Showing Distinct Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Mei Guo

    2018-01-01

    Full Text Available The syntheses, structural characterization, and magnetic properties of three lanthanide complexes with formulas [Ln(L13] (Ln = Dy (1Dy; Er (1Er; and [Dy(L22] (2Dy were reported. Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron density for DyIII (oblate and ErIII (prolate ions. Complex 1Dy shows obvious SMM behavior under a zero direct current (dc field with an effective energy barrier of 31.4 K, while complex 1Er only features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K. In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence of alternating current (ac susceptibility signals without χ″ peaks under a zero dc field.

  20. Control of Complex Components with Smart Flexible Phased Arrays

    Science.gov (United States)

    Casula, O.; Poidevin, C.; Cattiaux, G.; Dumas, Ph.

    2006-03-01

    The inspection of piping in nuclear plants is mainly performed in contact with ultrasonic wedge transducers. During the scanning, the fixed shape of wedges cannot fit the irregular surfaces and complex geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam. To improve such controls, a new concept of contact "Smart Flexible Phased Array" has been developed with the support of the French "Institut de Radioprotection et de Sûreté Nucléaire". The phased array is flexible to fit the complex profile and to minimize the thickness of the coupling layer. The independent piezoelectric elements composing the radiating surface are mechanically assembled in order to build an articulated structure. A profilometer, embedded in the transducer, measures the local surface distortion allowing to compute in real-time the optimized delay laws and compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, two prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviours of these probes.

  1. A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O

    2004-11-18

    We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.

  2. CIME school “Fully Nonlinear PDEs in Real and Complex Geometry and Optics”

    CERN Document Server

    Capogna, Luca; Gutiérrez, Cristian E; Montanari, Annamaria

    2014-01-01

    The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.

  3. Microfluidic Bypass Manometry: Parallelized measurement of flow resistance of complex channel geometries and trapped droplets

    Science.gov (United States)

    Vanapalli, Siva; Suteria, Naureen; Nekouei, Mehdi

    2017-11-01

    We report a technique referred to as ``microfluidic bypass manometry'' for measurement of pressure drop versus flow rate (ΔP-Q) relations in a parallelized manner. It involves introducing co-flowing laminar streams into a microfluidic network that contains a series of loops, where each loop contains a test geometry and a bypass channel as a flow rate sensing element. To demonstrate the technique, we measure ΔP-Q relations simultaneously for forty test geometries ranging from linear to contraction-expansion to serpentine to pillar-laden microchannels. The measured Newtonian flow resistance of these different geometries is in excellent agreement with CFD simulations. To expand the capabilities of the method, we measured ΔP-Q relations for similar-sized oil droplets trapped in microcavities where the cavity geometry spans from prisms of 3 - 10 sides to cylinders. We find in all cases, ΔP-Q relation is nonlinear and the flow resistance is sensitive to drop confinement and weakly dependent on cavity geometry. We anticipate that microfluidic bypass manometry may find broad application in several areas including design of lab-on-chip devices, laminar drag reduction, rheology of complex fluids and mechanics of deformable particles.

  4. Advancing the manufacture of complex geometry GFRC for today's building envelopes

    Directory of Open Access Journals (Sweden)

    Thomas Henriksen

    2017-06-01

    Full Text Available Thin-walled glass fibre reinforced concrete (GFRC panels are being used as the primary cladding material on many landmark buildings especially in the last decade. GFRC is an ideal material for building envelopes because it is durable, it can resist fire and the environmental impact is low compared to other materials, because the base materials used in the production of GFRC are widely available throughout the world. Thin-walled GFRC was initially developed as a cladding material in the 1970s and 1980s where the majority of the available research lies. The introduction of 3D CAD software has enabled the design of buildings with complex shapes that, in the past, would have been rationalised to meet budget and time constraints. However, when GFRC has been proposed for buildings with a complex free-form geometry it has been replaced with alternative materials such as glass reinforced plastic (GFRP due to the high cost and time required to fabricate suitable GFRC panels using conventional manufacturing methods. The literature showed that empirical performance characterization of GFRC had not been researched in detail regarding the limits of functionality or any systematic approach to understanding their use in complex geometry building envelopes.As a first step the key architectural demands, the main barriers and limitations in the manufacture of complex geometry thin-walled GFRC were identified by interviewing and visiting manufacturers, designers and key buildings. This identified the key barrier to be the process of producing the mould for casting the complex geometry GFRC panels. Solutions to resolve them were tested over several stages for each of the main production methods most suited for the manufacture of thin-walled GFRC, namely; the automated premixed method, the premixed method and the sprayed method. The results from the laboratory testing over all the stages, and the prototype structure manufactured with the identified solution from

  5. Surprising Coordination Geometry Differences in Ce(IV)- and Pu(IV)-Maltol Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Raymond, Kenneth; Szigethy, Geza; Xu, Jide; Gorden, Anne E.V.; Teat, Simon J.; Shuh, David K.; Raymond, Kenneth N.

    2008-02-12

    As part of a study to characterize the detailed coordination behavior of Pu(IV), single crystal X-ray diffraction structures have been determined for Pu(IV) and Ce(IV) complexes with the naturally-occurring ligand maltol (3-hydroxy-2-methyl-pyran-4-one) and its derivative bromomaltol (5-bromo-3-hydroxy-2-methyl-pyran-4-one). Although Ce(IV) is generally accepted as a structural analog for Pu(IV), and the maltol complexes of these two metals are isostructural, the corresponding bromomaltol complexes are strikingly different with respect to ligand orientation about the metal ion: All complexes exhibit trigonal dodecahedral coordination geometry but the Ce(IV)-bromomaltol complex displays an uncommon ligand arrangement not mirrored in the Pu(IV) complex, although the two metal species are generally accepted to be structural analogs.

  6. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    Science.gov (United States)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  7. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  8. Flexible Production of Geometrically Complex Superalloy Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to design and manufacture complex, one-of-a-kind to limited quantity rocket propulsion system components, while shortening the development cycle time and...

  9. Relaxed geometries and dipole moments of positron complexes with diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2010-01-01

    Relaxed geometries and dipole moments of diatomic molecules interacting with a slow positron are reported as functions of the positron distance to the more electronegative atom. A molecular model for the complex that allows applications to large systems is used. The electron population on the positron is proposed as a weighting function to calculate the average quantities. Results show Self-Consistent-Field quality or better.

  10. From Stein to Weinstein and back symplectic geometry of affine complex manifolds

    CERN Document Server

    Cieliebak, Kai

    2013-01-01

    A beautiful and comprehensive introduction to this important field. -Dusa McDuff, Barnard College, Columbia University This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors' new results. -Tomasz Mrowka, MIT This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine co

  11. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  12. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    Science.gov (United States)

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at

  13. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries

    Directory of Open Access Journals (Sweden)

    Drawert Brian

    2012-06-01

    Full Text Available Abstract Background Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. Results We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods

  14. Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2010-01-01

    The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices...

  15. 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot

    National Research Council Canada - National Science Library

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting...

  16. Development of a Complex Geometry Standard Fixture and Solvent Evaluation Method fo Assessing Replacement Solvents for AK-225G Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this analysis was the development of a complex geometry test fixture and test method for determining solvent cleaning efficiency. AK-225 belongs to a...

  17. Hex-dominant mesh generation for basin modeling with complex geometry

    Science.gov (United States)

    Ran, Longmin; Borouchaki, Houman; Benali, Abdallah; Bennis, Chakib

    2010-06-01

    Basin modeling aims to reconstruct the geological history of a basin and its oil system by means of fluid flow simulations, which is done by using a series of meshes describing basin geometry at each geological instant. These meshes are preferably hexahedral rather than tetrahedral in virtue for better numerical results. The basin can simply consist of geological layers delimited one from another by horizons. It can be geometrically complex with one or more faults interrupting the layers, which is barely studied but increasingly demanded. This paper exposes an automatic method which generates hex-dominant meshes for basin modeling with complex geometry. Firstly, based on their triangulations at the latest instant, 3D surface grids are generated with identical topology for all the horizons, and with some quadrilaterals being split across the diagonals to adapt to fault traces. Afterwards, all instants are iterated to generate corresponding meshes by firstly applying horizon and fault displacement on the mesh generated for precedent instant; the method then connects the bottom and top surface grids of the new layer along corresponding nodes, and splits certain cells along faults when necessary. Simulations have been carried out on generated meshes with satisfactory results.

  18. Large Eddy Simulation of Reacting Multiphase Flows in Complex Combustor Geometries

    Science.gov (United States)

    Apte, S.; Mahesh, K.; Iaccarino, G.; Constantinescu, G.; Ham, F.; Moin, P.

    2003-11-01

    We have developed a massively parallel computational tool (CDP) for large-eddy simulation (LES) of reacting multiphase flows in complex combustor geometries. A co-located, finite-volume scheme on unstructured grids is used to solve the low-Mach number equations for gaseous phase. The liquid phase is modeled by tracking a large number of computational particles in a Lagrangian framework with models for inter-phase mass, momentum, and energy transport. Complex physical phenomena of liquid atomization, droplet deformation, drag, and evaporation are captured using advanced subgrid models. A flamelet/progress variable appraoch by Pierce & Moin (2001) is used to compute non-premixed turbulent combustion. A series of validation studies in coaxial and realistic gas-turbine combustor geometries are performed to test the predictive capability of the solver. Specifically, simulations of non-premixed combustion, particle-laden swirling flows, droplet vaporization in coaxial-jet combustors and spray breakup in realistic injectors are performed and good agreement with avialable experimental data is obtained. This tool is now being used to perform simulations of turbulent spray flames in a realistic Pratt & Whitney gas-turbine combustion chamber using Department of Energy's computational resources under the Accelerated Strategic Computing Initiative (ASCI) project.

  19. A Framework for the Interactive Handling of High-Dimensional Simulation Data in Complex Geometries

    KAUST Repository

    Benzina, Amal

    2013-01-01

    Flow simulations around building infrastructure models involve large scale complex geometries, which when discretized in adequate detail entail high computational cost. Moreover, tasks such as simulation insight by steering or optimization require many such costly simulations. In this paper, we illustrate the whole pipeline of an integrated solution for interactive computational steering, developed for complex flow simulation scenarios that depend on a moderate number of both geometric and physical parameters. A mesh generator takes building information model input data and outputs a valid cartesian discretization. A sparse-grids-based surrogate model—a less costly substitute for the parameterized simulation—uses precomputed data to deliver approximated simulation results at interactive rates. Furthermore, a distributed multi-display visualization environment shows building infrastructure together with flow data. The focus is set on scalability and intuitive user interaction.

  20. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  1. Improving and validating 3D models for the leaf energy balance in canopy-scale problems with complex geometry

    Science.gov (United States)

    Bailey, B.; Stoll, R., II; Miller, N. E.; Pardyjak, E.; Mahaffee, W.

    2014-12-01

    Plants cover the majority of Earth's land surface, and thus play a critical role in the surface energy balance. Within individual plant communities, the leaf energy balance is a fundamental component of most biophysical processes. Absorbed radiation drives the energy balance and provides the means by which plants produce food. Available energy is partitioned into sensible and latent heat fluxes to determine surface temperature, which strongly influences rates of metabolic activity and growth. The energy balance of an individual leaf is coupled with other leaves in the community through longwave radiation emission and advection through the air. This complex coupling can make scaling models from leaves to whole-canopies difficult, specifically in canopies with complex, heterogeneous geometries. We present a new three-dimensional canopy model that simultaneously resolves sub-tree to whole-canopy scales. The model provides spatially explicit predictions of net radiation exchange, boundary-layer and stomatal conductances, evapotranspiration rates, and ultimately leaf surface temperature. The radiation model includes complex physics such as anisotropic emission and scattering. Radiation calculations are accelerated by leveraging graphics processing unit (GPU) technology, which allows canopy-scale problems to be performed on a standard desktop workstation. Since validating the three-dimensional distribution of leaf temperature can be extremely challenging, we used several independent measurement techniques to quantify errors in measured and modeled values. When compared with measured leaf temperatures, the model gave a mean error of about 2°C, which was close to the estimated measurement uncertainty.

  2. Geometry of s-space and its using for modeling and optimization complex systems

    Directory of Open Access Journals (Sweden)

    Y. N. Kovaluov

    2003-06-01

    Full Text Available Components of the S-space wave model - axioms, self-organization theory, mappings - are described.The general model “human-environment” and some of the working models are considered. Also contains examples of application of the S-space self-organization theory by optimization of complex technological systems

  3. Obtaining manufactured geometries of deep-drawn components through a model updating procedure using geometric shape parameters

    Science.gov (United States)

    Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan

    2018-01-01

    The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.

  4. Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Robert Emil; Briggs, Joseph Blair

    1999-06-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  5. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Briggs (INEEL POC); R. E. Rothe

    1999-06-14

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  6. A Level Set Approach for Denoising and Adaptively Smoothing Complex Geometry Stereolithography (STL) Files

    Science.gov (United States)

    Kannan, Karthik

    Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface. A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis by means of input parameters. Once the surface representation is smoothened as desired, it can be extracted as a standard levelset scalar isosurface. The approach presented in this thesis is also coupled to a fully unstructured Cartesian mesh generation library with built-in localized adaptive mesh refinement (AMR) capabilities, thereby ensuring lower computational cost while also providing sufficient resolution. Future work will focus on implementing tetrahedral cuts to the base hexahedral mesh structure in order to extract a fully unstructured hexahedra-dominant mesh describing the STL geometry, which can be used for fluid flow simulations.

  7. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    Science.gov (United States)

    Özdemir, İ. Bedii; Akar, Fırat

    2017-11-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  8. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  9. Circadian Effects on Simple Components of Complex Task Performance

    Science.gov (United States)

    Clegg, Benjamin A.; Wickens, Christopher D.; Vieane, Alex Z.; Gutzwiller, Robert S.; Sebok, Angelia L.

    2015-01-01

    The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors.

  10. Insulating complex cooling system components; Kaeltedaemmung komplexer Anlagenteile

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.

    2009-07-01

    This illustrated article takes a look at the use of specially formed insulation components made of synthetic rubber. The author comments on the difficulties encountered by companies when estimating the amount of work needed to insulate complex systems, as this often involves work being carried out in several stages. The importance of a clear concept for the insulation work is stressed. Details on the insulation of piping, connection flanges, valves and stop-cocks are presented and the use of specially formed insulation elements is discussed. Various tips are given and practical guides are presented regarding couplings, critical elements and problematical zones.

  11. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2017-02-25

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  12. POD evaluation using simulation: A phased array UT case on a complex geometry part

    Science.gov (United States)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  13. Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method

    Directory of Open Access Journals (Sweden)

    Alexander Samardak

    2015-04-01

    Full Text Available The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices.

  14. Complex resistivity spectra in relation to multiscale pore geometry in carbonates and mixed-siliciclastic rocks

    Science.gov (United States)

    Norbisrath, Jan Henrik

    Carbonate rocks are known to have complex and heterogeneous pore structures, which result from their biogenic origin and strong affinity for diagenetic processes that change their pore structure after burial. The combination of sheer endless variations of precursor biogenic material, depositional environments, and diagenetic effects results in rocks that are interesting to study but intricate to understand. Many schemes to categorize the diversity of carbonate rocks are in use today; most are based on the macropore structure and qualitative thin-section analysis. Many studies, however, acknowledge that micropores have a significant influence on the macroscopic petrophysical rock properties, which are essential to determine reservoir quality. Micropores are, by definition, smaller than the thickness of a thin-section (impact on cementation factors and permeability, (3) nanopore geometry has a small impact on electrical flow properties in mudrocks where the main control on cementation factors is porosity, and (4) all sedimentary limestone and mixed carbonate-siliciclastic rocks have power law pore size distributions.

  15. A Tensor-Train accelerated solver for integral equations in complex geometries

    Science.gov (United States)

    Corona, Eduardo; Rahimian, Abtin; Zorin, Denis

    2017-04-01

    We present a framework using the Quantized Tensor Train (QTT) decomposition to accurately and efficiently solve volume and boundary integral equations in three dimensions. We describe how the QTT decomposition can be used as a hierarchical compression and inversion scheme for matrices arising from the discretization of integral equations. For a broad range of problems, computational and storage costs of the inversion scheme are extremely modest O (log ⁡ N) and once the inverse is computed, it can be applied in O (Nlog ⁡ N) . We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship to commonly used hierarchical compression techniques such as FMM and HSS. We prove that the QTT ranks are bounded for translation-invariant systems and argue that this behavior extends to non-translation invariant volume and boundary integrals. For volume integrals, the QTT decomposition provides an efficient direct solver requiring significantly less memory compared to other fast direct solvers. We present results demonstrating the remarkable performance of the QTT-based solver when applied to both translation and non-translation invariant volume integrals in 3D. For boundary integral equations, we demonstrate that using a QTT decomposition to construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small memory footprint. We test the QTT preconditioners in the iterative solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected geometries.

  16. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  17. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    Science.gov (United States)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  18. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  19. Independent components in spectroscopic analysis of complex mixtures

    CERN Document Server

    Monakhova, Yulia B; Kraskov, Alexander; Mushtakova, Svetlana P; 10.1016/j.chemolab.2010.05.023

    2010-01-01

    We applied two methods of "blind" spectral decomposition (MILCA and SNICA) to quantitative and qualitative analysis of UV absorption spectra of several non-trivial mixture types. Both methods use the concept of statistical independence and aim at the reconstruction of minimally dependent components from a linear mixture. We examined mixtures of major ecotoxicants (aromatic and polyaromatic hydrocarbons), amino acids and complex mixtures of vitamins in a veterinary drug. Both MICLA and SNICA were able to recover concentrations and individual spectra with minimal errors comparable with instrumental noise. In most cases their performance was similar to or better than that of other chemometric methods such as MCR-ALS, SIMPLISMA, RADICAL, JADE and FastICA. These results suggest that the ICA methods used in this study are suitable for real life applications.

  20. High performance parallel computing of flows in complex geometries: II. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F [Computational Fluid Dynamics Team, CERFACS, Toulouse, 31057 (France); Poinsot, T [Institut de Mecanique des Fluides de Toulouse, Toulouse, 31400 (France)], E-mail: Nicolas.gourdain@cerfacs.fr

    2009-01-01

    Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.

  1. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual.

  2. Are gas-phase reactions of five-coordinate divalent metal ion complexes affected by coordination geometry?

    Science.gov (United States)

    Combariza, Marianny Y; Fermann, Justin T; Vachet, Richard W

    2004-04-19

    Five-coordinate metal complex ions of the type [ML](2+) [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and L= 1,9-bis(2-pyridyl)-2,5,8-triazanonane (DIEN-(pyr)(2)) and 1,9-bis(2-imidazolyl)-2,5,8-triazanonane (DIEN-(imi)(2)] have been reacted with acetonitrile in the gas phase using a modified quadrupole ion trap mass spectrometer. The kinetics and thermodynamics of these reactions show that the reactivity of these complexes is affected by metal electronic structure and falls into three groups: Mn(II) and Ni(II) complexes are the most reactive, Fe(II) and Co(II) complexes exhibit intermediate reactivity, and Cu(II) and Zn(II) complexes are the least reactive. To help explain the experimental trends in reactivity, theoretical calculations have been used. Due to the relatively large size of the metal complexes involved, we have utilized a two-layered ONIOM method to perform geometry optimizations and single point energy calculations for the [ML](2+) and [ML + CH(3)CN](2+) systems. The calculations show that the reactant five-coordinate complexes ([ML](2+)) exhibit structures that are slightly distorted trigonal bipyramidal geometries, while the six-coordinate complexes ([ML + CH(3)CN](2+)) have geometries that are close to octahedral. The Delta G values obtained from the ONIOM calculations roughly agree with the experimental data, but the calculations fail to completely explain the trends for the different metal complexes. The failure to consider all possible isomers as well as adequately represent pi-d interactions for the metal complexes is the likely cause of this discrepancy. Using the angular overlap model (AOM) to obtain molecular orbital stabilization energies (MOSE) also fails to reproduce the experimental trends when only sigma interactions are considered but succeeds in explaining the trends when pi interactions are taken into account. These results indicate that the pi-donor character of the CH(3)CN plays a subtle, yet important, role in

  3. 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot.

    Science.gov (United States)

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    2011-01-01

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.

  4. 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot

    Directory of Open Access Journals (Sweden)

    David Guillomía

    2010-12-01

    Full Text Available This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly “coupled” as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a “zero” or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.

  5. Computing the force distribution on the surface of complex, deforming geometries using vortex methods and Brinkman penalization

    CERN Document Server

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2016-01-01

    The distribution of forces on the surface of complex, deforming geometries is an invaluable output of flow simulations. One particular example of such geometries involves self-propelled swimmers. Surface forces can provide significant information about the flow field sensed by the swimmers, and are difficult to obtain experimentally. At the same time, simulations of flow around complex, deforming shapes can be computationally prohibitive when body-fitted grids are used. Alternatively, such simulations may employ penalization techniques. Penalization methods rely on simple Cartesian grids to discretize the governing equations, which are enhanced by a penalty term to account for the boundary conditions. They have been shown to provide a robust estimation of mean quantities, such as drag and propulsion velocity, but the computation of surface force distribution remains a challenge. We present a method for determining flow- induced forces on the surface of both rigid and deforming bodies, in simulations using re-...

  6. Planification de trajectoires pour placement automatise de fibres sur surfaces de geometries complexes

    Science.gov (United States)

    Hely, Clement

    During the past 50 years, the use of composite materials drastically increase, mainly thanks to the interest of aeronautical industries for these strong and lightweight materials. To improve the productivity of composite materials manufacturing some of the largest aeronautics companies began to develop automated processes such as Automated Fibre Placement (AFP). The AFP workcells currently used by the industry were mainly developed for production of large, nearly flat, plates with low curvatures such as aircraft fuselages. However, the fields of aeronautics and sport goods production begin nowadays to show an interest for manufacturing of smaller and more complex parts. The aim of the project in which this research takes place is to design a new AFP workcell and to develop new techniques allowing production of parts with small size and complex geometry. The work presented in this thesis focuses on the path planning on multi-axial revolution surfaces, e.g. Y-shaped tubes of constant circular cross section. Several path planning algorithms will be presented aiming at the exhaustive coverage of a mandrel with pre-impregnated (prepreg) composite tape. The methodology used in two of these algorithms is to individually cover each branch of the Y-shaped part with paths deriving from a helix. In the first one, the helix will be cut at the boundary between a branch and the junction region (algorithm HD) while in the second (algorithm HA) the pseudo-helix path can be adjusted to follow this boundary. These two methods were shown to have some drawbacks compromising their practical use and possibly leading to parts with diminished mechanical properties. To avoid these drawbacks, two others algorithms were developed with a new methodology. With them, the aim is to cover two branches of the Y-shape with a continuous course (i.e. without cut). The first one uses a well known strategy which defines plies with a constant fibre orientation. Parallel paths are then computed to

  7. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage.

    Science.gov (United States)

    Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  8. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

    Directory of Open Access Journals (Sweden)

    Esteban A. Agudo-Adriani

    2016-04-01

    Full Text Available In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height, structural complexity (i.e., volume, density of branches, etc. and biological features of the colonies (i.e., live coral tissue, algae. We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  9. Staircase-free finite-difference time-domain formulation for general materials in complex geometries

    DEFF Research Database (Denmark)

    Dridi, Kim; Hesthaven, J.S.; Ditkowski, A.

    2001-01-01

    of physical structures is not of a staircased nature, Furthermore, electromagnetic boundary conditions are correctly enforced. The method significantly reduces simulation times as fewer points per wavelength are needed to accurately resolve the wave and the geometry. Both perfect electric conductors...

  10. Thermal plume above a simulated sitting person with different complexity of body geometry

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2007-01-01

    Occupants are one of the main heat sources in rooms. They generate thermal plumes with characteristics, which depend on geometry, surface temperature and area of the human body in contact with the surrounding air as well as temperature, velocity and turbulence intensity distribution in the room. ...

  11. PENTrack—a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, W., E-mail: w.schreyer@tum.de [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Kikawa, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Losekamm, M.J.; Paul, S. [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Picker, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Simon Fraser University, 8888 University Drive, Burnaby (Canada)

    2017-06-21

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products—protons and electrons—and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at (github.com/wschreyer/PENTrack.git).

  12. PENTrack-a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Science.gov (United States)

    Schreyer, W.; Kikawa, T.; Losekamm, M. J.; Paul, S.; Picker, R.

    2017-06-01

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products-protons and electrons-and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at github.com/wschreyer/PENTrack.git.

  13. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  14. Validation and analysis of forward osmosis CFD model in complex 3D geometries

    DEFF Research Database (Denmark)

    Gruber, Mathias F.; Gruber, Mathias F.; Johnson, Carl J.

    2012-01-01

    In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment...... separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. © 2012 by the authors; licensee MDPI, Basel, Switzerland....

  15. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  16. Schizophrenia risk from complex variation of complement component 4

    NARCIS (Netherlands)

    Sekar, Aswin; Bialas, Allison R.; de Rivera, Heather; Davis, Avery; Hammond, Timothy R.; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A.; Handsaker, Robert E.; Daly, Mark J.; Carroll, Michael C.; Stevens, Beth; McCarroll, Steven A.; Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T. R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C. K.; Chen, Ronald Y. L.; Chen, Eric Y. H.; Cheng, Wei; Cheung, Eric F. C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; O'Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C. A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H. M.; Wormley, Brandon K.; Wu, Jing Qin; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Stefansson, Kari; Visscher, Peter M.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H. R.; Bramon, Elvira; Buxbaum, Joseph D.; Børglum, Anders D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Nöthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; St Clair, David; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Sullivan, Patrick F.; O'Donovan, Michael C.

    2016-01-01

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging

  17. X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    Directory of Open Access Journals (Sweden)

    Giuseppe eMercurio

    2014-01-01

    Full Text Available We present an analysis method of normal incidence x-ray standing wave (NIXSW data that allows detailed adsorption geometries of complex molecules to be retrieved. This method (Fourier vector analysis is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB adsorbed on the Ag(111 surface as a model system. The application of the Fourier vector analysis to AB/Ag(111 provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.

  18. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  19. Programming While Construction of Engineering 3D Models of Complex Geometry

    Science.gov (United States)

    Kheyfets, A. L.

    2017-11-01

    The capabilities of geometrically accurate computational 3D models construction with the use of programming are presented. The construction of models of an architectural arch and a glo-boid worm gear is considered as an example. The models are designed in the AutoCAD pack-age. Three programs of construction are given. The first program is for designing a multi-section architectural arch. The control of the arch’s geometry by impacting its main parameters is shown. The second program is for designing and studying the working surface of a globoid gear’s worm. The article shows how to make the animation for this surface’s formation. The third program is for formation of a worm gear cavity surface. The cavity formation dynamics is studied. The programs are written in the AutoLisp programming language. The program texts are provided.

  20. Investigating the Complex Conductivity Response of Different Biofilm Components

    Science.gov (United States)

    Atekwana, E. A.; Abdel Aal, G. Z.; Sarkisova, S. A.; Patrauchan, M.

    2013-12-01

    Microbial biofilms are structured communities of microorganisms commonly attached to a surface and embedded in a self-produced matrix. The matrix is composed of extracellular polymeric substances (EPS), which commonly include extracellular DNA, proteins, and polysaccharides. In addition, the biofilm structure may contain some other components such as metabolic byproducts and biogenic nanoparticle minerals. Biogeophysical studies have demonstrated the sensitivity of spectral induced polarization (SIP) measurements to the growth and development of biofilm in saturated porous media. However, the mechanisms are not very well understood. The overarching goal of this study is to determine the contribution of the different biofilm components to the spectral induced polarization (SIP) signatures in aqueous and/or porous media. We investigated the SIP response of different biofilm components including bacterial cells, alginate (exopolysaccharide), phenazine (redox-active metabolite) and magnetite (semi-conductive particulate matter). The porous media was glass beads with grain diameter of 1 mm. Each of the biofilm components was suspended in a low salt growth medium with electrolytic conductivity of 513 μS/cm. Using Pseudomonas aeruginosa PAO1 cells in suspension and in porous media, we observed the increase in SIP parameters with increasing cell density with a very well defined relaxation peak at a frequency of ~10 Hz, which was predicted by recently developed quantitative models. However, this characteristic relaxation peak was minimized in the presence of porous media. We also observed that cells suspended in alginate enhance the polarization and show a peak frequency at ~10 Hz. The study of alginate gelation in liquid phase and porous media in vitro revealed that solidified (gelated) alginate (from brown algae) increased the magnitude of imaginary conductivity while real conductivity increased very moderately. In contrast, the study of the SIP response within a porous

  1. A Renewed Approach for Large Eddy Simulation of Complex Geometries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The potential benefits of Large Eddy Simulation (LES) for aerodynamics and combustion simulation hvae largely been missed, due to the complexity of generating grids...

  2. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    Science.gov (United States)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  3. Practical computational aeroacoustics for complex confined scattering geometries in low mach number flows

    DEFF Research Database (Denmark)

    Pradera-Mallabiabarrena, Ainara; Jacobsen, Finn; Svendsen, Christian

    2013-01-01

    The purpose of this paper is to demonstrate that a recently published methodology for predicting flow generated noise by compact surfaces under free-field conditions [1] can be extended to a different and more complex configuration of industrial interest. In the previous paper, the methodology wa...

  4. The accuracy of geometries for iron porphyrin complexes from density functional theory

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Olsen, Lars

    2009-01-01

    Iron porphyrin complexes are cofactors in many important proteins such as cytochromes P450, hemoglobin, heme peroxidases, etc. Many computational studies on these systems have been done over the past decade. In this study, the performance of some of the most commonly used density functional theory...

  5. The relation between geometry and function of the ankle joint complex: a biomechanical review

    NARCIS (Netherlands)

    Kleipool, Roeland P.; Blankevoort, Leendert

    2010-01-01

    This review deals with the relation between the anatomy and function of the ankle joint complex. The questions addressed are how high do the forces in the ankle joint get, where can the joints go (range of motion) and where do they go during walking and running. Finally the role of the ligaments and

  6. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Science.gov (United States)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  7. Universal Calabi-Yau Algebra Towards an Unification of Complex Geometry

    CERN Document Server

    Volkov, G

    2002-01-01

    We present a universal normal Calabi-Yau algebra suitable for constructing and classifying the in nite series of the compact complex spaces with SU(n) holonomy. This algebraic approach includes natural extensions of re exive weight vectors to higher dimensions. It includes a `dual' construction based on the Diophantine decomposition of invariant monomials, which provides explicit recurrence formulae for the numbers of Calabi-Yau spaces in arbitrary dimensions.

  8. Fast laser systems for measuring the geometry of complex-shaped objects

    Science.gov (United States)

    Galiulin, Ravil M.; Galiulin, Rishat M.; Bakirov, J. M.; Vorontsov, A. V.; Ponomarenko, I. V.

    1999-01-01

    The technical characteristics, advantages and applications of an automated optoelectronic measuring system designed by 'Optel' company, State Aviation University of Ufa, are presented in this paper. The measuring apparatus can be applied for industrial development and research, for example, in rapid prototyping, and for obtaining geometrical parameters in medicine and criminalistics. It essentially is a non-contact and rapid scanning system, allowing measurements of complex shaped objects like metal and plastic workpieces or parts of human body.

  9. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool

    Science.gov (United States)

    Meylan, S.; Vimont, U.; Incerti, S.; Clairand, I.; Villagrasa, C.

    2016-07-01

    Several DNA representations are used to study radio-induced complex DNA damages depending on the approach and the required level of granularity. Among all approaches, the mechanistic one requires the most resolved DNA models that can go down to atomistic DNA descriptions. The complexity of such DNA models make them hard to modify and adapt in order to take into account different biological conditions. The DnaFabric project was started to provide a tool to generate, visualise and modify such complex DNA models. In the current version of DnaFabric, the models can be exported to the Geant4 code to be used as targets in the Monte Carlo simulation. In this work, the project was used to generate two DNA fibre models corresponding to two DNA compaction levels representing the hetero and the euchromatin. The fibres were imported in a Geant4 application where computations were performed to estimate the influence of the DNA compaction on the amount of calculated DNA damage. The relative difference of the DNA damage computed in the two fibres for the same number of projectiles was found to be constant and equal to 1.3 for the considered primary particles (protons from 300 keV to 50 MeV). However, if only the tracks hitting the DNA target are taken into account, then the relative difference is more important for low energies and decreases to reach zero around 10 MeV. The computations were performed with models that contain up to 18,000 DNA nucleotide pairs. Nevertheless, DnaFabric will be extended to manipulate multi-scale models that go from the molecular to the cellular levels.

  10. TRIFL: A design tool for modeling complex magnetically insulated transmission line geometries

    Energy Technology Data Exchange (ETDEWEB)

    Mix, L.P.; Mendel, C.W. Jr.; Seidel, D.B.; Rosenthal, S.E. [Sandia National Labs. Albuquerque, NM (United States)

    1996-12-31

    Vacuum power flow in modern high-power pulsed accelerator transmission lines requires field stresses at the conductors that are so high that negative surfaces become space-charge-limited electron emitters. The performance of these lines can be calculated using two- and three-dimensional, time-dependent, particle-in-cell electromagnetic codes such a TWOQUICK and QUICKSILVER. Extensive design of complex systems using these simulation codes would be extremely expensive and, perhaps, impossible for many of the new pulsed power systems being planned. An analytic model has been developed which predicts the behavior of magnetically insulated transmission lines. The model uses flow impedance parameters with an expanded set of Telegrapher`s equations to calculate radial currents in the transmission lines. This model has been implemented in a code, TRIFL (TRIple-equation-FLow model), on workstations and PC`s and allows one to do detailed designed studies on systems far too complex for similar treatment using a PIC code. TRIFL has been used to design hardware for the PBFA-X accelerator and to analyze PBFA-X data.

  11. Flow MRI simulation in complex 3D geometries: Application to the cerebral venous network.

    Science.gov (United States)

    Fortin, Alexandre; Salmon, Stéphanie; Baruthio, Joseph; Delbany, Maya; Durand, Emmanuel

    2018-02-05

    Develop and evaluate a complete tool to include 3D fluid flows in MRI simulation, leveraging from existing software. Simulation of MR spin flow motion is of high interest in the study of flow artifacts and angiography. However, at present, only a few simulators include this option and most are restricted to static tissue imaging. An extension of JEMRIS, one of the most advanced high performance open-source simulation platforms to date, was developed. The implementation of a Lagrangian description of the flow allows simulating any MR experiment, including both static tissues and complex flow data from computational fluid dynamics. Simulations of simple flow models are compared with real experiments on a physical flow phantom. A realistic simulation of 3D flow MRI on the cerebral venous network is also carried out. Simulations and real experiments are in good agreement. The generality of the framework is illustrated in 2D and 3D with some common flow artifacts (misregistration and inflow enhancement) and with the three main angiographic techniques: phase contrast velocimetry (PC), time-of-flight, and contrast-enhanced imaging MRA. The framework provides a versatile and reusable tool for the simulation of any MRI experiment including physiological fluids and arbitrarily complex flow motion. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Bis(2-acetylpyridine-κ2N,Osilver(I tetrafluoridoborate: a complex with silver in a seesaw coordination geometry

    Directory of Open Access Journals (Sweden)

    Michael A. O'Donnell

    2010-12-01

    Full Text Available The reaction of 2-acetylpyridine with silver(I tetrafluoridoborate leads to the discrete title complex, [Ag(C7H7NO2]BF4, in the cation of which the Ag atom is coordinated by two 2-acetylpyridine ligands, each of which is N,O-bidentate, albeit with stronger bonding to the N atoms [Ag—N = 2.2018 (15 and 2.2088 (14 Å; Ag—O = 2.5380 (13 and 2.5454 (13 Å]. The four-coordinate Ag atom has a seesaw coordination geometry with a τ4 index of 0.51. The tetrafluoridoborate anion is disordered over two orientations with 0.568 (10:0.432 (10 occupancies.

  13. Peaks, plateaus, canyons, and craters: The complex geometry of simple mid-domain effect models

    DEFF Research Database (Denmark)

    Colwell, Robert K.; Gotelli, Nicholas J.; Rahbek, Carsten

    2009-01-01

    dye algorithm to place assemblages of species of uniform We used a spreading dye algorithm to place assemblages of species of uniform range size in one-dimensional or two-dimensional bounded domains. In some models, we allowed dispersal to introduce range discontinuity. Results: As uniform range size...... increases from small to medium, a flat pattern of species As uniform range size increases from small to medium, a flat pattern of species richness is replaced by a pair of peripheral peaks, separated by a valley (one-dimensional models), or by a cratered ring (two-dimensional models) of species richness...... of a uniform size generate more complex patterns, including peaks, plateaus, canyons, and craters of species richness....

  14. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2016-06-03

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  15. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore

  16. Modeling 3-D flow in the mantle wedge with complex slab geometries: Comparisons with seismic anisotropy

    Science.gov (United States)

    Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M.

    2010-12-01

    Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with

  17. Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors

    Energy Technology Data Exchange (ETDEWEB)

    Boudier, G.; Gicquel, L.Y.M. [CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse cedex (France); Poinsot, T.J. [Institut de Mecanique des Fluides de Toulouse, Avenue C. Soula, 31400 Toulouse (France)

    2008-10-15

    The power of current parallel computers is becoming sufficient to apply large eddy simulation (LES) tools to reacting flows not only in academic configurations but also in real gas turbine chambers. The most limiting factor in performing LES of real systems is the mesh size, which directly controls the overall cost of the simulation, so that the effects of mesh resolution on LES results become a key issue. In the present work, an unstructured compressible LES solver is used to compute the reacting flow in a domain corresponding to a sector of a realistic helicopter chamber. Three grids ranging from 1.2 to 44 million elements are used for LES and results are compared in terms of mean and fluctuating fields as well as of pressure spectra. Results show that the mean temperature, reaction rate, and velocity fields are almost insensitive to the grid size. The RMS field of the resolved velocity is also reasonably independent of the mesh, while the RMS fields of temperature exhibit more sensitivity to the grid, as expected from the fact that most of the combustion process proceeds at small scales. The acoustic field exhibits a limited sensitivity to the mesh, suggesting that LES is adapted to the computation of combustion instabilities in complex systems. (author)

  18. High performance parallel computing of flows in complex geometries: I. Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gourdain, N; Gicquel, L; Montagnac, M; Vermorel, O; Staffelbach, G; Garcia, M; Boussuge, J-F [Computational Fluid Dynamics Team, CERFACS, Toulouse, 31057 (France); Gazaix, M [Computational Fluid Dynamics and Aero-acoustics Department, ONERA, Chatillon, 92320 (France); Poinsot, T [Institut de Mecanique des Fluides de Toulouse, Toulouse, 31400 (France)], E-mail: Nicolas.gourdain@cerfacs.fr

    2009-01-01

    Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the models that are needed. In fact, most computational fluid dynamics (CFD) predictions as found today in industry focus on a reduced or simplified version of the real system (such as a periodic sector) and are usually solved with a steady-state assumption. This paper shows how to overcome such barriers and how such a new challenge can be addressed by developing flow solvers running on high-end computing platforms, using thousands of computing cores. Parallel strategies used by modern flow solvers are discussed with particular emphases on mesh-partitioning, load balancing and communication. Two examples are used to illustrate these concepts: a multi-block structured code and an unstructured code. Parallel computing strategies used with both flow solvers are detailed and compared. This comparison indicates that mesh-partitioning and load balancing are more straightforward with unstructured grids than with multi-block structured meshes. However, the mesh-partitioning stage can be challenging for unstructured grids, mainly due to memory limitations of the newly developed massively parallel architectures. Finally, detailed investigations show that the impact of mesh-partitioning on the numerical CFD solutions, due to rounding errors and block splitting, may be of importance and should be accurately addressed before qualifying massively parallel CFD tools for a routine industrial use.

  19. Multicriteria Decision Analysis in Improving Quality of Design in Femoral Component of Knee Prostheses: Influence of Interface Geometry and Material

    Directory of Open Access Journals (Sweden)

    Ali Jahan

    2015-01-01

    Full Text Available Knee prostheses as medical products require careful application of quality and design tool to ensure the best performance. Therefore, quality function deployment (QFD was proposed as a quality tool to systematically integrate consumer’s expectation to perceived needs by medical and design team and to explicitly address the translation of customer needs into engineering characteristics. In this study, full factorial design of experiment (DOE method was accompanied by finite element analysis (FEA to evaluate the effect of inner contours of femoral component on mechanical stability of the implant and biomechanical stresses within the implant components and adjacent bone areas with preservation of the outer contours for standard Co-Cr alloy and a promising functionally graded material (FGM. The ANOVA revealed that the inner shape of femoral component influenced the performance measures in which the angle between the distal and anterior cuts and the angle between the distal and posterior cuts were greatly influential. In the final ranking of alternatives, using multicriteria decision analysis (MCDA, the designs with FGM was ranked first over the Co-Cr femoral component, but the original design with Co-Cr material was not the best choice femoral component, among the top ranked design with the same material.

  20. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    Science.gov (United States)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2017-11-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, Ha (Ha^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, N (N is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for Ha up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) Ha=515 , N=3.2 and (Case B) Ha=2059 , N=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  1. Geometry of laccolith margins: 2D and 3D models of the Late Paleozoic Halle Volcanic Complex (Germany)

    Science.gov (United States)

    Schmiedel, T.; Breitkreuz, C.; Görz, I.; Ehling, B.-C.

    2015-03-01

    Well data and core samples from the Late Paleozoic Halle Volcanic Complex (HVC) have been used to describe the geometry of the rhyolitic porphyritic laccoliths and their margins. The HVC formed between 301 and 292 Ma in the intramontane Saale basin, and it comprises mainly rhyolitic subvolcanic bodies (~300 km3) as well as minor lava flows and volcaniclastic deposits. The major HVC laccolith units display aspect ratios ranging between 0.04 and 0.07, and they are separated by tilted and deformed Carboniferous-Permian host sediments. For the margin of the Landsberg laccolith, a major coarsely porphyritic unit of the HVC, an exceptional data set of 63 wells concentrated in an area of 10 km2 reaching to depth of 710 m exists. It was used to explore the 3D geometry and textures, and to deduce an intrusion model. For a 3D visualization of the Landsberg laccolith margin, Geological Object Computer Aided Design; Paradigm® software (GOCAD) was used. Curve objects have been derived from the intrusion-host contacts. Automated GOCAD® methods for 3D modelling failed. As a result, manual refinement was essential. A major finding of the 3D modelling is the presence of prolate sediment rafts, up to 1,400 m in length and up to 500 m in thickness, surrounded by Landsberg rhyolite. The sedimentary rafts dip away from the laccolith centre. The engulfing laccolith sheets reach thickness of 100-300 m. For other HVC laccolith units (Löbejün, Petersberg, Brachstedt), well data reveal vertical rhyolite/sediment contacts or magma lobes fingering into the host sediments. HVC laccolith contact textures include small-scale shearing of the intruding magma and of the host sediment. In addition, internal shear zones have been detected inside the rhyolite bodies. The present study suggests that the emplacement of successive magma sheets was an important process during laccolith growth in the HVC.

  2. Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems

    Science.gov (United States)

    Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei

    2017-04-01

    Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could

  3. A manganese oxido complex bearing facially coordinating trispyridyl ligands--is coordination geometry crucial for water oxidation catalysis?

    Science.gov (United States)

    Berends, Hans-Martin; Manke, Anne-Marie; Näther, Christian; Tuczek, Felix; Kurz, Philipp

    2012-05-28

    In this work the synthesis of the novel manganese complex [Mn(2)(III,III)(tpdm)(2)(μ-O)(μ-OAc)(2)](2+) (1) is reported, containing two manganese centres ligated to the unusual, facially coordinating, all-pyridine ligand tpdm (tris(2-pyridyl)methane). The geometric and electronic properties of complex 1 were characterised by X-ray crystallography, vibrational (IR and Raman) and optical spectroscopy (UV/Vis and MCD). Cyclic voltammograms of 1 showed a quasi-reversible oxidation event at 950 mV and an irreversible reduction wave at -250 mV vs. Ag/Ag(+). The redox behaviour of the compound was investigated in detail by UV/Vis- and X-band EPR-spectroelectrochemistry. Both electrochemical (+1200 mV) and chemical (tBuOOH) oxidations transform 1 into the singly oxidized di-μ-oxido species [Mn(2)(III,IV)(tpdm)(2)(μ-O)(2)(μ-OAc)](2+). Further electrochemical oxidation at the same potential results in the removal of a second electron to obtain a Mn(2)(IV,IV)-species. The ability of compound 1 to evolve O(2) was studied using different reaction agents. While reactions with both hydrogen peroxide and peroxomonosulfate yield O(2), homogeneous water-oxidation using Ce(IV) was not observed. Nevertheless, the oxidation reactions of 1 are very interesting model processes for oxidation state (S-state) transitions of the natural manganese water-oxidation catalyst in photosynthesis. However, despite its favourable coordination geometry and multielectron redox chemistry, complex 1 fails to be a catalytically active model for natural water-oxidation.

  4. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  5. Correlations between Field Quality and Geometry of Components in the Collared Coils of the LHC Main Dipoles

    CERN Document Server

    Bellesia, B; Scandale, Walter; Todesco, Ezio; Völlinger, C

    2004-01-01

    The Large Hadron Collider (LHC) [1], a proton-proton superconducting accelerator, will consist of about 8400 superconducting magnet units, all operating in superfluid helium at a temperature of 1.9 K. The design of the superconducting main dipole magnets for the LHC is guided by the requirement of an extremely high field quality in the magnet aperture which is mainly defined by the layout of the superconducting coil and the position of the conductors. In order to avoid conductor movements within the magnet cross-section, the superconducting coils are held in place by surrounding stainless steel collars. In this paper, we review the dependence of field harmonics in the LHC main dipoles on dimensions of the hardware components of the collared coils. An analysis of the dimensional measurements of these compo-nents which are used in the collared coils produced so far is given. Sensitivity tables which are worked out through a coupled magneto-static model give the variation of the multipoles on collars, copper we...

  6. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Chien-Chih Liu, James [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li2BeF4 (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.

  7. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.

    Directory of Open Access Journals (Sweden)

    Gianvito Grasso

    Full Text Available The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.

  8. A Three-Dimensional, Immersed Boundary, Finite Volume Method for the Simulation of Incompressible Heat Transfer Flows around Complex Geometries

    Directory of Open Access Journals (Sweden)

    Hassan Badreddine

    2017-01-01

    Full Text Available The current work focuses on the development and application of a new finite volume immersed boundary method (IBM to simulate three-dimensional fluid flows and heat transfer around complex geometries. First, the discretization of the governing equations based on the second-order finite volume method on Cartesian, structured, staggered grid is outlined, followed by the description of modifications which have to be applied to the discretized system once a body is immersed into the grid. To validate the new approach, the heat conduction equation with a source term is solved inside a cavity with an immersed body. The approach is then tested for a natural convection flow in a square cavity with and without circular cylinder for different Rayleigh numbers. The results computed with the present approach compare very well with the benchmark solutions. As a next step in the validation procedure, the method is tested for Direct Numerical Simulation (DNS of a turbulent flow around a surface-mounted matrix of cubes. The results computed with the present method compare very well with Laser Doppler Anemometry (LDA measurements of the same case, showing that the method can be used for scale-resolving simulations of turbulence as well.

  9. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation.

    Science.gov (United States)

    Kufareva, Irina; Stephens, Bryan S; Holden, Lauren G; Qin, Ling; Zhao, Chunxia; Kawamura, Tetsuya; Abagyan, Ruben; Handel, Tracy M

    2014-12-16

    Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.

  10. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task.

    Science.gov (United States)

    Jia, Huibin; Li, Huayun; Yu, Dongchuan

    2017-01-01

    The ERP components and variations of spatial complexity or functional connectivity are two distinct dimensions of neurophysiological events in the visual Go/Nogo task. Extensive studies have been conducted on these two distinct dimensions; however, no study has investigated whether these two neurophysiological events are linked to each other in the visual Go/Nogo task. The relationship between spatial complexity of electroencephalographic (EEG) data, quantified by the measure omega complexity, and event-related potential (ERP) components in a visual Go/Nogo task was studied. We found that with the increase of spatial complexity level, the latencies of N1 and N2 component were shortened and the amplitudes of N1, N2, and P3 components were decreased. The anterior Go/Nogo N2 effect and the Go/Nogo P3 effect were also found to be decreased with the increase of EEG spatial complexity. In addition, the reaction times in high spatial complexity trials were significantly shorter than those of medium and low spatial complexity trials when the time interval used to estimate the EEG spatial complexity was extended to 0∼1,000 ms after stimulus onset. These results suggest that high spatial complexity may be associated with faster cognitive processing and smaller postsynaptic potentials that occur simultaneously in large numbers of cortical pyramidal cells of certain brain regions. The EEG spatial complexity is closely related with demands of certain cognitive processes and the neural processing efficiency of human brain. The reaction times, the latencies/amplitudes of event-related potential (ERP) components, the Go/Nogo N2 effect, and the Go/Nogo P3 effect are linked to the electroencephalographic (EEG) spatial complexity level. The EEG spatial complexity is closely related to demands of certain cognitive processes and could reflect the neural processing efficiency of human brain. Obtaining the single-trial ERP features through single-trial spatial complexity may be a more

  11. Laser ultrasound: a flexible tool for the inspection of complex CFK components and welded seams

    Science.gov (United States)

    von Kopylow, Christoph; Focke, Oliver; Kalms, Michael

    2007-06-01

    Modern production processes use more and more components made of new materials like carbon fiber reinforced plastics (CFRP). These components have different sizes, functionalities, high assembly complexity and high security requirements. In addition optimized joining processes, especially during welding are implemented in manufacturing processes. The increasing requirements during the manufacturing of complex products like cars and aircrafts demand new solutions for the quality assurance. The main focus is to find a measurement strategy that is cost effective, flexible and adaptive. The extension of the conventional ultrasound technique for non destructive testing with the laser ultrasound method brings new possibilities into the production processes for example for the inspection of small complex CFRP-parts like clips and the online observation during seam welding. In this paper we describe the principle of laser ultrasound, especially the adaptation of a laser ultrasound system to the requirements of non destructive testing of CFRP-components. An important point is the generation of the ultrasound wave in the surface of the component under investigation. We will show experimental results of different components with complex shape and different defects under the surface. In addition we will present our results for the detection of defects in metals. Because the online inspection of welded seams is of high interest experiments for the investigation of welded seams are demonstrated.

  12. Structural studies on dihydrolipoyl transacetylase : the core component of the pyruvate dehydrogenase complex of Azotobacter vinelandii

    NARCIS (Netherlands)

    Hanemaaijer, J.R.O.

    1988-01-01

    The studies described in this thesis deal with the structure of the Azotobactervinelandii dihydrolipoyl transacetylase, the core component (E 2 ) of the pyruvate dehydrogenase complex. in all organisms

  13. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    Science.gov (United States)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  14. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  15. Numerical Simulation of Voltage Electric Field in Complex Geometries for Different Electrode Arrangements using Meshless Local MQ-DQ Method

    DEFF Research Database (Denmark)

    Jalaal, M.; Soleimani, Soheil; Domairry, G.

    2011-01-01

    approximation of MQ-Radial Basis Function (RBF). Three different geometries with irregular boundaries are considered and the obtained results are compared with those gained by Finite Element (FE) solutions achieved by COMSOL commercial code. Outcomes prove that current technique is in very good agreement...

  16. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  17. The exon junction complex component Magoh controls brain size by regulating neural stem cell division

    Science.gov (United States)

    Silver, Debra L.; Watkins-Chow, Dawn E.; Schreck, Karisa C.; Pierfelice, Tarran J.; Larson, Denise M.; Burnetti, Anthony J.; Liaw, Hung-Jiun; Myung, Kyungjae; Walsh, Christopher A.; Gaiano, Nicholas; Pavan, William J.

    2010-01-01

    Summary Brain structure and size requires precise division of neural stem cells (NSCs), which self-renew and generate intermediate neural progenitors (INPs) and neurons. The factors that regulate NSCs remain poorly understood, as do mechanistic explanations of how aberrant NSC division causes reduced brain size as seen in microcephaly. Here we demonstrate that Magoh, a component of the exon junction complex (EJC) that binds RNA, controls mouse cerebral cortical size by regulating NSC division. Magoh haploinsufficiency causes microcephaly due to INP depletion and neuronal apoptosis. Defective mitosis underlies these phenotypes as depletion of EJC components disrupts mitotic spindle orientation and integrity, chromosome number, and genomic stability. In utero rescue experiments revealed that a key function of Magoh is to control levels of the microcephaly-associated protein, LIS1, during neurogenesis. This study uncovers new requirements for the EJC in brain development, NSC maintenance, and mitosis, thus implicating this complex in the pathogenesis of microcephaly. PMID:20364144

  18. Magnetic Actuator with Multiple Vibration Components Arranged at Eccentric Positions for Use in Complex Piping

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yaguchi

    2016-06-01

    Full Text Available This paper proposes a magnetic actuator using multiple vibration components to perform locomotion in a complex pipe with a 25 mm inner diameter. Due to the desire to increase the turning moment in a T-junction pipe, two vibration components were attached off-center to an acrylic plate with an eccentricity of 2 mm. The experimental results show that the magnetic actuator was able to move at 40.6 mm/s while pulling a load mass of 20 g in a pipe with an inner diameter of 25 mm. In addition, this magnetic actuator was able to move stably in U-junction and T-junction pipes. If a micro-camera is implemented in the future, the inspection of small complex pipes can be enabled. The possibility of inspection in pipes with a 25 mm inner diameter was shown by equipping the pipe with a micro-camera.

  19. Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution

    Directory of Open Access Journals (Sweden)

    Franziska Tausch

    2017-09-01

    Full Text Available Haemolysin BL is an important virulence factor regarding the diarrheal type of food poisoning caused by Bacillus cereus. However, the pathogenic importance of this three-component enterotoxin is difficult to access, as nearly all natural B. cereus culture supernatants additionally contain the highly cytotoxic Nhe, the second three-component toxin involved in the aetiology of B. cereus-induced food-borne diseases. To better address the toxic properties of the Hbl complex, a system for overexpression and purification of functional, cytotoxic, recombinant (rHbl components L2, L1 and B from E. coli was established and an nheABC deletion mutant was constructed from B. cereus reference strain F837/76. Furthermore, 35 hybridoma cell lines producing monoclonal antibodies (mAbs against Hbl L2, L1 and B were generated. While mAbs 1H9 and 1D8 neutralized Hbl toxicity and thus, represent important tools for future investigations of the mode-of-action of Hbl on the target cell surface, mAb 1D7, in contrast, even enhanced Hbl toxicity by supporting the binding of Hbl B to the cell surface. By using the specific mAbs in Dot blots, indirect and hybrid sandwich enzyme immuno assays (EIAs, complex formation between Hbl L1 and B, as well as L1 and L2 in solution could be shown for the first time. Surface plasmon resonance experiments with the rHbl components confirmed these results with KD values of 4.7 × 10−7 M and 1.5 × 10−7 M, respectively. These findings together with the newly created tools lay the foundation for the detailed elucidation of the molecular mode-of-action of the highly complex three-component Hbl toxin.

  20. Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution

    Science.gov (United States)

    Tausch, Franziska; Dietrich, Richard; Janowski, Robert; Märtlbauer, Erwin; Jessberger, Nadja

    2017-01-01

    Haemolysin BL is an important virulence factor regarding the diarrheal type of food poisoning caused by Bacillus cereus. However, the pathogenic importance of this three-component enterotoxin is difficult to access, as nearly all natural B. cereus culture supernatants additionally contain the highly cytotoxic Nhe, the second three-component toxin involved in the aetiology of B. cereus-induced food-borne diseases. To better address the toxic properties of the Hbl complex, a system for overexpression and purification of functional, cytotoxic, recombinant (r)Hbl components L2, L1 and B from E. coli was established and an nheABC deletion mutant was constructed from B. cereus reference strain F837/76. Furthermore, 35 hybridoma cell lines producing monoclonal antibodies (mAbs) against Hbl L2, L1 and B were generated. While mAbs 1H9 and 1D8 neutralized Hbl toxicity and thus, represent important tools for future investigations of the mode-of-action of Hbl on the target cell surface, mAb 1D7, in contrast, even enhanced Hbl toxicity by supporting the binding of Hbl B to the cell surface. By using the specific mAbs in Dot blots, indirect and hybrid sandwich enzyme immuno assays (EIAs), complex formation between Hbl L1 and B, as well as L1 and L2 in solution could be shown for the first time. Surface plasmon resonance experiments with the rHbl components confirmed these results with KD values of 4.7 × 10−7 M and 1.5 × 10−7 M, respectively. These findings together with the newly created tools lay the foundation for the detailed elucidation of the molecular mode-of-action of the highly complex three-component Hbl toxin. PMID:28926954

  1. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

    KAUST Repository

    Simpson, Daniel

    2017-04-06

    In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to repa-rameterisations, have a natural connection to Jeffreys\\' priors, are designed to support Occam\\'s razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.

  2. Ultrasonic detection technology based on joint robot on composite component with complex surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Juan; Xu, Chunguang; Zhang, Lan [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China)

    2014-02-18

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order to express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.

  3. A DFT study on Dichloro{(E-4-dimethylamino-N′-[(pyridin-2 ylmethylidene-κN]benzohydrazide-κO}M2+ (M=Zn, Cu, Ni and Co complexes: Effect of the metal over association energy and complex geometry

    Directory of Open Access Journals (Sweden)

    Mónica Andrea Gordillo Varela

    2016-09-01

    Full Text Available The molecular geometry of (E-4-dimethylamino-N′-[(pyridin-2-ylmethylidene- N]benzohydrazide (C15H16N4O complexed with M2+ (M=Zn, Cu, Ni, Fe, Mn, Ca and Co ions were calculated, using density functional theory (B3LYP with 6-31G(d, p basis set. Vibrational frequencies were computed in order to verify the absence of imaginary vibrational frequencies, fact that confirms the global minimum in geometry optimization. Molecular geometry parameters (bond lengths and angles for Cu2+ and Zn2+ complexes were compared with crystallographic data previously reported, showing good correlation. Binding energies for all complexes were computed at B3LYP/6-31G++(d, p level of theory. These calculations indicate that Cu-L is the lowest favorable complex, Cu2+ corresponds to the smallest cation on the present study. In the other hand, Ca-L, one of the less favorable complex, corresponds to the biggest cation analyzed in the present study. Molecular orbital analysis was carried out showing variations in energy differences between HOMO-LUMO values in function of the metallic ion employed.

  4. Complex total hip replacement for dysplastic or hypoplastic hips using miniature or microminiature components.

    Science.gov (United States)

    Woolson, S T; Harris, W H

    1983-10-01

    We analyzed the preoperative and perioperative data on sixty-nine consecutive complex total hip replacements performed in fifty-seven patients using miniature or microminiature custom-made femoral components. The patients' average age was 45.7 years. The preoperative diagnosis was congenital dysplasia or dislocation of the hip in 72 per cent of the hips. Acetabular bone grafts were required in thirty-seven of the sixty-nine hips. Operative complications occurred in thirteen (19 per cent) and postoperative dislocation occurred in eleven (16 per cent) of the sixty-nine hips. Fifty-five hips in forty-seven patients were followed for a minimum of two years, the average follow-up being 4.8 years and the longest, 9.8 years. All acetabular grafts united. Loosening of one or both prosthetic components occurred in ten (18 per cent) of the fifty-five hips (twelve of the 110 components became loose). There were no instances of a stem bending or fracturing, despite the small size of the femoral components. Eight hips (14.5 per cent) had undergone revision, six for painful loose components and two for recurrent dislocation. For the forty-seven hips that were not revised, the average Harris hip score rose from 43 points preoperatively to 80 points postoperatively.

  5. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes.

    Directory of Open Access Journals (Sweden)

    C Gaston Bisig

    2012-06-01

    Full Text Available Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of

  6. Impact of Thermal Plumes Generated by Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in Rooms

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2008-01-01

    The impact of thermal plumes generated by human body simulators with different geometry on the airflow pattern in a full scale room with displacement ventilation (supply air temperature 21.6°C, total flow rate 80 L/s) was studied when two seated occupants were simulated first by two thermal...... manikins resembling accurately human body shape and then by two heated cylinders. The manikins and the cylinders had the same surface area of 1.63 m2 and the same heat generation of 73 W. CO2 supplied from the top of the heat sources was used for simulating bio-effluents. CO2 concentration was measured...

  7. Heterozygous variants in ACTL6A, encoding a component of the BAF complex, are associated with intellectual disability

    NARCIS (Netherlands)

    Marom, R.; Jain, M.; Burrage, L.C.; Song, I.W.; Graham, B.H.; Brown, C.W.; Stevens, S.J.C.; Stegmann, A.P.A.; Gunter, A.T.; Kaplan, J.D.; Gavrilova, R.H.; Shinawi, M.; Rosenfeld, J.A.; Bae, Y.; Tran, A.A.; Lu, J.T.; Gibbs, R.A.; Eng, C.; Yang, Y; Rousseau, J.; Vries, B.B.A. de; Campeau, P.M.; Lee, B.

    2017-01-01

    Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with

  8. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  9. Differential geometry

    CERN Document Server

    Guggenheimer, Heinrich W

    1977-01-01

    This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a

  10. Loudness of complex sounds as a function of the standard stimulus and the number of components

    DEFF Research Database (Denmark)

    Florentine, Mary; Buus, Søren; Bonding, Per

    1978-01-01

    of 231 and 1592 Hz, and noise bands with widths of 220 and 1592 Hz. The center frequency was 1 kHz and the loudness level was approximately 65 phons. Loudness matches between all combinations of stimuli showed that the measured loudness of the sounds did not depend on the standard stimulus used...... and the measured loudness level of a wide-band sound increased as a function of the number of components. Individual observers were consistent in their loudness estimations; the greatest source of variability was among subjects. Additional measurements indicated that the rate at which loudness increased beyond......The purpose of this study was twofold: to determine if the measured loudness level of a signal depends on the standard stimulus used and to measure loudness as a function of the number of components in a wide-band signal. The stimuli were a pure tone, tone complexes with frequency separations...

  11. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming

    Science.gov (United States)

    Allazadeh, M. R.; Zuelli, N.

    2017-10-01

    A superplastic forming (SPF) technology process was deployed to form a complex component with eight-pocket from a four-sheet sandwich panel sheetstock. Six sheetstock packs were composed of two core sheets made of Ti-6Al-4V or Ti-5Al-4Cr-4Mo-2Sn-2Zr titanium alloy and two skin sheets made of Ti-6Al-4V or Ti-6Al-2Sn-4Zr-2Mo titanium alloy in three different combinations. The sheets were welded with two subsequent welding patterns over the core and skin sheets to meet the required component's details. The applied welding methods were intermittent and continuous resistance seam welding for bonding the core sheets to each other and the skin sheets over the core panel, respectively. The final component configuration was predicted based on the die drawings and finite element method (FEM) simulations for the sandwich panels. An SPF system set-up with two inlet gas pipe feeding facilitated the trials to deliver two pressure-time load cycles acting simultaneously which were extracted from FEM analysis for specific forming temperature and strain rate. The SPF pressure-time cycles were optimized via GOM scanning and visually inspecting some sections of the packs in order to assess the levels of core panel formation during the inflation process of the sheetstock. Two sets of GOM scan results were compared via GOM software to inspect the surface and internal features of the inflated multisheet packs. The results highlighted the capability of the tested SPF process to form complex components from a flat multisheet pack made of different titanium alloys.

  12. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    Science.gov (United States)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  13. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.

  14. Topology and organization of the Salmonella typhimurium type III secretion needle complex components.

    Directory of Open Access Journals (Sweden)

    Oliver Schraidt

    2010-04-01

    Full Text Available The correct organization of single subunits of multi-protein machines in a three dimensional context is critical for their functionality. Type III secretion systems (T3SS are molecular machines with the capacity to deliver bacterial effector proteins into host cells and are fundamental for the biology of many pathogenic or symbiotic bacteria. A central component of T3SSs is the needle complex, a multiprotein structure that mediates the passage of effector proteins through the bacterial envelope. We have used cryo electron microscopy combined with bacterial genetics, site-specific labeling, mutational analysis, chemical derivatization and high-resolution mass spectrometry to generate an experimentally validated topographic map of a Salmonella typhimurium T3SS needle complex. This study provides insights into the organization of this evolutionary highly conserved nanomachinery and is the basis for further functional analysis.

  15. Model Updating of Complex Structures Using the Combination of Component Mode Synthesis and Kriging Predictor

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-01-01

    Full Text Available Updating the structural model of complex structures is time-consuming due to the large size of the finite element model (FEM. Using conventional methods for these cases is computationally expensive or even impossible. A two-level method, which combined the Kriging predictor and the component mode synthesis (CMS technique, was proposed to ensure the successful implementing of FEM updating of large-scale structures. In the first level, the CMS was applied to build a reasonable condensed FEM of complex structures. In the second level, the Kriging predictor that was deemed as a surrogate FEM in structural dynamics was generated based on the condensed FEM. Some key issues of the application of the metamodel (surrogate FEM to FEM updating were also discussed. Finally, the effectiveness of the proposed method was demonstrated by updating the FEM of a real arch bridge with the measured modal parameters.

  16. Tolerance Geometry.

    Science.gov (United States)

    Roberts, Fred S.

    The author cites work on visual perception which indicates that in order to study perception it is necessary to replace such classical geometrical notions as betweeness, straightness, perpendicularity, and parallelism with more general concepts. The term tolerance geometry is used for any geometry when primitive notions are obtained from the…

  17. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.

    Science.gov (United States)

    Nguyen, Phuong H

    2006-12-01

    Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.

  18. Advances in studying the optical properties of complex aerosols with organic components

    Science.gov (United States)

    Rudich, Yinon

    2010-05-01

    Aerosols scatter and absorb incoming solar radiation and hence affect the radiative balance of the planet. The effects of aerosols are among the largest uncertainty in our understanding of the current and future climatic changes. We will present laboratory studies using cavity ring down (CRD) aerosol spectrometer to derive the extinction and complex refractive index of aerosols containing a significant organic component. By precisely measuring extinction as a function of particle size, the real and imaginary refractive indices are obtained and the single scattering albedo may be calculated. Specifically, we will present measurements of the complex refractive index of organic components intrinsic to soot particles at 532 and 355 nm, test various optical mixing rules and will present results on the extinction of core-shell particles. In addition, we will present a new combination of a continuous wave spectrometer (CW-CRD-AS) with a photoacoustic cell in order to measure independently the absorption and total extinction of aerosols. The instrument can be used for field work and will discuss its advantages compared to pulsed systems. Finally, retrieval of aerosol refractive index using a white light spectrometer will be presented.

  19. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex.

    Science.gov (United States)

    Mi, Sha; Lee, Xinhua; Shao, Zhaohui; Thill, Greg; Ji, Benxiu; Relton, Jane; Levesque, Melissa; Allaire, Norm; Perrin, Steve; Sands, Bryan; Crowell, Thomas; Cate, Richard L; McCoy, John M; Pepinsky, R Blake

    2004-03-01

    Axon regeneration in the adult CNS is prevented by inhibitors in myelin. These inhibitors seem to modulate RhoA activity by binding to a receptor complex comprising a ligand-binding subunit (the Nogo-66 receptor NgR1) and a signal transducing subunit (the neurotrophin receptor p75). However, in reconstituted non-neuronal systems, NgR1 and p75 together are unable to activate RhoA, suggesting that additional components of the receptor may exist. Here we describe LINGO-1, a nervous system-specific transmembrane protein that binds NgR1 and p75 and that is an additional functional component of the NgR1/p75 signaling complex. In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation. A dominant-negative human LINGO-1 construct attenuated myelin inhibition in transfected primary neuronal cultures. This effect on neurons was mimicked using an exogenously added human LINGO-1-Fc fusion protein. Together these observations suggest that LINGO-1 has an important role in CNS biology.

  20. In vitro synthesis of the pyruvate dehydrogenase complex components of Ascaris suum mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Ruff, V.; DuBrul, E.F.; Komuniecki, R.W.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) plays a pivotal role in the anaerobic metabolism of Ascaris suum mitochondria. They have initiated a series of studies on the in vitro synthesis and mitochondrial import of PDC. PDC has been purified from adult Ascaris body wall muscle, fully phosphorylated in vitro, and separated into its component subunits on SDS/PAGE. The individual components were electroeluted from the gels and used to immunize rabbits. IgG's to the individual subunits were prepared from antisera and their specificities were verified by immuno-blotting. Each IgG identified a single specific band at the appropriate location in extracts of adult Ascaris body wall muscle mitochondria. Poly A/sup +/-RNA was prepared from body wall muscle and translated in a reticylocyte lysate system using /sup 35/S-methionine. Translation products were immunoprecipitated with specific IgG's, electrophoresed, and fluorographed. Each immunoprecipitation gave rise to a single radioactive polypeptide that was slightly larger than the specific PDC subunit isolated from the adult mitochondria. This system has demonstrated its feasibility for the study of mitochondrial import of a multienzyme complex that is critical for the anaerobic mitochondrial metabolism of Ascaris suum.

  1. Impact of zeolite-Y framework on the geometry and reactivity of Ru (III) benzimidazole complexes - A DFT study

    Science.gov (United States)

    Selvaraj, Tamilmani; Rajalingam, Renganathan; Balasubramanian, Viswanathan

    2018-03-01

    A detailed comparative Density Functional Theory (DFT) study is made to understand the structural changes of the guest complex due to steric and electronic interactions with the host framework. In this study, Ru(III) benzimidazole and 2- ethyl Ru(III) benzimidazole complexes encapsulated in a supercage of zeolite Y. The zeolitic framework integrity is not disturbed by the intrusion of the large guest complex. A blue shift in the d-d transition observed in the UV-Visible spectroscopic studies of the zeolite encapsulated complexes and they shows a higher catalytic efficiency. Encapsulation of zeolite matrix makes the metal center more viable to nucleophilic attack and favors the phenol oxidation reaction. Based on the theoretical calculations, transition states and structures of reaction intermediates involved in the catalytic cycles are derived.

  2. Violation of the rectus complex is not a contraindication to component separation for abdominal wall reconstruction.

    Science.gov (United States)

    Garvey, Patrick B; Bailey, Chad M; Baumann, Donald P; Liu, Jun; Butler, Charles E

    2012-02-01

    Component separation (CS) is an effective technique for reconstructing complex abdominal wall defects. Violation of the rectus abdominis complex is considered a contraindication for CS, but we hypothesized that patients have similar outcomes with or without rectus complex violation. We retrospectively studied all consecutive patients who underwent CS for abdominal wall reconstruction during 8 years and compared outcomes of patients with and without rectus violation. Primary outcomes measures included complications and hernia recurrence. Logistic regression analysis identified potential associations between patient, defect, and reconstructive characteristics and surgical outcomes. One hundred sixty-nine patients were included: 115 (68%) with and 54 (32%) without rectus violation. Mean follow-up was 21.3 ± 14.5 months. Patient and defect characteristics were similar, except for the rectus violation group having a higher body mass index. Overall complication rates were similar in the violation (24.3%) and nonviolation (24.0%) groups, as were the respective rates of recurrent hernia (7.8% vs 9.2%; p = 0.79), abdominal bulge (3.5% vs 5.6%; p = 0.71), skin dehiscence (20.0% vs 22.2%; p = 0.74), skin necrosis (6.1% vs 3.7%; p = 0.72), cellulitis (7.8% vs 9.2%; p = 0.75), and abscess (12.3% vs 9.2%; p = 0.58). Regression analysis demonstrated body mass index to be the only factor predictive of complications. CS surgical outcomes were similar whether or not the rectus complex was violated. To our knowledge, this study is the first to evaluate the effects of rectus violation on surgical outcomes in CS patients. Surgeons should not routinely avoid CS when the rectus complex is violated. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  3. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance.

    Science.gov (United States)

    Chou, Sunwen

    2017-12-01

    Letermovir is a human cytomegalovirus (CMV) terminase inhibitor that was clinically effective in a Phase III prevention trial. In vitro studies have shown that viral mutations conferring letermovir resistance map primarily to the UL56 component of the terminase complex and uncommonly to UL89. After serial culture of a baseline CMV laboratory strain under letermovir, mutation was observed in a third terminase component in 2 experiments, both resulting in amino acid substitution P91S in gene UL51 and adding to a pre-existing UL56 mutation. Recombinant phenotyping indicated that P91S alone conferred 2.1-fold increased letermovir resistance (EC50) over baseline, and when combined with UL56 mutation S229F or R369M, multiplied the level of resistance conferred by those mutations by 3.5-7.7-fold. Similarly a combination of UL56 mutations S229F, L254F and L257I selected in the same experiment conferred 54-fold increased letermovir EC50 over baseline, but 290-fold when combined with UL51 P91S. The P91S mutant was not perceptibly growth impaired. Although pUL51 is essential for normal function of the terminase complex, its biological significance is not well understood. Letermovir resistance mutations mapping to 3 separate genes, and their multiplier effect on the level of resistance, suggest that the terminase components interactively contribute to the structure of a letermovir antiviral target. The diagnostic importance of the UL51 P91S mutation arises from its potential to augment the letermovir resistance of some UL56 mutations at low fitness cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Study of a system devoted for ultrasonic non destructive testing of complex geometry pieces using smart contacts transducers; Etude d'un systeme de controle par ultrasons des pieces de geometrie conplexe a l'aide de traducteurs contacts intelligents

    Energy Technology Data Exchange (ETDEWEB)

    Chatillon, S

    2000-07-01

    This work is devoted to the enhancement of the ultrasonic non destructive testing in contact of nuclear components with complex geometry. In service inspections of such components performed with conventional probes present limited performances: variations in sensitivity, due to unmatched contact, incorrect characterization of the defect, because of the disorientations of the transducer during its displacement, and uncovered scan area when the geometry of the components disturbs the displacement of the transducer. We propose a new concept of smart transducer to improve the performances of such inspections. The radiating surface is flexible to optimize the sensitivity of the testing. Using the measure of the radiating surface distortion, performed by a specific instrumentation, phased array techniques allow the control of the transmitted beam to optimize the defect localization and characterization. Thus, this system is self-contained. We present the different steps involved to develop this system and its experimental validation. A computing model is extended to predict the field transmitted by a flexible contact transducer. This model is used to optimize the radiating surface of a jointed transducer. A delay law optimizing algorithm is developed to ensure the control of the transmitted beam. At last, a method and the associated instrumentation designed to measure the radiating surface distortion are proposed. Experimental Measures in the through-transmission mode validate the ability of this system to control the field transmitted through complex interfaces. At last, inspections in the pulse-echo mode are performed on a specimen with an irregular profile, representative of a real component inspected on site, and artificial embedded reflectors. Two control configurations are used. In the first one, the transducer is displaced along the surface, in the second one, the transducer is fixed and the region of interest is scanned using beam steering. The results show that

  5. Modeling of the radiative field in complex geometries using computerized graphical tools. Application to comfort characterization in environments equipped with important radiative sources; Modelisation du champ radiatif dans des geometries complexes a l`aide d`outils infographiques. Application a la caracterisation du confort dans les ambiances munies de sources radiatives importantes

    Energy Technology Data Exchange (ETDEWEB)

    Manolescu, M.; Sperandio, M.; Allard, F. [La Rochelle Universite, 17 - La Rochelle, LEPTAB (France)

    1996-12-31

    Bibliographic studies in the domain of radiant heat transfers in complex geometries demonstrate the impossibility of resolving such problems using classical analytical methods. The numerical analysis can theoretically be performed successfully but requires enormous computer means. The contribution of this study consists in using computerized graphical techniques to treat general problems of radiant heat transfers in complex geometries. This paper presents the model used, the calculation technique and the optimizations that allow to greatly reduce the computer memory required and the calculation time. The code developed uses evocative images for the synthetic presentation of results which facilitate the searcher`s and conceiver`s choices. Finally, an application to the characterization of thermal comfort in residential environments is developed to illustrate the potentialities of this method. (J.S.) 19 refs.

  6. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  7. The Monopolin Complex Crosslinks Kinetochore Components to Regulate Chromosome-Microtubule Attachments

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, Kevin D.; Yip, Calvin K.; Ee, Ly-Sha; Walz, Thomas; Amon, Angelika; Harrison, Stephen C. (Harvard-Med); (MIT)

    2010-09-27

    The monopolin complex regulates different types of kinetochore-microtubule attachments in fungi, ensuring sister chromatid co-orientation in Saccharomyces cerevisiae meiosis I and inhibiting merotelic attachment in Schizosaccharomyces pombe mitosis. In addition, the monopolin complex maintains the integrity and silencing of ribosomal DNA (rDNA) repeats in the nucleolus. We show here that the S. cerevisiae Csm1/Lrs4 monopolin subcomplex has a distinctive V-shaped structure, with two pairs of protein-protein interaction domains positioned {approx}10 nm apart. Csm1 presents a conserved hydrophobic surface patch that binds two kinetochore proteins: Dsn1, a subunit of the outer-kinetochore MIND/Mis12 complex, and Mif2/CENP-C. Csm1 point-mutations that disrupt kinetochore-subunit binding also disrupt sister chromatid co-orientation in S. cerevisiae meiosis I. We further show that the same Csm1 point-mutations affect rDNA silencing, probably by disrupting binding to the rDNA-associated protein Tof2. We propose that Csm1/Lrs4 functions as a molecular clamp, crosslinking kinetochore components to enforce sister chromatid co-orientation in S. cerevisiae meiosis I and to suppress merotelic attachment in S. pombe mitosis, and crosslinking rDNA repeats to aid rDNA silencing.

  8. Projective geometry

    CERN Document Server

    Faulkner, T Ewan

    2006-01-01

    This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu

  9. Differential geometry

    CERN Document Server

    Graustein, William C

    2006-01-01

    This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of

  10. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  11. Modified components separation technique: experience treating large, complex ventral hernias at a University Hospital.

    Science.gov (United States)

    Torregrosa-Gallud, A; Sancho Muriel, J; Bueno-Lledó, J; García Pastor, P; Iserte-Hernandez, J; Bonafé-Diana, S; Carreño-Sáenz, O; Carbonell-Tatay, F

    2017-08-01

    An increasing number of patients have large or complex abdominal wall defects. Component separation technique (CST) is a very effective method for reconstructing complex midline abdominal wall defects in a manner that restores innervated muscle function without excessive tension. Our goal is to show our results by a modified CST for treating large ventral hernias. A total of 351 patients with complex ventral hernias have been treated over a 10-year period. Pre- and postoperative CT scans were performed in all patients. All ventral hernias were W3, according to the EHS classification 1. We analyzed demographic variables, co-morbidities, hernia characteristics, operative, and postoperative variables. One hundred and seventy patients (48.4%) were men; the average age of the study population was 51.6 ± 23.2 years with an average BMI of 32.3 ± 1.3. The hernia was located in the midline in 321 cases (91.5%) versus the flank in 30 (8.5%). In 45 patients, preoperative botulinum toxin (BT) and progressive pneumoperitoneum (PPP) were needed due to giant hernia defects when the VIH/VAC ratio was >20%. Postoperative complications related to the surgical site were seroma (35.1%), hematoma (9.1%), infection (7.2%), and wound necrosis (8.8%). Complications related to the repair were evisceration in 3 patients (1.1%), small bowel fistula in 4 patients (1.5%), 11 cases of mesh infection (2.9%), and abdominal compartment syndrome (ACS) in 2 patients. There were 29 hernia recurrences (8.2%) with a mean follow-up of 31.6 ± 8.1 months. The modified CST is an effective strategy for managing complex ventral hernias that enables primary fascial closure with low rates of morbidity and hernia recurrence.

  12. Mathematics Teachers' Visualization of Complex Number Multiplication and the Roots of Unity in a Dynamic Geometry Environment

    Science.gov (United States)

    Caglayan, Gunhan

    2016-01-01

    This qualitative research, drawing on the theoretical frameworks by Even (1990, 1993) and Sfard (2007), investigated five high school mathematics teachers' geometric interpretations of complex number multiplication along with the roots of unity. The main finding was that mathematics teachers constructed the modulus, the argument, and the conjugate…

  13. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  14. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments.

    Science.gov (United States)

    Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen

    2014-11-07

    Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly

  15. Subtracted geometry

    Science.gov (United States)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  16. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chris Ambrose

    Full Text Available Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3 localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.

  17. Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex

    National Research Council Canada - National Science Library

    Roseaulin, Laura C; Noguchi, Chiaki; Martinez, Esteban; Ziegler, Melissa A; Toda, Takashi; Noguchi, Eishi

    2013-01-01

    .... However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex...

  18. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.

    Science.gov (United States)

    Del Olmo, Iván; López, Juan A; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A

    2016-07-08

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1 We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Nicastrin interacts with gamma-secretase complex components via the N-terminal part of its transmembrane domain.

    Science.gov (United States)

    Capell, Anja; Kaether, Christoph; Edbauer, Dieter; Shirotani, Keiro; Merkl, Sabine; Steiner, Harald; Haass, Christian

    2003-12-26

    Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.

  20. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  1. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Directory of Open Access Journals (Sweden)

    Dong-Sup Lee

    2015-01-01

    Full Text Available Independent Component Analysis (ICA, one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: insta- bility and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to vali- date the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  2. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  3. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  4. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, Guilhem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oefelein, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  5. X-ray crystal structure and theoretical study of a new dinuclear Cu(II) complex with two different geometry centers bridged with an oxo group

    Science.gov (United States)

    Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz

    2017-10-01

    A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.

  6. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  7. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  8. A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0

    Science.gov (United States)

    Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.

    1991-01-01

    The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.

  9. Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity.

    Science.gov (United States)

    Schutte, Kirsten M; Fisher, Debra J; Burdick, Marie D; Mehrad, Borna; Mathers, Amy J; Mann, Barbara J; Nakamoto, Robert K; Hughes, Molly A

    2015-11-09

    Chemokines are best recognized for their role within the innate immune system as chemotactic cytokines, signaling and recruiting host immune cells to sites of infection. Certain chemokines, such as CXCL10, have been found to play an additional role in innate immunity, mediating CXCR3-independent killing of a diverse array of pathogenic microorganisms. While this is still not clearly understood, elucidating the mechanisms underlying chemokine-mediated antimicrobial activity may facilitate the development of novel therapeutic strategies effective against antibiotic-resistant Gram-negative pathogens. Here, we show that CXCL10 exerts antibacterial effects on clinical and laboratory strains of Escherichia coli and report that disruption of pyruvate dehydrogenase complex (PDHc), which converts pyruvate to acetyl coenzyme A, enables E. coli to resist these antimicrobial effects. Through generation and screening of a transposon mutant library, we identified two mutants with increased resistance to CXCL10, both with unique disruptions of the gene encoding the E1 subunit of PDHc, aceE. Resistance to CXCL10 also occurred following deletion of either aceF or lpdA, genes that encode the remaining two subunits of PDHc. Although PDHc resides within the bacterial cytosol, electron microscopy revealed localization of immunogold-labeled CXCL10 to the bacterial cell surface in both the E. coli parent and aceE deletion mutant strains. Taken together, our findings suggest that while CXCL10 interacts with an as-yet-unidentified component on the cell surface, PDHc is an important mediator of killing by CXCL10. To our knowledge, this is the first description of PDHc as a key bacterial component involved in the antibacterial effect of a chemokine. Copyright © 2015 Schutte et al.

  10. Geometry of hypersurfaces

    CERN Document Server

    Cecil, Thomas E

    2015-01-01

    This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...

  11. Architectural geometry

    NARCIS (Netherlands)

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, A.; Wallner, Johannes

    2015-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural

  12. Geometry VI

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...

  13. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    From a different perspective artists had all along pointed out that parallel lines do meet at the horizon (Figure 1). In fact all pairs of coplanar lines meet and parallel lines .... A more advanced treatment can be found in this book. D Hilbert and S Cohn-Vossen. Geometry and the Imagination. Chelsea, NY,. USA. 1952. A difficult ...

  14. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  15. Minichromosome maintenance complex component 7 has an important role in the invasion of papillary urothelial neoplasia.

    Science.gov (United States)

    Guan, Bingxin; Wang, Xiaoying; Yang, Jingyan; Zhou, Chengjun; Meng, Yan

    2015-08-01

    The aims of the present study were to investigate the expression of minichromosome maintenance complex component 7 (MCM7) and determine its association with tumor proliferation and invasion in pathological tumor (pT)a and pT1 papillary urothelial neoplasia. The MCM7, MCM3 and Ki67 proteins were detected in 154 cases of urothelial neoplasia using immunohistochemical analysis. The expression of MCM7 significantly increased (Ppapiloma, respectively). Furthermore, MCM7 expression was elevated with increased tumor grade and was positively correlated with Ki67 expression (rs =0.9106, P<0.001). However, MCM3 expression was not correlated with MCM7 or Ki67 expression (rs =0.0734, P=0.3657 and rs =0.0638, P=0.4318, respectively). In conclusion, MCM7 overexpression may simultaneously promote tumor proliferation and invasion. Furthermore, it may be a reliable marker for the pathological differential diagnosis of pTa and pT1 papillary urothelial neoplasms; therefore, MCM7 expression may be used to predict tumor prognosis and behavior.

  16. Syntheses and X-ray characterization of metal complexes with the pentadentate thiosemicarbazone ligand bis(4-N-methylthiosemicarbazone)-2,6-diacetylpyridine. The first pentacoordinate lead(II) complex with a pentagonal geometry.

    Science.gov (United States)

    Pedrido, Rosa; Bermejo, Manuel R; Romero, M José; Vázquez, Miguel; González-Noya, Ana M; Maneiro, Marcelino; Rodríguez, M Jesús; Fernández, M Isabel

    2005-02-07

    In this paper we describe the electrochemical synthesis and characterization of new neutral manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead complexes with the ligand bis(4-N-methylthiosemicarbazone)-2,6-diacetylpyridine, H4DAPTsz-Me. X-Ray structures of [Mn(H2DAPTsz-Me)(EtOH)2] 1, [Pb(H2DAPTsz-Me)] 3 and [Zn(H2DAPTsz-Me)]2.EtOH.2H2O 4, were also determined. In these complexes the ligand behaves as bis-deprotonated and SNNNS pentadentate. In the manganese complex the metal is heptacoordinated, in a distorted pentagonal-bipyramidal environment, with the N3S2 donor set of the ligand in the pentagonal girdle and two solvent molecules occupying the axial positions. In the lead complex 3 the metal is pentacoordinated, bound exclusively to the five donor atoms of the ligand, as a consequence of the existence of "inert pair effect". The bishelical zinc complex 4 shows each zinc atom with different coordination geometry, one octahedrally six-coordinate while the other is distorted tetrahedrally four-coordinate.

  17. Self-designing parametric geometries

    OpenAIRE

    Sobester, Andras

    2015-01-01

    The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...

  18. Biological properties of aerococci and bacilli as a component of new associate-probiotic complex

    Directory of Open Access Journals (Sweden)

    S. I. Valchuk

    2015-03-01

    Full Text Available Dysbioses of the gastrointestinal tract are common among people of all ages and genders. Development of this pathology is associated with a number of complications, from indigestion to occurrence of malignant disease. Therefore, there is a need in development of measures of their prevention and correction. Probiotics are used as drugs against dysbiosis. Most of the presently known probiotics contain bacterial cells of one species, although combination preparations feature higher efficiency. At the same time, there are difficulties in construction of these drugs, primarily due to incompatibility of physiological properties of microorganisms and mutually antagonistic action of their components. The aim was to examine the compatibility of Bacillus subtilis and Aerococcus viridans in a single preparation, their antagonistic activity against different strains of test-cultures and general antagonism directed on different groups of bacteria for subsequent formation of associative probiotic complex. Properties of aerococci strains were studied and A. viridans 167 strain was selected for inclusion into the probiotic preparation. The tested strain showed the highest indicators of production of hydrogen peroxide, which is one of the mechanisms of antagonistic effect against opportunistic pathogens. General study of biological properties of aerococci strains showed that producing of hydrogen peroxide and superoxide radical in them was conditioned by functioning of NAD-independent lactatoxidase. It has been determined that antioxidant defense of aerococci from the action of endogenous and active excretable forms of oxygen was provided by activity of superoxide-dismutase and GSH-peroxidase. The method of deferred antagonism found no depressing mutual action between probiotic strains of B. subtilis 3 and A. viridans 167 at their joint cultivation. Inhibition of growth at the joint application of A. viridans 167 and B. subtilis 3 strains was recorded for both

  19. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  20. Geometrie coniugate

    Directory of Open Access Journals (Sweden)

    Leonardo Paris

    2012-06-01

    Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.

  1. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    Science.gov (United States)

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  2. Layup and process dependent wrinkling behavior of PPS/CF UD tape-laminates during non-isothermal press forming into a complex component

    Science.gov (United States)

    Joppich, Tobias; Doerr, Dominik; van der Meulen, Leonie; Link, Tobias; Hangs, Benjamin; Henning, Frank

    2016-10-01

    Forming of thermoplastic, multilayered UD-Tape laminates using high-volume press forming processes play an increasingly important role in the manufacturing of load carrying structural vehicle components [1-4]. Within previous studies mainly lab-scale process equipment, simple shaped geometries and standard layup configurations [5-10] have been analyzed. The geometrical forming limits and the development of wrinkles [8], which are influenced by the processing parameters as well as the layup configuration are not sufficiently investigated yet. Thus, this article presents an experimental forming study of multilayered UD-Tape laminates into a complex box-shaped component. A fully automated process sequence and industrial scale equipment was used. By means of online thermal measurements, it is proven that even at initial contact points of the mold and laminate the forming ends well above the recrystallization temperature revealing the formability of the given materials at different mold temperatures and closing speeds. Additionally, a detailed forming study was performed comparing three different layup configurations within different stages of the forming. Thereby, the layup dependent development of wrinkles was analyzed using topographical object measurements with a laser-scanner and was quantified by calculating the surface curvature from a generated surface mesh [11].

  3. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  4. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  5. Crystal and geometry-optimized structure, Hirshfeld surface analysis and physicochemical studies of a new Co(II) complex with the ligand 2-amino-6-methoxypyrimidine

    Science.gov (United States)

    Nbili, W.; Soudani, S.; Kaabi, K.; Wojtaś, M.; Ferretti, V.; Lefebvre, F.; Jelsch, C.; Ben Nasr, C.

    2017-10-01

    The crystal structure of the new complex [Co(C5H7N3O)2(H2O)4](NO3)2ṡ4H2O synthesized in aqueous solution has been determined by single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P 1 bar with lattice parameters: a = 7.3056(2), b = 8.4065(2), c = 10.4724(3) Å, α = 103.9470(19), β = 105.6600(14), γ = 91.1350(18)°, V = 598.54(3) Å3 and Z = 1. The Co(II) central ion is in a slightly distorted octahedral coordination geometry formed by two nitrogen atoms of two 2-amino-6-methoxypyrimidine ligands and four oxygen atoms of coordinated water molecules. The crystal packing is stabilized by intermolecular Osbnd H⋯O, Nsbnd H⋯O and Csbnd H⋯O hydrogen bonds which link the molecules into a three-dimensional network. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived. The vibrational absorption bands were identified by infrared spectroscopy. The compound was characterized by thermal analysis to determine its thermal behavior with respect to temperature.

  6. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave.

    Science.gov (United States)

    Barada, Daisuke; Ochiai, Takanori; Fukuda, Takashi; Kawata, Shigeo; Kuroda, Kazuo; Yatagai, Toyohiko

    2012-11-01

    In this Letter, the principle of polarization holography for recording an arbitrary vector wave on a thin polarization-sensitive recording medium is proposed. It is analytically shown that the complex amplitudes of p- and s-polarization components are simultaneously recorded and independently reconstructed by using an s-polarized reference beam. The characteristics are experimentally verified.

  7. DEVELOPMENT OF COMPLEX OILING COMPONENT ON THE BASIS OF SILICONE POLYMERS FOR MOLDS FOR CASTING UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. M. Mihaltsov

    2008-01-01

    Full Text Available The receipt of complex oiling component, used for greasing of moulds for casting under pressure of aluminiun alloys on the basis of high-molecular organosilicon polymers with addition of soap stocks of light vegetable oils as filling agent and stabilizer of emulsion is examined.

  8. RESERCH INTO THE CAUSES OF INACCURACIES OF COMPONENTS OF COMPLEX FOR COIL WINDING WITH FINISHED YERN AT OE

    Directory of Open Access Journals (Sweden)

    Slobodan Stefanović

    2013-10-01

    Full Text Available Analysis of tree failure showed events occurred due to increased levels of mechanical oscillations. The values of failures were used to determine reliability of the work of constituent components of analyzed complex. Based on them are determined areas of time of reliable (safe work, as well as the areas of reduction of their reliability.

  9. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    Science.gov (United States)

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  10. Spinor Geometry

    Science.gov (United States)

    Nicolaidis, A.; Kiosses, V.

    2012-09-01

    It has been proposed that quantum mechanics and string theory share a common inner syntax, the relational logic of C. S. Peirce. Along this line of thought we consider the relations represented by spinors. Spinor composition leads to the emergence of Minkowski space-time. Inversely, the Minkowski space-time is istantiated by the Weyl spinors, while the merger of two Weyl spinors gives rise to a Dirac spinor. Our analysis is applied also to the string geometry. The string constraints are represented by real spinors, which create a parametrization of the string worldsheet identical to the Enneper-Weierstass representation of minimal surfaces. Further, a spinorial study of the AdS3 space-time reveals a Hopf fibration AdS3 → AdS2. The conformal symmetry inherent in AdS3 is pointed out. Our work indicates the hidden ties between logic-quantum mechanics-string theory-geometry and vindicates the Wheeler's proposal of pregeometry as a large network of logical propositions.

  11. Multiple Components of the VHL Tumor Suppressor Complex Are Frequently Affected by DNA Copy Number Loss in Pheochromocytoma

    Directory of Open Access Journals (Sweden)

    David A. Rowbotham

    2014-01-01

    Full Text Available Pheochromocytomas (PCC are rare tumors that arise in chromaffin tissue of the adrenal gland. PCC are frequently inherited through predisposing mutations in genes such as the von Hippel-Lindau (VHL tumor suppressor. VHL is part of the VHL elongin BC protein complex that also includes CUL2/5, TCEB1, TCEB2, and RBX1; in normoxic conditions this complex targets hypoxia-inducible factor 1 alpha (HIF1A for degradation, thus preventing a hypoxic response. VHL inactivation by genetic mechanisms, such as mutation and loss of heterozygosity, inhibits HIF1A degradation, even in the presence of oxygen, and induces a pseudohypoxic response. However, the described <10% VHL mutation rate cannot account for the high frequency of hypoxic response observed. Indeed, little is known about genetic mechanisms disrupting other complex component genes. Here, we show that, in a panel of 171 PCC tumors, 59.6% harbored gene copy number loss (CNL of at least one complex component. CNL significantly reduced gene expression and was associated with enrichment of gene targets controlled by HIF1. Interestingly, we show that VHL-related renal clear cell carcinoma harbored disruption of VHL alone. Our results indicate that VHL elongin BC protein complex components other than VHL could be important for PCC tumorigenesis and merit further investigation.

  12. Photoredox-Catalyzed Three-Component Tandem Process: An Assembly of Complex Trifluoromethylated Phthalans and Isoindolines.

    Science.gov (United States)

    Jarrige, Lucie; Carboni, Aude; Dagousset, Guillaume; Levitre, Guillaume; Magnier, Emmanuel; Masson, Géraldine

    2016-06-17

    A novel photoredox-mediated tandem three-component process afforded a wide variety of CF3-containing phthalans and isoindolines in respectable yields and with moderate to excellent diastereoselectivity.

  13. Crystal Structure of a Group I Energy Coupling Factor Vitamin Transporter S Component in Complex with Its Cognate Substrate.

    Science.gov (United States)

    Josts, Inokentijs; Almeida Hernandez, Yasser; Andreeva, Antonina; Tidow, Henning

    2016-07-21

    Energy coupling factor (ECF) transporters are responsible for the uptake of essential scarce nutrients in prokaryotes. This ATP-binding cassette transporter family comprises two subgroups that share a common architecture forming a tripartite membrane protein complex consisting of a translocation component and ATP hydrolyzing module and a substrate-capture (S) component. Here, we present the crystal structure of YkoE from Bacillus subtilis, the S component of the previously uncharacterized group I ECF transporter YkoEDC. Structural and biochemical analyses revealed the constituent residues of the thiamine-binding pocket as well as an unexpected mode of vitamin recognition. In addition, our experimental and bioinformatics data demonstrate major differences between YkoE and group II ECF transporters and indicate how group I vitamin transporter S components have diverged from other group I and group II ECF transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component.

    Science.gov (United States)

    Abarca, Romina L; Rodríguez, Francisco J; Guarda, Abel; Galotto, María J; Bruna, Julio E

    2016-04-01

    An important issue in food technology is that antimicrobial compounds can be used for various applications, such as the development of antimicrobial active packaging materials. Yet most antimicrobial compounds are volatile and require protection. In the present study, the inclusion complexes of 2-nonanone (2-NN) with β-cyclodextrin (β-CD), were prepared by a co-precipitation method. Entrapment efficiency (EE), thermal analysis (DSC and TGA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), sorption isotherms and antifungal activity were evaluated for the characterization of the inclusion complex (β-CD:2-NN). A higher EE was obtained (34.8%) for the inclusion complex 1:0.5 than for other molar rates. Both DSC and TGA of the inclusion complexes showed the presence of endothermic peaks between 80 °C and 150 °C, attributed to a complexation phenomenon. Antimicrobial tests for mycelial growth reduction under atmospheric conditions proved the fungistatic behaviour of the inclusion complexes against Botrytis cinerea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Expression, Purification, and Screening of BamE, a Component of the BAM Complex, for Structural Characterization.

    Science.gov (United States)

    Jeeves, Mark; Sridhar, Pooja; Knowles, Timothy J

    2015-01-01

    In Gram-negative bacteria, integral outer membrane β-barrel proteins (OMP) are assembled by the β-barrel assembly machine complex, or BAM complex. This complex includes the essential components BamA, an OMP composed of a carboxyl terminal β-barrel domain and five polypeptide transport-associated domains (POTRA), and the lipoprotein BamD. In Escherichia coli, the complex contains an additional three lipoproteins, BamB, C and E required for efficient delivery of OMPs to the outer membrane. Here we provide methods for production, isotope labeling, purification, and functional screening of BamE for research purposes. Purification strategies of both the soluble and wild-type membrane-tethered forms of BamE are described using techniques including osmotic shock, Ni-NTA purification, and size-exclusion chromatography. Functional screening using a simple plate assay is also described which allows screening for defects in outer membrane permeability.

  16. Simulation of complex magnesium alloy texture using the axial component fit method with central normal distributions

    Science.gov (United States)

    Ivanova, T. M.; Serebryany, V. N.

    2017-12-01

    The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.

  17. Análisis de tensiones en árboles de geometría compleja. // Stress analysis in complex geometry shafts.

    Directory of Open Access Journals (Sweden)

    M. Sánchez Noa

    2001-07-01

    Full Text Available En el presente trabajo se exponen los resultados del análisis realizado en árboles de compleja geometría pertenecientes a unmultiplicador planetario tipo 2KH-A destinado a emplearse en aerogeneradores de electricidad. En el mismo, se presentanlos modelos físico-matemáticos de dichos árboles para ser analizados mediante el método de los elementos finitos,considerando el estado de carga que surge al funcionar el mecanismo y contemplando el efecto adicional de las cargasgiroscópicas. Se muestran las zonas de conflicto de tensiones y se analizan propuestas de diseño que permitan, garantizandola resistencia y rigidez, realizar variaciones dimensionales y mejorar la compacidad de los elementos, disminuyendo a lavez el peso de los mismos.Palabras claves: Elementos finitos, multiplicador planetario, diseño de árbol, resistencia mecánica.____________________________________________________________________________AbstractThe results of the analysis in shafts of complex geometry, belonging to a planetary multiplier type 2KH-AM to be usedin wind generators is presented. The physical-mathematical models of these shafts are analyzed by means of finiteelement method. Can increasing of load when the mechanism is working and contemplating the additional effect of thegyroscopic loads. The tension distribution are shown and design proposals are analyzed to improve the resistance, rigidityand to improve the compactness of the elements. This analysis constitutes an application of the the finite element methodof which reference doesn't existKey Words: Finite elements method, planetary gear unit, shaft design, mechanical strength.

  18. Components of coated vesicles and nuclear pore complexes share a common molecular architecture.

    Directory of Open Access Journals (Sweden)

    Damien Devos

    2004-12-01

    Full Text Available Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107-160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a beta-propeller fold, an alpha-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107-160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.

  19. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar

    1964-01-01

    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

  20. New foundations for geometry

    OpenAIRE

    Haran, Shai

    2015-01-01

    We shall describe a simple generalization of commutative rings. The category GR of such "rings", contains the ordinary commutative rings (fully faithfully), but also the "integers" and "residue field" at a real or complex place of a field ; the "field with one element" (the initial object of GR ); the "arithmetical surface" ( the sum in the category GR of the integers with them self: Z(x)Z ) . We shall show that this geometry "see" the real and complex places of a number field (there is an Os...

  1. Messenger RNA is a functional component of a chromatin insulator complex.

    Science.gov (United States)

    Matzat, Leah H; Dale, Ryan K; Lei, Elissa P

    2013-10-01

    Chromatin insulators are DNA protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together, these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function.

  2. Messenger RNA is a functional component of a chromatin insulator complex

    Science.gov (United States)

    Matzat, Leah H; Dale, Ryan K; Lei, Elissa P

    2013-01-01

    Chromatin insulators are DNA protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together, these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function. PMID:23917615

  3. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis.

    Science.gov (United States)

    Lajnef, Tarek; Chaibi, Sahbi; Eichenlaub, Jean-Baptiste; Ruby, Perrine M; Aguera, Pierre-Emmanuel; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-01-01

    A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG) signals are split into oscillatory (spindles) and transient (K-complex) components. This decomposition is conveniently achieved by applying morphological component analysis (MCA) to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i) the transient component to reveal K-complexes and (ii) the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and 49.09%, respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are discussed.

  4. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis

    Science.gov (United States)

    Lajnef, Tarek; Chaibi, Sahbi; Eichenlaub, Jean-Baptiste; Ruby, Perrine M.; Aguera, Pierre-Emmanuel; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-01-01

    A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG) signals are split into oscillatory (spindles) and transient (K-complex) components. This decomposition is conveniently achieved by applying morphological component analysis (MCA) to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i) the transient component to reveal K-complexes and (ii) the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and 49.09%, respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are discussed. PMID

  5. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i

  6. The nucleosome (histone-DNA complex is the TLR9-specific immunostimulatory component of Plasmodium falciparum that activates DCs.

    Directory of Open Access Journals (Sweden)

    Nagaraj M Gowda

    Full Text Available The systemic clinical symptoms of Plasmodium falciparum infection such as fever and chills correspond to the proinflammatory cytokines produced in response to the parasite components released during the synchronized rupture of schizonts. We recently demonstrated that, among the schizont-released products, merozoites are the predominant components that activate dendritic cells (DCs by TLR9-specific recognition to induce the maturation of cells and to produce proinflammatory cytokines. We also demonstrated that DNA is the active constituent and that formation of a DNA-protein complex is essential for the entry of parasite DNA into cells for recognition by TLR9. However, the nature of endogenous protein-DNA complex in the parasite is not known. In this study, we show that parasite nucleosome constitute the major protein-DNA complex involved in the activation of DCs by parasite nuclear material. The parasite components were fractionated into the nuclear and non-nuclear materials. The nuclear material was further fractionated into chromatin and the proteins loosely bound to chromatin. Polynucleosomes and oligonucleosomes were prepared from the chromatin. These were tested for their ability to activate DCs obtained by the FLT3 ligand differentiation of bone marrow cells from the wild type, and TLR2(-/-, TLR9(-/- and MyD88(-/- mice. DCs stimulated with the nuclear material and polynucleosomes as well as mono- and oligonucleosomes efficiently induced the production of proinflammatory cytokines in a TLR9-dependent manner, demonstrating that nucleosomes (histone-DNA complex represent the major TLR9-specific DC-immunostimulatory component of the malaria parasite nuclear material. Thus, our data provide a significant insight into the activation of DCs by malaria parasites and have important implications for malaria vaccine development.

  7. Complex reduction coefficient for a cylindrical electron beam with variable amplitude of the variable current component in the TWT

    OpenAIRE

    Chasnyk V. I.; Strocovsky Ya. N.

    2013-01-01

    The conventional approach to calculating the space charge for the traveling-wave tube (TWT) with phase velocity jumps is to use the same values of the depression coefficient as the ones for homogeneous helical TWTs. However, if the variable component of the exciting current in the expressions for determining the reduction coefficient is changed in amplitude, then the reduction factor is a complex value. Perhaps the neglect of this fact can significantly affect the volume discharge calculated ...

  8. One-pot three-component synthesis of quinoxaline and phenazine ring systems using Fischer carbene complexes

    Directory of Open Access Journals (Sweden)

    Priyabrata Roy

    2010-05-01

    Full Text Available One-pot three-component coupling of o-alkynylheteroaryl carbonyl derivatives with Fischer carbene complexes and dienophiles leading to the synthesis of quinoxaline and phenazine ring systems has been investigated. This involves the generation of furo[3,4-b]pyrazine and furo[3,4-b]quinoxaline as transient intermediates, which were trapped with Diels–Alder dienophiles. This is the first report on furo[3,4-b]pyrazine intermediates.

  9. SCP1, a major protein component of synaptonemal complexes of the rat

    NARCIS (Netherlands)

    Meuwissen, R.L.J.

    1997-01-01

    Synaptonemal complexes (SCs) are structures that are formed between homologous chromosomes during meiotic prophase. SCs consist of two proteinaceous axes, one along each homologue, that are connected along their length by numerous transverse filaments (TFs). The assembly and disassembly of

  10. Rhizoctonia solani as a component in the bottom rot complex of glasshouse lettuce

    NARCIS (Netherlands)

    Kooistra, T.

    1983-01-01

    The basal parts of maturing glasshouse lettuce can be attacked by several soil fungi, which cause bottom rot. Until recently quintozene was generally applied against this disease complex. The study of the causal fungi - especially Rhizoctonia solani - and their control was

  11. The Complexity of Poverty: A Missing Component of Educational Leadership Programs.

    Science.gov (United States)

    Lyman, Linda L.; Villani, Christine J.

    2002-01-01

    Reviews research on poverty in the United States, the effects of poverty on children and learning, attitudes of Americans toward causes of poverty, and status of social justice in educational leadership programs. Survey of educational leadership programs finds little instructional attention given to the complexity of poverty. Recommends the…

  12. A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum

    NARCIS (Netherlands)

    Brock, Debra A.; van Egmond, Wouter N.; Shamoo, Yousif; Hatton, R. Diane; Gomer, Richard H.

    Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large

  13. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  14. Agile Modeling of Component Connections for Simulation and Design of Complex Vehicle Structures (Slides)

    Science.gov (United States)

    2009-04-01

    1996) • Optimal design of spot-weld and adhesive bond patterns for static compliance Chickermane and Gea (1997) • Multi-component structural...Shifted Lagrangian in OC MMA (Method of Moving Asymptotes) – K. Svanberg (’87) Convex Linearization with Asymptotes of Objective and Constraints Joining...Applicability both dynamic and static problems Design domain modeling SIMP (Solid Isotropic Material with Penalization) MMA (Method of Moving Asymptote

  15. “Electronic nose” detects major histocompatibility complex-dependent prerenal and postrenal odor components

    OpenAIRE

    Montag, Stefanie; Frank, Michael; Ulmer, Heiko; Wernet, Dorothee; Göpel, Wolfgang; Rammensee, Hans-Georg

    2001-01-01

    Mice prefer to mate with individuals expressing different MHC genes from their own. Volatile components presenting MHC-dependent odor types are present in urine and can be detected by mice, as shown by extensive behavioral studies. Similar odor types are suspected to influence human behavior as well. Although a recent report indicates that MHC expression influences the ratio of volatile compounds such as phenylacetic acid, so far no other means than studying the behavior of mice or rats has b...

  16. Complex relation among Health Belief Model components in TB prevention and care.

    Science.gov (United States)

    Li, Z T; Yang, S S; Zhang, X X; Fisher, E B; Tian, B C; Sun, X Y

    2015-07-01

    This study aims to explore the relationships among components of the Health Belief Model, tuberculosis (TB) preventive behavior, and intention of seeking TB care. Cross section study. Using convenience sampling, 1154 rural-to-urban migrant workers were selected between the ages of 18-50 years in six urban areas of three provinces in China. The survey was conducted by individual, face-to-face interviews with a standardized questionnaire. Lisrel 8.7 was used to conduct path analysis. The knowledge and benefits components of the Health Belief Model predicted preventive behaviors: cover nose/mouth when coughing or sneezing (β = 0.24, 0.33 respectively), evade others' coughs (β = 0.13, 0.25) and also predicted seeking TB care (β = 0.27, 0.19). Susceptibility and severity also predicted seeking TB care (β = 0.12, 0.16). There were also important relationships among model components. Knowledge of TB predicted both susceptibility (β = 0.32-0.60) and severity (β = 0.41-0.45). Further, each of susceptibility (β = 0.30) and severity (β = 0.41) predicted perceived benefits of preventive care. Thus, a path from knowledge, through severity and susceptibility, and then through benefits predicted prevention and TB care seeking behaviors. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  18. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures

    Science.gov (United States)

    Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng

    2015-10-01

    The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.

  19. Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts

    Science.gov (United States)

    Payo, Andrés; Favis-Mortlock, David; Dickson, Mark; Hall, Jim W.; Hurst, Martin D.; Walkden, Mike J. A.; Townend, Ian; Ives, Matthew C.; Nicholls, Robert J.; Ellis, Michael A.

    2017-07-01

    The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries) that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME), change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes) that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes) as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff-beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures.

  20. Contrasting regional architectures of schizophrenia and other complex diseases using fast variance components analysis

    DEFF Research Database (Denmark)

    Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander

    2015-01-01

    Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC...... and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions...... and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities...

  1. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    Science.gov (United States)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  2. PHYTOLECTINS AND DIAZOTROPHS ARE THE POLYFUNCTIONAL COMPONENTS OF THE COMPLEX BIOLOGICAL COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    Kyrychenko E. V.

    2014-02-01

    Full Text Available The role of lectins and diazotrophic microorganisms as polyfunctional components for creation of new lectin-bacterial biological composition with a view to practical application of agro biotechnology were discussed on the base of literature data and personal author’s experimental results. Phytolectins characterized by varied biological activity such as bioeffector, adap togen, growth-regulatory, fungicide and com munication to the components of a system «plant–soil–microorganisms» in molecular, cellular, organism and systemic levels of organization and functioning of agrophytocenosis. Rhizobacteria have many positive effects on plants and soil, the most determinative among the effects are the ability to fix molecular nitrogen of atmosphere, synthesis of hormonal and antibiotical substances, mobilization of sparingly soluble soil phosphates and decomposition of hazardous chemical compounds. It was justified creation of a new class of lectin-bacterial compositions on a base of phytolectins and diazotrophic microorganisms for increasing of productive potential of symbioses and associations, adaptable plasticity and plants protection and soil ecology improvement as well.

  3. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8–47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC. PMID:24637836

  4. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8-47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.

  5. The cell membrane complex: three related but different cellular cohesion components of mammalian hair fibers.

    Science.gov (United States)

    Robbins, Clarence

    2009-01-01

    The structure, chemistry and physical properties of the cell membrane complex (CMC) of keratin fibers are reviewed, highlighting differences in the three types of CMC. Starting with Rogers' initial description of the CMC in animal hairs, several important developments have occurred that will be described, adding new details to this important structure in mammalian hair fibers. These developments show that essentially all of the covalently bound fatty acids of the beta layers are in the cuticle and exist as monolayers. The beta layers of the cortex are bilayers that are not covalently bonded but are attached by ionic and polar linkages on one side to the cortical cell membranes and on the other side to the delta layer. The delta layer between cortical cells consists of five sublayers; its proteins are clearly different from the delta layer that exists between cuticle cells. The cell membranes of cuticle cells are also markedly different from the cell membranes of cortical cells. Models with supporting evidence are presented for the three different types of cell membrane complex: cuticle-cuticle CMC, cuticle-cortex CMC, and cortex-cortex CMC.

  6. The width of the lateral element of the synaptonemal complex is determined by a multilayered organization of its components

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Rosario, E-mail: r_oh@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Kouznetsova, Anna, E-mail: Anna.Kouznetsova@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm (Sweden); Echeverría-Martínez, Olga M., E-mail: omem@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Vázquez-Nin, Gerardo H., E-mail: vazqueznin@ciencias.unam.mx [Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico); Hernández-Hernández, Abrahan, E-mail: abrahan.hernandez@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm (Sweden)

    2016-05-15

    The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable for the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC. - Highlights: • The lateral element of the synaptonemal complex is a multilayered structure. • The width of the lateral element in synaptonemal complex-null mice is different. • Two cohesin complex cores plus one axial element form a wild-type lateral element. • The layers of the lateral element can be analyzed in different null mice models.

  7. Non-Smc element 5 (Nse5 of the Smc5/6 complex interacts with SUMO pathway components

    Directory of Open Access Journals (Sweden)

    Denise E. Bustard

    2016-06-01

    Full Text Available The Smc5/6 complex in Saccharomyces cerevisiae contains six essential non-Smc elements, Nse1-6. With the exception of Nse2 (also known as Mms21, which is an E3 small ubiquitin-like modifier (SUMO ligase, very little is understood about the role of these components or their contribution to Smc5/6 functionality. Our characterization of Nse5 establishes a previously unidentified relationship between the Smc5/6 complex and factors of the SUMO pathway. Nse5 physically associates with the E2 conjugating enzyme, Ubc9, where contacts are stabilized by non-covalent interactions with SUMO. SUMO also mediates the interactions between Nse5 and the two PIAS family E3 SUMO ligases, Siz1 and Siz2. Cells carrying the nse5-ts1 allele or lacking either SIZ1 or SIZ2 exhibit a reduction in Smc5 sumoylation upon MMS treatment and demonstrate functional redundancy for SUMO mediated events in the presence of DNA damage. Overall, given the extensive connection between Nse5 and components of the SUMO pathway, we speculate that one function of the Smc5/6 complex might be as a scaffold center to enable sumoylation events in budding yeast.

  8. Complex reduction coefficient for a cylindrical electron beam with variable amplitude of the variable current component in the TWT

    Directory of Open Access Journals (Sweden)

    Chasnyk V. I.

    2013-12-01

    Full Text Available The conventional approach to calculating the space charge for the traveling-wave tube (TWT with phase velocity jumps is to use the same values of the depression coefficient as the ones for homogeneous helical TWTs. However, if the variable component of the exciting current in the expressions for determining the reduction coefficient is changed in amplitude, then the reduction factor is a complex value. Perhaps the neglect of this fact can significantly affect the volume discharge calculated value, and hence the non-synchronization parameter, for those of its values, which are characteristic of the TWT with a phase velocity jump. In this paper, formulas has been obtained for computation of real and imaginary parts of the complex reduction coefficient for a cylindrical electrons beam with exponential variable amplitude of variable current component in the TWT. Influence of complex reduction coefficient on the parameters of the TWT operating in the linear mode is estimated. It is shown that taking into account the imaginary part of the reduction coefficient for linear operation of the TWT makes it possible to change the estimated amount of space charge 1.5 to 2 times, which in its turn has quite a strong effect on the formation of the initial conditions of the nonlinear mode and, subsequently, on the output characteristics of the TWT.

  9. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth.

    Science.gov (United States)

    Parry, Geraint

    2014-11-01

    The nuclear pore complex (NPC) is a multisubunit protein conglomerate that facilitates movement of RNA and protein between the nucleus and cytoplasm. Relatively little is known regarding the influence of the Arabidopsis NPC on growth and development. Seedling development, flowering time, nuclear morphology, mRNA accumulation, and gene expression changes in Arabidopsis nucleoporin mutants were investigated. Nuclear export of mRNA is differentially affected in plants with defects in nucleoporins that lie in different NPC subcomplexes. This study reveals differences in the manner by which nucleoporins alter molecular and plant growth phenotypes, suggesting that nuclear pore subcomplexes play distinct roles in nuclear transport and reveal a possible feedback relationship between the expression of genes involved in nuclear transport. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Molecular Architecture of the Major Membrane Ring Component of the Nuclear Pore Complex.

    Science.gov (United States)

    Upla, Paula; Kim, Seung Joong; Sampathkumar, Parthasarathy; Dutta, Kaushik; Cahill, Sean M; Chemmama, Ilan E; Williams, Rosemary; Bonanno, Jeffrey B; Rice, William J; Stokes, David L; Cowburn, David; Almo, Steven C; Sali, Andrej; Rout, Michael P; Fernandez-Martinez, Javier

    2017-03-07

    The membrane ring that equatorially circumscribes the nuclear pore complex (NPC) in the perinuclear lumen of the nuclear envelope is composed largely of Pom152 in yeast and its ortholog Nup210 (or Gp210) in vertebrates. Here, we have used a combination of negative-stain electron microscopy, nuclear magnetic resonance, and small-angle X-ray scattering methods to determine an integrative structure of the ∼120 kDa luminal domain of Pom152. Our structural analysis reveals that the luminal domain is formed by a flexible string-of-pearls arrangement of nine repetitive cadherin-like Ig-like domains, indicating an evolutionary connection between NPCs and the cell adhesion machinery. The 16 copies of Pom152 known to be present in the yeast NPC are long enough to form the observed membrane ring, suggesting how interactions between Pom152 molecules help establish and maintain the NPC architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Castelli

    2001-01-01

    Full Text Available Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187 for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD values indicating that their plasma membranes were less rough (lower FD than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process.

  12. Simultaneous determination of two active components of pharmaceutical preparations by sequential injection method using heteropoly complexes

    Directory of Open Access Journals (Sweden)

    Mohammed Khair E. A. Al-Shwaiyat

    2014-12-01

    Full Text Available New approach has been proposed for the simultaneous determination of two reducing agents based on the dependence of their reaction rate with 18-molybdo-2-phosphate heteropoly complex on pH. The method was automated using the manifold typical for the sequential analysis method. Ascorbic acid and rutin were determined by successive injection of two samples acidified to different pH. The linear range for rutin determination was 0.6-20 mg/L and the detection limit was 0.2 mg/L (l = 1 cm. The determination of rutin was possible in the presence of up to a 20-fold excess of ascorbic acid. The method was successfully applied to the determination of ascorbic acid and rutin in ascorutin tablets. The applicability of the proposed method for the determination of total polyphenol content in natural plant samples was shown.

  13. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  14. Cyclin F: A component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer.

    Science.gov (United States)

    Galper, Jasmin; Rayner, Stephanie L; Hogan, Alison L; Fifita, Jennifer A; Lee, Albert; Chung, Roger S; Blair, Ian P; Yang, Shu

    2017-08-01

    Cyclin F, encoded by CCNF, is the substrate recognition component of the Skp1-Cul1-F-box E3 ubiquitin ligase complex, SCF(cyclin F). E3 ubiquitin ligases play a key role in ubiquitin-proteasome mediated protein degradation, an essential component of protein homeostatic mechanisms within the cell. By recognising and regulating the availability of several protein substrates, SCF(cyclin F) plays a role in regulating various cellular processes including replication and repair of DNA and cell cycle checkpoint control. Cyclin F dysfunction has been implicated in various forms of cancer and CCNF mutations were recently linked to familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia, offering a new lead to understanding the pathogenic mechanisms underlying neurodegeneration. In this review, we evaluate the current literature on the function of cyclin F with an emphasis on its roles in cancer and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Major histocompatibility complex genes in a Mexican family with deficiency of the second component of the complement system.

    Science.gov (United States)

    Melín-Aldana, H; Reyes, P; Vargas-Alarcón, G; Yamamoto-Furusho, J K; Granados, J

    1996-01-01

    Hereditary deficiency of the second component of the complement system is an uncommon condition that has been reported so far mostly in Caucasians. We describe a Mexican patient with undetectable C2 levels and absence of complement hemolytic activity. Major histocompatibility complex (MHC) genes in his family showed that the proband had the MHC haplotypes HLA-A25, B18, DR2, DQ1, SQ042/HLA-A24, B18, DR2, DQ1, SQ042. A strong genetic linkage of the deficiency of the second component of the complement gene and the HLA antigens A25, B18, and DR2, is well established in Caucasian populations. This suggests that the probable origin of the deficiency in our patient was admixture with Caucasian ancestors.

  16. Wavelet packet-based independent component analysis for feature extraction from motor imagery EEG of complex movements.

    Science.gov (United States)

    Zhou, Zhongxing; Wan, Baikun

    2012-09-01

    The main goal of this study was to develop a novel spatial filtering method for better extracting the feature information underlying the event-related de-synchronisation and synchronisation (ERD/ERS) during complex motor imagery of lower limb action. The algorithm used a wavelet packet-based independent component analysis (WPICA) method to extract the ERD/ERS patterns in different frequency bands. Time-frequency decomposition in the wavelet packet domain was designed to avoid the statistical correlation between different electroencephalographic (EEG) rhythms. The subband-specific principal components were extracted after independent component analysis and projected back to the time-frequency domain of corresponding electrodes for better fitting the varying EEG spatial distributions. The present method was tested with the EEG data from 10 human subjects performing three complex mental tasks (i.e., imagery standing up, imagery left/right foot movement combined with homolateral hand movement). A classification rate of about 80% was achieved using the WPICA-based technique, which is better than the traditional ICA method with the rate of 72.30% and the non-spatial filtering condition of 68.34%. We developed a novel spatial filtering method based on WPICA to extract the ERD/ERS patterns in different frequency bands. The overall performance of this algorithm was better than that of the conventional methods. The current method promised to provide an effective way for ERD/ERS patterns recognition and thus could improve the pattern classification performance of complex mental tasks from scalp EEGs. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  18. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  19. An improved combinatorial geometry model for arbitrary geometry in DSMC

    Science.gov (United States)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2017-03-01

    This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.

  20. Tightly bound DNA-protein complexes representing stable attachment sites of large DNA loops to components of the matrix.

    Science.gov (United States)

    Patriotis, C; Djondjurov, L

    1989-09-01

    This study describes tightly bound DNA-protein complexes in DNA of matrices isolated from Friend erythroleukemia cells. When after radio-iodination of the associated proteins, such DNA is electrophoresed on agarose and the gel is subsequently subjected to autoradiography, the protein components of three or four complexes are visualized. Their two-dimensional electrophoretic analysis revealed that each possesses a simple but specific polypeptide composition, including a set of five non-histone proteins, characteristic for the matrix, and the core histones H3 and H4. Since the polypeptides dissociate from DNA by treatment with SDS, it is suggested that the linkage is not covalent. Reassociation and hybridization analysis of the DNA of the complexes indicated that it is enriched in highly repetitive, satellite sequences. The latter were found to be, to a great extent, similar to sequences localized at the base of large, dehistonized DNA loops obtained by high-salt extraction of isolated nuclei. Further experiments emphasized the complete conservation of this type of attachment throughout erythroid differentiation of Friend cells. It is proposed that the complexes represent attachment sites of basic, 30-100-kbp loop units of DNA.

  1. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  2. Preoperative progressive pneumoperitoneum complementing chemical component relaxation in complex ventral hernia repair.

    Science.gov (United States)

    Elstner, Kristen E; Read, John W; Rodriguez-Acevedo, Omar; Ho-Shon, Kevin; Magnussen, John; Ibrahim, Nabeel

    2017-04-01

    A rarely used technique for enabling closure of large ventral hernias with loss of domain is preoperative progressive pneumoperitoneum (PPP), which uses intermittent insufflation to gradually stretch the contracted abdominal wall muscles, increasing the capacity of the abdominal cavity. This allows the re-introduction of herniated viscera into the abdominal cavity and assists in closure of giant hernias which may otherwise be considered inoperable. This was a prospective study assessing 16 patients between 2013 and 2015 with multi-recurrent ventral hernia. All patients were treated preoperatively with both Botulinum Toxin A (BTA) injections to the lateral abdominal wall muscles to confer flaccid paralysis, and short-term PPP to passively expand the abdominal cavity. All patients underwent serial abdominal CT imaging, with pre- and post-treatment circumference measurements of the peritoneal cavity and hernia sac, prior to undergoing operative mesh repair of their hernia. The mean hernia defect size was 236 cm2, with mean 28 % loss of domain. The mean overall duration of PPP was 6.2 days. The mean gain in abdominal circumference was 4.9 cm (5.6 %) (p 0.002) after BTA and PPP. Fascial closure and mesh hernia repair were performed in all 16 patients, with no patients suffering from postoperative abdominal hypertension, ventilatory impairment, or wound dehiscence. There are no hernia recurrences to date. Eight patients (50 %) experienced PPP-related complications, consisting of subcutaneous emphysema, pneumothorax, pneumomediastinum, pneumocardium, and metabolic acidosis. No complication required intervention. PPP is a useful adjunct in the repair of complex ventral hernia. It passively expands the abdominal cavity, allowing viscera to re-establish right of domain. At the same time, it helps to minimize the risks of postoperative abdominal compartment syndrome and the sequelae of fascial closure under tension. However, its benefits must be carefully weighed with

  3. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  4. Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex.

    Directory of Open Access Journals (Sweden)

    Laura C Roseaulin

    Full Text Available The stabilization of the replisome complex is essential in order to achieve highly processive DNA replication and preserve genomic integrity. Conversely, it would also be advantageous for the cell to abrogate replisome functions to prevent inappropriate replication when fork progression is adversely perturbed. However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex. In sharp contrast, ORC and PCNA, which are also required for DNA replication, were stably maintained. We demonstrate that this degradation of DNA polymerases and helicases is dependent on the ubiquitin-proteasome system, in which the SCF(Pof3 ubiquitin ligase is involved. Consistently, we show that Pof3 interacts with DNA polymerase ε. Remarkably, forced accumulation of replisome components leads to abnormal DNA replication and mitotic catastrophes in the absence of Swi1. Swi1 is known to prevent fork collapse at natural replication block sites throughout the genome. Therefore, our results suggest that the cell elicits a program to degrade replisomes upon replication stress in the absence of Swi1. We also suggest that this program prevents inappropriate duplication of the genome, which in turn contributes to the preservation of genomic integrity.

  5. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  6. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  7. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis.

    Science.gov (United States)

    Forejtnikovà, Hana; Vieillevoye, Maud; Zermati, Yael; Lambert, Mireille; Pellegrino, Rosa Maria; Guihard, Soizic; Gaudry, Muriel; Camaschella, Clara; Lacombe, Catherine; Roetto, Antonella; Mayeux, Patrick; Verdier, Frédérique

    2010-12-09

    Erythropoietin (Epo) is required for erythroid progenitor differentiation. Although Epo crosslinking experiments have revealed the presence of Epo receptor (EpoR)-associated proteins that could never be identified, EpoR is considered to be a paradigm for homodimeric cytokine receptors. We purified EpoR-binding partners and identified the type 2 transferrin receptor (TfR2) as a component of the EpoR complex corresponding to proteins previously detected in cross-linking experiments. TfR2 is involved in iron metabolism by regulating hepcidin production in liver cells. We show that TfR2 and EpoR are synchronously coexpressed during the differentiation of erythroid progenitors. TfR2 associates with EpoR in the endoplasmic reticulum and is required for the efficient transport of this receptor to the cell surface. Erythroid progenitors from TfR2(-/-)mice show a decreased sensitivity to Epo and increased circulating Epo levels. In human erythroid progenitors, TfR2 knockdown delays the terminal differentiation. Erythroid cells produce growth differentiation factor-15, a cytokine that suppresses hepatic hepcidin production in certain erythroid diseases such as thalassemia. We show that the production of growth differentiation factor-15 by erythroid cells is dependent on both Epo and TfR2. Taken together, our results show that TfR2 exhibits a non hepatic function as a component of the EpoR complex and is required for efficient erythropoiesis.

  8. EXTENSION OF RCC TOPOLOGICAL RELATIONS FOR 3D COMPLEX OBJECTS COMPONENTS EXTRACTED FROM 3D LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    X.-F. Xing

    2016-06-01

    Full Text Available Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D B-Rep models in R3. Herein we present an extended Region Connection Calculus (RCC model to express and formalize topological relations between planar regions for creating 3D model represented by Boundary Representation model in R3. We proposed a new dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric information is transformed into a list of strings consisting of topological relations between two planar regions and detailed connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments of point cloud automatically.

  9. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  10. Visuospatial Working Memory in Intuitive Geometry, and in Academic Achievement in Geometry

    Science.gov (United States)

    Giofre, David; Mammarella, Irene C.; Ronconi, Lucia; Cornoldi, Cesare

    2013-01-01

    A study was conducted on the involvement of visuospatial working memory (VSWM) in intuitive geometry and in school performance in geometry at secondary school. A total of 166 pupils were administered: (1) six VSWM tasks, comprising simple storage and complex span tasks; and (2) the intuitive geometry task devised by Dehaene, Izard, Pica, and…

  11. Component neural systems for the creation of emotional memories during free viewing of a complex, real-world event

    Directory of Open Access Journals (Sweden)

    Anne Botzung

    2010-05-01

    Full Text Available To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI. During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets or from non-viewed portions of the same game (foils. After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan’s perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.

  12. Early detection of periodic sharp wave complexes on EEG by independent component analysis in patients with Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Wang, Po-Shan; Wu, Yu-Te; Hung, Chih-I; Kwan, Shan-Yeong; Teng, Shin; Soong, Bing-Wen

    2008-02-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disease. EEG is the method of choice to support the diagnosis of a human prion disease. Periodic sharp wave complexes (PSWCs) on the EEG usually indicate a progressive stage of CJD. However, PSWCs only become obvious at around 8 to 12 weeks after the onset of clinical symptoms, and in a few cases, even later. Independent component analysis (ICA) is a new technique to separate statistically independent components from a mixture of data. This study recruited seven patients who fit the criteria of CJD between 2002 and 2005 and 10 patients with Alzheimer's disease (AD) as control subjects. Using an ICA algorithm, we were able to split typical PSWCs into several independent temporal components in conjunction with spatial maps. The PSWCs were not observed in the initial EEG studies of patients with either AD or CJD. However, the ICA algorithm was able to extract periodic discharges and epileptiform discharges from raw EEG of patients with CJD at as early as 3 to 5 weeks after disease onset. Such discharges otherwise could hardly be discerned by visual inspection. In conclusion, ICA may increase the sensitivity of EEG and facilitate the early diagnosis of CJD.

  13. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity.

    Science.gov (United States)

    Gibbings, Derrick J; Ciaudo, Constance; Erhardt, Mathieu; Voinnet, Olivier

    2009-09-01

    In animals, P-bodies or GW-bodies appear to cause the congregation of proteins involved in microRNA (miRNA)-mediated post-transcriptional silencing. The localization of P-bodies does not overlap with that of known organelles and are thus considered independent of lipid bilayers. Nonetheless, an miRNA effector protein, argonaute 2 (AGO2), was initially identified as membrane-associated, and some miRNAs have been found in secreted vesicles (exosomes) that derive from endo-lysosomal compartments called multivesicular bodies (MVBs). Proteins can be sorted in a ubiquitin-dependent manner into MVBs by three heteromeric subcomplexes, collectively termed ESCRT (endosomal sorting complex required for transport), to be further secreted in exosomes and/or degraded by the lysosome. Here we show that GW-bodies containing GW182 and AGO2, two main components of the RNA-induced silencing complex (RISC), are distinct from P-bodies due to their congregation with endosomes and MVBs. Moreover, miRNAs and miRNA-repressible mRNAs are enriched at these cellular membranes, suggesting that endosomes and/or MVBs are sites of miRNA-loaded RISC (miRISC) accumulation and, possibly, action. We further show that purified exosome-like vesicles secreted by MVBs are considerably enriched in GW182, but not P-body components, AGO2 or miRNA-repressible mRNA. Moreover, cells depleted of some ESCRT components show compromised miRNA-mediated gene silencing and over-accumulate GW182, which associates with ubiquitylated proteins. Therefore, GW182, possibly in association with a fraction of miRNA-loaded AGO2, is sorted into MVBs for secretion and/or lysosomal degradation. We propose that this process promotes continuous assembly or disassembly of membrane-associated miRISCs, which is possibly required for miRNA loading or target recognition and subsequent silencing.

  14. Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects.

    Directory of Open Access Journals (Sweden)

    Almudena Ferrández-Ayela

    Full Text Available N-α-terminal acetylation is one of the most common, but least understood modifications of eukaryotic proteins. Although a high degree of conservation exists between the N-α-terminal acetylomes of plants and animals, very little information is available on this modification in plants. In yeast and humans, N-α-acetyltransferase complexes include a single catalytic subunit and one or two auxiliary subunits. Here, we report the positional cloning of TRANSCURVATA2 (TCU2, which encodes the auxiliary subunit of the NatB N-α-acetyltransferase complex in Arabidopsis. The phenotypes of loss-of-function tcu2 alleles indicate that NatB complex activity is required for flowering time regulation and for leaf, inflorescence, flower, fruit and embryonic development. In double mutants, tcu2 alleles synergistically interact with alleles of ARGONAUTE10, which encodes a component of the microRNA machinery. In summary, NatB-mediated N-α-terminal acetylation of proteins is pleiotropically required for Arabidopsis development and seems to be functionally related to the microRNA pathway.

  15. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    Directory of Open Access Journals (Sweden)

    Marianna Feretzaki

    2016-03-01

    Full Text Available RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein and Qip1 (a homolog of N. crassa Qip were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor and Fzc28 (a transcription factor are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  16. Notes on noncommutative geometry

    OpenAIRE

    Nikolaev, Igor

    2015-01-01

    The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. A brief survey of main parts of noncommutative geometry with historical remarks, bibliography and a list of exercises is attached. Our notes are intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts in the field.

  17. Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways.

    Science.gov (United States)

    Tylewicz, Szymon; Tsuji, Hiroyuki; Miskolczi, Pál; Petterle, Anna; Azeez, Abdul; Jonsson, Kristoffer; Shimamoto, Ko; Bhalerao, Rishikesh P

    2015-03-10

    A complex consisting of evolutionarily conserved FD, flowering locus T (FT) proteins is a regulator of floral transition. Intriguingly, FT orthologs are also implicated in developmental transitions distinct from flowering, such as photoperiodic control of bulbing in onions, potato tuberization, and growth cessation in trees. However, whether an FT-FD complex participates in these transitions and, if so, its mode of action, are unknown. We identified two closely related FD homologs, FD-like 1 (FDL1) and FD-like 2 (FDL2), in the model tree hybrid aspen. Using gain of function and RNAi-suppressed FDL1 and FDL2 transgenic plants, we show that FDL1 and FDL2 have distinct functions and a complex consisting of FT and FDL1 mediates in photoperiodic control of seasonal growth. The downstream target of the FT-FD complex in photoperiodic control of growth is Like AP1 (LAP1), a tree ortholog of the floral meristem identity gene APETALA1. Intriguingly, FDL1 also participates in the transcriptional control of adaptive response and bud maturation pathways, independent of its interaction with FT, presumably via interaction with abscisic acid insensitive 3 (ABI3) transcription factor, a component of abscisic acid (ABA) signaling. Our data reveal that in contrast to its primary role in flowering, FD has dual roles in the photoperiodic control of seasonal growth and stress tolerance in trees. Thus, the functions of FT and FD have diversified during evolution, and FD homologs have acquired roles that are independent of their interaction with FT.

  18. The Complex Accretion Geometry of Gx 339–4 as Seen by Nustar and Swift

    DEFF Research Database (Denmark)

    Fuerst, F.; Nowak, M. A.; Tomsick, J. A.

    2015-01-01

    -4 stayed in the hard state and all five observations show similar X-ray spectra, with a hard power law with a photon index near 1.6, and significant contribution from reflection. Using simple reflection models we find unrealistically high iron abundances. Allowing for different photon indices...... of different emissivity profiles and geometries and consistently find an improvement when using separate photon indices. The inferred inner accretion disk radius is strongly model dependent, but we do not find evidence for a truncation radius larger than 100 rg in any model. The data do not allow independent...

  19. Correlation Analysis between Complex Relative Permittivity and Biochemical Components for Blood of Dialysis Patients before and after Hemodialysis

    Science.gov (United States)

    Takeda, Akira; Takata, Kazuyuki; Nagao, Hirotomo; Wang, Jianqing; Fujiwara, Osamu

    We previously measured for healthy subjects and patients who require hemodialysis the complex relative permittivity (εr´-jεr´´) of whole blood, and found that εr´-axis intercept εrt´ of straight line approximation to the Cole-Cole plots at frequencies from 200 MHz to 1GHz is significantly different with a level of less than 1% among its averaged values for healthy subjects and patients before and after dialysis, though any correlations between εrt´ and blood urea nitrogen (BUN) and creatinine being used as main indices for hemodialysis evaluation have not so far been clarified. In this study, to make correlation analyses between the intercept εrt´ and blood biochemical components for nine patients before and after hemodialysis, we measured six kinds of their blood components including BUN and creatinine, and calculated their Pearson product-moment correlation coefficients for εrt´ along with significant probability P based on a t-test. It should be noted that P is a reference probability to determine whether or not a null hypothesis can be rejected, and that the P value of 0.05 is commonly used as a significance level for statistical test. As a result, we found that a strong correlation with P 0.05 between εrt´ and other blood components including BUN and creatinine. Although albumin is not used as an index for hemodialysis efficiency, it can reflect water amount in blood vessels and liver operation. This finding implies that εrt´ could be used as an index for evaluating blood viscosity and liver function.

  20. STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo.

    Science.gov (United States)

    Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V

    2017-12-19

    Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.

  1. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [University of Georgia; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  2. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  3. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties

    Science.gov (United States)

    Cheny, Yoann; Botella, Olivier

    2010-02-01

    This paper concerns the development of a new Cartesian grid/immersed boundary (IB) method for the computation of incompressible viscous flows in two-dimensional irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are cut by the boundary, the so-called "cut-cells". In this paper, we present a new IB method, called the LS-STAG method, which is based on the MAC method for staggered Cartesian grids and where the irregular boundary is sharply represented by its level-set function. This implicit representation of the immersed boundary enables us to calculate efficiently the geometry parameters of the cut-cells. We have achieved a novel discretization of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momentum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the five-point Cartesian structure of the stencil, resulting in a highly computationally efficient method. The accuracy and robustness of our method is assessed on canonical flows at low to moderate Reynolds number: Taylor-Couette flow, flows past a circular cylinder, including the case where the cylinder has forced oscillatory rotations. Finally, we will extend the LS-STAG method to the handling of moving immersed boundaries and present some results for the transversely oscillating cylinder flow in a free-stream.

  4. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  5. Algebra and Geometry of Hamilton's Quaternions

    Indian Academy of Sciences (India)

    IAS Admin

    Inspired by the relation between the algebra of complex numbers and plane geometry, William. Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most ...

  6. Developing the clinical components of a complex intervention for a glaucoma screening trial: a mixed methods study

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Abstract Background Glaucoma is a leading cause of avoidable blindness worldwide. Open angle glaucoma is the most common type of glaucoma. No randomised controlled trials have been conducted evaluating the effectiveness of glaucoma screening for reducing sight loss. It is unclear what the most appropriate intervention to be evaluated in any glaucoma screening trial would be. The purpose of this study was to develop the clinical components of an intervention for evaluation in a glaucoma (open angle screening trial that would be feasible and acceptable in a UK eye-care service. Methods A mixed-methods study, based on the Medical Research Council (MRC framework for complex interventions, integrating qualitative (semi-structured interviews with 46 UK eye-care providers, policy makers and health service commissioners, and quantitative (economic modelling methods. Interview data were synthesised and used to revise the screening interventions compared within an existing economic model. Results The qualitative data indicated broad based support for a glaucoma screening trial to take place in primary care, using ophthalmic trained technical assistants supported by optometry input. The precise location should be tailored to local circumstances. There was variability in opinion around the choice of screening test and target population. Integrating the interview findings with cost-effectiveness criteria reduced 189 potential components to a two test intervention including either optic nerve photography or screening mode perimetry (a measure of visual field sensitivity with or without tonometry (a measure of intraocular pressure. It would be more cost-effective, and thus acceptable in a policy context, to target screening for open angle glaucoma to those at highest risk but for both practicality and equity arguments the optimal strategy was screening a general population cohort beginning at age forty. Conclusions Interventions for screening for open angle

  7. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  8. Complex ventral hernia repair using components separation with or without biologic mesh: a cost-utility analysis.

    Science.gov (United States)

    Chatterjee, Abhishek; Krishnan, Naveen M; Rosen, Joseph M

    2015-04-01

    A complex ventral hernia requiring abdominal wall reconstruction presents a challenging scenario to the surgeon. The use of biologic mesh in addition to performing a components separation (CS) is controversial. Our goal was to perform the first cost-utility analysis on the use of biologic mesh in addition to performing CS when performing complex ventral hernia repair. A comprehensive literature review was conducted to identify published complication and recurrence rates for ventral hernia repairs requiring CS with or without biologic mesh. The probabilities of the most common complications were combined with Medicare Current Procedural Terminology reimbursement codes, diagnosis related group reimbursement codes, and expert utility estimates to fit into a decision model to evaluate the cost utility of CS with and without biologic mesh in reconstructing ventral hernias. The decision model revealed a baseline cost increase of $775.65 and a 0.0517 increase in the quality-adjusted life-years when using biologic mesh yielding an incremental cost-utility ratio of $15,002.90/quality-adjusted life-year. One-way sensitivity analysis revealed that using biologic mesh was cost-effective using Medicare reimbursement rates but not at retail costs. The maximum price of biologic mesh to be cost-effective was $1813.53. The cost utility of biologic mesh when used with CS in ventral hernia repair is dependent on the financial perspective. It is cost-ineffective for hospitals and physicians paying retail costs but cost-effective for third-party payers providing Medicare reimbursement.

  9. Interaction of E1 and E3 components with the core proteins of the human pyruvate dehydrogenase complex.

    Science.gov (United States)

    Patel, Mulchand S; Korotchkina, Lioubov G; Sidhu, Sukhdeep

    2009-11-01

    The human (h) pyruvate dehydrogenase complex (hPDC) consists of multiple copies of several components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), dihydrolipoamide dehydrogenase (E3), E3-binding protein (BP), and specific kinases and phosphatases. Mammalian PDC has a well organized structure with an icosahedral symmetry of the central E2/BP core to which the other component proteins bind non-covalently. Both hE2 and hBP consist of three well defined domains, namely the lipoyl domain, the subunit-binding domain and the inner domain, connected with flexible linkers. hE1 (alpha(2)beta(2)) binds to the subunit-binding domain of hE2; whereas hE3 binds to the E3-binding domain of hBP. Among several residues of the C-terminal surface of the hE1beta E1betaD289 was found to interact with hE2K276. The C-terminal residue I329 of the hE1beta did not participate in binding to hE2. This latter finding shows specificity in the interaction between E1beta and E2 in hPDC. The selective binding between hE3 and the E3-binding domain of hBP was investigated using specific mutants. E3R460G and E3340K showed significant reductions in affinity for hBP as determined by surface plasmon resonance. Both residues are involved in the structural organization of the binding site on hE3. Substitution of I157, N137 and R155 of hBP resulted in variable increases in the K(D) for binding with wild-type hE3, suggesting that the binding results from several weak electrostatic bonds and hydrophobic interactions among residues of hBP with residues at the interface of dimeric hE3. These results provide insight in the mono-specificity of binding of E1 to E2 and E3 to BP in hPDC and showed the differences in the binding of peripheral components (E1 and E3) in human and bacterial PDCs.

  10. Method to assess component contribution to toxicity of complex mixtures: Assessment of puberty acquisition in rats exposed to disinfection byproducts.

    Science.gov (United States)

    Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Simmons, Jane Ellen; Speth, Thomas F; Richardson, Susan D; Miltner, Richard J; Hunter, E Sidney; Pressman, Jonathan G; Strader, Lillian F; Klinefelter, Gary R; Goldman, Jerome M; Narotsky, Michael G

    2017-08-01

    A method based on regression modeling was developed to discern the contribution of component chemicals to the toxicity of highly complex, environmentally realistic mixtures of disinfection byproducts (DBPs). Chemical disinfection of drinking water forms DBP mixtures. Because of concerns about possible reproductive and developmental toxicity, a whole mixture (WM) of DBPs produced by chlorination of a water concentrate was administered as drinking water to Sprague-Dawley (S-D) rats in a multigenerational study. Age of puberty acquisition, i.e., preputial separation (PPS) and vaginal opening (VO), was examined in male and female offspring, respectively. When compared to controls, a slight, but statistically significant delay in puberty acquisition was observed in females but not in males. WM-induced differences in the age at puberty acquisition were compared to those reported in S-D rats administered either a defined mixture (DM) of nine regulated DBPs or individual DBPs. Regression models were developed using individual animal data on age at PPS or VO from the DM study. Puberty acquisition data reported in the WM and individual DBP studies were then compared with the DM models. The delay in puberty acquisition observed in the WM-treated female rats could not be distinguished from delays predicted by the DM regression model, suggesting that the nine regulated DBPs in the DM might account for much of the delay observed in the WM. This method is applicable to mixtures of other types of chemicals and other endpoints. Copyright © 2017. Published by Elsevier B.V.

  11. Development of Smoothed Particle Hydrodynamics for Flow in Complex Geometries and Application of Open Source Software for the Simulation of Turbulent Flow

    DEFF Research Database (Denmark)

    Obeidat, Anas Hassan MohD

    particle-mesh method, the method involves three-dimensional compressible turbulent flow modelling, and coupled with an immersed boundary technique to deal with the complex solid obstacles. This dissertation is composed of three parts. In combustion engines the scavenging process in two-stroke marine diesel...

  12. Affine and Projective Geometry

    CERN Document Server

    Bennett, M K

    1995-01-01

    An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory

  13. Introduction to projective geometry

    CERN Document Server

    Wylie, C R

    2008-01-01

    This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w

  14. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  15. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  16. The protein-protein interactions involved in the periplasmic components of the β-barrel assembly machinery (BAM) complex of Escherichia coli

    OpenAIRE

    Aulakh, Suraaj Kaur

    2012-01-01

    The β-barrel assembly machinery (BAM) complex plays the essential role of folding and inserting outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. In Escherichia coli, the BAM complex is comprised of five proteins: BamA, BamB, BamC, BamD, and BamE. This thesis project investigates the interactions between the periplasmic components of the BAM complex by analyzing complex formation using gel-filtration chromatography. Results from the interaction studies have id...

  17. Special metrics and group actions in geometry

    CERN Document Server

    Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

    2017-01-01

    The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

  18. Influence of the geometry around the manganese ion on the peroxidase and catalase activities of Mn(III)-Schiff base complexes.

    Science.gov (United States)

    Vázquez-Fernández, M Ángeles; Bermejo, Manuel R; Fernández-García, M Isabel; González-Riopedre, Gustavo; Rodríguez-Doutón, M Jesús; Maneiro, Marcelino

    2011-12-01

    The peroxidase and catalase activities of eighteen manganese-Schiff base complexes have been studied. A correlation between the structure of the complexes and their catalytic activity is discussed on the basis of the variety of systems studied. Complexes 1-18 have the general formulae [MnL(n)(D)(2)](X)(H(2)O/CH(3)OH)(m), where L(n)=L(1)-L(13); D=H(2)O, CH(3)OH or Cl; m=0-2.5 and X=NO(3)(-), Cl(-), ClO(4)(-), CH(3)COO(-), C(2)H(5)COO(-) or C(5)H(11)COO(-). The dianionic tetradentate Schiff base ligands H(2)L(n) are the result of the condensation of different substituted (OMe-, OEt-, Br-, Cl-) hydroxybenzaldehyde with diverse diamines (1,2-diaminoethane for H(2)L(1)-H(2)L(2); 1,2-diamino-2-methylethane for H(2)L(3)-H(2)L(4); 1,2-diamino-2,2-dimethylethane for H(2)L(5); 1,2-diphenylenediamine for H(2)L(6)-H(2)L(7); 1,3-diaminopropane for H(2)L(8)-H(2)L(11); 1,3-diamino-2,2-dimethylpropane for H(2)L(12)-H(2)L(13)). The new Mn(III) complexes [MnL(1)(H(2)O)Cl](H(2)O)(2.5) (2), [MnL(2)(H(2)O)(2)](NO(3))(H(2)O) (4), [MnL(6)(H(2)O)(2)][MnL(6)(CH(3)OH)(H(2)O)](NO(3))(2)(CH(3)OH) (8), [MnL(6)(H(2)O)(OAc)](H(2)O) (9) and [MnL(7)(H(2)O)(2)](NO(3))(CH(3)OH)(2) (12) were isolated and characterised by elemental analysis, magnetic susceptibility and conductivity measurements, redox studies, ESI spectrometry and UV, IR, paramagnetic (1)H NMR, and EPR spectroscopies. X-ray crystallographic studies of these complexes and of the ligand H(2)L(6) are also reported. The crystal structures of the rest of the complexes have been previously published and herein we have only revised their study by those techniques still not reported (EPR and (1)H NMR for some of these compounds) and which help to establish their structures in solution. Complexes 1-12 behave as more efficient mimics of peroxidase or catalase in contrast with 13-18. The analysis between the catalytic activity and the structure of the compounds emphasises the significance of the existence of a vacant or a labile position in the

  19. Geometry of surfaces a practical guide for mechanical engineers

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

  20. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    Science.gov (United States)

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.

    Science.gov (United States)

    Dolležal, Lena-Vanessa; Itatani, Naoya; Günther, Stefanie; Klump, Georg M

    2012-12-01

    Auditory streaming describes a percept in which a sequential series of sounds either is segregated into different streams or is integrated into one stream based on differences in their spectral or temporal characteristics. This phenomenon has been analyzed in human subjects (psychophysics) and European starlings (neurophysiology), presenting harmonic complex (HC) stimuli with different phase relations between their frequency components. Such stimuli allow evaluating streaming by temporal cues, as these stimuli only vary in the temporal waveform but have identical amplitude spectra. The present study applied the commonly used ABA- paradigm (van Noorden, 1975) and matched stimulus sets in psychophysics and neurophysiology to evaluate the effects of fundamental frequency (f₀), frequency range (f(LowCutoff)), tone duration (TD), and tone repetition time (TRT) on streaming by phase relations of the HC stimuli. By comparing the percept of humans with rate or temporal responses of avian forebrain neurons, a neuronal correlate of perceptual streaming of HC stimuli is described. The differences in the pattern of the neurons' spike rate responses provide for a better explanation for the percept observed in humans than the differences in the temporal responses (i.e., the representation of the periodicity in the timing of the action potentials). Especially for HC stimuli with a short 40-ms duration, the differences in the pattern of the neurons' temporal responses failed to represent the patterns of human perception, whereas the neurons' rate responses showed a good match. These results suggest that differential rate responses are a better predictor for auditory streaming by phase relations than temporal responses.

  2. Expression, purification, and characterization of Sss1p, an essential component of the yeast Sec61p protein translocation complex.

    Science.gov (United States)

    Beswick, V; Brodsky, J L; Képès, F; Neumann, J M; Sanson, A; Garrigos, M

    1998-08-01

    Sss1p, a 8.9-kDa membrane protein, is an essential component of the protein translocation complex involved in the transport of secretory proteins across the Saccharomyces cerevisiae endoplasmic reticulum membrane. In order to determine the high resolution structure of Sss1p by NMR, we have undertaken its overexpression and purification. We first inserted the yeast SSS1 gene into the pGEX-2T plasmid expression vector. Sss1p was expressed as fusions with Schistosoma japonica glutathione S-transferase (GST-Sss1p) in MC1061 Escherichia coli cells. Maximum yield of GST-Sss1p was obtained from cells harvested 2 h after induction at 37 degreesC in Luria broth medium. GST-Sss1p was found associated predominantly with the membrane pool and was readily extracted with Triton X-100. Detergent-solubilized GST-Sss1p was isolated by adsorption on glutathione-agarose beads. Sss1p was released from its GST carrier by cleavage with thrombin and its recovery was maximized by addition of dodecyl maltoside. Desorbed Sss1p was loaded on a high-performance liquid chromatography hydroxyapatite column equilibrated in phosphate buffer supplemented with dodecyl maltoside and the fractions containing Sss1p were subsequently purified to homogeneity by reverse-phase chromatography on a C4 column. The entire purification protocol can be completed in 5-6 h and yields about 0.4 mg of Sss1p per gram of transformed cells. CD and preliminary 1H NMR experiments show that purified Sss1p solubilized in SDS micelles is very stable and adopts a helical secondary structure. Copyright 1998 Academic Press.

  3. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimasa, Hironobu; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Kurimoto, Akiko [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 (Japan); Takeda, Yasuko; Kawasaki, Yoshihiro [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2015-03-27

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells.

  4. MODULATION OF PLAGL2 TRANSACTIVATION BY POSITIVE COFACTOR 2 (PC2), A COMPONENT OF THE ARC/MEDIATOR COMPLEX

    Science.gov (United States)

    Wezensky, Sara J.; Hanks, Tracey S.; Wilkison, Michelle J.; Ammons, Mary Cloud; Siemsen, Daniel W.; Gauss, Katherine A.

    2009-01-01

    The pleomorphic adenoma gene (PLAG) family of transcription factors regulate a wide-range of physiological processes, including cell proliferation, tissue-specific gene regulation, and embryonic development, although little is known regarding the mechanisms that regulate PLAG protein activity. In this study, a yeast two-hybrid screen identified PC2, a component of the Mediator complex, as a PLAGL2-binding protein. We show that PC2 cooperates with PLAGL2 and PU.1 to enhance the activity of a known PLAGL2 target promoter (NCF2). The PLAGL2 binding element in the NCF2 promoter consisted of the core sequence of the bipartite PLAG1 consensus site, but lacked the G-cluster motif, and was recognized by PLAGL2 zinc fingers 5 and 6. Promoter and PLAGL2 mutants showed that PLAGL2 and PU.1 were required to bind to their respective sites in the promoter, and PC2 knockdown demonstrated that PC2 was essential for enhanced promoter activity. Co-immunoprecipitation and promoter-reporter studies reveal that the effect of PC2 on PLAGL2 target promoter activity was conferred via the C-terminus of PLAGL2, the region that is required for PC2 binding and contains the PLAGL2 activation domain. Importantly, chromatin immunoprecipitation analysis and PC2 knockdown studies confirmed that endogenous PC2 protein associated with the NCF2 promoter in MM1 cells in the region occupied by PLAGL2, and was required for PLAGL2 target promoter activity in TNF-α-treated MM1 cells, respectively. Lastly, the expression of another known PLAGL2 target gene, insulin-like growth factor II (IGF-II), was greatly diminished in the presence of PC2 siRNA. Together, the data identify PC2 as a novel PLAGL2-binding protein and important mediator of PLAGL2 transactivation. PMID:20025940

  5. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Keiji Nishida

    Full Text Available Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1, as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.

  6. Experimental approach for the uncertainty assessment of 3D complex geometry dimensional measurements using computed tomography at the mm and sub-mm scales

    DEFF Research Database (Denmark)

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A.

    2017-01-01

    experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile...... with the component’s calibration and the micro manufacturing tolerances to demonstrate the suitability of the presented CT calibration procedure. The 2U/T ratios resulting from the validation workpiece are, respectively, 0.27 (VDI) and 0.35 (MPE), by assuring tolerances in the range of ± 20–30 µm. For the dental...... file, the EN analysis is favorable in the majority of the cases (70.4%) and 2U/T is equal to 0.31 for sub-mm measurands (L

  7. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  8. 4th Conference on Advances in architectural geometry 2014

    CERN Document Server

    Knippers, Jan; Mitra, Niloy; Wang, Wenping

    2015-01-01

    This book contains 24 technical papers presented at the fourth edition of the Advances in Architectural Geometry conference, AAG 2014, held in London, England, September 2014. It offers engineers, mathematicians, designers, and contractors insight into the efficient design, analysis, and manufacture of complex shapes, which will help open up new horizons for architecture. The book examines geometric aspects involved in architectural design, ranging from initial conception to final fabrication. It focuses on four key topics: applied geometry, architecture, computational design, and also practice in the form of case studies. In addition, the book also features algorithms, proposed implementation, experimental results, and illustrations. Overall, the book presents both theoretical and practical work linked to new geometrical developments in architecture. It gathers the diverse components of the contemporary architectural tendencies that push the building envelope towards free form in order to respond to multiple...

  9. Geometry-dependent atomic multipole models for the water molecule.

    Science.gov (United States)

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  10. Biclustered Independent Component Analysis for Complex Biomarker and Subtype Identification from Structural Magnetic Resonance Images in Schizophrenia.

    Science.gov (United States)

    Gupta, Cota Navin; Castro, Eduardo; Rachkonda, Srinivas; van Erp, Theo G M; Potkin, Steven; Ford, Judith M; Mathalon, Daniel; Lee, Hyo Jong; Mueller, Bryon A; Greve, Douglas N; Andreassen, Ole A; Agartz, Ingrid; Mayer, Andrew R; Stephen, Julia; Jung, Rex E; Bustillo, Juan; Calhoun, Vince D; Turner, Jessica A

    2017-01-01

    Clinical and cognitive symptoms domain-based subtyping in schizophrenia (Sz) has been critiqued due to the lack of neurobiological correlates and heterogeneity in symptom scores. We, therefore, present a novel data-driven framework using biclustered independent component analysis to detect subtypes from the reliable and stable gray matter concentration (GMC) of patients with Sz. The developed methodology consists of the following steps: source-based morphometry (SBM) decomposition, selection and sorting of two component loadings, subtype component reconstruction using group information-guided ICA (GIG-ICA). This framework was applied to the top two group discriminative components namely the insula/superior temporal gyrus/inferior frontal gyrus (I-STG-IFG component) and the superior frontal gyrus/middle frontal gyrus/medial frontal gyrus (SFG-MiFG-MFG component) from our previous SBM study, which showed diagnostic group difference and had the highest effect sizes. The aggregated multisite dataset consisted of 382 patients with Sz regressed of age, gender, and site voxelwise. We observed two subtypes (i.e., two different subsets of subjects) each heavily weighted on these two components, respectively. These subsets of subjects were characterized by significant differences in positive and negative syndrome scale (PANSS) positive clinical symptoms (p = 0.005). We also observed an overlapping subtype weighing heavily on both of these components. The PANSS general clinical symptom of this subtype was trend level correlated with the loading coefficients of the SFG-MiFG-MFG component (r = 0.25; p = 0.07). The reconstructed subtype-specific component using GIG-ICA showed variations in voxel regions, when compared to the group component. We observed deviations from mean GMC along with conjunction of features from two components characterizing each deciphered subtype. These inherent variations in GMC among patients with Sz could possibly indicate the need for

  11. Biclustered Independent Component Analysis for Complex Biomarker and Subtype Identification from Structural Magnetic Resonance Images in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Cota Navin Gupta

    2017-09-01

    Full Text Available Clinical and cognitive symptoms domain-based subtyping in schizophrenia (Sz has been critiqued due to the lack of neurobiological correlates and heterogeneity in symptom scores. We, therefore, present a novel data-driven framework using biclustered independent component analysis to detect subtypes from the reliable and stable gray matter concentration (GMC of patients with Sz. The developed methodology consists of the following steps: source-based morphometry (SBM decomposition, selection and sorting of two component loadings, subtype component reconstruction using group information-guided ICA (GIG-ICA. This framework was applied to the top two group discriminative components namely the insula/superior temporal gyrus/inferior frontal gyrus (I-STG-IFG component and the superior frontal gyrus/middle frontal gyrus/medial frontal gyrus (SFG-MiFG-MFG component from our previous SBM study, which showed diagnostic group difference and had the highest effect sizes. The aggregated multisite dataset consisted of 382 patients with Sz regressed of age, gender, and site voxelwise. We observed two subtypes (i.e., two different subsets of subjects each heavily weighted on these two components, respectively. These subsets of subjects were characterized by significant differences in positive and negative syndrome scale (PANSS positive clinical symptoms (p = 0.005. We also observed an overlapping subtype weighing heavily on both of these components. The PANSS general clinical symptom of this subtype was trend level correlated with the loading coefficients of the SFG-MiFG-MFG component (r = 0.25; p = 0.07. The reconstructed subtype-specific component using GIG-ICA showed variations in voxel regions, when compared to the group component. We observed deviations from mean GMC along with conjunction of features from two components characterizing each deciphered subtype. These inherent variations in GMC among patients with Sz could possibly indicate the

  12. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis.

    Science.gov (United States)

    Geringer, Alexander; Diebels, Stefan; Nothdurft, Frank P

    2014-12-01

    To predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.

  13. Methods of Geometry

    CERN Document Server

    Smith, James T

    2000-01-01

    A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An

  14. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  15. Euclidean geometry and transformations

    CERN Document Server

    Dodge, Clayton W

    1972-01-01

    This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.

  16. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  17. Integral geometry and representation theory

    CERN Document Server

    Gel'fand, I M; Vilenkin, N Ya

    1966-01-01

    Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp

  18. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A; Mou, Zhonglin

    2015-09-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Quantification of speed-up and accuracy of multi-CPU computational flow dynamics simulations of hemodynamics in a posterior communicating artery aneurysm of complex geometry.

    Science.gov (United States)

    Karmonik, Christof; Yen, Christopher; Gabriel, Edgar; Partovi, Sasan; Horner, Marc; Zhang, Yi J; Klucznik, Richard P; Diaz, Orlando; Grossman, Robert G

    2013-11-01

    Towards the translation of computational fluid dynamics (CFD) techniques into the clinical workflow, performance increases achieved with parallel multi-central processing unit (CPU) pulsatile CFD simulations in a patient-derived model of a bilobed posterior communicating artery aneurysm were evaluated while simultaneously monitoring changes in the accuracy of the solution. Simulations were performed using 2, 4, 6, 8, 10 and 12 processors. In addition, a baseline simulation was obtained with a dual-core dual CPU computer of similar computational power to clinical imaging workstations. Parallel performance indices including computation speed-up, efficiency (speed-up divided by number of processors), computational cost (computation time × number of processors) and accuracy (velocity at four distinct locations: proximal and distal to the aneurysm, in the aneurysm ostium and aneurysm dome) were determined from the simulations and compared. Total computation time decreased from 9 h 10 min (baseline) to 2 h 34 min (10 CPU). Speed-up relative to baseline increased from 1.35 (2 CPU) to 3.57 (maximum at 10 CPU) while efficiency decreased from 0.65 to 0.35 with increasing cost (33.013 to 92.535). Relative velocity component deviations were less than 0.0073% and larger for 12 CPU than for 2 CPU (0.004 ± 0.002%, not statistically significant, p=0.07). Without compromising accuracy, parallel multi-CPU simulation reduces computing time for the simulation of hemodynamics in a model of a cerebral aneurysm by up to a factor of 3.57 (10 CPUs) to 2 h 34 min compared with a workstation with computational power similar to clinical imaging workstations.

  20. Serum amyloid P component-DNA complexes are decreased in systemic lupus erythematosus. inverse association with anti-dsDNA antibodies

    DEFF Research Database (Denmark)

    Voss, Anne; Nielsen, Ellen Holm; Svehag, Sven Erik

    2008-01-01

    OBJECTIVE: To study serum levels of serum amyloid P component (SAP) and SAP-DNA complexes in a population-based cohort of patients with systemic lupus erythematosus (SLE). METHODS: The study population comprised 82 unselected patients of predominantly Scandinavian ancestry with SLE according...

  1. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Geometry Professionalized for Teachers.

    Science.gov (United States)

    Christofferson, Halbert Carl

    Written in 1933, this book grew out of the author's concern that college matehmatics sequences of the day, although appropriate in algebra preparation, did not adequately prepare teachers of geometry. This book describes a course intended to remedy this by providing for both a comprehensive study of geometry as an axiomatically defined structure…

  3. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  4. Geometry + Technology = Proof

    Science.gov (United States)

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  5. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  6. Supersymmetric Sigma Model Geometry

    Directory of Open Access Journals (Sweden)

    Ulf Lindström

    2012-08-01

    Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.

  7. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Science.gov (United States)

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  8. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  9. Heterometallic trinuclear {CoLn(III)} (Ln = Gd, Tb, Ho and Er) complexes in a bent geometry. Field-induced single-ion magnetic behavior of the Er(III) and Tb(III) analogues.

    Science.gov (United States)

    Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli

    2016-05-31

    Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud.

  10. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  11. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Sarah C Goetz

    Full Text Available The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  12. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Science.gov (United States)

    Goetz, Sarah C; Bangs, Fiona; Barrington, Chloe L; Katsanis, Nicholas; Anderson, Kathryn V

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  13. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  14. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  15. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  16. Principal Components Analysis (PCA) Image used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Eight complexity surfaces (mean depth, standard deviation of depth, curvature, plan curvature, profile curvature, rugosity, slope, and slope of slope) were stacked...

  17. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  18. Accelerating navigation in the VecGeom geometry modeller

    Science.gov (United States)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  19. Complexity

    Indian Academy of Sciences (India)

    Rahul Pandit

    2008-10-31

    Oct 31, 2008 ... ”The more complex a thing is, the more you can talk about it.” - attributed to Giorgio Parisi. ▻ ”C'est magnifique, mais ce n'est pas de la science.” (It is magnificent, but not all of it is science.) - attributed ... Earliest examples: theoretical computer science, algorithmic complexity, etc. ▻ Rapid progress after the ...

  20. Quantification of Multiple Components of Complex Aluminum-Based Adjuvant Mixtures by Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Modeling.

    Science.gov (United States)

    Dowling, Quinton M; Kramer, Ryan M

    2017-01-01

    Fourier transform infrared (FTIR) spectroscopy is widely used in the pharmaceutical industry for process monitoring, compositional quantification, and characterization of critical quality attributes in complex mixtures. Advantages over other spectroscopic measurements include ease of sample preparation, quantification of multiple components from a single measurement, and the ability to quantify optically opaque samples. This method describes the use of a multivariate model for quantifying a TLR4 agonist (GLA) adsorbed onto aluminum oxyhydroxide (Alhydrogel®) using FTIR spectroscopy that may be adapted to quantify other complex aluminum based adjuvant mixtures.

  1. Geometry without topology as a new conception of geometry

    Directory of Open Access Journals (Sweden)

    Yuri A. Rylov

    2002-01-01

    geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.

  2. Invitation to geometry

    CERN Document Server

    Melzak, Z A

    2008-01-01

    Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.

  3. Geometry of differential equations

    CERN Document Server

    Khovanskiĭ, A; Vassiliev, V

    1998-01-01

    This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics.

  4. Geometry-controlled kinetics.

    Science.gov (United States)

    Bénichou, O; Chevalier, C; Klafter, J; Meyer, B; Voituriez, R

    2010-06-01

    It has long been appreciated that the transport properties of molecules can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target-the first-passage time (FPT). Determining the FPT distribution in realistic confined geometries has until now, however, seemed intractable. Here, we calculate this FPT distribution analytically and show that transport processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes. Beyond the theoretical aspect, this result changes our views on standard reaction kinetics and we introduce the concept of 'geometry-controlled kinetics'. More precisely, we argue that geometry-and in particular the initial distance between reactants in 'compact' systems-can become a key parameter. These findings could help explain the crucial role that the spatial organization of genes has in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.

  5. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  6. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  7. Elementary differential geometry

    CERN Document Server

    Pressley, Andrew

    2001-01-01

    Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...

  8. Effects of the [OC6F5] moiety upon structural geometry: crystal structures of half-sandwich tantalum(V) aryloxide complexes from reaction of Cp*Ta(N(t)Bu)(CH2R)2 with pentafluorophenol.

    Science.gov (United States)

    Cole, Jacqueline M; Chan, Michael C W; Gibson, Vernon C; Howard, Judith A K

    2011-10-01

    The synthesis, chemical and structural characterization of a series of pentamethylcyclopentadienyl (Cp*) tantalum imido complexes and aryloxide derivatives are presented. Specifically, the imido complexes Cp*Ta(N(t)Bu)(CH(2)R)(2), where R = Ph [dibenzyl(tert-butylamido) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (1)], Me(2)Ph [tert-butylamido)bis(2-methyl-2-phenylpropyl) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (2)], CMe(3) [(tert-butylamido)bis(2,2-dimethylpropyl) (η(5)-pentamethylcyclopentadienyl)tantalum(IV) (3)], are reported. The crystal structure of (3) reveals α-agostic interactions with the Ta atom. The resulting increase in the tantalum core coordination improves electronic stability. As such it does not react with pentafluorophenol, in contrast to the other two reported imido complexes [(1) and (2)]. Addition of C(6)F(5)OH to (1) yields a dimeric aryl-oxide derivative, [Cp*Ta(CH(2)Ph)(OC(6)H(5))(μ-O)](2) [di-μ-oxido-bis[benzyl(pentafluorophenolato) (η(5)-pentamethylcyclopentadienyl)tantalum(V)] (4)]. Its crystal structure reveals long Ta-O(C(6)H(5)) bonds but short oxo-bridging Ta-O bonds. This is explained by accounting for the fierce electronic competition for the vacant d(π) orbitals of the electrophilic Ta(V) centre. Steric congestion around each metal is alleviated by a large twist angle (77.1°) between the benzyl and pentafluorophenyl ligands and the ordering of each of these groups into stacked pairs. The imido complex (2) reacts with C(6)F(5)OH to produce a mixture of Cp*Ta(OC(6)F(5))(4) [tetrakis(pentafluorophenolato)(η(5)-pentamethylcyclopentadienyl)tantalum(V) (5)] and [Cp*Ta(OC(6)F(5))(2)(μ-O)](2) [di-μ-oxido-bis[bis(pentafluorophenolato)(η(5)-pentamethylcyclopentadienyl)tantalum(V)] (6)]. Steric congestion is offset in both cases by the twisting of its pentafluorophenyl ligands. Particularly strong electronic competition for the empty d(π) metal orbitals in (6) is reflected in its bond geometry, and owes itself to the

  9. Modelling Complex Inlet Geometries in CFD

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    field. In order to apply CFD for this purpose it is essential to be able to model the inlet conditions precisely and effectively, in a way which is comprehensible to the manufacturer of inlet devices and in a way which can be coped with by the computer. In this paper a universal method is presented...

  10. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  11. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  12. SOC and Fractal Geometry

    Science.gov (United States)

    McAteer, R. T. J.

    2013-06-01

    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  13. ARID1A, a component of SWI/SNF chromatin remodeling complexes, is required for porcine embryo development.

    Science.gov (United States)

    Tseng, Yu-Chun; Cabot, Birgit; Cabot, Ryan A

    2017-12-01

    Mammalian embryos undergo dramatic epigenetic remodeling that can have a profound impact on both gene transcription and overall embryo developmental competence. Members of the SWI/SNF (Switch/Sucrose non-fermentable) family of chromatin-remodeling complexes reposition nucleosomes and alter transcription factor accessibility. These large, multi-protein complexes possess an SNF2-type ATPase (either SMARCA4 or SMARCA2) as their core catalytic subunit, and are directed to specific loci by associated subunits. Little is known about the identity of specific SWI/SNF complexes that serve regulatory roles during cleavage development. ARID1A, one of the SWI/SNF complex subunits, can affect histone methylation in somatic cells; here, we determined the developmental requirements of ARID1A in porcine oocytes and embryos. We found ARID1A transcript levels were significantly reduced in 4-cell porcine embryos as compared to germinal vesicle-stage oocytes, suggesting that ARID1A would be required for porcine cleavage-stage development. Indeed, injecting in vitro-matured and fertilized porcine oocytes with double-stranded interfering RNAs that target ARID1A, and evaluating their phenotype after seven days, revealed that the depletion of ARID1A results in significantly fewer cells than their respective control groups (p < 0.001). © 2017 Wiley Periodicals, Inc.

  14. Exploring the Complexity of Classroom Management: 8 Components of Managing a Highly Productive, Safe, and Respectful Urban Environment

    Science.gov (United States)

    Jones, Karrie A.; Jones, Jennifer L.; Vermette, Paul J.

    2013-01-01

    Creating a learning environment where all students can thrive academically requires an understanding of the complexities of classroom management. The notions of "discipline," "conformity" and "obedience" that have littered discussions of classroom management in the past are no longer sufficient to describe the diverse…

  15. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence.

    Science.gov (United States)

    Ocádiz-Ruiz, Ramón; Fonseca, Wendy; Linford, Alicia S; Yoshino, Timothy P; Orozco, Esther; Rodríguez, Mario A

    2016-01-01

    Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.

  16. Development of a Multi-Point Quantitation Method to Simultaneously Measure Enzymatic and Structural Components of the Clostridium thermocellum Cellulosome Protein Complex

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, Andrew B [ORNL; St. Brice, Lois [Dartmouth College; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [ORNL; Izquierdo, Javier [ORNL; Cook, Kelsey [ORNL; Lynd, Lee R [ORNL; Hettich, Robert {Bob} L [ORNL

    2014-01-01

    Clostridium thermocellum has emerged as a leading bioenergy-relevant microbe due to its ability to solubilize cellulose into carbohydrates, mediated by multi-component membrane-attached complexes termed cellulosomes. To probe microbial cellulose utilization rates, it is desirable to be able to measure the concentrations of saccharolytic enzymes and estimate the total amount of cellulosome present on a mass basis. Current cellulase determination methodologies involve labor-intensive purification procedures and only allow for indirect determination of abundance. We have developed a method using multiple reaction monitoring (MRM-MS) to simultaneously quantitate both enzymatic and structural components of the cellulosome protein complex in samples ranging in complexity from purified cellulosomes to whole cell lysates, as an alternative to a previously-developed enzyme-linked immunosorbent assay (ELISA) method of cellulosome quantitation. The precision of the cellulosome mass concentration in technical replicates is better than 5% relative standard deviation for all samples, indicating high precision for determination of the mass concentration of cellulosome components.

  17. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    Science.gov (United States)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  18. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    Science.gov (United States)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  19. Parsing the late positive complex: mental chronometry and the ERP components that inhabit the neighborhood of the P300.

    Science.gov (United States)

    Dien, Joseph; Spencer, Kevin M; Donchin, Emanuel

    2004-09-01

    Falkenstein, Hohnsbein, and Hoorman (1994) suggested that common measures of P300 latency confound a "P-SR" component whose latency corresponds to stimulus evaluation time and a "P-CR" component whose latency varies with response-selection time, thus casting doubt on work in mental chronometry that relies on P300 latency. We report here a replication and extension of Falkenstein et al. (1994) using a high-density 129-electrode montage with 11 subjects. Spatiotemporal PCA was used to extract the components of the ERP. A centroid measure is also introduced for detecting waveform-timing changes beyond just peak latency. In terms of componentry, we argue that the P-SR and the P-CR, correspond to the P3a/Novelty P3 and the P300, respectively. Conceptually, we dispute the proposed distinction between stimulus evaluation and response selection. We suggest a four-stage ERP model of information processing and place the P3a and the P300 in this framework.

  20. Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts

    Directory of Open Access Journals (Sweden)

    A. Payo

    2017-07-01

    Full Text Available The ability to model morphological changes on complex, multi-landform coasts over decadal to centennial timescales is essential for sustainable coastal management worldwide. One approach involves coupling of landform-specific simulation models (e.g. cliffs, beaches, dunes and estuaries that have been independently developed. An alternative, novel approach explored in this paper is to capture the essential characteristics of the landform-specific models using a common spatial representation within an appropriate software framework. This avoid the problems that result from the model-coupling approach due to between-model differences in the conceptualizations of geometries, volumes and locations of sediment. In the proposed framework, the Coastal Modelling Environment (CoastalME, change in coastal morphology is represented by means of dynamically linked raster and geometrical objects. A grid of raster cells provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation. Other geometrical objects (lines, areas and volumes that are consistent with, and derived from, the raster structure represent a library of coastal elements (e.g. shoreline, beach profiles and estuary volumes as required by different landform-specific models. As a proof-of-concept, we illustrate the capabilities of an initial version of CoastalME by integrating a cliff–beach model and two wave propagation approaches. We verify that CoastalME can reproduce behaviours of the component landform-specific models. Additionally, the integration of these component models within the CoastalME framework reveals behaviours that emerge from the interaction of landforms, which have not previously been captured, such as the influence of the regional bathymetry on the local alongshore sediment-transport gradient and the effect on coastal change on an undefended coastal segment and on sediment bypassing of coastal structures.

  1. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  2. Reliable Stress and Fracture Mechanics Analysis of Complex Aircraft Components Using a H-P Version of FEM

    Science.gov (United States)

    1992-08-01

    time) and are, at least by parts, company oriented. The question of the principles of the safety is directly related to these codes. For example, in the...are complex JN’T)(y) is oscillatory but only in a close neighbourhoud of y = 0. FFA TN 1992-17 1 11Relative error 10 -10-2 163 _ •"A• , 2 U:; 10-5 -E

  3. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  4. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    Science.gov (United States)

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  5. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    Science.gov (United States)

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  6. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  7. Discrete quantum geometries and their effective dimension

    Energy Technology Data Exchange (ETDEWEB)

    Thuerigen, Johannes

    2015-07-02

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  8. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species.

    Directory of Open Access Journals (Sweden)

    Chrysa Pantzartzi

    Full Text Available The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.

  9. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  10. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, L P

    1927-01-01

    The use of the differential geometry of a Riemannian space in the mathematical formulation of physical theories led to important developments in the geometry of such spaces. The concept of parallelism of vectors, as introduced by Levi-Civita, gave rise to a theory of the affine properties of a Riemannian space. Covariant differentiation, as developed by Christoffel and Ricci, is a fundamental process in this theory. Various writers, notably Eddington, Einstein and Weyl, in their efforts to formulate a combined theory of gravitation and electromagnetism, proposed a simultaneous generalization o

  11. Geometry in everyday life

    OpenAIRE

    Graumann, Günter; Blum, Werner

    1989-01-01

    My conception of "practice-oriented-mathematical-education", which must be seen as one point of view side-by-side with others, has the aim to qualify pupils to master life and is based on a method of working on problems which are true to life. Therefore I plead for geometry teaching, where the formation of sound geometric concepts and the relevance of applications of geometry in everyday life is important. After discussing this conception a schedule of activities of everyday life where geomet...

  12. Geometry of manifolds

    CERN Document Server

    Bishop, Richard L

    2001-01-01

    First published in 1964, this book served as a text on differential geometry to several generations of graduate students all over the world. The first half of the book (Chapters 1-6) presents basics of the theory of manifolds, vector bundles, differential forms, and Lie groups, with a special emphasis on the theory of linear and affine connections. The second half of the book (Chapters 7-11) is devoted to Riemannian geometry. Following the definition and main properties of Riemannian manifolds, the authors discuss the theory of geodesics, complete Riemannian manifolds, and curvature. Next, the

  13. Unsupervised reduction of random noise in complex data by a row-specific, sorted principal component-guided method

    Directory of Open Access Journals (Sweden)

    Katagiri Fumiaki

    2008-11-01

    Full Text Available Abstract Background Large biological data sets, such as expression profiles, benefit from reduction of random noise. Principal component (PC analysis has been used for this purpose, but it tends to remove small features as well as random noise. Results We interpreted the PCs as a mere signal-rich coordinate system and sorted the squared PC-coordinates of each row in descending order. The sorted squared PC-coordinates were compared with the distribution of the ordered squared random noise, and PC-coordinates for insignificant contributions were treated as random noise and nullified. The processed data were transformed back to the initial coordinates as noise-reduced data. To increase the sensitivity of signal capture and reduce the effects of stochastic noise, this procedure was applied to multiple small subsets of rows randomly sampled from a large data set, and the results corresponding to each row of the data set from multiple subsets were averaged. We call this procedure Row-specific, Sorted PRincipal component-guided Noise Reduction (RSPR-NR. Robust performance of RSPR-NR, measured by noise reduction and retention of small features, was demonstrated using simulated data sets. Furthermore, when applied to an actual expression profile data set, RSPR-NR preferentially increased the correlations between genes that share the same Gene Ontology terms, strongly suggesting reduction of random noise in the data set. Conclusion RSPR-NR is a robust random noise reduction method that retains small features well. It should be useful in improving the quality of large biological data sets.

  14. Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary.

    Science.gov (United States)

    Koczor, Sándor; Szentkirályi, Ferenc; Birkett, Michael A; Pickett, John A; Voigt, Erzsébet; Tóth, Miklós

    2010-12-01

    The deployment of synthetic attractants for the manipulation of lacewing populations as aphid predators is currently used in integrated pest management. This study investigates a synthetic bait comprising floral compounds previously found to attract the Chrysoperla carnea complex, and, for the first time, the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone, in field experiments in Hungary, for their ability to manipulate lacewing populations. The synthetic floral bait attracted both sexes of the Chrysoperla carnea complex, and Chrysopa formosa Brauer showed minimal attraction. The aphid sex pheromone compounds alone attracted males of C. formosa and C. pallens (Rambur). When the two baits were combined, Chrysopa catches were similar to those with aphid sex pheromone baits alone, but carnea complex catches decreased significantly (by 85-88%). As the floral bait alone attracted both sexes of the carnea complex, it showed potential to manipulate the location of larval density via altering the site of oviposition. Aphid sex pheromone compounds alone attracted predatory males of Chrysopa spp. and can potentially be used to enhance biological control of aphids. For the carnea complex, however, a combination of both baits is not advantageous because of the decrease in adults attracted. Assumptions of intraguild avoidance underlying this phenomenon are discussed. Copyright © 2010 Society of Chemical Industry.

  15. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2.

    Directory of Open Access Journals (Sweden)

    Shih Chieh Liang

    2015-12-01

    Full Text Available The Polycomb group (PcG and trithorax group (trxG genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1 gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1. Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2, a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF, we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1, a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1

  16. Vapor complexation in the CsI-HoI 3 system up to 1300 K and the f ← f hypersensitive transition intensities of Ho(III) in different coordination geometries

    Science.gov (United States)

    Papatheodorou, G. N.; Chrissanthopoulos, A.

    2007-04-01

    Electronic absorption spectroscopy is used in the temperature range 850-1300 K, to study the vapor species over molten HoI 3-CsI (1:1), molten CsI and solid HoI 3. Quantitative absorbance measurements are used to calculate the following enthalpies of transition: Δ Hsubl(HoI 3) = 271 ± 3 kJ mol -1, Δ Hvap. (CsHoI 4) = 155 ± 2 kJ mol -1 and Δ Hvap. (CsI) = 151 ± 2 kJ mol -1. The ligand field components of the 5G 6 ← 5I 8 hypersensitive transition of Ho(III) for the three different, all iodide, coordination geometries of HoI 3(g), CsHoI 4(g) and HoI 63- (in molten CsI) have been examined in detail. The molar absorptivities ( ɛ) and oscillator strengths ( f) increase as the coordination decreases from the "octahedral" HoI 63- ( ɛ = 65 L mol -1 cm -1; f = 99 × 10 -6) to the distorted tetrahedral HoI 4- ( ɛ = 235 L mol -1 cm -1; f = 290 × 10 -6) to the trigonal HoI 3 ( ɛ = 390 L mol -1 cm -1; f = 500 × 10 -6). The main factors affecting the hypersensitive transition intensities are the coordination number and symmetry and the ligand polarizability as well as the Boltzmann population effects on the ground state levels which are responsible for the appearance of "hot" bands in the spectra. A C2v symmetry is anticipated for the CsHoI 4(g) with the HoI 4- "tetrahedra" distorted towards a square planar symmetry leading to a structure with a pseudo-like inversion center.

  17. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1.

    Directory of Open Access Journals (Sweden)

    David Latrasse

    Full Text Available Polycomb Repressive Complexes (PRC modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein like heterochromatin protein1 (LHP1 is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2. LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA

  18. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  19. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression

    Science.gov (United States)

    Mir, Riyaz A.; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A.; Ammons, Shalis A.; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B.; Qiu, Fang; Band, Hamid

    2015-01-01

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. PMID:26711270

  20. Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components

    Science.gov (United States)

    Urban, Thomas M.; Murray, Carrie Ann; Vella, Clive; Lahikainen, Amanda

    2015-12-01

    A ground-penetrating radar (GPR) survey conducted on the small volcanic island of Pantelleria, in the Strait of Sicily, south-central Mediterranean, revealed an apparent complex of Punic/Roman architecture. The survey focused on the Lago di Venere area, where a previously investigated ritual Punic site was built alongside a brackish volcanic lake. The site also exhibits evidence of earlier Eneolithic components and later Roman components. The full extent of the site has remained undetermined, however, with only the small area of the Punic ritual complex having been excavated from 1996 to 2002. The GPR survey was intended to explore whether additional architecture remained unseen in surrounding areas, thus taking a first step toward determining the site's full spatial extent and archaeological potential. This survey revealed a complex of architectural ruins beneath an active agricultural field immediately west of the previously excavated features, and extending to a depth of approximately 2 m. These newly discovered features expand the known architectural footprint of the immediate site by three-fold. This GPR study is the first published archaeo-geophysical investigation on the island.

  1. A two-stage approach to the correction of ascertainment bias in complex genetic studies involving variance components.

    Science.gov (United States)

    Bowden, J; Thompson, J R; Burton, P R

    2007-03-01

    Correction for ascertainment bias is a vital part of the analysis of genetic epidemiology studies that needs to be undertaken whenever subjects are not recruited at random. Adjustment often requires extensive numerical integration, which can be very slow or even computationally infeasible, especially if the model includes many fixed and random effects. In this paper we propose a two-stage method for ascertainment bias correction. In the first stage we estimate parameters that pertain to the ascertained population, that is the population that would be selected into the sample if the ascertainment criterion were applied to everyone. In the second stage we convert the estimates for the ascertained population into general population parameter estimates. We illustrate the method with simulations based on a simple model and then describe how the method can be used with complex models. The two-stage approach avoids some of the integration required in direct adjustment, hence speeding up the process of model fitting.

  2. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Biondo, Elliott D [ORNL; Ibrahim, Ahmad M [ORNL; Mosher, Scott W [ORNL; Grove, Robert E [ORNL

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  3. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  4. Foundations of Basic Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Foundations of Basic Geometry. Jasbir S Chahal. General Article Volume 11 Issue 7 July 2006 pp 30-41. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/011/07/0030-0041. Keywords. Area ...

  5. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM

    1965-01-01

    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  6. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc

    2000-01-01

    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  7. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  8. Calculus and Geometry

    Indian Academy of Sciences (India)

    IAS Admin

    face area and perimeter of various shapes like sphere, cone, cylinder and circle. But an equally important geo- metric object `torus' { a shape like a scooter tube or a doughnut { is not discussed in school geometry. This is perhaps due to the non availability of this shape at the time when Archimedes (287 BC{212 BC) was ...

  9. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  10. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  11. Geometry and physics

    Science.gov (United States)

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  12. Geometry and physics

    NARCIS (Netherlands)

    Atiyah, M.; Dijkgraaf, R.; Hitchin, N.

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology.

  13. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  14. Origami, Geometry and Art

    Science.gov (United States)

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  15. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  16. Proyeksi Geometri Fuzzy pada Ruang

    Directory of Open Access Journals (Sweden)

    Muhammad Izzat Ubaidillah

    2012-11-01

    Full Text Available Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.

  17. Polymyxin B containing polyion complex (PIC) nanoparticles: Improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component.

    Science.gov (United States)

    Insua, Ignacio; Zizmare, Laimdota; Peacock, Anna F A; Krachler, Anne Marie; Fernandez-Trillo, Francisco

    2017-08-24

    Here, we describe the preparation and characterisation of polyion complex (PIC) nanoparticles containing last resort antimicrobial polymyxin B (Pol-B). PIC nanoparticles were prepared with poly(styrene sulphonate) (PSS) as an inert component, across a range of degrees of polymerisation to evaluate the effect that multivalency of this electrolyte has on the stability and antimicrobial activity of these nanoparticles. Our results demonstrate that while nanoparticles prepared with longer polyelectrolytes are more stable under simulated physiological conditions, those prepared with shorter polyelectrolytes have a higher antimicrobial activity. Tailoring the degree of polymerisation and the ratio of the components we have been able to identify a formulation that shows a sustained inhibitory effect on the growth of P. aeruginosa and can reduce the number of viable colonies of this pathogen over 10,000 times more effectively than our previously reported formulation.

  18. [IMMUNOCYTOCHEMICAL ANALYSIS OF THE DISTURBANCES IN THE STRUCTURE OF SYNAPTONEMAL COMPLEXES IN SPERMATOCYTE NUCLEI IN MICE UNDER EXPOSURE TO ROCKET FUEL COMPONENT].

    Science.gov (United States)

    Lovinskaya, A V; Kolumbayeva, S Zh; Abilev, S K; Kolomiets, O L

    2016-01-01

    There was performed an assessment of genotoxic effects of rocket fuel component--unsymmetrical dimethylhydrazine (UDMH, heptyl)--on forming germ cells of male mice. Immunocytochemically there was studied the structure of meiotic nuclei at different times after the intraperitoneal administration of UDMH to male mice. There were revealed following types of disturbances of the structure of synaptonemal complexes (SCs) of meiotic chromosomes: single and multiple fragments of SCs associations of autosomes with a sex bivalent, atypical structure of the SCs with a frequency higher than the reference level. In addition, there were found the premature desinapsis of sex bivalents, the disorder offormation of the genital corpuscle and ring SCs. Established disorders in SCs of spermatocytes, analyzed at 38th day after the 10-days intoxication of animal by the component of rocket fuel, attest to the risk of permanent persistence of chromosomal abnormalities occurring in the pool of stem cells.

  19. Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration

    Science.gov (United States)

    Ortiz, Angelica; Lee, Yu-Chen; Yu, Guoyu; Liu, Hsuan-Chen; Lin, Song-Chang; Bilen, Melmet Asim; Cho, Hyojin; Yu-Lee, Li-Yuan; Lin, Sue-Hwa

    2015-01-01

    Loss of E-cadherin and up-regulation of mesenchymal cadherins, a hallmark of the epithelial–mesenchymal transition, contributes to migration and dissemination of cancer cells. Expression of human cadherin-11 (Cad11), also known as osteoblast cadherin, in prostate cancer increases the migration of prostate cancer cells. How Cad11 mediates cell migration is unknown. Using the human Cad11 cytoplasmic domain in pulldown assays, we identified human angiomotin (Amot), known to be involved in cell polarity, migration, and Hippo pathway, as a component of the Cad11 protein complex. Deletion analysis showed that the last C-terminal 10 amino acids in Cad11 cytoplasmic domain are required for Amot binding. Further, Cad11 preferentially interacts with Amot-p80 than Amot-p130 isoform and binds directly to the middle domain of Amot-p80. Cad11-Amot interaction affects Cad11-mediated cell migration, but not homophilic adhesion, as deletion of Amot binding motif of Cad11 (Cad11-ΔAmot) did not abolish Cad11-mediated cell–cell adhesion of mouse L cells, but significantly reduced Cad11-mediated cell migration of human C4-2B4 and PC3-mm2 prostate cancer cells and human HEK293T cells. Together, our studies identified Amot-p80 as a novel component of the Cad11 complex and demonstrated that Amot-p80 is critical for Cad11-mediated cell migration.—Ortiz, A., Lee, Y.-C., Yu, G., Liu, H.-C., Lin, S.-C., Bilen, M. A., Cho, H., Yu-Lee, L.-Y., Lin, S.-H. Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. PMID:25466890

  20. HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example.

    Science.gov (United States)

    Wang, Dan-dan; Liang, Jian; Yang, Wen-zhi; Hou, Jin-jun; Yang, Min; Da, Juan; Wang, Ying; Jiang, Bao-hong; Liu, Xuan; Wu, Wan-ying; Guo, De-an

    2014-02-01

    The quality control of Da-Fu-Fang (DFF), referring to the traditional Chinese medicine (TCM) preparations comprising more than 10 TCMs, is challenging due to their extreme chemical complexity. In this study, a strategy is proposed for the holistic quality control of DFFs based on HPLC/qTOF-MS-oriented characteristic components data set (CCDS) and chemometric analysis. Niuhuang Shangqing pill (NHSQP), composed of 19 TCMs, is used to illustrate this strategy. The fingerprint profiling of NHSQP by HPLC/qTOF-MS resulted in the characterization of 190 compounds, comprising 47 unambiguously identified by reference standard comparison. A CCDS containing 60 characteristic components was constructed by analyzing the MS spectral differentiation of the crude drugs, a laboratory-made NHSQP powder, and negative control preparations. With the established CCDS, it was possible to simultaneously monitor 16 out of the 19 drugs involved in NHSQP. Subsequently, 26 NHSQP samples from different vendors were evaluated by the qualitative and semi-quantitative analyses of their LC/MS fingerprint data. The 60 characteristic components were detected in all of the NHSQP samples, which demonstrated their authenticity. When compared with the standard sample No. 3, however, 15 of the NHSQP samples exhibited inferior quality. Samples No. 21 and No. 13 differed significantly based on a PCA score plot, and the components responsible for the differentiation were confirmed to originate from different TCMs. This strategy is a powerful and easy method to implement and provides a potential approach to establishing the holistic quality control of complex TCM preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  2. Second-order calibration applied to quantification of two active components of Schisandra chinensis in complex matrix

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Zhang

    2012-08-01

    Full Text Available The effectiveness of traditional Chinese medicine (TCM against various diseases urges more low cost, speed and sensitive analytical methods for investigating the phamacology of TCM and providing a theoretical basis for clinical use. The potential of second-order calibration method was validated for the quantification of two effective ingredients of Schisandra chinensis in human plasma using spectrofluorimetry. The results obtained in the present study demonstrate the advantages of this strategy for multi-target determination in complex matrices. Although the spectra of the analytes are similar and a large number of interferences also exist, second-order calibration method could predict the accurate concentrations together with reasonable resolution of spectral profiles for analytes of interest owing to its ‘second-order advantage’. Moreover, the method presented in this work allows one to simply experimental procedure as well as reduces the use of harmful chemical solvents. Keywords: Traditional Chinese medicine, Second-order calibration, Schizandrol A, Schizandrin B, Self-weighted alternating normalized residue fitting (SWANRF algorithm, Alternating normalization-weighted error (ANWE algorithm.

  3. The CMG (CDC45/RecJ, MCM, GINS complex is a conserved component of the DNA replication system in all archaea and eukaryotes

    Directory of Open Access Journals (Sweden)

    Makarova Kira S

    2012-02-01

    Full Text Available Abstract Background In eukaryotes, the CMG (CDC45, MCM, GINS complex containing the replicative helicase MCM is a key player in DNA replication. Archaeal homologs of the eukaryotic MCM and GINS proteins have been identified but until recently no homolog of the CDC45 protein was known. Two recent developments, namely the discovery of archaeal GINS-associated nuclease (GAN that belongs to the RecJ family of the DHH hydrolase superfamily and the demonstration of homology between the DHH domains of CDC45 and RecJ, show that at least some Archaea possess a full complement of homologs of the CMG complex subunits. Here we present the results of in-depth phylogenomic analysis of RecJ homologs in archaea. Results We confirm and extend the recent hypothesis that CDC45 is the eukaryotic ortholog of the bacterial and archaeal RecJ family nucleases. At least one RecJ homolog was identified in all sequenced archaeal genomes, with the single exception of Caldivirga maquilingensis. These proteins include previously unnoticed remote RecJ homologs with inactivated DHH domain in Thermoproteales. Combined with phylogenetic tree reconstruction of diverse eukaryotic, archaeal and bacterial DHH subfamilies, this analysis yields a complex scenario of RecJ family evolution in Archaea which includes independent inactivation of the nuclease domain in Crenarchaeota and Halobacteria, and loss of this domain in Methanococcales. Conclusions The archaeal complex of a CDC45/RecJ homolog, MCM and GINS is homologous and most likely functionally analogous to the eukaryotic CMG complex, and appears to be a key component of the DNA replication machinery in all Archaea. It is inferred that the last common archaeo-eukaryotic ancestor encoded a CMG complex that contained an active nuclease of the RecJ family. The inactivated RecJ homologs in several archaeal lineages most likely are dedicated structural components of replication complexes. Reviewers This article was reviewed by Prof

  4. Toric Geometry of the Regular Convex Polyhedra

    Directory of Open Access Journals (Sweden)

    Fiammetta Battaglia

    2017-01-01

    Full Text Available We describe symplectic and complex toric spaces associated with the five regular convex polyhedra. The regular tetrahedron and the cube are rational and simple, the regular octahedron is not simple, the regular dodecahedron is not rational, and the regular icosahedron is neither simple nor rational. We remark that the last two cases cannot be treated via standard toric geometry.

  5. Secondary magnetic field harmonics dependence on vacuum beam chamber geometry

    Directory of Open Access Journals (Sweden)

    S. Y. Shim

    2013-08-01

    Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.

  6. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    Science.gov (United States)

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  7. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes.

    Science.gov (United States)

    Howell, M; Itoh, F; Pierreux, C E; Valgeirsdottir, S; Itoh, S; ten Dijke, P; Hill, C S

    1999-10-15

    Smad4 is defined as the common-mediator Smad (co-Smad) required for transducing signals for all TGF-beta superfamily members. This paper describes two Smad4s in Xenopus: XSmad4alpha, which is probably the Xenopus orthologue of human Smad4, and a distinct family member, XSmad4beta, which differs primarily at the extreme N-terminus and in the linker region. Both XSmad4s act as co-Smads, forming ligand-dependent complexes with receptor-regulated Smads 1 and 2 and synergizing with them to activate transcription of mesodermal genes in Xenopus embryos. The two XSmad4 genes have reciprocal temporal expression patterns in Xenopus embryos and are expressed in varying ratios in adult tissues, suggesting distinct functional roles in vivo. XSmad4beta is the predominant maternal co-Smad and we go on to demonstrate its role in the transcriptional regulation of early mesodermal genes. We have identified two distinct nuclear complexes that bind the activin-responsive element of the Xenopus Mix.2 promoter: one formed in response to high levels of activin signaling and the other activated by endogenous signaling pathways. Using specific antisera we demonstrate the presence of endogenous XSmad4beta and also XSmad2 in both of these complexes, and our data indicate that the DNA-binding components of the complexes are different. Furthermore, we show that the presence of these complexes in the nucleus perfectly correlates with the transcriptional activity of the target gene, Mix.2, and we show that one of the XSmad4beta-containing transcription factor complexes undergoes a developmentally regulated nuclear translocation. Copyright 1999 Academic Press.

  8. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bonekamp, Nina A. [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Vormund, Kerstin; Jacob, Ralf [Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch-Str. 6, 35037 Marburg (Germany); Schrader, Michael, E-mail: mschrader@ua.pt [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  9. Phylogenetic analysis of glycerol 3-phosphate acyltransferases in opisthokonts reveals unexpected ancestral complexity and novel modern biosynthetic components.

    Directory of Open Access Journals (Sweden)

    Heather C Smart

    Full Text Available Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT, have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.

  10. Kinetics of Phase Separation in Confined Geometries

    Science.gov (United States)

    Puri, Sanjay

    We review analytical and numerical results for the kinetics of phase separation in confined geometries. It is often the case that a confining surface has a preferential attraction for one of the components of a segregating mixture. The equilibrium surface morphology is either partially wet or completely wet, depending on the strength of the surface potential. The dynamical interplay of wetting and phase separation is referred to as surface-directed spinodal decomposition (SDSD), and is of considerable technological importance. We discuss the modeling of SDSD at both the microscopic and coarse-grained levels. We also present results for SDSD in both semi-infinite and confined geometries.

  11. Hue geometry and horizontal connections.

    Science.gov (United States)

    Ben-Shahar, Ohad; Zucker, Steven W

    2004-01-01

    Primate visual systems support an elaborate specialization for processing color information. Concentrating on the hue component, we observe that, contrary to Mondrian-like assumptions, hue varies in a smooth manner for ecologically important natural imagery. To represent these smooth variations, and to support those information processing tasks that utilize hue, a piecewise smooth hue field is postulated. The geometry of hue-patch interactions is developed analogously to orientation-patch interactions in texture. The result is a model for long-range (horizontal) interactions in the color domain, the power of which is demonstrated on a number of examples. Implications for computer image processing, computer vision, visual neurophysiology and psychophysics are discussed.

  12. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology

    Directory of Open Access Journals (Sweden)

    Kerstin Golker

    2014-11-01

    Full Text Available In this report, principal component analysis (PCA has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA-crosslinked polymers had either methacrylic acid (MAA or methyl methacrylate (MMA as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  13. Characterization of p18, a component of the lamin B receptor complex and a new integral membrane protein of the avian erythrocyte nuclear envelope.

    Science.gov (United States)

    Simos, G; Maison, C; Georgatos, S D

    1996-05-24

    Employing avian erythrocytes, we have previously isolated a multimeric complex consisting of the lamin B receptor (LBR, or p58), the nuclear lamins, an LBR-specific kinase, a 34-kDa protein, and an 18-kDa polypeptide termed p18. As the LBR kinase and the 34-kDa component have been recently characterized, we now proceed in the characterization of p18. We show here that p18 is an integral membrane protein specific to the erythrocyte nuclear envelope which binds to LBR and B-type lamins. NH2-terminal sequencing indicates that p18 is distinct from other nuclear envelope components, but has similarity to the mitochondrial isoquinoline-binding protein. In situ analysis by immunoelectron microscopy and examination of digitonin-permeabilized cells by indirect immunofluorescence show that p18, unlike LBR and other lamin-binding proteins, is equally distributed between the inner and outer nuclear membrane. Furthermore, cycloheximide inhibition experiments reveal that the fraction of p18 that resides in the outer nuclear membrane does not represent nascent chains en route to the inner nuclear membrane, but rather material in equilibrium with the p18 that partitions with the inner nuclear membrane. The paradigm of p18 suggests that transmembrane complexes formed by the nuclear lamins and LBR provide potential docking sites for integral membrane proteins of the nuclear envelope that equilibrate between the rough endoplasmic reticulum and the inner nuclear membrane.

  14. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  15. Curved geometry and Graphs

    CERN Document Server

    Caravelli, Francesco

    2011-01-01

    Quantum Graphity is an approach to quantum gravity based on a background independent formulation of condensed matter systems on graphs. We summarize recent results obtained on the notion of emergent geometry from the point of view of a particle hopping on the graph. We discuss the role of connectivity in emergent Lorentzian perturbations in a curved background and the Bose--Hubbard (BH) model defined on graphs with particular symmetries.

  16. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  17. Emergent geometry, emergent forces

    Science.gov (United States)

    Selesnick, S. A.

    2017-10-01

    We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein

  18. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  19. Architectural Geometry and Fabrication-Aware Design

    KAUST Repository

    Pottmann, Helmut

    2013-04-27

    Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.

  20. Impact of the Nature and Size of the Polymeric Backbone on the Ability of Heterobifunctional Ligands to Mediate Shiga Toxin and Serum Amyloid P Component Ternary Complex Formation

    Directory of Open Access Journals (Sweden)

    Glen D. Armstrong

    2011-08-01

    Full Text Available Inhibition of AB5-type bacterial toxins can be achieved by heterobifunctional ligands (BAITs that mediate assembly of supramolecular complexes involving the toxin’s pentameric cell membrane-binding subunit and an endogenous protein, serum amyloid P component, of the innate immune system. Effective in vivo protection from Shiga toxin Type 1 (Stx1 is achieved by polymer-bound, heterobifunctional inhibitors-adaptors (PolyBAITs, which exhibit prolonged half-life in circulation and by mediating formation of face-to-face SAP-AB5 complexes, block receptor recognition sites and redirect toxins to the spleen and liver for degradation. Direct correlation between solid-phase activity and protective dose of PolyBAITs both in the cytotoxicity assay and in vivo indicate that the mechanism of protection from intoxication is inhibition of toxin binding to the host cell membrane. The polymeric scaffold influences the activity not only by clustering active binding fragments but also by sterically interfering with the supramolecular complex assembly. Thus, inhibitors based on N-(2-hydroxypropyl methacrylamide (HPMA show significantly lower activity than polyacrylamide-based analogs. The detrimental steric effect can partially be alleviated by extending the length of the spacer, which separates pendant ligand from the backbone, as well as extending the spacer, which spans the distance between binding moieties within each heterobifunctional ligand. Herein we report that polymer size and payload of the active ligand had moderate effects on the inhibitor’s activity.

  1. Geometry-induced protein pattern formation.

    Science.gov (United States)

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-19

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.

  2. Triangle geometry processing for surface modeling and cartesian grid generation

    Science.gov (United States)

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  3. Geometry of curves and surfaces with Maple

    CERN Document Server

    Rovenski, Vladimir

    2000-01-01

    This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...

  4. Geometry success in 20 mins

    CERN Document Server

    Editors, LearningExpress

    2010-01-01

    Whether you're new to geometry or just looking for a refresher, this completely revised and updated third edition of Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day is an invaluable resource for both students and adults.

  5. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example.

    Science.gov (United States)

    Liang, Jian; Wu, Wan-ying; Sun, Guo-xiang; Wang, Dan-dan; Hou, Jin-jun; Yang, Wen-zhi; Jiang, Bao-hong; Liu, Xuan; Guo, De-an

    2013-06-14

    It is a challenging task to simultaneously and quantitatively analyze multiple components in DFF [Da-Fu-Fang, namely, complex traditional Chinese medicine (TCM) preparations containing more than ten TCMs] due to their numerous and extreme complex chemical compositions possessing a wide variety of chemical and physical features, and their very low content. Rather than using a conventional mass spectrometry (MS) method with multiple reaction monitoring (MRM), in the current study, this challenge was addressed by using dynamic multiple reaction monitoring (DMRM). Using a DFF, Niuhuang Shangqing pill, which is composed of 19 TCMs, as a model, a rapid (one run in 20min), sensitive [lower limit of detection (LOD) and limit of quantitation (LOQ) were achieved comparable with MRM] and accessible (a standard HPLC/MS/MS instrumentation was employed) MS method was successfully developed for the simultaneous quantification of 41 bioactive components which represented 15 of the 19 medicinal plants. A comparison of LOD and LOQ using MRM and DMRM was made to quantitatively reveal that the latter demonstrated advantages over the former. Meanwhile, a standard operating procedure concerning the development of a new DMRM method was recommended. The MS data were obtained in the positive ion mode with electrospray ionization as the ion source, acetonitrile and water as mobile phase and a Kinetex C18 core-shell column (100mm×2.10mm, 2.6μm, Phenomenex Inc.) as the analytical column. This method was then applied to 32 batches of samples. It transpired, through principal component analysis and orthogonal partial least squares discriminant analysis, that the consistency of the products was relatively good within one company, but poor among different companies among the 32 samples; one failed to qualify in terms of the Chinese Pharmacopeia. This work illustrated that the proposed DMRM method was particularly suitable for quantifying the trace components in DFF and capable of ensuring the

  6. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development.

    Science.gov (United States)

    Lázaro, Ana; Gómez-Zambrano, Angeles; López-González, Leticia; Piñeiro, Manuel; Jarillo, Jose A

    2008-01-01

    Mutations affecting the Arabidopsis SWC6 gene encoding a putative orthologue of a component of the SWR1 chromatin remodelling complex in plants have been characterized. swc6 mutations cause early flowering, shortened inflorescence internodes, and altered leaf and flower development. These phenotypic defects resemble those of the photoperiod independent early flowering 1 (pie1) and early in short days 1 (esd1) mutants, also affected in homologues of the SWR1 complex subunits. SWC6 is a ubiquitously expressed nuclear HIT-Zn finger-containing protein, with the highest levels found in pollen. Double mutant analyses suggest that swc6 abolishes the FLC-mediated late-flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. It was found that SWC6 is required for the expression of the FLC repressor to levels that inhibit flowering. However, the effect of swc6 in an flc null background and the down-regulation of other FLC-like/MAF genes in swc6 mutants suggest that flowering inhibition mediated by SWC6 occurs through both FLC- and FLC-like gene-dependent pathways. Both genetic and physical interactions between SWC6 and ESD1 have been demonstrated, suggesting that both proteins act in the same complex. Using chromatin immunoprecipitation, it has been determined that SWC6, as previously shown for ESD1, is required for both histone H3 acetylation and H3K4 trimethylation of the FLC chromatin. Altogether, these results suggest that SWC6 and ESD1 are part of an Arabidopsis SWR1 chromatin remodelling complex involved in the regulation of diverse aspects of plant development, including floral repression through the activation of FLC and FLC-like genes.

  7. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    Science.gov (United States)

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    Directory of Open Access Journals (Sweden)

    Giulio Donati

    2013-07-01

    Full Text Available Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.

  9. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  10. Teaching of Geometry in Bulgaria

    Science.gov (United States)

    Bankov, Kiril

    2013-01-01

    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  11. Geometry I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

  12. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  13. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  14. Geometry of numbers

    CERN Document Server

    Gruber, Peter M

    1987-01-01

    This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit

  15. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  16. Geometry and trigonometry

    CERN Document Server

    2015-01-01

    This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

  17. The Persistification of the ATLAS Geometry

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068562; The ATLAS collaboration; Bianchi, Riccardo-Maria

    2016-01-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the- y on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS so ware framework “Athena”, which provides the online services and the tools to retrieve the data from the database. is operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geom- etry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify and serve the geometry of HEP experiments. e new mechanism is composed by a new le format and a REST API. e new le format allows to store the whole detector description locally in a at le, and it is especially optimized to descri...

  18. Decoding of emotional components in complex communicative situations (irony) and its relation to empathic abilities in male chronic alcoholics: an issue for treatment.

    Science.gov (United States)

    Amenta, Simona; Noël, Xavier; Verbanck, Paul; Campanella, Salvatore

    2013-02-01

    Previous research has shown that deficits in the domain of emotions strongly characterize alcoholism. Patients diagnosed with alcoholism show impairments in emotional mimic recognition, as well as in the domain of emotional prosody. These data suggest that male alcoholics might suffer from a generalized emotional impairment associated with dysfunctions in empathy. Taken altogether, those deficits might influence alcoholics' relational domain and their performance in complex communicative situations such as ironic interactions. The present study investigates the ability of chronic male alcoholics to recognize the emotional component of ironic contexts and its relation to the comprehension of ironic meaning as a function of their empathic abilities. Forty-four male subjects participated in a story comprehension task. They were asked to read stories with either an ironic or a nonironic ending. Participants were asked to fill in a questionnaire about communicative intentions and the emotional states of the stories' characters. Moreover, the correct comprehension of the ironic meaning was assessed through a self-reported questionnaire and related to the empathy quotient (EQ) which was measured in a preexperimental phase. Alcoholic subjects showed a lower EQ in comparison to healthy subjects and recognized significant fewer ironic endings. Social skills results were particularly impaired. The correlation between EQ and ironic endings recognition was significant. Moreover, alcoholics showed a tendency to attribute positive emotions to both ironic and nonironic contexts, showing an opposite pattern in comparison with control subjects who tended to associate negative emotions to ironic contexts. The present study indicates that emotional recognition deficits that have been previously observed in chronic alcoholics extend to complex interactive contexts. This deficit is associated with a more general impairment of empathy, especially in its social skill component. Clinical

  19. Digital breast tomosynthesis geometry calibration

    Science.gov (United States)

    Wang, Xinying; Mainprize, James G.; Kempston, Michael P.; Mawdsley, Gordon E.; Yaffe, Martin J.

    2007-03-01

    Digital Breast Tomosynthesis (DBT) is a 3D x-ray technique for imaging the breast. The x-ray tube, mounted on a gantry, moves in an arc over a limited angular range around the breast while 7-15 images are acquired over a period of a few seconds. A reconstruction algorithm is used to create a 3D volume dataset from the projection images. This procedure reduces the effects of tissue superposition, often responsible for degrading the quality of projection mammograms. This may help improve sensitivity of cancer detection, while reducing the number of false positive results. For DBT, images are acquired at a set of gantry rotation angles. The image reconstruction process requires several geometrical factors associated with image acquisition to be known accurately, however, vibration, encoder inaccuracy, the effects of gravity on the gantry arm and manufacturing tolerances can produce deviations from the desired acquisition geometry. Unlike cone-beam CT, in which a complete dataset is acquired (500+ projections over 180°), tomosynthesis reconstruction is challenging in that the angular range is narrow (typically from 20°-45°) and there are fewer projection images (~7-15). With such a limited dataset, reconstruction is very sensitive to geometric alignment. Uncertainties in factors such as detector tilt, gantry angle, focal spot location, source-detector distance and source-pivot distance can produce several artifacts in the reconstructed volume. To accurately and efficiently calculate the location and angles of orientation of critical components of the system in DBT geometry, a suitable phantom is required. We have designed a calibration phantom for tomosynthesis and developed software for accurate measurement of the geometric parameters of a DBT system. These have been tested both by simulation and experiment. We will present estimates of the precision available with this technique for a prototype DBT system.

  20. Structure of the Alpha-2 Epsilon-2 Ni-dependent CO Dehydrogenase Component of the Methanosarcina Barkeri Acetyl-CoA Decarbonylase/Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Hao, B; Wei, Z; Ferguson, Jr., D; Tallant, T; Krzycki, J; Chan, M

    2008-01-01

    Ni-dependent carbon monoxide dehydrogenases (Ni-CODHs) are a diverse family of enzymes that catalyze reversible CO:CO2 oxidoreductase activity in acetogens, methanogens, and some CO-using bacteria. Crystallography of Ni-CODHs from CO-using bacteria and acetogens has revealed the overall fold of the Ni-CODH core and has suggested structures for the C cluster that mediates CO:CO2 interconversion. Despite these advances, the mechanism of CO oxidation has remained elusive. Herein, we report the structure of a distinct class of Ni-CODH from methanogenic archaea: the ?2?2 component from the ?8?8?8?8?8 CODH/acetyl-CoA decarbonylase/synthase complex, an enzyme responsible for the majority of biogenic methane production on Earth. The structure of this Ni-CODH component provides support for a hitherto unobserved state in which both CO and H2O/OH- bind to the Ni and the exogenous FCII iron of the C cluster, respectively, and offers insight into the structures and functional roles of the ?-subunit and FeS domain not present in nonmethanogenic Ni-CODHs.

  1. Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Science.gov (United States)

    Nebl, Thomas; Prieto, Judith Helena; Kapp, Eugene; Smith, Brian J.; Williams, Melanie J.; Yates, John R.; Cowman, Alan F.; Tonkin, Christopher J.

    2011-01-01

    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. PMID:21980283

  2. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  3. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL.

    Directory of Open Access Journals (Sweden)

    Kieu Thuy Pham

    Full Text Available Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it is considered as a major bacterial virulence trait. Recently, it has been shown that binding of the type IV secretion apparatus to integrin receptors on target cells is a crucial step in the translocation process. Several bacterial proteins, including the Cag-specific components CagL and CagI, have been involved in this interaction. Here, we have examined the localization and interactions of CagI in the bacterial cell. Since the cagI gene overlaps and is co-transcribed with the cagL gene, the role of CagI for type IV secretion system function has been difficult to assess, and conflicting results have been reported regarding its involvement in the proinflammatory response. Using a marker-free gene deletion approach and genetic complementation, we show now that CagI is an essential component of the Cag type IV secretion apparatus for both CagA translocation and interleukin-8 induction. CagI is distributed over soluble and membrane-associated pools and seems to be partly surface-exposed. Deletion of several genes encoding essential Cag components has an impact on protein levels of CagI and CagL, suggesting that both proteins require partial assembly of the secretion apparatus. Finally, we show by co-immunoprecipitation that CagI and CagL interact with each other. Taken together, our results indicate that CagI and CagL form a functional complex which is formed at a late stage of secretion apparatus assembly.

  4. Variability and component composition

    NARCIS (Netherlands)

    T. van der Storm (Tijs)

    2004-01-01

    textabstractIn component-based product populations, feature models have to be described at the component level to be able to benefit from a product family approach. As a consequence, composition of components becomes very complex. We describe how component-level variability can be managed in the

  5. Static micromixers based on large-scale industrial mixer geometry.

    Science.gov (United States)

    Bertsch, A; Heimgartner, S; Cousseau, P; Renaud, P

    2001-09-01

    Mixing liquids at the micro-scale is difficult because the low Reynolds numbers in microchannels and in microreactors prohibit the use of conventional mixing techniques based on mechanical actuators and induce turbulence. Static mixers can be used to solve this mixing problem. This paper presents micromixers with geometries very close to conventional large-scale static mixers used in the chemical and food-processing industry. Two kinds of geometries have been studied. The first type is composed of a series of stationary rigid elements that form intersecting channels to split, rearrange and combine component streams. The second type is composed of a series of short helix elements arranged in pairs, each pair comprised of a right-handed and left-handed element arranged alternately in a pipe. Micromixers of both types have been designed by CAD and manufactured with the integral microstereolithography process, a new microfabrication technique that allows the manufacturing of complex three-dimensional objects in polymers. The realized mixers have been tested experimentally. Numerical simulations of these micromixers using the computational fluid dynamics (CFD) program FLUENT are used to evaluate the mixing efficiency. With a low pressure drop and good mixing efficiency these truly three-dimensional micromixers can be used for mixing of reactants or liquids containing cells in many microTAS applications.

  6. Quantum groups: Geometry and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chong -Sun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group; Univ. of California, Berkeley, CA (United States)

    1996-05-13

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.

  7. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart

    2016-01-01

    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  8. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    Science.gov (United States)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  9. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex.

    Directory of Open Access Journals (Sweden)

    Thomas Nebl

    2011-09-01

    Full Text Available Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca²⁺-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of ³²[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca²⁺-dependent phosphorylation patterns on three of its components--GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component.

  10. Reactivity and Speciation of Anti-Diabetic Vanadium Complexes in Whole Blood and Its Components: The Important Role of Red Blood Cells.

    Science.gov (United States)

    Levina, Aviva; McLeod, Andrew I; Gasparini, Sylvia J; Nguyen, Annie; De Silva, W G Manori; Aitken, Jade B; Harris, Hugh H; Glover, Chris; Johannessen, Bernt; Lay, Peter A

    2015-08-17

    Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro

  11. Thermodynamics of Asymptotically Conical Geometries.

    Science.gov (United States)

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  12. Geometry aware Stationary Subspace Analysis

    Science.gov (United States)

    2016-11-22

    JMLR: Workshop and Conference Proceedings 63:430–444, 2016 ACML 2016 Geometry -aware Stationary Subspace Analysis Inbal Horev inbal@ms.k.u-tokyo.ac.jp... geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to...Horev, F. Yger & M. Sugiyama. Geometry -aware SSA many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe (2012) for an in

  13. Effect of milling strategy and tool geometry on machining cost when cutting titanium alloys

    Directory of Open Access Journals (Sweden)

    Conradie, Pieter

    2015-11-01

    Full Text Available The growing demands on aerospace manufacturers to cut more difficult-to-machine materials at increasing material removal rates require that manufacturers enhance their machining capability. This requires a better understanding of the effects of milling strategies and tool geometries on cutting performance. Ti6Al4V is the most widely-used titanium alloy in the aerospace industry, due to its unique combination of properties. These properties also make the alloy very challenging to machine. Complex aerospace geometries necessitate large material removal, and are therefore generally associated with high manufacturing costs. To investigate the effect of milling strategy and tool geometry on cutting performance, the new constant engagement milling strategy was firstly compared with a conventional approach. Thereafter, a component was milled with different cutting tool geometries. Cost savings of more than 40% were realised by using a constant engagement angle milling strategy. A reduction of 38% in machining time was achieved by using tools with a land on the rake side of the cutting edge. These incremental improvements made it possible to enhance the overall performance of the cutting process.

  14. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  15. Synthesis and electronic structure of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes: evaluation of redox activity in single-component ethylene polymerization catalysts.

    Science.gov (United States)

    Tondreau, Aaron M; Milsmann, Carsten; Patrick, Andrew D; Hoyt, Helen M; Lobkovsky, Emil; Wieghardt, Karl; Chirik, Paul J

    2010-10-27

    A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mössbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.

  16. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan

    2006-01-01

    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  17. Graph-based representation for multiview image geometry.

    Science.gov (United States)

    Maugey, Thomas; Ortega, Antonio; Frossard, Pascal

    2015-05-01

    In this paper, we propose a new geometry representation method for multiview image sets. Our approach relies on graphs to describe the multiview geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the proximity between pixels in 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and reconstructing multiple views. Our multiview image representation is very compact and adapts the transmitted geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, our graph-based representation (GBR) carefully selects the amount of geometry information needed before coding. This is in contrast with depth coding, which directly compresses with losses the original geometry signal, thus making it difficult to quantify the impact of coding errors on geometry-based interpolation. We present the principles of this GBR and we build an efficient coding algorithm to represent it. We compare our GBR approach to classical depth compression methods and compare their respective view synthesis qualities as a function of the compactness of the geometry description. We show that GBR can achieve significant gains in geometry coding rate over depth-based schemes operating at similar quality. Experimental results demonstrate the potential of this new representation.

  18. Modeling of metal interaction geometries for protein-ligand docking.

    Science.gov (United States)

    Seebeck, Birte; Reulecke, Ingo; Kämper, Andreas; Rarey, Matthias

    2008-05-15

    The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements. 2007 Wiley-Liss, Inc.

  19. Color From Geometry

    CERN Document Server

    Guijosa, A

    1999-01-01

    This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS/CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 SU(N) superYang-Mills (SYM) and Type IIB string theory on AdS5 × S5, a baryon is mapped onto N fundamental strings terminating on a wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings which correspond to gauge theory configurations with n external quarks, 0 ≤ n ≤ N. The extension of these solutions to the full asymptotically flat geometry of N D3-branes provides a detailed description of the creation of strings as the fivebrane is...

  20. Ostrich eggs geometry

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2013-01-01

    Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

  1. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  2. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  3. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  4. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    Science.gov (United States)

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  5. Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150.

    Science.gov (United States)

    Elsworth, Brendan; Sanders, Paul R; Nebl, Thomas; Batinovic, Steven; Kalanon, Ming; Nie, Catherine Q; Charnaud, Sarah C; Bullen, Hayley E; de Koning Ward, Tania F; Tilley, Leann; Crabb, Brendan S; Gilson, Paul R

    2016-11-01

    The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C-terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C-terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C-terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX-associated proteins, namely PV1, Pf113 and Hsp70-x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex. © 2016 John Wiley & Sons Ltd.

  6. Positive geometries and canonical forms

    Science.gov (United States)

    Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas

    2017-11-01

    Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex

  7. Two process chains for creating functional surfaces on mold for 3D geometry

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Pedersen, David Bue

    surfaces are still limited to flat geometries or geometries with constant curvature [4] . Typically products that need micro structuring on the surface have a three dimensional and complex geometry. There are huge demand for investigation in establishing the micro structures on the surface of a 3D mold...

  8. Spatial geometry and special relativity

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame-dependent and fr...

  9. Geometry of the quantum universe

    NARCIS (Netherlands)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2010-01-01

    A quantum universe with the global shape of a (Euclidean) de Sitter spacetime appears as dynamically generated background geometry in the causal dynamical triangulation (CDT) regularisation of quantum gravity. We investigate the micro- and macro-geometry of this universe, using geodesic shell

  10. GPS: Geometry, Probability, and Statistics

    Science.gov (United States)

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  11. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  12. CRM1 and chromosomal passenger complex component survivin are essential to normal mitosis progress and to preserve keratinocytes from mitotic abnormalities.

    Science.gov (United States)

    Labarrade, F; Botto, J-M; Domloge, N

    2016-10-01

    Human epidermis provides the body a barrier against environmental assaults. To assume this function, the epidermis needs the renewal of keratinocytes allowed by constant mitosis, which replace the exfoliating corneocytes. Keratinocyte stem cells (KSCs) located in the basal epidermis are mitotically active, self-renewing and govern the epithelial stratification by producing renewed source of keratinocytes. Protein complex such as the chromosomal passenger complex (CPC) allows the correct development of this process. The CPC is composed of four members: INCENP, survivin, borealin and aurora kinase B, and the disruption of the CPC during cell division induces mitotic spindle defects and improper repartition of chromosomes. The aim of our study was to investigate the implication of CRM1 and survivin in the progress of mitosis in skin keratinocytes. Cultured human keratinocytes and skin biopsies were used in this study. KSCs-enriched population of keratinocytes was isolated from total keratinocytes by differential attachment to a type IV collagen matrix. Survivin and CRM1 expression levels were assessed by immunofluorescence and immunoblotting. Specific siRNAs for each CPC member and for CRM1 were used to determine the relationship between these proteins. Survivin-specific siRNA was used to induce the apparition of mitotic abnormalities in cultured keratinocytes. We demonstrated the ability of our compound 'IV08.009' to modulate the expression level of survivin and CRM1 in keratinocytes and in skin biopsies. We observed that members of the CPC are interdependent: siRNA-induced inhibition of one component caused a decrease in the expression of all other CPC members. Downregulation of survivin or CRM1 induced mitotic abnormalities in keratinocytes. However, decreased number of mitotic abnormalities was observed in keratinocytes after 'IV08.009' application. Basal keratinocytes may divide frequently during skin lifespan, and signs of deterioration could appear such as loss

  13. Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis.

    Science.gov (United States)

    Paasch, Uwe; Heidenreich, Falk; Pursche, Theresia; Kuhlisch, Eberhard; Kettner, Karina; Grunewald, Sonja; Kratzsch, Jürgen; Dittmar, Gunnar; Glander, Hans-Jürgen; Hoflack, Bernard; Kriegel, Thomas M

    2011-08-01

    three groups of pathological sperm proteomes reflect a disease-associated enhanced formation of predominantly proteolytically modified forms of three eppin protein complex components, possibly as a response to enduring hyperglycemia and enhanced oxidative stress.

  14. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum1[OPEN

    Science.gov (United States)

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A.; Mou, Zhonglin

    2015-01-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis. PMID:26143252

  15. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems1[OPEN

    Science.gov (United States)

    Zhao, Lifang; Kunst, Ljerka

    2016-01-01

    ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3′-to-5′ exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3. Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3′-to-5′ RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3′-5′ decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3′-to-5′ mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5′-to-3′ XRN4 exoribonuclease. PMID:27208312

  16. A short course in computational geometry and topology

    CERN Document Server

    Edelsbrunner, Herbert

    2014-01-01

    With the aim to bring the subject of Computational Geometry and Topology closer to the scientific audience, this book is written in thirteen ready-to-teach sections organized in four parts: tessellations, complexes, homology, persistence. To speak to the non-specialist, detailed formalisms are often avoided in favor of lively 2- and 3-dimensional illustrations. The book is warmly recommended to everybody who loves geometry and the fascinating world of shapes.

  17. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2008-01-01

    This thesis is about physically-based modelling of the appearance of materials. When a material is graphically rendered, its appearance is computed by considering the interaction of light and matter at a macroscopic level. In particular, the shape and the macroscopic optical properties...... of the material determine how it will interact with incident illumination. In this thesis the macroscopic optical properties are connected to the microscopic physical theories of light and matter. This enables prediction of the macroscopic optical properties of materials, and, consequently, also prediction...... of appearance based on the contents and the physical conditions of the materials. Physically-based appearance models have many potential input and output parameters. There are many choices that must be made: How many material components to include in the model, how many physical conditions to take into account...

  18. Quantum Geometry in the Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2013-03-24

    Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.

  19. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  20. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kühnel, Wolfgang

    2015-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so