WorldWideScience

Sample records for complex gene function

  1. Global properties and functional complexity of human gene regulatory variation.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2013-05-01

    Full Text Available Identification and functional interpretation of gene regulatory variants is a major focus of modern genomics. The application of genetic mapping to molecular and cellular traits has enabled the detection of regulatory variation on genome-wide scales and revealed an enormous diversity of regulatory architecture in humans and other species. In this review I summarise the insights gained and questions raised by a decade of genetic mapping of gene expression variation. I discuss recent extensions of this approach using alternative molecular phenotypes that have revealed some of the biological mechanisms that drive gene expression variation between individuals. Finally, I highlight outstanding problems and future directions for development.

  2. Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene

    Directory of Open Access Journals (Sweden)

    Wakimoto Barbara T

    2007-03-01

    Full Text Available Abstract Background Ferlins are membrane proteins with multiple C2 domains and proposed functions in Ca2+ mediated membrane-membrane interactions in animals. Caenorhabditis elegans has two ferlin genes, one of which is required for sperm function. Mammals have several ferlin genes and mutations in the human dysferlin (DYSF and otoferlin (OTOF genes result in muscular dystrophy and hearing loss, respectively. Drosophila melanogaster has a single ferlin gene called misfire (mfr. A previous study showed that a mfr mutation caused male sterility because of defects in fertilization. Here we analyze the expression and structure of the mfr gene and the consequences of multiple mutations to better understand the developmental function of ferlins. Results We show that mfr is expressed in the testis and ovaries of adult flies, has tissue-specific promoters, and expresses alternatively spliced transcripts that are predicted to encode distinct protein isoforms. Studies of 11 male sterile mutations indicate that a predicted Mfr testis isoform with five C2 domains and a transmembrane (TM domain is required for sperm plasma membrane breakdown (PMBD and completion of sperm activation during fertilization. We demonstrate that Mfr is not required for localization of Sneaky, another membrane protein necessary for PMBD. The mfr mutations vary in their effects in females, with a subset disrupting egg patterning and causing a maternal effect delay in early embryonic development. Locations of these mutations indicate that a short Mfr protein isoform carries out ferlin activities during oogenesis. Conclusion The mfr gene exhibits complex transcriptional and post-transcriptional regulation and functions in three developmental processes: sperm activation, egg patterning, and early embryogenesis. These functions are in part due to the production of protein isoforms that vary in the number of C2 domains. These findings help establish D. melanogaster as model system for

  3. Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions.

    Science.gov (United States)

    Tsuji, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-05-01

    Regulation of flowering time directly influences successful rice grain production; thus, the long history of domestication and breeding has improved the genetic network of flowering. Recent advances using molecular genomic approaches have revealed the targets of these modifications and the underlying molecular mechanism for flowering. These efforts contributed to identifying the molecular nature of the systemic floral signal 'florigen' and have shown how florigen functions, how florigen expression is controlled, and how regulatory pathways are diversified. In this review, we summarize the advances in our understanding of the detailed molecular and genetic mechanisms that allow rice plants to produce flowers at the proper time to ensure grain production.

  4. ProfCom: a web tool for profiling the complex functionality of gene groups identified from high-throughput data.

    Science.gov (United States)

    Antonov, Alexey V; Schmidt, Thorsten; Wang, Yu; Mewes, Hans W

    2008-07-01

    ProfCom is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of 'complex functions'. A 'Complex function' is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. ProfCom provides a user friendly dialog-driven web page submission available for several model organisms and supports most available gene identifiers. In addition, the web service interface allows the submission of any kind of annotation data. ProfCom is freely available at http://webclu.bio.wzw.tum.de/profcom/.

  5. Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Chiu, Chi-Yang; Chen, Wei; Ren, Haobo; Li, Yun; Boehnke, Michael; Amos, Christopher I; Moore, Jason H; Xiong, Momiao

    2016-02-01

    We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene loci random, GFLMs are fixed models; i.e., genetic effects of multiple genetic variants are fixed. Based on GFLMs, we developed chi-squared-distributed Rao's efficient score test and likelihood-ratio test (LRT) statistics to test for an association between a complex dichotomous trait and multiple genetic variants. We then performed extensive simulations to evaluate the empirical type I error rates and power performance of the proposed tests. The Rao's efficient score test statistics of GFLMs are very conservative and have higher power than MetaSKATs when some causal variants are rare and some are common. When the causal variants are all rare [i.e., minor allele frequencies (MAF) analysis of eight European studies and detected significant association for 18 genes (P < 3.10 × 10(-6)), tentative association for 2 genes (HHEX and HMGA2; P ≈ 10(-5)), and no association for 2 genes, while MetaSKATs detected none. In addition, the traditional additive-effect model detects association at gene HHEX. GFLMs and related tests can analyze rare or common variants or a combination of the two and can be useful in whole-genome and whole-exome association studies.

  6. Reptin and Pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control

    Science.gov (United States)

    Diop, Soda Balla; Bertaux, Karine; Vasanthi, Dasari; Sarkeshik, Ali; Goirand, Benjamin; Aragnol, Denise; Tolwinski, Nicholas S; Cole, Michael D; Pradel, Jacques; Yates, John R; Mishra, Rakesh K; Graba, Yacine; Saurin, Andrew J

    2008-01-01

    Pontin (Pont) and Reptin (Rept) are paralogous ATPases that are evolutionarily conserved from yeast to human. They are recruited in multiprotein complexes that function in various aspects of DNA metabolism. They are essential for viability and have antagonistic roles in tissue growth, cell signalling and regulation of the tumour metastasis suppressor gene, KAI1, indicating that the balance of Pont and Rept regulates epigenetic programmes critical for development and cancer progression. Here, we describe Pont and Rept as antagonistic mediators of Drosophila Hox gene transcription, functioning with Polycomb group (PcG) and Trithorax group proteins to maintain correct patterns of expression. We show that Rept is a component of the PRC1 PcG complex, whereas Pont purifies with the Brahma complex. Furthermore, the enzymatic functions of Rept and Pont are indispensable for maintaining Hox gene expression states, highlighting the importance of these two antagonistic factors in transcriptional output. PMID:18259215

  7. Positive selection in the adhesion domain of Mus sperm Adam genes through gene duplications and function-driven gene complex formations.

    Science.gov (United States)

    Grayson, Phil; Civetta, Alberto

    2013-09-30

    Sperm and testes-expressed Adam genes have been shown to undergo bouts of positive selection in mammals. Despite the pervasiveness of positive selection signals, it is unclear what has driven such selective bouts. The fact that only sperm surface Adam genes show signals of positive selection within their adhesion domain has led to speculation that selection might be driven by species-specific adaptations to fertilization or sperm competition. Alternatively, duplications and neofunctionalization of Adam sperm surface genes, particularly as it is now understood in rodents, might have contributed to an acceleration of evolutionary rates and possibly adaptive diversification. Here we sequenced and conducted tests of selection within the adhesion domain of sixteen known sperm-surface Adam genes among five species of the Mus genus. We find evidence of positive selection associated with all six Adam genes known to interact to form functional complexes on Mus sperm. A subset of these complex-forming sperm genes also displayed accelerated branch evolution with Adam5 evolving under positive selection. In contrast to our previous findings in primates, selective bouts within Mus sperm Adams showed no associations to proxies of sperm competition. Expanded phylogenetic analysis including sequence data from other placental mammals allowed us to uncover ancient and recent episodes of adaptive evolution. The prevailing signals of rapid divergence and positive selection detected within the adhesion domain of interacting sperm Adams is driven by duplications and potential neofunctionalizations that are in some cases ancient (Adams 2, 3 and 5) or more recent (Adams 1b, 4b and 6).

  8. Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Mozzo, Milena; Mantelli, Manuela; Passarini, Francesca; Caffarri, Stefano; Croce, Roberta; Bassi, Roberto

    2010-01-01

    The outer antenna system of Chlamydomonas reinhardtii Photosystem I is composed of nine gene products, but due to difficulty in purification their individual properties are not known. In this work, the functional properties of the nine Lhca antennas of Chlamydomonas, have been investigated upon expr

  9. An Association Between Functional Polymorphisms of the Interleukin 1 Gene Complex and Schizophrenia Using Transmission Disequilibrium Test.

    Science.gov (United States)

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2016-12-01

    IL1 gene complex has been implicated in the etiology of schizophrenia. To assess whether IL1 gene complex is associated with susceptibility to schizophrenia in Polish population we conducted family-based study. Functional polymorphisms from IL1A (rs1800587, rs17561, rs11677416), IL1B (rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627) and IL1RN (rs419598, rs315952, rs9005, rs4251961) genes were genotyped in 143 trio with schizophrenia. Statistical analysis was performed using transmission disequilibrium test. We have found a trend toward an association of rs1143627, rs16944, rs1143623 in IL1B gene with the risk of schizophrenia. Our results show a protective effect of allele T of rs4251961 in IL1RN against schizophrenia. We also performed haplotype analysis of IL1 gene complex and found a trend toward an association with schizophrenia of GAGG haplotype (rs1143627, rs16944, rs1143623, rs4848306) in IL1B gene, haplotypes: TG (rs315952, rs9005) and TT (rs4251961, rs419598) in IL1RN. Haplotype CT (rs4251961, rs419598) in IL1RN was found to be associated with schizophrenia. After correction for multiple testing associations did not reach significance level. Our results might support theory that polymorphisms of interleukin 1 complex genes (rs1143627, rs16944, rs1143623, rs4848306 in IL1B gene and rs4251961, rs419598, rs315952, rs9005 in IL1RN gene) are involved in the pathogenesis of schizophrenia, however, none of the results reach significance level after correction for multiple testing.

  10. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  11. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Plant chloroplast genes are usually co-transcribed while its posttranscriptional splicing is fairly complex and remains largely unsolved. On basis of sequencing the three complete Camellia (Theaceae chloroplast genomes for the first time, we comprehensively analyzed the evolutionary patterns of ycf15, a plastid gene quite paradoxical in terms of its function and evolution, along the inferred angiosperm phylogeny. Although many species in separate lineages including the three species reported here contained an intact ycf15 gene in their chloroplast genomes, the phylogenetic mixture of both intact and obviously disabled ycf15 genes imply that they are all non-functional. Both intracellular gene transfer (IGT and horizontal gene transfer (HGT failed to explain such distributional anomalies. While, transcriptome analyses revealed that ycf15 was transcribed as precursor polycistronic transcript which contained ycf2, ycf15 and antisense trnL-CAA. The transcriptome assembly was surprisingly found to cover near the complete Camellia chloroplast genome. Many non-coding regions including pseudogenes were mapped by multiple transcripts, indicating the generality of pseudogene transcriptions. Our results suggest that plastid DNA posttranscriptional splicing may involve complex cleavage of non-functional genes.

  12. Molecular functions of chaperonin gene, containing tailless complex polypeptide 1 from Macrobrachium rosenbergii.

    Science.gov (United States)

    Arockiaraj, Jesu; Vanaraja, Puganeshwaran; Easwvaran, Sarasvathi; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2012-10-25

    Chaperonin (MrChap) was identified from a constructed transcriptome dataset of freshwater prawn Macrobrachium rosenbergii. The MrChap peptide contains a long chaperone super family domain between 11 and 525. Three chaperone tailless complex polypeptide (TCP-1) signatures are present in the MrChap peptide sequence at 36-48, 57-73 and 85-93. The gene expressions of MrChap in both healthy M. rosenbergii and those infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV) were examined using qRT-PCR. To understand its biological activity, the recombinant MrChap gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrChap protein exhibited apparent ATPase activity. Chaperone activity assay showed that the recombinant MrChap protein is an active chaperone. These results suggest that MrChap is potentially involved in the immune responses against viral infection in M. rosenbergii. These findings indicate that the recombinant MrChap protein may be used in immunotherapeutic approaches.

  13. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  14. Shared molecular and functional frameworks among five complex human disorders: a comparative study on interactomes linked to susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Ramesh Menon

    Full Text Available BACKGROUND: Genome-wide association studies (gwas are invaluable in revealing the common variants predisposing to complex human diseases. Yet, until now, the large volumes of data generated from such analyses have not been explored extensively enough to identify the molecular and functional framework hosting the susceptibility genes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the relationships among five neurodegenerative and/or autoimmune complex human diseases (Parkinson's disease--Park, Alzheimer's disease--Alz, multiple sclerosis--MS, rheumatoid arthritis--RA and Type 1 diabetes--T1D by characterising the interactomes linked to their gwas-genes. An initial study on the MS interactome indicated that several genes predisposing to the other autoimmune or neurodegenerative disorders may come into contact with it, suggesting that susceptibility to distinct diseases may converge towards common molecular and biological networks. In order to test this hypothesis, we performed pathway enrichment analyses on each disease interactome independently. Several issues related to immune function and growth factor signalling pathways appeared in all autoimmune diseases, and, surprisingly, in Alzheimer's disease. Furthermore, the paired analyses of disease interactomes revealed significant molecular and functional relatedness among autoimmune diseases, and, unexpectedly, between T1D and Alz. CONCLUSIONS/SIGNIFICANCE: The systems biology approach highlighted several known pathogenic processes, indicating that changes in these functions might be driven or sustained by the framework linked to genetic susceptibility. Moreover, the comparative analyses among the five genetic interactomes revealed unexpected genetic relationships, which await further biological validation. Overall, this study outlines the potential of systems biology to uncover links between genetics and pathogenesis of complex human disorders.

  15. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  16. The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Abraham Hochberg

    2013-02-01

    Full Text Available The field of the long non-coding RNA (lncRNA is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The

  17. Complex function theory

    CERN Document Server

    Sarason, Donald

    2007-01-01

    Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co

  18. A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Most microorganisms in nature are uncultured with unknown functionality. Sequence-based metagenomics alone answers 'who/what are there?' but not 'what are they doing and who is doing it and how?'. Function-based metagenomics reveals gene function but is usually limited by the specificity and sensitivity of screening strategies, especially the identification of clones whose functional gene expression has no distinguishable activity or phenotypes. A 'biosensor-based genetic transducer' (BGT technique, which employs a whole-cell biosensor to quantitatively detect expression of inserted genes encoding designated functions, is able to screen for functionality of unknown genes from uncultured microorganisms. In this study, BGT was integrated with Stable isotope probing (SIP-enabled Metagenomics to form a culture-independent SMB toolbox. The utility of this approach was demonstrated in the discovery of a novel functional gene cluster in naphthalene contaminated groundwater. Specifically, metagenomic sequencing of the (13C-DNA fraction obtained by SIP indicated that an uncultured Acidovorax sp. was the dominant key naphthalene degrader in-situ, although three culturable Pseudomonas sp. degraders were also present in the same groundwater. BGT verified the functionality of a new nag2 operon which co-existed with two other nag and two nah operons for naphthalene biodegradation in the same microbial community. Pyrosequencing analysis showed that the nag2 operon was the key functional operon in naphthalene degradation in-situ, and shared homology with both nag operons in Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2. The SMB toolbox will be useful in providing deep insights into uncultured microorganisms and unravelling their ecological roles in natural environments.

  19. Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma.

    Science.gov (United States)

    Gu, Jijin; Chen, Xinyi; Xin, Hongliang; Fang, Xiaoling; Sha, Xianyi

    2014-01-30

    To enhance serum-resistance and overcome the lysosomal barrier are effective and feasible strategies to increase the transfection efficiency of non-viral gene delivery system. For the systemic delivery of therapeutic gene, we previously developed self-assemble carboxymethyl poly(l-histidine) (CM-PLH)/poly(β-amino ester) (PbAE)/pDNA ternary complex nanoparticles based on electrostatic coating as an effective pDNA carrier. Recharging cationic PbAE/pDNA polyplexes with CM-PLH was a promising method to reduce the cytotoxicity and enhance the stability in vivo of positive charged polyplexes. In the present study, the transfection activities of ternary complex nanoparticles were further evaluated in vitro and in vivo. The transfection efficiency of ternary complex nanoparticles showed significant serum-resistance (CM-PLH-containing (51.9±4.35)% in 50% FBS>CM-PLH-free (14.7±5.66)% in 50% FBS), cell line dependent (HEK293>MCF-7>COS7>B16F10>A549>Hela>SPC-A1>CHO>SKOV3) and incubation period dependent (24 h, 20 h, 16 h>12 h>8 h>4 h>2 h>1 h>0.5 h). After transfected with ternary complex nanoparticles loading pGV240-MDA-7/IL-24, the B16F10 cells exhibited significant apoptosis and proliferation inhibition due to the expression of IL-24. Moreover, in the pulmonary metastatic melanoma model, ternary complex nanoparticles loading pGV240-MDA-7/IL-24 showed significant antitumor therapeutic efficacy in vivo. These results suggested that CM-PLH/PbAE/pDNA ternary complex nanoparticles were promising and challenging gene vector for practical application.

  20. Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity

    Directory of Open Access Journals (Sweden)

    Mulder Nicola

    2010-02-01

    Full Text Available Abstract We consider the problem of biological complexity via a projection of protein-coding genes of complex organisms onto the functional space of the proteome. The latter can be defined as a set of all functions committed by proteins of an organism. Alternative splicing (AS allows an organism to generate diverse mature RNA transcripts from a single mRNA strand and thus it could be one of the key mechanisms of increasing of functional complexity of the organism's proteome and a driving force of biological evolution. Thus, the projection of transcription units (TU and alternative splice-variant (SV forms onto proteome functional space could generate new types of relational networks (e.g. SV-protein function networks, SFN and lead to discoveries of novel evolutionarily conservative functional modules. Such types of networks might provide new reliable characteristics of organism complexity and a better understanding of the evolutionary integration and plasticity of interconnection of genome-transcriptome-proteome functions. Results We use the InterPro and UniProt databases to attribute descriptive features (keywords to protein sequences. UniProt database includes a controlled and curated vocabulary of specific descriptors or keywords. The keywords have been assigned to a protein sequence via conserved domains or via similarity with annotated sequences. Then we consider the unique combinations of keywords as the protein functional labels (FL, which characterize the biological functions of the given protein and construct the contingency tables and graphs providing the projections of transcription units (TU and alternative splice-variants (SV onto all FL of the proteome of a given organism. We constructed SFNs for organisms with different evolutionary history and levels of complexity, and performed detailed statistical parameterization of the networks. Conclusions The application of the algorithm to organisms with different evolutionary history and

  1. Genetic architecture of the F7 gene in a Spanish population: implication for mapping complex diseases and for functional assays.

    Science.gov (United States)

    Sabater-Lleal, M; Almasy, L; Martínez-Marchán, E; Martínez-Sánchez, E; Souto, R; Blangero, J; Souto, Jc; Fontcuberta, J; Soria, J M

    2006-05-01

    Delineating the genetic variability of loci coding for complex diseases helps to understand the individual variation in disease susceptibility and drug response. We present the allelic architecture of the F7 gene. This gene is the major determinant of FVII plasma levels, and these plasma levels constitute an important intermediate risk factor for cardiovascular disease. As part of the Genetic Analysis of Idiopathic Thrombophila Project, we completely re-sequenced the F7 locus (promoter, exons, introns, and 3'-untranslated region) in 40 unrelated individuals. We found 49 polymorphisms with only two amino acid changes suggesting that regulatory non-coding and intronic variants are responsible for the FVII variability. These results are important for mapping susceptibility alleles of complex diseases, because differences in pair-wise linkage disequilibrium patterns between DNA variants and haplotype frequency distributions may help to detect disease-associated alleles. In addition, we present the results of an in silico search that established genomic comparisons among different species. In conclusion, our study of the F7 DNA sequence variations is an example of a strategy for analyzing the genetic architecture of a quantitative trait locus. Furthermore, it provides a model for future analyses of genetic factors that contribute to the susceptibility of complex diseases in humans.

  2. Multiple Changes of Gene Expression and Function Reveal Genomic and Phenotypic Complexity in SLE-like Disease.

    Directory of Open Access Journals (Sweden)

    Maria Wilbe

    2015-06-01

    Full Text Available The complexity of clinical manifestations commonly observed in autoimmune disorders poses a major challenge to genetic studies of such diseases. Systemic lupus erythematosus (SLE affects humans as well as other mammals, and is characterized by the presence of antinuclear antibodies (ANA in patients' sera and multiple disparate clinical features. Here we present evidence that particular sub-phenotypes of canine SLE-related disease, based on homogenous (ANA(H and speckled ANA (ANA(S staining pattern, and also steroid-responsive meningitis-arteritis (SRMA are associated with different but overlapping sets of genes. In addition to association to certain MHC alleles and haplotypes, we identified 11 genes (WFDC3, HOMER2, VRK1, PTPN3, WHAMM, BANK1, AP3B2, DAPP1, LAMTOR3, DDIT4L and PPP3CA located on five chromosomes that contain multiple risk haplotypes correlated with gene expression and disease sub-phenotypes in an intricate manner. Intriguingly, the association of BANK1 with both human and canine SLE appears to lead to similar changes in gene expression levels in both species. Our results suggest that molecular definition may help unravel the mechanisms of different clinical features common between and specific to various autoimmune disease phenotypes in dogs and humans.

  3. Cortical gene expression in spinal cord injury and repair: insight into the functional complexity of the neural regeneration program

    Directory of Open Access Journals (Sweden)

    Fabian eKruse

    2011-09-01

    Full Text Available Traumatic spinal cord injury (SCI results in the formation of a fibrous scar acting as a growth barrier for regenerating axons at the lesion site. We have previously shown (Klapka et al., 2005 that transient suppression of the inhibitory lesion scar in rat spinal cord leads to long distance axon regeneration, retrograde rescue of axotomized cortical motoneurons and improvement of locomotor function. Here we applied a systemic approach to investigate for the first time specific and dynamic alterations in the cortical gene expression profile following both thoracic SCI and regeneration-promoting anti-scarring treatment (AST. In order to monitor cortical gene expression we carried out microarray analyses using total RNA isolated from layer V/VI of rat sensorimotor cortex at 1-60 days post-operation (dpo. We demonstrate that cortical neurons respond to injury by massive changes in gene expression, starting as early as 1 dpo. AST, in turn, results in profound modifications of the lesion-induced expression profile. The treatment attenuates SCI-triggered transcriptional changes of genes related to inhibition of axon growth and impairment of cell survival, while upregulating the expression of genes associated with axon outgrowth, cell protection and neural development. Thus, AST not only modifies the local environment impeding spinal cord regeneration by reduction of fibrous scarring in the injured spinal cord, but, in addition, strikingly changes the intrinsic capacity of cortical pyramidal neurons towards enhanced cell maintenance and axonal regeneration.

  4. The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development.

    Science.gov (United States)

    García-Bellido, Antonio; de Celis, Jose F

    2009-07-01

    The achaete-scute gene complex (AS-C) contains four genes encoding transcription factors of the bHLH family, achaete, scute, lethal of scute, and asense located in 40 kb of DNA containing multiple cis-regulatory position-specific enhancers. These genes play a key role in the commitment of epidermal cells toward a neural fate, promoting the formation of both sensory organs in the peripheral nervous system (bristles) of the adult and of neuroblasts in the central nervous system of the embryo. The analysis of the AS-C initially focused on the variations in positional specificity of effects of achaete (ac) and scute (sc) alleles on macrochaete bristle pattern in the Drosophila adult epidermis, and from there it evolved as a key entry point into understanding the molecular bases of pattern formation and cell commitment. In this perspective, we describe how the study of the AS-C has contributed to the understanding of eukaryotic gene organization and the dissection of the developmental mechanisms underlying pattern formation.

  5. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis.

    Science.gov (United States)

    Berriri, Souha; Gangappa, Sreeramaiah N; Kumar, S Vinod

    2016-07-06

    Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.

  6. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c).

    Science.gov (United States)

    Pang, C L; Toh, S Y; He, P; Teissier, S; Ben Khalifa, Y; Xue, Y; Thierry, F

    2014-07-31

    High-risk human papillomaviruses are causative agents of cervical cancer. Viral protein E7 is required to establish and maintain the pro-oncogenic phenotype in infected cells, but the molecular mechanisms by which E7 promotes carcinogenesis are only partially understood. Our transcriptome analyses in primary human fibroblasts transduced with the viral protein revealed that E7 activates a group of mitotic genes via the activator B-Myb-MuvB complex. We show that E7 interacts with the B-Myb, FoxM1 and LIN9 components of this activator complex, leading to cooperative transcriptional activation of mitotic genes in primary cells and E7 recruitment to the corresponding promoters. E7 interaction with LIN9 and FoxM1 depended on the LXCXE motif, which is also required for pocket protein interaction and degradation. Using E7 mutants for the degradation of pocket proteins but intact for the LXCXE motif, we demonstrate that E7 functional interaction with the B-Myb-MuvB complex and pocket protein degradation are two discrete functions of the viral protein that cooperate to promote acute transcriptional activation of mitotic genes. Transcriptional level of E7 in patient's cervical lesions at different stages of progression was shown to correlate with those of B-Myb and FoxM1 as well as other mitotic gene transcripts, thereby linking E7 with cellular proliferation and progression in cervical cancer in vivo. E7 thus can directly activate the transcriptional levels of cell cycle genes independently of pocket protein stability.

  7. Understanding the Function of Tuberous Sclerosis Complex Genes in Neural Development: Roles in Synapse Assembly and Axon Guidance

    Science.gov (United States)

    2012-02-01

    through suppression of Wnt-beta-catenin signaling. Nat Genet 36: 1117–1121. 40. Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G...and myoblast fusion. Genes Dev 8: 1787–1802. 43. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, et al. (1999) Drosophila S6

  8. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  9. Biochemical and Functional Studies on the Burkholderia cepacia Complex bceN Gene, Encoding a GDP-D-Mannose 4,6-Dehydratase

    Science.gov (United States)

    Pinheiro, Pedro F.; Leitão, Jorge H.

    2013-01-01

    This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819

  10. Making the Tent Function Complex

    Science.gov (United States)

    Sprows, David J.

    2010-01-01

    This note can be used to illustrate to the student such concepts as periodicity in the complex plane. The basic construction makes use of the Tent function which requires only that the student have some working knowledge of binary arithmetic.

  11. Communication Complexities of XOR functions

    OpenAIRE

    Shi, Yaoyun; Zhang,Zhiqiang

    2008-01-01

    We call $F:\\{0, 1\\}^n\\times \\{0, 1\\}^n\\to\\{0, 1\\}$ a symmetric XOR function if for a function $S:\\{0, 1, ..., n\\}\\to\\{0, 1\\}$, $F(x, y)=S(|x\\oplus y|)$, for any $x, y\\in\\{0, 1\\}^n$, where $|x\\oplus y|$ is the Hamming weight of the bit-wise XOR of $x$ and $y$. We show that for any such function, (a) the deterministic communication complexity is always $\\Theta(n)$ except for four simple functions that have a constant complexity, and (b) up to a polylog factor, the error-bounded randomized and q...

  12. Genes2FANs: connecting genes through functional association networks

    Directory of Open Access Journals (Sweden)

    Dannenfelser Ruth

    2012-07-01

    Full Text Available Abstract Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs, researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our

  13. Computational complexity of Boolean functions

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Aleksei D [Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2012-02-28

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  14. PROAPOPTOTIC FUNCTION OF FHIT GENE

    Institute of Scientific and Technical Information of China (English)

    QIU Zhe-fu; HAN De-min; ZHANG Luo; ZHANG Wei

    2006-01-01

    Tumor suppressor gene plays an important role in maintaining the homeostasis between cell loss and growth. Fragile in maintaining the homeostasis between cell loss and growth. Fragile histidine triad (FHIT) gene found recently was studied in a deep going way; it becomes the focus as a result of its roleof ep going way; it becomes the focus as a result of its roleof anti-tumor in human various type of tissue. Due to the high efficiency of FHIT gene benefiting the anti-tumor, it is proposed gh efficiency of FHIT gene benefiting the anti-tumor, it is proposed as a candidate of tumor suppressor gene though there are several opposite opinions.several opposite opinions. We stress the summary of some properties of FHIT gene on proapoptosis according to the published data which showed gene on proapoptosis according to the published data which showed the stronger proapoptotic function of FHIT gene; the apoptosis induced by FHIT depends on the expression level and status of ene; the apoptosis induced by FHIT depends on the expression level and status of FHIT; and FHIT gene can alternate the cell cycling properties and reduce the tumorigenic potential; the apoptotic process e can alternate the cell cycling properties and reduce the tumorigenic potential; the apoptotic process induced by FHIT has no relation to p53 gene. In a ward, in consideration of its multiple functions against malignancies, FHIT in consideration of its multiple functions against malignancies, FHIT gene deserves attention and exploration as a selective target for searching the mechanism of tumorigenesis and clinical et for searching the mechanism of tumorigenesis and clinical therapeutic applications in further.le histidine triad (FHIT) gene; Apoptosis; Tumorigenesis; Tumor suppressor gene deserves attention and exploration as a selective target for searching the mechanism of tumorigenesis and clinical therapeutic applications in further.

  15. Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

    Directory of Open Access Journals (Sweden)

    Igor B. Rogozin

    2014-01-01

    Full Text Available Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC. Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes.

  16. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  17. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  18. Associating genes and protein complexes with disease via network propagation.

    Directory of Open Access Journals (Sweden)

    Oron Vanunu

    2010-01-01

    Full Text Available A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.

  19. The NSL complex regulates housekeeping genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kin Chung Lam

    Full Text Available MOF is the major histone H4 lysine 16-specific (H4K16 acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2 throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5% of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE. Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.

  20. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  1. Structure, expression and functions of MTA genes.

    Science.gov (United States)

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  2. Complex Functions with GeoGebra

    Science.gov (United States)

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  3. Complex Functions with GeoGebra

    Science.gov (United States)

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  4. An "in-out" strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region.

    OpenAIRE

    Fiering, S; Kim, C. G.; Epner, E M; Groudine, M

    1993-01-01

    The human beta-globin locus control region (LCR) is a complex DNA regulatory element that controls the expression of the cis-linked beta-like globin genes located in the 55 kilobases 3' of the LCR. We have initiated the functional analysis of the LCR by homologous recombination in murine erythroleukemia cell somatic hybrids that carry a single copy of human chromosome 11 on which the beta-globin locus is situated. High-level expression of the human beta-globin gene normally occurs when these ...

  5. Circadian clocks - from genes to complex behaviour

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    1999-01-01

    Circadian clocks control temporal structure in practically all organisms and on all levels of biology, from gene expression to complex behaviour and cognition. Over the last decades, research has begun to unravel the physiological and, more recently, molecular mechanisms that underlie this endogenou

  6. Studying Functions of All Yeast Genes Simultaneously

    Science.gov (United States)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  7. Increased complexity of gene structure and base composition in vertebrates

    Institute of Scientific and Technical Information of China (English)

    Ying Wu; Huizhong Yuan; Shengjun Tan; Jian-Qun Chen; Dacheng Tian; Haiwang Yang

    2011-01-01

    How the structure and base composition of genes changed with the evolution of vertebrates remains a puzzling question. Here we analyzed 895 orthologous protein-coding genes in six multicellular animals: human, chicken, zebrafish, sea squirt, fruit fly, and worm. Our analyses reveal that many gene regions, particularly intron and 3' UTR, gradually expanded throughout the evolution of vertebrates from their invertebrate ancestors, and that the number of exons per gene increased. Studies based on all protein-coding genes in each genome provide consistent results.We also find that GC-content increased in many gene regions (especially 5' UTR) in the evolution of endotherms, except in coding-exons.Analysis of individual genomes shows that 3′ UTR demonstrated stronger length and CC-content correlation with intron than 5' UTR, and gene with large intron in all six species demonstrated relatively similar GC-content. Our data indicates a great increase in complexity in vertebrate genes and we propose that the requirement for morphological and functional changes is probably the driving force behind the evolution of structure and base composition complexity in multicellular animal genes.

  8. Analytic complexity of functions of two variables

    Science.gov (United States)

    Beloshapka, V. K.

    2007-09-01

    The definition of analytic complexity of an analytic function of two variables is given. It is proved that the class of functions of a chosen complexity is a differentialalgebraic set. A differential polynomial defining the functions of first class is constructed. An algorithm for obtaining relations defining an arbitrary class is described. Examples of functions are given whose order of complexity is equal to zero, one, two, and infinity. It is shown that the formal order of complexity of the Cardano and Ferrari formulas is significantly higher than their analytic complexity. The complexity classes turn out to be invariant with respect to a certain infinite-dimensional transformation pseudogroup. In this connection, we describe the orbits of the action of this pseudogroup in the jets of orders one, two, and three. The notion of complexity order is extended to plane (or “planar”) 3-webs. It is discovered that webs of complexity order one are the hexagonal webs. Some problems are posed.

  9. Semi-Continuity of Complex Fuzzy Functions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper introduces the concept of semi-continuity of complex fuzzy functions, and discusses some of their elementary properties, such as the sum of two complex fuzzy functions of type I upper (lower)semi-continuity is type I upper (lower) semi-continuous, and the opposite of complex fuzzy functions of type I upper (lower) semi-continuity is type I lower (upper) semi-continuous. Based on some assumptions on two complex fuzzy functions of type I upper (lower) semi-continuity, it is shown that their product is type I upper (lower) semi-continuous. The paper also investigates the convergence of complex fuzzy functions. In particular, sign theorem, boundedness theorem, and Cauchy's criterion for convergence are kept. In this paper the metrics introduced by Zhang Guangquan was used. This paper gives a contribution to the study of complex fuzzy functions, and extends the corresponding work of Zhang Guangquan.

  10. Plant Mediator complex and its critical functions in transcription regulation.

    Science.gov (United States)

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.

  11. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  12. Complex single gene disorders and epilepsy.

    LENUS (Irish Health Repository)

    Merwick, Aine

    2012-09-01

    Epilepsy is a heterogeneous group of disorders, often associated with significant comorbidity, such as intellectual disability and skin disorder. The genetic underpinnings of many epilepsies are still being elucidated, and we expect further advances over the coming 5 years, as genetic technology improves and prices fall for whole exome and whole genome sequencing. At present, there are several well-characterized complex epilepsies associated with single gene disorders; we review some of these here. They include well-recognized syndromes such as tuberous sclerosis complex, epilepsy associated with Rett syndrome, some of the progressive myoclonic epilepsies, and novel disorders such as epilepsy associated with mutations in the PCDH 19 gene. These disorders are important in informing genetic testing to confirm a diagnosis and to permit better understanding of the variability in phenotype-genotype correlation.

  13. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  14. An "in-out" strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region.

    Science.gov (United States)

    Fiering, S; Kim, C G; Epner, E M; Groudine, M

    1993-01-01

    The human beta-globin locus control region (LCR) is a complex DNA regulatory element that controls the expression of the cis-linked beta-like globin genes located in the 55 kilobases 3' of the LCR. We have initiated the functional analysis of the LCR by homologous recombination in murine erythroleukemia cell somatic hybrids that carry a single copy of human chromosome 11 on which the beta-globin locus is situated. High-level expression of the human beta-globin gene normally occurs when these hybrid cells are induced to differentiate. We have reported that the insertion of an expressed selectable marker gene (driven by the Friend virus enhancer/promoter) into the LCR disrupts the LCR-mediated regulation of globin transcription. In these cells, beta-globin is no longer expressed when the cells differentiate; instead, expression of the selectable marker gene increases significantly after differentiation. Since present techniques for homologous recombination require the insertion of a selectable marker, further progress in using homologous recombination to analyze the LCR depends on deletion of the selectable marker and demonstration that the locus functions normally after the insertion, expression, and deletion of the selectable marker. Here we show that after precise deletion of the selectable marker by using the FLP recombinase/FRT (FLP recombinase target) system, the locus functions as it did before the homologous recombination event. These studies demonstrate the feasibility of using homologous recombination to analyze the LCR in particular, and other complex cis-regulatory DNA elements in general, in their normal chromosomal context. Images Fig. 2 Fig. 3 Fig. 4 PMID:8378321

  15. Complex I function in mitochondrial supercomplexes.

    Science.gov (United States)

    Lenaz, Giorgio; Tioli, Gaia; Falasca, Anna Ida; Genova, Maria Luisa

    2016-07-01

    This review discusses the functional properties of mitochondrial Complex I originating from its presence in an assembled form as a supercomplex comprising Complex III and Complex IV in stoichiometric ratios. In particular several lines of evidence are presented favouring the concept that electron transfer from Complex I to Complex III is operated by channelling of electrons through Coenzyme Q molecules bound to the supercomplex, in contrast with the hypothesis that the transfer of reducing equivalents from Complex I to Complex III occurs via random diffusion of the Coenzyme Q molecules in the lipid bilayer. Furthermore, another property provided by the supercomplex assembly is the control of generation of reactive oxygen species by Complex I. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.

  16. Gene functional similarity search tool (GFSST

    Directory of Open Access Journals (Sweden)

    Russo James J

    2006-03-01

    Full Text Available Abstract Background With the completion of the genome sequences of human, mouse, and other species and the advent of high throughput functional genomic research technologies such as biomicroarray chips, more and more genes and their products have been discovered and their functions have begun to be understood. Increasing amounts of data about genes, gene products and their functions have been stored in databases. To facilitate selection of candidate genes for gene-disease research, genetic association studies, biomarker and drug target selection, and animal models of human diseases, it is essential to have search engines that can retrieve genes by their functions from proteome databases. In recent years, the development of Gene Ontology (GO has established structured, controlled vocabularies describing gene functions, which makes it possible to develop novel tools to search genes by functional similarity. Results By using a statistical model to measure the functional similarity of genes based on the Gene Ontology directed acyclic graph, we developed a novel Gene Functional Similarity Search Tool (GFSST to identify genes with related functions from annotated proteome databases. This search engine lets users design their search targets by gene functions. Conclusion An implementation of GFSST which works on the UniProt (Universal Protein Resource for the human and mouse proteomes is available at GFSST Web Server. GFSST provides functions not only for similar gene retrieval but also for gene search by one or more GO terms. This represents a powerful new approach for selecting similar genes and gene products from proteome databases according to their functions.

  17. Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    OpenAIRE

    Sourav Bandyopadhyay; Ryan Kelley; Krogan, Nevan J.; Trey Ideker

    2008-01-01

    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relat...

  18. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  19. Computation of the Complex Probability Function

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-22

    The complex probability function is important in many areas of physics and many techniques have been developed in an attempt to compute it for some z quickly and e ciently. Most prominent are the methods that use Gauss-Hermite quadrature, which uses the roots of the nth degree Hermite polynomial and corresponding weights to approximate the complex probability function. This document serves as an overview and discussion of the use, shortcomings, and potential improvements on the Gauss-Hermite quadrature for the complex probability function.

  20. Analytic functions of several complex variables

    CERN Document Server

    Gunning, Robert C

    2009-01-01

    The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincaré and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resol

  1. Radial basis function networks and complexity regularization in function learning.

    Science.gov (United States)

    Krzyzak, A; Linder, T

    1998-01-01

    In this paper we apply the method of complexity regularization to derive estimation bounds for nonlinear function estimation using a single hidden layer radial basis function network. Our approach differs from previous complexity regularization neural-network function learning schemes in that we operate with random covering numbers and l(1) metric entropy, making it possible to consider much broader families of activation functions, namely functions of bounded variation. Some constraints previously imposed on the network parameters are also eliminated this way. The network is trained by means of complexity regularization involving empirical risk minimization. Bounds on the expected risk in terms of the sample size are obtained for a large class of loss functions. Rates of convergence to the optimal loss are also derived.

  2. Plasma Dispersion Functions for Complex Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, S. S.; Castejon, F.

    2005-07-01

    Plasma dispersion functions for complex wave propagation frequency in the weak relativistic regime for arbitrary longitudinal refractive index are estimated and presented in this work. These functions, that are know as Shkarofsky functions in the case of real frequency, are estimated using a new method that avoids the singularities that appear in previous calculations shown in the preceding literature. These results can be used to obtain the properties of plasma instabilities in the weakly relativistic regime. (Author) 14 refs.

  3. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology

    Science.gov (United States)

    Spataro, Nino; Rodríguez, Juan Antonio; Navarro, Arcadi

    2017-01-01

    Abstract Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevant implications when designing mapping strategies in future genetic studies. Here we show that, relative to non-disease genes, human disease (HD) genes have specific evolutionary profiles and protein network properties. Additionally, our results indicate that the mutation-selection balance renders an insufficient account of the evolutionary history of some HD genes and that adaptive selection could also contribute to shape their genetic architecture. Notably, several biological features of HD genes depend on the type of pathology (complex or Mendelian) with which they are related. For example, genes harbouring both causal variants for Mendelian disorders and risk factors for complex disease traits (Complex-Mendelian genes), tend to present higher functional relevance in the protein network and higher expression levels than genes associated only with complex disorders. Moreover, risk variants in Complex-Mendelian genes tend to present higher odds ratios than those on genes associated with the same complex disorders but with no link to Mendelian diseases. Taken together, our results suggest that genetic variation at genes linked to Mendelian disorders plays an important role in driving susceptibility to complex disease. PMID:28053046

  4. FunGene: the Functional Gene Pipeline and Repository

    Directory of Open Access Journals (Sweden)

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  5. Gene-based and semantic structure of the Gene Ontology as a complex network

    Science.gov (United States)

    Coronnello, Claudia; Tumminello, Michele; Miccichè, Salvatore

    2016-09-01

    The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The Gene Ontology (GO) is constantly evolving over time. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. Here we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium. Moreover, the GO is a natural example of bipartite network of terms and genes. Here we are interested in studying the properties of the projected network of terms, i.e. a gene-based weighted network of GO terms, in which a link between any two terms is set if at least one gene is annotated in both terms. One aim of the present paper is to compare the structural properties of the semantic and the gene-based network. The relative importance of terms is very similar in the two networks, but the community structure changes. We show that in some cases GO terms that appear to be distinct from a semantic point of view are instead connected, and appear in the same community when considering their gene content. The identification of such gene-based communities of terms might therefore be the basis of a simple protocol aiming at improving the semantic structure of GO. Information about terms that share large gene content might also be important from a biomedical point of view, as it might reveal how genes over-expressed in a certain term also affect other biological processes, molecular functions and cellular components not directly linked according to GO semantics.

  6. Complex Predicates and the Functional Sequence

    Directory of Open Access Journals (Sweden)

    Peter Svenonius

    2008-12-01

    Full Text Available In this paper I argue that a fine-grained functional hierarchy of semantically contentful categories such as Tense, Aspect, Initiation, and Process has explanatory power in understanding the crosslinguistic distribution of complex predicates. Complex predicates may involve adjunction, control, or raising, and show other variables as well. In a Minimalist framework, specific parameters cannot be invoked to allow or disallow different kinds of serial verbs, light verbs, resultatives, and so on. Instead, what variation is observed must come from the specifications of lexical items. This places a great burden on the learner, a burden which, I argue, is partly alleviated by the functional sequence.

  7. Functional analysis of fungal polyketide biosynthesis genes.

    Science.gov (United States)

    Fujii, Isao

    2010-05-01

    Fungal polyketides have huge structural diversity from simple aromatics to highly modified complex reduced-type compounds. Despite such diversty, single modular iterative type I polyketide synthases (iPKSs) are responsible for their carbon skeleton construction. Using heterologous expression systems, we have studied on ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus as a model iPKS. In addition, iPKS functions involved in fungal spore pigment biosynthesis were analyzed together with polyketide-shortening enzymes that convert products of PKSs to shorter ketides by hydrolytic C-C bond cleavage. In our studies on reducing-type iPKSs, we cloned and expressed PKS genes, pksN, pksF, pksK and sol1 from Alternaria solani. The sol gene cluster was found to be involved in solanapyrone biosynthesis and sol5 was identified to encode solanapyrone synthase, a Diels-Alder enzyme. Our fungal PKS studies were further extended to identify the function of PKS-nonribosomal peptide synthase involved in cyclopiazonic acid biosynthesis.

  8. Improved functional overview of protein complexes using inferred epistatic relationships

    LENUS (Irish Health Repository)

    Ryan, Colm

    2011-05-23

    Abstract Background Epistatic Miniarray Profiling(E-MAP) quantifies the net effect on growth rate of disrupting pairs of genes, often producing phenotypes that may be more (negative epistasis) or less (positive epistasis) severe than the phenotype predicted based on single gene disruptions. Epistatic interactions are important for understanding cell biology because they define relationships between individual genes, and between sets of genes involved in biochemical pathways and protein complexes. Each E-MAP screen quantifies the interactions between a logically selected subset of genes (e.g. genes whose products share a common function). Interactions that occur between genes involved in different cellular processes are not as frequently measured, yet these interactions are important for providing an overview of cellular organization. Results We introduce a method for combining overlapping E-MAP screens and inferring new interactions between them. We use this method to infer with high confidence 2,240 new strongly epistatic interactions and 34,469 weakly epistatic or neutral interactions. We show that accuracy of the predicted interactions approaches that of replicate experiments and that, like measured interactions, they are enriched for features such as shared biochemical pathways and knockout phenotypes. We constructed an expanded epistasis map for yeast cell protein complexes and show that our new interactions increase the evidence for previously proposed inter-complex connections, and predict many new links. We validated a number of these in the laboratory, including new interactions linking the SWR-C chromatin modifying complex and the nuclear transport apparatus. Conclusion Overall, our data support a modular model of yeast cell protein network organization and show how prediction methods can considerably extend the information that can be extracted from overlapping E-MAP screens.

  9. A Geometric View of Complex Trigonometric Functions

    Science.gov (United States)

    Hammack, Richard

    2007-01-01

    Given that the sine and cosine functions of a real variable can be interpreted as the coordinates of points on the unit circle, the author of this article asks whether there is something similar for complex variables, and shows that indeed there is.

  10. COMPLEX FUNCTIONAL ASSESSMENT OF THE HIP JOINT.

    Directory of Open Access Journals (Sweden)

    Maya S. Krastanova

    2015-09-01

    Full Text Available Introduction: In relation to the study reporting the effects of applying phased complex rehabilitation in patients with total hip arthroplasty, it has been concluded that the everyday clinical practice in Bulgaria does not apply complex examination, giving an objective picture about the extent of functional status of patients with trauma and diseases of the hip. Aim: The main goal of this report is to present a test which incorporates all known and routine research and in which the total number of points determines the functional status of patients with trauma and diseases of the hip. Material and Methods: Based on the Hip dysfunction and Osteoarthritis Outcome Score, the Harris Hip Score modified test, scale D’Aubigne and Postel and Iowa’s test for complex functional evaluation of the hip joint, we have developed a test including information about the degree of pain; goniometry and manual muscle testing of the hip; locomotor test – type of gait and adjuvants; test for Daily Activities of Life. The test has been developed on the basis of expert assessment by doctors and physiotherapists of the proposed indicators for evaluation and determination of the weighting factors’ contribution to the general condition of the patient. Conclusion: The developed and tested method of complex functional assessment of the hip joint enables our colleagues, dealing with trauma and diseases of the hip, to use it in various research and scientific projects, as well as in general medical practice.

  11. Function theory of several complex variables

    CERN Document Server

    Krantz, Steven G

    2001-01-01

    The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with th

  12. Central auditory function of deafness genes.

    Science.gov (United States)

    Willaredt, Marc A; Ebbers, Lena; Nothwang, Hans Gerd

    2014-06-01

    The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.

  13. Gene transfer strategies for augmenting cardiac function.

    Science.gov (United States)

    Peppel, K; Koch, W J; Lefkowitz, R J

    1997-07-01

    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  14. Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Daniel, Jewel A; Keyes, Brice E; Ng, Yvonne P Y; Freeman, C Onyi; Burke, Daniel J

    2006-01-01

    The spindle assembly checkpoint regulates the metaphase-to-anaphase transition from yeast to humans. We examined the genetic interactions with four spindle assembly checkpoint genes to identify nonessential genes involved in chromosome segregation, to identify the individual roles of the spindle assembly checkpoint genes within the checkpoint, and to reveal potential complexity that may exist. We used synthetic genetic array (SGA) analysis using spindle assembly checkpoint mutants mad1, mad2, mad3, and bub3. We found 228 synthetic interactions with the four spindle assembly checkpoint mutants with substantial overlap in the spectrum of interactions between mad1, mad2, and bub3. In contrast, there were many synthetic interactions that were common to mad1, mad2, and bub3 that were not shared by mad3. We found shared interactions between pairs of spindle assembly checkpoint mutants, suggesting additional complexity within the checkpoint and unique interactions for all of the spindle assembly checkpoint genes. We show that most genes in the interaction network, including ones with unique interactions, affect chromosome transmission or microtubule function, suggesting that the complexity of interactions reflects diverse roles for the checkpoint genes within the checkpoint. Our analysis expands our understanding of the spindle assembly checkpoint and identifies new candidate genes with possible roles in chromosome transmission and mitotic spindle function.

  15. Pattern Genes Suggest Functional Connectivity of Organs

    Science.gov (United States)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  16. HLA Immune Function Genes in Autism

    Directory of Open Access Journals (Sweden)

    Anthony R. Torres

    2012-01-01

    Full Text Available The human leukocyte antigen (HLA genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.

  17. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  18. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  19. Integrating Gene Ontology and Blast to predict gene functions

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-gang; MO Zhi-hong

    2007-01-01

    A GoBlast system was built to predict gene function by integrating Blast search and Gene Ontology (GO) annotations together. The operation system was based on Debian Linux 3.1, with Apache as the web server and Mysql database as the data storage system. FASTA files with GO annotations were taken as the sequence source for blast alignment, which were formatted by wu-formatdb program. The GoBlast system includes three Bioperl modules in Perl: a data input module, a data process module and a data output module. A GoBlast query starts with an amino acid or nucleotide sequence. It ends with an output in an html page, presenting high scoring gene products which are of a high homology to the queried sequence and listing associated GO terms beside respective gene poducts. A simple click on a GO term leads to the detailed explanation of the specific gene function. This avails gene function prediction by Blast. GoBlast can be a very useful tool for functional genome research and is available for free at http://bioq.org/goblast.

  20. Gene, environment and cognitive function

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Sun, Jianping; Duan, Haiping

    2015-01-01

    population living under distinct environmental condition as the Western populations. OBJECTIVE: this study aims to explore the genetic and environmental impact on normal cognitive ageing in the Chinese twins. DESIGN/SETTING: cognitive function was measured on 384 complete twin pairs with median age of 50...... factors accounting for 23-33% of the total variances. In contrast, all cognitive performances showed moderate to high influences by the unique environmental factors. CONCLUSIONS: genetic factor and common family environment have a limited contribution to cognitive function in the Chinese adults......BACKGROUND: the genetic and environmental contributions to cognitive function in the old people have been well addressed for the Western populations using twin modelling showing moderate to high heritability. No similar study has been conducted in the world largest and rapidly ageing Chinese...

  1. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

    leading to decreased growth rate, decreased glucose metabolism, decreased amino acid and protein synthesis and increased protein degradation. Some of these responses define a new type of stress that results from changes in the internal cell environment by overexpression of a membrane protein. Chapter 5...... that have been post-translationally modified by N- or C-terminal truncation and we show that this protein processing is not random and shows a specific pattern for a given yeast strain. Chapter 7 illustrates the construction of yeast proteome database and its potential application in characterising yeast...... analysis is a powerful tool to study yeast proteome and the complex proteome database gives a broad view on the molecular cell biology of yeast. The global database approach allows combining proteome data from different mutants and experiment conditions (e.g. heat stress, phosphate labelling, N...

  2. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  3. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  4. Polycomb complexes act redundantly to repress genomic repeats and genes

    DEFF Research Database (Denmark)

    Leeb, Martin; Pasini, Diego; Novatchkova, Maria

    2010-01-01

    Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb-repressive complex 1 (PRC1) and PRC2 during the form...

  5. A Complexity Analysis of Functional Interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2003-01-01

    We give a quantitative analysis of G ̈odel’s functional interpretation and its monotone variant. The two have been used for the extraction of programs and numerical bounds as well as for conservation results. They apply both to (semi-)intuitionistic as well as (combined with negative translation......) classical proofs. The proofs may be formalized in systems ranging from weak base systems to arithmetic and analysis (and numerous fragments of these). We give upper bounds in basic proof data on the depth, size, maximal type degree and maximal type arity of the extracted terms as well as on the depth...... of the verifying proof. In all cases terms of size linear in the size of the proof at input can be extracted and the corresponding extraction algorithms have cubic worst-time complexity. The verifying proofs have depth linear in the depth of the proof at input and the maximal size of a formula of this proof....

  6. Identifying Functional Modules in Complex Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be identified by different regionsin the c-p parameter space.

  7. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    Science.gov (United States)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  8. Risk and information evaluation of prioritized genes for complex traits: application to bipolar disorder.

    Science.gov (United States)

    Kao, Chung-Feng; Chuang, Li-Chung; Kuo, Po-Hsiu

    2014-10-01

    Many susceptibility genes for complex traits were identified without conclusive findings. There is a strong need to integrate rapidly accumulated genomic data from multi-dimensional platforms, and to conduct risk evaluation for potential therapeutic and diagnostic usages. We set up an algorithm to computationally search for optimal weight-vector for various data sources, while minimized potential noises. Through gene-prioritization framework, combined scores for the resulting prioritized gene-set were calculated using a genome-wide association (GWA) dataset, following with evaluation using weighted genetic risk score and risk-attributed information using an independent GWA dataset. The significance of association of GWA data was corrected for gene length. Enriched functional pathways were identified for the prioritized gene-set using the Gene Ontology analysis. We illustrated our framework with bipolar disorder. 233 prioritized genes were identified from 10,830 candidates that curated from six platforms. The prioritized genes were significantly enriched (P(adjusted) evaluation demonstrated higher weighted genetic risk score in bipolar patients than controls (P-values ranged from 0.002 to 3.8 × 10(-6)). Substantial risk-information (71%) was extracted from prioritized genes for bipolar illness than other candidate-gene sets. Our evidence-based prioritized gene-set provides opportunity to explore the complex network and to conduct follow-up basic and clinical studies for complex traits.

  9. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly.

    Science.gov (United States)

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2016-02-02

    The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization.

  10. Gene function prediction based on the Gene Ontology hierarchical structure.

    Science.gov (United States)

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  11. Functional analysis of plastid-encoded genes

    OpenAIRE

    Swiatek, Magdalena

    2002-01-01

    Plastid chromosomes from the variety of plant species contain several conserved open reading frames of unknown function, which most probably represent functional genes. The primary aim of this thesis was the analysis of the role of two such ORFs, designated ycfs or hypothetical chloroplast reading frames, namely ycf9 (ORF62) and ycf10 (ORF229, cemA). Both were analyzed in Nicotiana tabacum (tobacco) via their inactivation using biolistic plastid transformation. A new experiment...

  12. Polymorphism Interaction Analysis (PIA: a method for investigating complex gene-gene interactions

    Directory of Open Access Journals (Sweden)

    Chanock Stephen J

    2008-03-01

    Full Text Available Abstract Background The risk of common diseases is likely determined by the complex interplay between environmental and genetic factors, including single nucleotide polymorphisms (SNPs. Traditional methods of data analysis are poorly suited for detecting complex interactions due to sparseness of data in high dimensions, which often occurs when data are available for a large number of SNPs for a relatively small number of samples. Validation of associations observed using multiple methods should be implemented to minimize likelihood of false-positive associations. Moreover, high-throughput genotyping methods allow investigators to genotype thousands of SNPs at one time. Investigating associations for each individual SNP or interactions between SNPs using traditional approaches is inefficient and prone to false positives. Results We developed the Polymorphism Interaction Analysis tool (PIA version 2.0 to include different approaches for ranking and scoring SNP combinations, to account for imbalances between case and control ratios, stratify on particular factors, and examine associations of user-defined pathways (based on SNP or gene with case status. PIA v. 2.0 detected 2-SNP interactions as the highest ranking model 77% of the time, using simulated data sets of genetic models of interaction (minor allele frequency = 0.2; heritability = 0.01; N = 1600 generated previously [Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH: A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 2007, 31:306–315.]. Interacting SNPs were detected in both balanced (20 SNPs and imbalanced data (case:control 1:2 and 1:4, 10 SNPs in the context of non-interacting SNPs. Conclusion PIA v. 2.0 is a useful tool for exploring gene*gene or gene*environment interactions and identifying a small number of putative associations which may be investigated further using other

  13. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  14. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu;

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single...

  15. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  16. A complexity analysis of functional interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2005-01-01

    Summary: We give a quantitative analysis of Gödel's functional     interpretation and its monotone variant. The two have been used     for the extraction of programs and numerical bounds as well as     for conservation results. They apply both to (semi-)intuitionistic     as well as (combined...... with negative translation) classical proofs.     The proofs may be formalized in systems ranging from weak base     systems to arithmetic and analysis (and numerous fragments of     these). We give upper bounds in basic proof data on the depth,     size, maximal type degree and maximal type arity...... of the extracted     terms as well as on the depth of the verifying proof. In all     cases terms of size linear in the size of the proof at input     can be extracted and the corresponding extraction algorithms     have cubic worst-time complexity. The verifying proofs have depth     linear in the depth...

  17. Rapid, modular and reliable construction of complex mammalian gene circuits.

    Science.gov (United States)

    Guye, Patrick; Li, Yinqing; Wroblewska, Liliana; Duportet, Xavier; Weiss, Ron

    2013-09-01

    We developed a framework for quick and reliable construction of complex gene circuits for genetically engineering mammalian cells. Our hierarchical framework is based on a novel nucleotide addressing system for defining the position of each part in an overall circuit. With this framework, we demonstrate construction of synthetic gene circuits of up to 64 kb in size comprising 11 transcription units and 33 basic parts. We show robust gene expression control of multiple transcription units by small molecule inducers in human cells with transient transfection and stable chromosomal integration of these circuits. This framework enables development of complex gene circuits for engineering mammalian cells with unprecedented speed, reliability and scalability and should have broad applicability in a variety of areas including mammalian cell fermentation, cell fate reprogramming and cell-based assays.

  18. Clock genes, pancreatic function, and diabetes.

    Science.gov (United States)

    Vieira, Elaine; Burris, Thomas P; Quesada, Ivan

    2014-12-01

    Circadian physiology is responsible for the temporal regulation of metabolism to optimize energy homeostasis throughout the day. Disturbances in the light/dark cycle, sleep/wake schedule, or feeding/activity behavior can affect the circadian function of the clocks located in the brain and peripheral tissues. These alterations have been associated with impaired glucose tolerance and type 2 diabetes. Animal models with molecular manipulation of clock genes and genetic studies in humans also support these links. It has been demonstrated that the endocrine pancreas has an intrinsic self-sustained clock, and recent studies have revealed an important role of clock genes in pancreatic β cells, glucose homeostasis, and diabetes.

  19. Complexity and Entropy Analysis of DNMT1 Gene

    Science.gov (United States)

    Background: The application of complexity information on DNA sequence and protein in biological processes are well established in this study. Available sequences for DNMT1 gene, which is a maintenance methyltransferase is responsible for copying DNA methylation patterns to the daughter strands durin...

  20. A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene

    Directory of Open Access Journals (Sweden)

    Derouin Francis

    2005-03-01

    Full Text Available Abstract Background Leishmaniases are among the most proteiform parasitic infections in humans ranging from unapparent to cutaneous, mucocutaneous or visceral diseases. The various clinical issues depend on complex and still poorly understood mechanisms where both host and parasite factors are interacting. Among the candidate factors of parasite virulence are the A2 genes, a family of multiple genes that are developmentally expressed in species of the Leishmania donovani group responsible for visceral diseases (VL. By contrast, in L. major determining cutaneous infections (CL we showed that A2 genes are present in a truncated form only. Furthermore, the A2 genomic sequences of L. major were considered subsequently to represent non-expressed pseudogenes 1. Consequently, it was suggested that the structural and functional properties of A2 genes could play a role in the differential tropism of CL and VL leishmanias. On this basis, it was of importance to determine whether the observed structural/functional particularities of the L. major A2 genes were shared by other CL Leishmania, therefore representing a proper characteristic of CL A2 genes as opposed to those of VL isolates. Methods In the present study we amplified by PCR and sequenced the A2 genes from genomic DNA and from clonal libraries of the four Old World CL species comparatively to a clonal population of L. infantum VL parasites. Using RT-PCR we also amplified and sequenced A2 mRNA transcripts from L. major. Results A unique A2 sequence was identified in Old World cutaneous Leishmania by sequencing. The shared sequence was highly conserved among the various CL strains and species analysed, showing a single polymorphism C/G at position 58. The CL A2 gene was found to be functionally transcribed at both parasite stages. Conclusion The present study shows that cutaneous strains of leishmania share a conserved functional A2 gene. As opposed to the multiple A2 genes described in VL isolates

  1. Evolution and function of de novo originated genes.

    Science.gov (United States)

    Wu, Dong-Dong; Zhang, Ya-Ping

    2013-05-01

    De novo origination has recently been appreciated to be an important mechanism contributing to the origin of genes. Evidence indicates that de novo originated genes can evolve important and even essential functions rapidly. We present an "adaptation following neutrality" process to explain the evolution of essential function of new genes. How new de novo originated genes become involved in pathways and interact with other old genes, and the exact functions of these new genes, however, remains largely undocumented. Examinations of the function of de novo origin and the function of noncoding RNA genes should become more frequent and appreciated in the future studies.

  2. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    Science.gov (United States)

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  3. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Stanley Kerri A

    2011-03-01

    Full Text Available Abstract Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA, the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model.

  4. GO-based Functional Dissimilarity of Gene Sets

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesús S

    2011-09-01

    Full Text Available Abstract Background The Gene Ontology (GO provides a controlled vocabulary for describing the functions of genes and can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same activity may also participate. Therefore, an identification of the most common function for all of the genes involved in a biological process is important in evaluating the functional similarity of groups of genes and a quantification of functional coherence can helps to clarify the role of a group of genes working together. Results To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity, a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies. Conclusions Results show that GFD performs robustly when applied to gene set of known functionality (extracted from KEGG. It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative analysis against other functional measures, such as GS2 and those presented by Resnik and Wang, also demonstrates the robustness of GFD.

  5. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  6. Domain coloring of complex functions: an implementation-oriented introduction.

    Science.gov (United States)

    Poelke, Konstantin; Polthier, Konrad

    2012-01-01

    This article gives a short overview of domain coloring for complex functions that have four-dimensional function graphs and therefore can't be visualized traditionally. The authors discuss several color schemes, focus on various aspects of complex functions, and provide Java-like pseudocode examples explaining the crucial ideas of the coloring algorithms to allow for easy reproduction.

  7. Executive Functions in the Context of Complex Learning: Malleable Moderators?

    Science.gov (United States)

    Schwaighofer, Matthias; Bühner, Markus; Fischer, Frank

    2017-01-01

    Executive functions are crucial for complex learning in addition to prior knowledge. In this article, we argue that executive functions can moderate the effectiveness of instructional approaches that vary with respect to the demand on these functions. In addition, we suggest that engagement in complex activity contexts rather than specific…

  8. Complex analysis a modern first course in function theory

    CERN Document Server

    Muir, Jerry R

    2015-01-01

    A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun

  9. Density functional resonance theory: complex density functions, convergence, orbital energies, and functionals.

    Science.gov (United States)

    Whitenack, Daniel L; Wasserman, Adam

    2012-04-28

    Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.

  10. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  11. The identification of informative genes from multiple datasets with increasing complexity

    Directory of Open Access Journals (Sweden)

    't Hoen Peter AC

    2010-01-01

    Full Text Available Abstract Background In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1 ordering the datasets based on their level of noise and informativeness; (2 selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3 comparing the different gene selections and the influence of increasing the model complexity; (4 functional analysis of the informative genes. Results In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest significantly better than others (P et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes. Conclusions We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally

  12. A method for developing regulatory gene set networks to characterize complex biological systems.

    Science.gov (United States)

    Suphavilai, Chayaporn; Zhu, Liugen; Chen, Jake Y

    2015-01-01

    Traditional approaches to studying molecular networks are based on linking genes or proteins. Higher-level networks linking gene sets or pathways have been proposed recently. Several types of gene set networks have been used to study complex molecular networks such as co-membership gene set networks (M-GSNs) and co-enrichment gene set networks (E-GSNs). Gene set networks are useful for studying biological mechanism of diseases and drug perturbations. In this study, we proposed a new approach for constructing directed, regulatory gene set networks (R-GSNs) to reveal novel relationships among gene sets or pathways. We collected several gene set collections and high-quality gene regulation data in order to construct R-GSNs in a comparative study with co-membership gene set networks (M-GSNs). We described a method for constructing both global and disease-specific R-GSNs and determining their significance. To demonstrate the potential applications to disease biology studies, we constructed and analysed an R-GSN specifically built for Alzheimer's disease. R-GSNs can provide new biological insights complementary to those derived at the protein regulatory network level or M-GSNs. When integrated properly to functional genomics data, R-GSNs can help enable future research on systems biology and translational bioinformatics.

  13. Functional mammalian spliceosomal complex E contains SMN complex proteins in addition to U1 and U2 snRNPs.

    Science.gov (United States)

    Makarov, Evgeny M; Owen, Nicholas; Bottrill, Andrew; Makarova, Olga V

    2012-03-01

    Spliceosomes remove introns from primary gene transcripts. They assemble de novo on each intron through a series of steps that involve the incorporation of five snRNP particles and multiple non-snRNP proteins. In mammals, all the intermediate complexes have been characterized on one transcript (MINX), with the exception of the very first, complex E. We have purified this complex by two independent procedures using antibodies to either U1-A or PRPF40A proteins, which are known to associate at an early stage of assembly. We demonstrate that the purified complexes are functional in splicing using commitment assays. These complexes contain components expected to be in the E complex and a number of previously unrecognized factors, including survival of motor neurons (SMN) and proteins of the SMN-associated complex. Depletion of the SMN complex proteins from nuclear extracts inhibits formation of the E complex and causes non-productive complexes to accumulate. This suggests that the SMN complex stabilizes the association of U1 and U2 snRNPs with pre-mRNA. In addition, the antibody to PRPF40A precipitated U2 snRNPs from nuclear extracts, indicating that PRPF40A associates with U2 snRNPs.

  14. Functional self-organization in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA))

    1990-01-01

    A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.

  15. Complexity of the MSG gene family of Pneumocystis carinii

    Directory of Open Access Journals (Sweden)

    Stringer James R

    2009-08-01

    set of sequences that represents most if not all of the members of the P. carinii MSG gene family was obtained. The protein-changing nature of the variation among these sequences suggests that the family has been shaped by selection for protein variation, which is consistent with the hypothesis that the MSG gene family functions to enhance phenotypic variation among the members of a population of P. carinii.

  16. New insights into the molecular complexity of the ghrelin gene locus.

    Science.gov (United States)

    Seim, Inge; Herington, Adrian C; Chopin, Lisa K

    2009-08-01

    Ghrelin is a multi-functional peptide hormone that affects a range of processes, including growth hormone and insulin release, appetite regulation, reproduction, and cancer cell proliferation. The main focus of this review is to advance the hypothesis that the ghrelin gene locus encodes an array of biologically active molecules in addition to ghrelin and is far more complex than currently appreciated. Alternative splicing and the use of alternative post-translational cleavages sites may give rise to novel ghrelin gene-derived peptides that potentially act through different receptors and have novel biological functions.

  17. The Polycomb Complex PRC1: Composition and Function in Plants

    Institute of Scientific and Technical Information of China (English)

    Anne Molitor; Wen-Hui Shen

    2013-01-01

    Polycomb group (PcG) proteins are crucial epigenetic regulators conferring transcriptional memory to cell lineages.They assemble into multi-protein complexes,e.g.,Polycomb Repressive Complex 1 and 2 (PRC1,PRC2),which are thought to act in a sequential manner to stably maintain gene repression.PRC2 induces histone H3 lysine 27 (H3K27) trimethylation (H3K27me3),which is subsequently read by PRC1 that further catalyzes H2A monoubiquitination (H2Aubl),creating a transcriptional silent chromatin conformation.PRC2 components are conserved in plants and have been extensively characterized in Arabidopsis.In contrast,PRC1 composition and function are more diverged between animals and plants.Only more recently,PRC1 existence in plants has been documented.Here we review the aspects of plant specific and conserved PRC1 and highlight critical roles of PRC1 components in seed embryonic trait determinacy,shoot stem cell fate determinacy,and flower development in Arabidopsis.

  18. Interleukin-1 gene complex in schizophrenia: an association study.

    Science.gov (United States)

    Saiz, Pilar A; Garcia-Portilla, Maria P; Arango, Celso; Morales, Blanca; Martinez-Barrondo, Sara; Alvarez, Victoria; Coto, Eliecer; Fernandez, Juan; Bousono, Manuel; Bobes, Julio

    2006-09-01

    The aim of this study is to investigate the association between three polymorphisms of the interleukin-1 (IL-1) gene complex and schizophrenia. We genotyped 228 outpatients with schizophrenia (DSM-IV criteria) and 419 unrelated healthy controls. The following polymorphisms were analyzed: IL-1alpha -889 C/T, IL-1beta +3953 C/T, and IL-1RA (86 bp)n. No significant differences in genotype or in allelic distribution of the Il-1alpha, IL-1beta, and IL-1RA polymorphisms were found. Estimated haplotype frequencies were similar in both groups. Our data do not suggest that genetically determined changes in the IL-1 gene complex confer increased susceptibility for schizophrenia.

  19. Moonlighting functions of the NRZ (mammalian Dsl1 complex

    Directory of Open Access Journals (Sweden)

    Mitsuo eTagaya

    2014-06-01

    Full Text Available The yeast Dsl1 complex, which comprises Dsl1, Tip20, and Sec39/Dsl3, has been shown to participate, as a vesicle-tethering complex, in retrograde trafficking from the Golgi apparatus to the endoplasmic reticulum. Its metazoan counterpart NRZ complex, which comprises NAG, RINT1, and ZW10, is also involved in Golgi-to-ER retrograde transport, but each component of the complex has diverse cellular functions including endosome-to-Golgi transport, cytokinesis, cell cycle checkpoint, autophagy, and mRNA decay. In this review, we summarize the current knowledge of the metazoan NRZ complex and discuss the moonlighting functions and intercorrelation of their subunits.

  20. Deterministic retrieval of complex Green's functions using hard X rays.

    Science.gov (United States)

    Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E

    2009-01-30

    A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.

  1. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  2. The structure and function of bacterial light-harvesting complexes.

    Science.gov (United States)

    Law, Christopher J; Roszak, Aleksander W; Southall, June; Gardiner, Alastair T; Isaacs, Neil W; Cogdell, Richard J

    2004-01-01

    The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.

  3. Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.

    Science.gov (United States)

    Ribière, Céline; Beugnot, Réjane; Parisot, Nicolas; Gasc, Cyrielle; Defois, Clémence; Denonfoux, Jérémie; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2016-01-01

    Microbial communities are extremely abundant and diverse on earth surface and play key role in the ecosystem functioning. Thus, although next-generation sequencing (NGS) technologies have greatly improved knowledge on microbial diversity, it is necessary to reduce the biological complexity to better understand the microorganism functions. To achieve this goal, we describe a promising approach, based on the solution hybrid selection (SHS) method for the selective enrichment in a target-specific biomarker from metagenomic and metatranscriptomic samples. The success of this method strongly depends on the determination of sensitive, specific, and explorative probes to assess the complete targeted gene repertoire. Indeed, in this method, RNA probes were used to capture large DNA or RNA fragments harboring biomarkers of interest that potentially allow to link structure and function of communities of interest.

  4. Regional genomic instability predisposes to complex dystrophin gene rearrangements.

    Science.gov (United States)

    Oshima, Junko; Magner, Daniel B; Lee, Jennifer A; Breman, Amy M; Schmitt, Eric S; White, Lisa D; Crowe, Carol A; Merrill, Michelle; Jayakar, Parul; Rajadhyaksha, Aparna; Eng, Christine M; del Gaudio, Daniela

    2009-09-01

    Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.

  5. A Functional Complexity Framework for the Analysis of Telecommunication Networks

    CERN Document Server

    Dzaferagic, Merim; Macaluso, Irene; Marchetti, Nicola

    2016-01-01

    The rapid evolution of network services demands new paradigms for studying and designing networks. In order to understand the underlying mechanisms that provide network functions, we propose a framework which enables the functional analysis of telecommunication networks. This framework allows us to isolate and analyse a network function as a complex system. We propose functional topologies to visualise the relationships between system entities and enable the systematic study of interactions between them. We also define a complexity metric $C_F$ (functional complexity) which quantifies the variety of structural patterns and roles of nodes in the topology. This complexity metric provides a wholly new approach to study the operation of telecommunication networks. We study the relationship between $C_F$ and different graph structures by analysing graph theory metrics in order to recognize complex organisations. $C_F$ is equal to zero for both a full mesh topology and a disconnected topology. We show that complexi...

  6. A Complexity Analysis of Functional Interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2003-01-01

    We give a quantitative analysis of G ̈odel’s functional interpretation and its monotone variant. The two have been used for the extraction of programs and numerical bounds as well as for conservation results. They apply both to (semi-)intuitionistic as well as (combined with negative translation)...

  7. A complexity analysis of functional interpretations

    DEFF Research Database (Denmark)

    Hernest, Mircea-Dan; Kohlenbach, Ulrich

    2005-01-01

    Summary: We give a quantitative analysis of Gödel's functional     interpretation and its monotone variant. The two have been used     for the extraction of programs and numerical bounds as well as     for conservation results. They apply both to (semi-)intuitionistic     as well as (combined...

  8. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.

    Science.gov (United States)

    Gui, Shupeng; Rice, Andrew P; Chen, Rui; Wu, Liang; Liu, Ji; Miao, Hongyu

    2017-01-31

    Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 10(4), and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB (Ⓡ) , and the source code is

  9. Characterization of MYG1 gene and protein: subcellular distribution and function

    DEFF Research Database (Denmark)

    Philips, Mari-Anne; Vikeså, Jonas; Luuk, Hendrik

    2009-01-01

    BACKGROUND INFORMATION: MYG1 [Melanocyte proliferating gene 1, also known as Gamm1 (NM_021640)] is a recently described gene of unknown function. MYG1 orthologues are found in simple as well as complex eukaryotes. According to sequence homology, MYG1 is considered to have a metal-dependent protein...

  10. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

    Science.gov (United States)

    Sousa, Sílvia A.; Feliciano, Joana R.; Pita, Tiago; Guerreiro, Soraia I.; Leitão, Jorge H.

    2017-01-01

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung. PMID:28106859

  11. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    Science.gov (United States)

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  12. Surprisingly complex T-box gene complement in diploblastic metazoans.

    Science.gov (United States)

    Yamada, Atsuko; Pang, Kevin; Martindale, Mark Q; Tochinai, Shin

    2007-01-01

    Ctenophores and cnidarians are two metazoan groups that evolved at least 600 Ma, predating the Cambrian explosion. Although both groups are commonly categorized as diploblastic animals without derivatives of the mesodermal germ layer, ctenophores possess definitive contractile "muscle" cells. T-box family transcription factors are an evolutionarily ancient gene family, arising in the common ancestor of metazoans, and have been divided into eight groups in five distinct subfamilies, many of which are involved in the specification of mesodermal as well as ectodermally and endodermally derived structures. Here, we report the cloning and expression of five T-box genes from a ctenophore, Mnemiopsis leidyi. Phylogenetic analyses demonstrated that ctenophores possess members of at least three of the five T-box subfamilies, and expression studies suggested distinct roles of each T-box genes during gastrulation and early organogenesis. Moreover, genome searches of the sea anemone, Nematostella vectensis (anthozoan cnidarian), showed at least 13 T-box genes in Nematostella, which are divided into at least six distinct groups in the same three subfamilies found in ctenophores. Our results from two diploblastic animals indicate that the common ancestor of eumetazoans had a complex set of T-box genes and that two distinct subfamilies might have appeared during triploblastic evolution.

  13. On the parity complexity measures of Boolean functions

    OpenAIRE

    Zhang,Zhiqiang; Shi, Yaoyun

    2010-01-01

    The parity decision tree model extends the decision tree model by allowing the computation of a parity function in one step. We prove that the deterministic parity decision tree complexity of any Boolean function is polynomially related to the non-deterministic complexity of the function or its complement. We also show that they are polynomially related to an analogue of the block sensitivity. We further study parity decision trees in their relations with an intermediate variant of the decisi...

  14. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study.

    Science.gov (United States)

    Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-07

    Network study on genes and proteins offers functional basics of the complexity of gene and protein, and its interacting partners. The gene fatty acid-binding protein 4 (fabp4) is found to be highly expressed in adipose tissue, and is one of the most abundant proteins in mature adipocytes. Our investigations on functional modules of fabp4 provide useful information on the functional genes interacting with fabp4, their biochemical properties and their regulatory functions. The present study shows that there are eight set of candidate genes: acp1, ext2, insr, lipe, ostf1, sncg, usp15, and vim that are strongly and functionally linked up with fabp4. Gene ontological analysis of network modules of fabp4 provides an explicit idea on the functional aspect of fabp4 and its interacting nodes. The hierarchal mapping on gene ontology indicates gene specific processes and functions as well as their compartmentalization in tissues. The fabp4 along with its interacting genes are involved in lipid metabolic activity and are integrated in multi-cellular processes of tissues and organs. They also have important protein/enzyme binding activity. Our study elucidated disease-associated nsSNP prediction for fabp4 and it is interesting to note that there are four rsID׳s (rs1051231, rs3204631, rs140925685 and rs141169989) with disease allelic variation (T104P, T126P, G27D and G90V respectively). On the whole, our gene network analysis presents a clear insight about the interactions and functions associated with fabp4 gene network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Duplication of pilus gene complexes of Haemophilus influenzae biogroup aegyptius.

    Science.gov (United States)

    Read, T D; Dowdell, M; Satola, S W; Farley, M M

    1996-11-01

    Brazilian purpuric fever (BPF) is a recently described pediatric septicemia caused by a strain of Haemophilus influenzae biogroup aegyptius. The pilus specified by this bacterium may be important in BPF pathogenesis, enhancing attachment to host tissue. Here, we report the cloning of two haf (for H. influenzae biogroup aegyptius fimbriae) gene clusters from a cosmid library of strain F3031. We sequenced a 6.8-kb segment of the haf1 cluster and identified five genes (hafA to hafE). The predicted protein products, HafA to HafD, are 72, 95, 98, and 90% similar, respectively, to HifA to HifD of the closely related H. influenzae type b pilus. Strikingly, the putative pilus adhesion, HifE, shares only 44% identity with HafE, suggesting that the proteins may differ in receptor specificity. Insertion of a mini-gammadelta transposon in the hafE gene eliminated hemadsorption. The nucleotide sequences of the haf1 and haf2 clusters are more than 99% identical. Using the recently published sequence of the H. influenzae Rd genome, we determined that the haf1 complex lies at a unique position in the chromosome between the pmbA gene and a hypothetical open reading frame, HI1153. The location of the haf2 cluster, inserted between the purE and pepN genes, is analogous to the hif genes on H. influenzae type b. BPF fimbrial phase switching appears to involve slip-strand mispairing of repeated dinucleotides in the pilus promoter. The BPF-associated H. influenzae biogroup aegyptius pilus system generally resembles other H. influenzae, but the possession of a second fimbrial gene cluster, which appears to have arisen by a recent duplication event, and the novel sequence of the HafE adhesin may be significant in the unusual pathogenesis of BPF.

  16. Further EST analysis of endocrine genes that are preferentially expressed in the neural complex of Ciona intestinalis: receptor and enzyme genes associated with endocrine system in the neural complex.

    Science.gov (United States)

    Sekiguchi, Toshio; Kawashima, Takeshi; Satou, Yutaka; Satoh, Nori

    2007-01-15

    Identification of orthologs of vertebrate neuropeptides and hypothalamic hormones in the neural complex of ascidians suggests integral roles of the ascidian neural complex in the endocrine system. In the present study, we investigated endocrine-related genes expressed in the neural complex of Ciona intestinalis. Comprehensive analyses of 3'-end sequences of the neural complex cDNAs placed 10,029 clones into 4051 independent clusters or genes, 1524 of them being expressed preferentially in this organ. Comparison of the 1524 genes with the human proteome databank demonstrated that 476 matched previously identified human proteins with distinct functions. Further analyses of sequence similarity of the 476 genes demonstrated that 21 genes are candidates for those involved in the endocrine system. Although we cannot detect hormone or peptide candidates, we found 21 genes such as receptors for peptide ligands, receptor-modulating proteins, and processing enzymes. We then characterized the Ciona prohormone convertase 2 (Ci-PC2) and carboxypeptidase E (Ci-CPE), which are associated with endoproteolytic processing of peptide hormone precursors. Furthermore, genes encoding these transcripts are expressed specifically in the neural complex of young adult ascidians. These data provide the molecular basis for further functional studies of the endocrine role of the neural complex of ascidians.

  17. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  18. Diverse Effects, Complex Causes: Children Use Information About Machines' Functional Diversity to Infer Internal Complexity.

    Science.gov (United States)

    Ahl, Richard E; Keil, Frank C

    2016-09-26

    Four studies explored the abilities of 80 adults and 180 children (4-9 years), from predominantly middle-class families in the Northeastern United States, to use information about machines' observable functional capacities to infer their internal, "hidden" mechanistic complexity. Children as young as 4 and 5 years old used machines' numbers of functions as indications of complexity and matched machines performing more functions with more complex "insides" (Study 1). However, only older children (6 and older) and adults used machines' functional diversity alone as an indication of complexity (Studies 2-4). The ability to use functional diversity as a complexity cue therefore emerges during the early school years, well before the use of diversity in most categorical induction tasks.

  19. Functions of a complex variable and some of their applications

    CERN Document Server

    Fuchs, B A; Sneddon, I N; Ulam, S

    1961-01-01

    Functions of a Complex Variable and Some of Their Applications, Volume 1, discusses the fundamental ideas of the theory of functions of a complex variable. The book is the result of a complete rewriting and revision of a translation of the second (1957) Russian edition. Numerous changes and additions have been made, both in the text and in the solutions of the Exercises. The book begins with a review of arithmetical operations with complex numbers. Separate chapters discuss the fundamentals of complex analysis; the concept of conformal transformations; the most important of the elementary fun

  20. A Complex-Valued Projection Neural Network for Constrained Optimization of Real Functions in Complex Variables.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen; Wang, Jun

    2015-12-01

    In this paper, we present a complex-valued projection neural network for solving constrained convex optimization problems of real functions with complex variables, as an extension of real-valued projection neural networks. Theoretically, by developing results on complex-valued optimization techniques, we prove that the complex-valued projection neural network is globally stable and convergent to the optimal solution. Obtained results are completely established in the complex domain and thus significantly generalize existing results of the real-valued projection neural networks. Numerical simulations are presented to confirm the obtained results and effectiveness of the proposed complex-valued projection neural network.

  1. Major histocompatibility complex class I genes of the coelacanth Latimeria chalumnae.

    Science.gov (United States)

    Betz, U A; Mayer, W E; Klein, J

    1994-11-01

    The coelacanth fish Latimeria chalumnae is the sole surviving species of a phylogenetic lineage that was founded more than 400 million years ago and that has changed morphologically very little since that time. Little is known about the molecular evolution of this "living fossil," considered by some taxonomists to be the closest living relative of tetrapods. Here we describe the isolation and characterization of L. chalumnae major histocompatibility complex (MHC) class I genes. The exon-intron organization of these genes is the same as that of their mammalian counterparts. The genes fall into four families, which we designate Lach-UA through Lach-UD. There are multiple loci in all of the families. Genes of the first two families are transcribed. The Lach-UA family bears the characteristics of functional, polymorphic class I genes; the other three families may be represented by nonclassical genes. All the Lach loci arose by duplication from an ancestral gene after the foundation of the coelacanth lineage. Intergenic variation is highest at positions corresponding to the mammalian peptide-binding region. The closest relatives of the Lach genes among the MHC genes sequenced thus far are those of the amphibian Xenopus.

  2. A genome-wide survey of Major Histocompatibility Complex (MHC genes and their paralogues in zebrafish

    Directory of Open Access Journals (Sweden)

    Figueroa Felipe

    2005-11-01

    Full Text Available Abstract Background The genomic organisation of the Major Histocompatibility Complex (MHC varies greatly between different vertebrates. In mammals, the classical MHC consists of a large number of linked genes (e.g. greater than 200 in humans with predominantly immune function. In some birds, it consists of only a small number of linked MHC core genes (e.g. smaller than 20 in chickens forming a minimal essential MHC and, in fish, the MHC consists of a so far unknown number of genes including non-linked MHC core genes. Here we report a survey of MHC genes and their paralogues in the zebrafish genome. Results Using sequence similarity searches against the zebrafish draft genome assembly (Zv4, September 2004, 149 putative MHC gene loci and their paralogues have been identified. Of these, 41 map to chromosome 19 while the remaining loci are spread across essentially all chromosomes. Despite the fragmentation, a set of MHC core genes involved in peptide transport, loading and presentation are still found in a single linkage group. Conclusion The results extend the linkage information of MHC core genes on zebrafish chromosome 19 and show the distribution of the remaining MHC genes and their paralogues to be genome-wide. Although based on a draft genome assembly, this survey demonstrates an essentially fragmented MHC in zebrafish.

  3. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  4. Visual Pattern Memory Requires "Foraging" Function in the Central Complex of "Drosophila"

    Science.gov (United States)

    Wang, Zhipeng; Pan, Yufeng; Li, Weizhe; Jiang, Huoqing; Chatzimanolis, Lazaros; Chang, Jianhong; Gong, Zhefeng; Liu, Li

    2008-01-01

    The role of the "foraging" ("for)" gene, which encodes a cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG), in food-search behavior in "Drosophila" has been intensively studied. However, its functions in other complex behaviors have not been well-characterized. Here, we show experimentally in "Drosophila" that the "for"…

  5. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients

    Science.gov (United States)

    Li, Yan; He, Jinzhi; He, Zhili; Zhou, Yuan; Yuan, Mengting; Xu, Xin; Sun, Feifei; Liu, Chengcheng; Li, Jiyao; Xie, Wenbo; Deng, Ye; Qin, Yujia; VanNostrand, Joy D; Xiao, Liying; Wu, Liyou; Zhou, Jizhong; Shi, Wenyuan; Zhou, Xuedong

    2014-01-01

    Determining the composition and function of subgingival dental plaque is crucial to understanding human periodontal health and disease, but it is challenging because of the complexity of the interactions between human microbiomes and human body. Here, we examined the phylogenetic and functional gene differences between periodontal and healthy individuals using MiSeq sequencing of 16S rRNA gene amplicons and a specific functional gene array (a combination of GeoChip 4.0 for biogeochemical processes and HuMiChip 1.0 for human microbiomes). Our analyses indicated that the phylogenetic and functional gene structure of the oral microbiomes were distinctly different between periodontal and healthy groups. Also, 16S rRNA gene sequencing analysis indicated that 39 genera were significantly different between healthy and periodontitis groups, and Fusobacterium, Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, Peptostreptococcus and Catonella showed higher relative abundances in the periodontitis group. In addition, functional gene array data showed that a lower gene number but higher signal intensity of major genes existed in periodontitis, and a variety of genes involved in virulence factors, amino acid metabolism and glycosaminoglycan and pyrimidine degradation were enriched in periodontitis, suggesting their potential importance in periodontal pathogenesis. However, the genes involved in amino acid synthesis and pyrimidine synthesis exhibited a significantly lower relative abundance compared with healthy group. Overall, this study provides new insights into our understanding of phylogenetic and functional gene structure of subgingival microbial communities of periodontal patients and their importance in pathogenesis of periodontitis. PMID:24671083

  6. On the parity complexity measures of Boolean functions

    CERN Document Server

    Zhang, Zhiqiang; 10.1016/j.tcs.2010.03.027

    2010-01-01

    The parity decision tree model extends the decision tree model by allowing the computation of a parity function in one step. We prove that the deterministic parity decision tree complexity of any Boolean function is polynomially related to the non-deterministic complexity of the function or its complement. We also show that they are polynomially related to an analogue of the block sensitivity. We further study parity decision trees in their relations with an intermediate variant of the decision trees, as well as with communication complexity.

  7. Accessory subunits are integral for assembly and function of human mitochondrial complex I.

    Science.gov (United States)

    Stroud, David A; Surgenor, Elliot E; Formosa, Luke E; Reljic, Boris; Frazier, Ann E; Dibley, Marris G; Osellame, Laura D; Stait, Tegan; Beilharz, Traude H; Thorburn, David R; Salim, Agus; Ryan, Michael T

    2016-10-06

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.

  8. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2

    Science.gov (United States)

    Oravecz, Attila; Apostolov, Apostol; Polak, Katarzyna; Jost, Bernard; Le Gras, Stéphanie; Chan, Susan; Kastner, Philippe

    2015-01-01

    T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4−CD8− thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4−CD8− cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells. PMID:26549758

  9. Pneumococcal gene complex involved in resistance to extracellular oxidative stress.

    Science.gov (United States)

    Andisi, Vahid Farshchi; Hinojosa, Cecilia A; de Jong, Anne; Kuipers, Oscar P; Orihuela, Carlos J; Bijlsma, Jetta J E

    2012-03-01

    Streptococcus pneumoniae is a gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H(2)O(2)) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

  10. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  11. Navigating the complex path between the oxytocin receptor gene (OXTR) and cooperation: an endophenotype approach.

    Science.gov (United States)

    Haas, Brian W; Anderson, Ian W; Smith, Jessica M

    2013-11-28

    Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.

  12. Navigating the complex path between the oxytocin receptor gene (OXTR and cooperation: an endophenotype approach

    Directory of Open Access Journals (Sweden)

    Brian W. Haas

    2013-11-01

    Full Text Available Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin system, the oxytocin reception gene (OXTR. In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene may influence the functional anatomy of the amygdala, visual cortex, anterior cingulate and superior temporal gyrus. However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus, superior temporal sulcus, ventromedial prefrontal cortex, temporoparietal junction and nucleus accumbens. We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.

  13. Increasing the complexity: new genes and new types of albinism.

    Science.gov (United States)

    Montoliu, Lluís; Grønskov, Karen; Wei, Ai-Hua; Martínez-García, Mónica; Fernández, Almudena; Arveiler, Benoît; Morice-Picard, Fanny; Riazuddin, Saima; Suzuki, Tamio; Ahmed, Zubair M; Rosenberg, Thomas; Li, Wei

    2014-01-01

    Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells.

  14. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.

    Science.gov (United States)

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-04-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.

  15. Functions and applications of polypyridyl complexes in DNA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The syntheses and desymmetration of a series of novel polypyridyl ligands as well as their complexes, and their DNA-binding properties are reported in this review.The stresses are focused on the functions and potential applications of such complexes as DNA structural probe, DNA molecular light switches, anti-cancer drugs, and photoactivated cleavage agents.

  16. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  17. Lexical, Functional Grammar Analysis of Korean Complex Predicates.

    Science.gov (United States)

    Kim, Hee-Seob

    The structure of complementation in complex predicates in Korean has attracted configurational analysis. Using a lexical functional grammar (LFG) framework, this paper examines the structure of complementation in complex predicates. The term "predicate" in this context is used to describe both verbs and adjectives that are assumed to…

  18. Understanding the role of ETS-mediated gene regulation in complex biological processes.

    Science.gov (United States)

    Findlay, Victoria J; LaRue, Amanda C; Turner, David P; Watson, Patricia M; Watson, Dennis K

    2013-01-01

    Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Network properties of complex human disease genes identified through genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Fredrik Barrenas

    Full Text Available BACKGROUND: Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs, thereby eliminating discovery bias. PRINCIPAL FINDINGS: We derived a network of complex diseases (n = 54 and complex disease genes (n = 349 to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. CONCLUSIONS: This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  20. Network properties of complex human disease genes identified through genome-wide association studies.

    Science.gov (United States)

    Barrenas, Fredrik; Chavali, Sreenivas; Holme, Petter; Mobini, Reza; Benson, Mikael

    2009-11-30

    Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs), thereby eliminating discovery bias. We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  1. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  2. Phase Plots of Complex Functions: a Journey in Illustration

    CERN Document Server

    Wegert, Elias

    2010-01-01

    We propose to visualize complex (meromorphic) functions $f$ by their phase $P_f:=f/|f|$. Color--coding the points on the unit circle converts the function $P_f$ to an image (the phase plot of $f$), which represents the function directly on its domain. We discuss how special properties of $f$ are reflected by their phase plots and indicate several applications. In particular we reformulate a universality theorem for Riemann's Zeta function in the language of phase plots.

  3. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    OpenAIRE

    He Cui; Xi Lan; Shemin Lu; Fujun Zhang; Wanggang Zhang

    2017-01-01

    Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA) gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system in U937 cells...

  4. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    Directory of Open Access Journals (Sweden)

    Gao Haichun

    2007-08-01

    Full Text Available Abstract Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT, which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under

  5. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  6. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  7. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  8. Functional complexity and ecosystem stability: an experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; O' Neill, R.V.; Shugart, H.H.; Emanuel, W.R.

    1978-01-01

    The complexity-stability hypothesis was experimentally tested using intact terrestrial microcosms. Functional complexity was defined as the number and significance of component interactions (i.e., population interactions, physical-chemical reactions, biological turnover rates) influenced by nonlinearities, feedbacks, and time delays. It was postulated that functional complexity could be nondestructively measured through analysis of a signal generated from the system. Power spectral analysis of hourly CO/sub 2/ efflux, from eleven old-field microcosms, was analyzed for the number of low frequency peaks and used to rank the functional complexity of each system. Ranking of ecosystem stability was based on the capacity of the system to retain essential nutrients and was measured by net loss of Ca after the system was stressed. Rank correlation supported the hypothesis that increasing ecosystem functional complexity leads to increasing ecosystem stability. The results indicated that complex functional dynamics can serve to stabilize the system. The results also demonstrated that microcosms are useful tools for system-level investigations.

  9. Heat-inducible RNAi for gene functional analysis in plants.

    Science.gov (United States)

    Masclaux, Frédéric; Galaud, Jean-Philippe

    2011-01-01

    Controlling gene expression during plant development is an efficient method to explore gene function and RNA interference (RNAi) is now considered as a powerful technology for gene functional analysis. However, constitutive gene silencing cannot be used with genes involved in fundamental processes such as embryo viability or plant growth and alternative silencing strategies avoiding these limitations should be preferred. Tissue-specific and inducible promoters, able to control gene expression at spatial and/or temporal level, can be used to circumvent viability problems. In this chapter, after a rapid overview of the inducible promoters currently used for transgenic approaches in plants, we describe a method we have developed to study gene function by heat-inducible RNAi. This system is easy to use and complementary to those based on chemical gene inducer treatments and might be useful for both research and biotechnological applications.

  10. Semantic particularity measure for functional characterization of gene sets using gene ontology.

    Science.gov (United States)

    Bettembourg, Charles; Diot, Christian; Dameron, Olivier

    2014-01-01

    Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity. We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the term's distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure. Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.

  11. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  12. Significance tests for functional data with complex dependence structure

    KAUST Repository

    Staicu, Ana-Maria

    2015-01-01

    We propose an L (2)-norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  13. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba.

    Directory of Open Access Journals (Sweden)

    Gareth D Weedall

    2011-06-01

    Full Text Available The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.

  14. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba.

    Directory of Open Access Journals (Sweden)

    Gareth D Weedall

    2011-06-01

    Full Text Available The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.

  15. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation.

    Science.gov (United States)

    Tsuji, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2011-02-01

    Photoperiodic control of flowering time consists of a complicated network that converges into the generation of a mobile flowering signal called florigen. Recent advances identifying the protein FT/Hd3a as the molecular nature responsible for florigen activity have focused current research on florigen genes as the important output of this complex signaling network. Rice is a model system for short-day plants and recent progress in elucidating the flowering network from rice and Arabidopsis, a long-day plant, provides an evolutionarily comparative view of the photoperiodic flowering pathway. This review summarizes photoperiodic flowering control in rice, including the interaction of complex layers of gene networks contributed from evolutionarily unique factors and the regulatory adaptation of conserved factors.

  16. Dissection of complex gene expression using the combined analysis of pleiotropy and epistasis.

    Science.gov (United States)

    Philip, Vivek M; Tyler, Anna L; Carter, Gregory W

    2014-01-01

    Global transcript expression experiments are commonly used to investigate the biological processes that underlie complex traits. These studies can exhibit complex patterns of pleiotropy when trans-acting genetic factors influence overlapping sets of multiple transcripts. Dissecting these patterns into biological modules with distinct genetic etiology can provide models of how genetic variants affect specific processes that contribute to a trait. Here we identify transcript modules associated with pleiotropic genetic factors and apply genetic interaction analysis to disentangle the regulatory architecture in a mouse intercross study of kidney function. The method, called the combined analysis of pleiotropy and epistasis (CAPE), has been previously used to model genetic networks for multiple physiological traits. It simultaneously models multiple phenotypes to identify direct genetic influences as well as influences mediated through genetic interactions. We first identify candidate trans expression quantitative trait loci (eQTL) and the transcripts potentially affected. We then clustered the transcripts into modules of co-expressed genes, from which we compute summary module phenotypes. Finally, we applied CAPE to map the network of interacting module QTL (modQTL) affecting the gene modules. The resulting network mapped how multiple modQTL both directly and indirectly affect modules associated with metabolic functions and biosynthetic processes. This work demonstrates how the integration of pleiotropic signals in gene expression data can be used to infer a complex hypothesis of how multiple loci interact to co-regulate transcription programs, thereby providing additional constraints to prioritize validation experiments.

  17. Constructive Function Theory on Sets of the Complex Plane through Potential Theory and Geometric Function Theory

    OpenAIRE

    Andrievskii, Vladimir

    2006-01-01

    This is a survey of some recent results concerning polynomial inequalities and polynomial approximation of functions in the complex plane. The results are achieved by the application of methods and techniques of modern geometric function theory and potential theory.

  18. Tracing evolutionary footprints to identify novel gene functional linkages.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    Full Text Available Systematic determination of gene function is an essential step in fully understanding the precise contribution of each gene for the proper execution of molecular functions in the cell. Gene functional linkage is defined as to describe the relationship of a group of genes with similar functions. With thousands of genomes sequenced, there arises a great opportunity to utilize gene evolutionary information to identify gene functional linkages. To this end, we established a computational method (called TRACE to trace gene footprints through a gene functional network constructed from 341 prokaryotic genomes. TRACE performance was validated and successfully tested to predict enzyme functions as well as components of pathway. A so far undescribed chromosome partitioning-like protein ro03654 of an oleaginous bacteria Rhodococcus sp. RHA1 (RHA1 was predicted and verified experimentally with its deletion mutant showing growth inhibition compared to RHA1 wild type. In addition, four proteins were predicted to act as prokaryotic SNARE-like proteins, and two of them were shown to be localized at the plasma membrane. Thus, we believe that TRACE is an effective new method to infer prokaryotic gene functional linkages by tracing evolutionary events.

  19. Genome-Wide Identification and Functional Classification of Tomato (Solanum lycopersicum) Aldehyde Dehydrogenase (ALDH) Gene Superfamily.

    Science.gov (United States)

    Jimenez-Lopez, Jose C; Lopez-Valverde, Francisco J; Robles-Bolivar, Paula; Lima-Cabello, Elena; Gachomo, Emma W; Kotchoni, Simeon O

    2016-01-01

    Aldehyde dehydrogenases (ALDHs) is a protein superfamily that catalyzes the oxidation of aldehyde molecules into their corresponding non-toxic carboxylic acids, and responding to different environmental stresses, offering promising genetic approaches for improving plant adaptation. The aim of the current study is the functional analysis for systematic identification of S. lycopersicum ALDH gene superfamily. We performed genome-based ALDH genes identification and functional classification, phylogenetic relationship, structure and catalytic domains analysis, and microarray based gene expression. Twenty nine unique tomato ALDH sequences encoding 11 ALDH families were identified, including a unique member of the family 19 ALDH. Phylogenetic analysis revealed 13 groups, with a conserved relationship among ALDH families. Functional structure analysis of ALDH2 showed a catalytic mechanism involving Cys-Glu couple. However, the analysis of ALDH3 showed no functional gene duplication or potential neo-functionalities. Gene expression analysis reveals that particular ALDH genes might respond to wounding stress increasing the expression as ALDH2B7. Overall, this study reveals the complexity of S. lycopersicum ALDH gene superfamily and offers new insights into the structure-functional features and evolution of ALDH gene families in vascular plants. The functional characterization of ALDHs is valuable and promoting molecular breeding in tomato for the improvement of stress tolerance and signaling.

  20. FSim: A Novel Functional Similarity Search Algorithm and Tool for Discovering Functionally Related Gene Products

    Directory of Open Access Journals (Sweden)

    Qiang Hu

    2014-01-01

    Full Text Available Background. During the analysis of genomics data, it is often required to quantify the functional similarity of genes and their products based on the annotation information from gene ontology (GO with hierarchical structure. A flexible and user-friendly way to estimate the functional similarity of genes utilizing GO annotation is therefore highly desired. Results. We proposed a novel algorithm using a level coefficient-weighted model to measure the functional similarity of gene products based on multiple ontologies of hierarchical GO annotations. The performance of our algorithm was evaluated and found to be superior to the other tested methods. We implemented the proposed algorithm in a software package, FSim, based on R statistical and computing environment. It can be used to discover functionally related genes for a given gene, group of genes, or set of function terms. Conclusions. FSim is a flexible tool to analyze functional gene groups based on the GO annotation databases.

  1. Evolution of the Hox gene complex from an evolutionary ground state.

    Science.gov (United States)

    Gehring, Walter J; Kloter, Urs; Suga, Hiroshi

    2009-01-01

    In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes

  2. An improved method for functional similarity analysis of genes based on Gene Ontology.

    Science.gov (United States)

    Tian, Zhen; Wang, Chunyu; Guo, Maozu; Liu, Xiaoyan; Teng, Zhixia

    2016-12-23

    Measures of gene functional similarity are essential tools for gene clustering, gene function prediction, evaluation of protein-protein interaction, disease gene prioritization and other applications. In recent years, many gene functional similarity methods have been proposed based on the semantic similarity of GO terms. However, these leading approaches may make errorprone judgments especially when they measure the specificity of GO terms as well as the IC of a term set. Therefore, how to estimate the gene functional similarity reliably is still a challenging problem. We propose WIS, an effective method to measure the gene functional similarity. First of all, WIS computes the IC of a term by employing its depth, the number of its ancestors as well as the topology of its descendants in the GO graph. Secondly, WIS calculates the IC of a term set by means of considering the weighted inherited semantics of terms. Finally, WIS estimates the gene functional similarity based on the IC overlap ratio of term sets. WIS is superior to some other representative measures on the experiments of functional classification of genes in a biological pathway, collaborative evaluation of GO-based semantic similarity measures, protein-protein interaction prediction and correlation with gene expression. Further analysis suggests that WIS takes fully into account the specificity of terms and the weighted inherited semantics of terms between GO terms. The proposed WIS method is an effective and reliable way to compare gene function. The web service of WIS is freely available at http://nclab.hit.edu.cn/WIS/ .

  3. Finding consistent gene transmission patterns on large and complex pedigrees.

    Science.gov (United States)

    Pirinen, Matti; Gasbarra, Dario

    2006-01-01

    A heuristic algorithm for finding gene transmission patterns on large and complex pedigrees with partially observed genotype data is proposed. The method can be used to generate an initial point for a Markov chain Monte Carlo simulation or to check that the given pedigree and the genotype data are consistent. In small pedigrees, the algorithm is exact by exhaustively enumerating all possibilities, but, in large pedigrees, with a considerable amount of unknown data, only a subset of promising configurations can actually be checked. For that purpose, the configurations are ordered by combining the approximative conditional probability distribution of the unknown genotypes with the information on the relationships between individuals. We also introduce a way to divide the task into subparts, which has been shown to be useful in large pedigrees. The algorithm has been implemented in a program called APE (Allelic Path Explorer) and tested in three different settings with good results.

  4. Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation

    Science.gov (United States)

    Buffle, J.; Altmann, R. S.; Filella, M.; Tessier, A.

    1990-06-01

    This paper presents a new conceptual approach to interpreting titration curves of metal complexation by physically and chemically heterogeneous natural complexants such as humic acids, clays, complete soils, or sediments. The physico-chemical and analytical difficulties encountered with such systems are reviewed by comparison with a system containing only a few simple ligands, followed by discussion of the new approach on the same basis. It is shown that interpretation of heterogeneous complexant properties necessitates a preliminary transformation of experimental raw data into a function sufficiently normalized so as to allow comparison of results obtained under different conditions. A normalized function called a Site Occupation Distribution Function (SODF) and its potential usefulness is described here. The SODF is a readily computable function which relates the complexation buffer intensity of the system to the differential free energy of the complexation sites present. Its major interest is that it enables one to obtain both a rigorous mathematical description of the complexant properties (even when highly heterogeneous) at the macroscopic level and, in certain cases, an estimation of the molecular-scale behavior of particular site types. The relationship of the SODF to other distribution functions proposed in the literature is discussed and applications are exemplified using simulated and real natural systems. In particular, its utility is discussed in detail for (1) discriminating between different site types (major, minor, dominant, background), (2) evaluating the degree of heterogeneity of an unknown complexant system, (3) estimating the nature and true thermodynamic constants of complexes, and (4) yielding a rigorous definition of "complexation capacity."

  5. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2008-10-01

    Full Text Available Abstract Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS, which spans the promoter and untranslated regions of the ghrelin gene (GHRL. Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2. Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis, as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA genes, including 5' capping, polyadenylation, extensive splicing and short open reading

  6. The Zeta Functions of Complexes from $\\Sp(4)$

    CERN Document Server

    Fang, Yang; Wang, Chian-Jen

    2011-01-01

    Let $F$ be a non-archimedean local field with a finite residue field. To a 2-dimensional finite complex $X_\\Gamma$ arising as the quotient of the Bruhat-Tits building $X$ associated to $\\Sp_4(F)$ by a discrete torsion-free cocompact subgroup $\\Gamma$ of $\\PGSp_4(F)$, associate the zeta function $Z(X_{\\Gamma}, u)$ which counts geodesic tailless cycles contained in the 1-skeleton of $X_{\\Gamma}$. Using a representation-theoretic approach, we obtain two closed form expressions for $Z(X_{\\Gamma}, u)$ as a rational function in $u$. Equivalent statements for $X_{\\Gamma}$ being a Ramanujan complex are given in terms of vertex, edge, and chamber adjacency operators, respectively. The zeta functions of such Ramanujan complexes are distinguished by satisfying the Riemann Hypothesis.

  7. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Directory of Open Access Journals (Sweden)

    Dinesen Lotte C

    2009-01-01

    Full Text Available Abstract Background Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110 from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90, and performed a meta-analysis to increase power to detect non-tissue specific effects. Results In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (cis expression quantitative trait loci, eQTLs. 135 of the detected SNP-probe effects (reflecting 51 unique probes were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. Conclusion In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  8. X-linked genes and mental functioning

    National Research Council Canada - National Science Library

    Skuse, David H

    2005-01-01

    ... (as indicated by the large number of X-linked mental retardation syndromes). In addition, there is evidence for relatively specific effects of X-linked genes on social-cognition and emotional regulation...

  9. Interpolation and approximation by rational functions in the complex domain

    CERN Document Server

    Walsh, J L

    1935-01-01

    The present work is restricted to the representation of functions in the complex domain, particularly analytic functions, by sequences of polynomials or of more general rational functions whose poles are preassigned, the sequences being defined either by interpolation or by extremal properties (i.e. best approximation). Taylor's series plays a central role in this entire study, for it has properties of both interpolation and best approximation, and serves as a guide throughout the whole treatise. Indeed, almost every result given on the representation of functions is concerned with a generaliz

  10. Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera).

    Science.gov (United States)

    Angelini, David R; Liu, Paul Z; Hughes, Cynthia L; Kaufman, Thomas C

    2005-11-15

    Studies in genetic model organisms such as Drosophila have demonstrated that the homeotic complex (Hox) genes impart segmental identity during embryogenesis. Comparative studies in a wide range of other insect taxa have shown that the Hox genes are expressed in largely conserved domains along the anterior-posterior body axis, but whether they are performing the same functions in different insects is an open question. Most of the Hox genes have been studied functionally in only a few holometabolous insects that undergo metamorphosis. Thus, it is unclear how the Hox genes are functioning in the majority of direct-developing insects and other arthropods. To address this question, we used a combination of RNAi and in situ hybridization to reveal the expression, functions, and regulatory interactions of the Hox genes in the milkweed bug Oncopeltus fasciatus. Our results reveal many similarities and some interesting differences compared to Drosophila. We find that the gene Antennapedia is required for the identity of all three thoracic segments, while Ultrabithorax, abdominal-A and Abdominal-B cooperate to pattern the abdomen. The three abdominal genes exhibit posterior prevalence like in Drosophila, but apparently via some post-transcriptional mechanism. The functions of the head genes proboscipedia, Deformed, and Sex combs reduced were shown previously, and here we find that the complex temporal expression of pb in the labium is like that of other insects, but its regulatory relationship with Scr is unique. Overall, our data reveal that the evolution of insect Hox genes has included many small changes within general conservation of expression and function, and that the milkweed bug provides a useful model for understanding the roles of Hox genes in a direct-developing insect.

  11. Influence of RNAi knockdown for E-complex genes on the silkworm proleg development.

    Science.gov (United States)

    Xiang, H; Li, M W; Guo, J H; Jiang, J H; Huang, Y P

    2011-01-01

    Larvae of many holometabolous insects possess abdominal appendages called prolegs. Lepidoptera larvae have prolegs in the segments A3-A6. Functions of Lepidoptera hox genes on these abdominal appendages development is still a controversial issue. In this article, we report the use of double strand RNA (dsRNA)-mediated interference (RNAi) to dissect the function of some hox genes, specifically E-complex genes Ubx, abd-A, and Abd-B, in the ventral appendage development of the Lepidoptera silkworm, Bombyx mori. We found that Ubx RNAi caused leg identity in A1 segment, abd-A RNAi caused severe defect of abdominal prolegs and Abd-B RNAi allowed proleg identity in more posterior abdominal segments. These results confirm that Lepidoptera hox genes Ubx and Abd-B have evolved the repressing function to ventral appendage development, which is similar to those of Drosophila. However, Lepidoptera abd-A might have been modified distinctively during evolution, and has important roles in directing the development of prolegs.

  12. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes.

    Science.gov (United States)

    Pobbati, Ajaybabu V; Chan, Siew Wee; Lee, Ian; Song, Haiwei; Hong, Wanjin

    2012-07-03

    The structure of the complex between the transcription cofactor Vgll1 and the transcription factor TEAD4, the mammalian equivalent of the Drosophila Vestigial and Scalloped, respectively, is determined in this study. Remarkably, Vgll1 interacts with TEAD in a manner similar to the transcription coactivators, as well as oncogenes YAP and TAZ, despite having a varied primary sequence. Vgll1-TEAD complex upregulates the expression of IGFBP-5, a proliferation-promoting gene, and facilitates anchorage-independent cell proliferation. The YAP/TAZ-TEAD complex also upregulates several other proliferation-promoting genes and also promotes anchorage-independent cell proliferation. Given its structural and functional similarity to YAP/TAZ, Vgll1 has the potential to promote cancer progression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A functional profile of gene expression in ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Johnson Dianna A

    2005-11-01

    Full Text Available Abstract Background Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium. Methods Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile. Results We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel. Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes. Conclusion The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes

  14. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  15. CROWN FUNCTIONALIZED LINEAR POLYSILOXANE PLATINUM COMPLEX AS HYDROSILYLATION CATALYST

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; LU Xueran; GONG Shuling; ZHANG Baolian

    1994-01-01

    A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed by polycondensation with silanol-terminated polydimethylsiloxane to give the title crown functionalized linear polysiloxane. It was found that the polysiloxane could be coordinated with platinum salt to form platinum complex, which could catalyze the hydrosilylation of olefins with triethoxysilane efficiently.

  16. When natural selection gives gene function the cold shoulder.

    Science.gov (United States)

    Cutter, Asher D; Jovelin, Richard

    2015-11-01

    It is tempting to invoke organismal selection as perpetually optimizing the function of any given gene. However, natural selection can drive genic functional change without improvement of biochemical activity, even to the extinction of gene activity. Detrimental mutations can creep in owing to linkage with other selectively favored loci. Selection can promote functional degradation, irrespective of genetic drift, when adaptation occurs by loss of gene function. Even stabilizing selection on a trait can lead to divergence of the underlying molecular constituents. Selfish genetic elements can also proliferate independent of any functional benefits to the host genome. Here we review the logic and evidence for these diverse processes acting in genome evolution. This collection of distinct evolutionary phenomena - while operating through easily understandable mechanisms - all contribute to the seemingly counterintuitive notion that maintenance or improvement of a gene's biochemical function sometimes do not determine its evolutionary fate.

  17. RSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae.

    Science.gov (United States)

    Imamura, Yuko; Yu, Feifei; Nakamura, Misaki; Chihara, Yuhki; Okane, Kyo; Sato, Masahiro; Kanai, Muneyoshi; Hamada, Ryoko; Ueno, Masaru; Yukawa, Masashi; Tsuchiya, Eiko

    2015-01-01

    RSC (Remodel the Structure of Chromatin) is an ATP-dependent chromatin remodeling complex essential for the growth of Saccharomyces cerevisiae. RSC exists as two distinct isoforms that share core subunits including the ATPase subunit Nps1/Sth1 but contain either Rsc1or Rsc2. Using the synthetic genetic array (SGA) of the non-essential null mutation method, we screened for mutations exhibiting synthetic growth defects in combination with the temperature-sensitive mutant, nps1-105, and found connections between mitochondrial function and RSC. rsc mutants, including rsc1Δ, rsc2Δ, and nps1-13, another temperature-sensitive nps1 mutant, exhibited defective respiratory growth; in addition, rsc2Δ and nps1-13 contained aggregated mitochondria. The rsc2Δ phenotypes were relieved by RSC1 overexpression, indicating that the isoforms play a redundant role in respiratory growth. Genome-wide expression analysis in nps1-13 under respiratory conditions suggested that RSC regulates the transcription of some target genes of the HAP complex, a transcriptional activator of respiratory gene expression. Nps1 physically interacted with Hap4, the transcriptional activator moiety of the HAP complex, and overexpression of HAP4 alleviated respiratory defects in nps1-13, suggesting that RSC plays pivotal roles in mitochondrial gene expression and shares a set of target genes with the HAP complex.

  18. Methods for transient assay of gene function in floral tissues

    Directory of Open Access Journals (Sweden)

    Pathirana Nilangani N

    2007-01-01

    Full Text Available Abstract Background There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue. Results Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum chalcone synthase gene (CHS and the other an inverted repeat of the Antirrhinum transcription factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively, when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos terminator was also shown to be effective. Silencing spread systemically to create large zones of petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally within the affected epidermal cell layer and into lower cell layers, including the epidermis of the other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS and GFP to visualise transgene expression. Conclusion We demonstrate the feasibility of using biolistics-based transient RNAi, and transient transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We have also produced a vector for high throughput gene silencing studies, incorporating the option of using T-A cloning to

  19. Integration of functional complex oxide nanomaterials on silicon

    Directory of Open Access Journals (Sweden)

    Jose Manuel eVila-Fungueiriño

    2015-06-01

    Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.

  20. Horizontal functional gene transfer from bacteria to fishes.

    Science.gov (United States)

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei

    2015-12-22

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  1. Identification of genes for complex diseases using integrated analysis of multiple types of genomic data.

    Directory of Open Access Journals (Sweden)

    Hongbao Cao

    Full Text Available Various types of genomic data (e.g., SNPs and mRNA transcripts have been employed to identify risk genes for complex diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for integrative analysis can take advantage of complementary information and thus can have higher power to identify genes (and/or their functions that would otherwise be impossible with individual data analysis. Due to the different nature, structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the problem by developing a sparse representation based clustering (SRC method for integrative data analysis. As an example, we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls and expression data for 22283 genes in 80 subjects (40 cases and 40 controls to identify significant genes for osteoporosis (OP. Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., 'THSD4', 'CRHR1', 'HSD11B1', 'THSD7A', 'BMPR1B' 'ADCY10', 'PRL', 'CA8','ESRRA', 'CALM1', 'CALM1', 'SPARC', and 'LRP1'. Moreover, we uncovered novel osteoporosis susceptible genes ('DICER1', 'PTMA', etc. that were not found previously but play functionally important roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validates the proposed SRC approach for integrative analysis.

  2. Identification of genes for complex diseases using integrated analysis of multiple types of genomic data.

    Science.gov (United States)

    Cao, Hongbao; Lei, Shufeng; Deng, Hong-Wen; Wang, Yu-Ping

    2012-01-01

    Various types of genomic data (e.g., SNPs and mRNA transcripts) have been employed to identify risk genes for complex diseases. However, the analysis of these data has largely been performed in isolation. Combining these multiple data for integrative analysis can take advantage of complementary information and thus can have higher power to identify genes (and/or their functions) that would otherwise be impossible with individual data analysis. Due to the different nature, structure, and format of diverse sets of genomic data, multiple genomic data integration is challenging. Here we address the problem by developing a sparse representation based clustering (SRC) method for integrative data analysis. As an example, we applied the SRC method to the integrative analysis of 376821 SNPs in 200 subjects (100 cases and 100 controls) and expression data for 22283 genes in 80 subjects (40 cases and 40 controls) to identify significant genes for osteoporosis (OP). Comparing our results with previous studies, we identified some genes known related to OP risk (e.g., 'THSD4', 'CRHR1', 'HSD11B1', 'THSD7A', 'BMPR1B' 'ADCY10', 'PRL', 'CA8','ESRRA', 'CALM1', 'CALM1', 'SPARC', and 'LRP1'). Moreover, we uncovered novel osteoporosis susceptible genes ('DICER1', 'PTMA', etc.) that were not found previously but play functionally important roles in osteoporosis etiology from existing studies. In addition, the SRC method identified genes can lead to higher accuracy for the diagnosis/classification of osteoporosis subjects when compared with the traditional T-test and Fisher-exact test, which further validates the proposed SRC approach for integrative analysis.

  3. Genes Associated with Human Cancers: Their Expressions, Features, Functions, and Significance.

    Science.gov (United States)

    Maddaly, Ravi; Sahu, Bellona; Mohan, Divya K

    2015-01-01

    Various types of cancer continue to be subjects of intense research because of the impact of these diseases and their socioeconomic implications. Also, the complexity involved in the pathogenesis, nature of the triggers, and the progression of cancers is intriguing. An important aspect of cancers is the genetics involved, and studies involving cancer genes contributed immensely in not only understanding cancers better, but also for obtaining useful markers and therapy targets. We review the salient features, functions, and changes in gene expression for 103 carcinoma genes, 20 sarcoma genes, and 36 lymphoma genes. Apart from the three major levels of cancer type, we discuss the implications of altered gene expression at the tissue level as well. The possible uses of these gene functions and expression changes for diagnostic, prognostic, and therapeutic applications are presented. Also, the 159 genes are assessed for their involvement in more than a single cancer and tissue type. Only the p53 gene is commonly implicated in carcinomas, sarcoma and lymphomas. The CHEK2 and ERBB2 (HER2) genes are commonly found to be associated with carcinomas and sarcomas, whereas the MDM2, MSH2, and MSH6 genes are commonly implicated among carcinomas and lymphomas.

  4. Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine.

    Science.gov (United States)

    García-Gil, Maria Rosario

    2008-08-01

    According to the neutral theory of evolution, mutation and genetic drift are the only forces that shape unconstrained, neutral, gene evolution. Thus, pseudogenes (which often evolve neutrally) provide opportunities to obtain direct estimates of mutation rates that are not biased by selection, and gene families comprising functional and pseudogene members provide useful material for both estimating neutral mutation rates and identifying sites that appear to be under positive or negative selection pressures. Conifers could be very useful for such analyses since they have large and complex genomes. There is evidence that pseudogenes make significant contributions to the size and complexity of gene families in pines, although few studies have examined the composition and evolution of gene families in conifers. In this work, I examine the complexity and rates of mutation of the phytochrome gene family in Pinus sylvestris and show that it includes not only functional genes but also pseudogenes. As expected, the functional PHYO does not appear to have evolved neutrally, while phytochrome pseudogenes show signs of unconstrained evolution.

  5. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Felipe eMoraga

    2015-10-01

    Full Text Available Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.

  6. Saliva microbiota carry caries-specific functional gene signatures.

    Directory of Open Access Journals (Sweden)

    Fang Yang

    Full Text Available Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis.

  7. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    Science.gov (United States)

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  8. Genotype-based association models of complex diseases to detect gene-gene and gene-environment interactions.

    Science.gov (United States)

    Lobach, Iryna; Fan, Ruzong; Manga, Prashiela

    A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.

  9. Data compression for complex ambiguity function for emitter location

    Science.gov (United States)

    Pourhomayoun, Mohammed; Fowler, Mark L.

    2010-08-01

    The Complex Ambiguity Function (CAF) used in emitter location measurement is a 2-dimensional complex-valued function of time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA). In classical TDOA/FDOA systems, pairs of sensors share data (using compression) to compute the CAF, which is then used to estimate the TDOA/FDOA for each pair; the sets of TDOA/FDOA measurements are then transmitted to a common site where they are fused into an emitter location. However, in some recently published methods for improved emitter location methods, it has been proposed that after each pair of sensors computes the CAF it is the entire CAFs that should be shared rather than the extracted TDOA/FDOA estimates. This leads to a need for methods to compress the CAFs. Because a CAF is a 2-D functions it can be thought of as a form of image - albeit, a complex-valued image. We apply and appropriately modify the Embedded Zerotree Wavelet (EZW) to compress the Ambiguity Function. Several techniques are analyzed to exploit the correlation between the imaginary part and real part of Ambiguity Function and comparisons are made between the approaches. The impact of such compression on the overall location accuracy is assessed via simulations.

  10. Structure Under the Bushveld Complex, South Africa from Receiver Functions

    Science.gov (United States)

    Castillo, B. A.

    2015-12-01

    The Bushveld Igneous Complex (BIC) is the largest layered mafic intrusion on Earth and formed within Transvaal Basin in South Africa. The hypothesis that the limbs of the Rustenburg layer of the BIC are connected at depth is tested using teleseimic events of Mw > 5.5 to provide data under a seismic station (receiver) in the western limb of the BIC. Receiver functions have been computed from the data in order to image the layering under the Bushveld Complex. The receiver functions show discrete arrivals from the mafic layers, the Transvaal sediments under the BIC, and the Mohorovicic discontinuity at the base of the crust.. An interactive forward modeling method has been used to model the receiver functions in order to estimate the thickness of the BIC and the crust. Results show a BIC that is about 5-8 km thick and a Moho at ~40 km depth.

  11. GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology

    Directory of Open Access Journals (Sweden)

    Yang Da

    2007-01-01

    Full Text Available Abstract Background Rapid progress in high-throughput biotechnologies (e.g. microarrays and exponential accumulation of gene functional knowledge make it promising for systematic understanding of complex human diseases at functional modules level. Based on Gene Ontology, a large number of automatic tools have been developed for the functional analysis and biological interpretation of the high-throughput microarray data. Results Different from the existing tools such as Onto-Express and FatiGO, we develop a tool named GO-2D for identifying 2-dimensional functional modules based on combined GO categories. For example, it refines biological process categories by sorting their genes into different cellular component categories, and then extracts those combined categories enriched with the interesting genes (e.g., the differentially expressed genes for identifying the cellular-localized functional modules. Applications of GO-2D to the analyses of two human cancer datasets show that very specific disease-relevant processes can be identified by using cellular location information. Conclusion For studying complex human diseases, GO-2D can extract functionally compact and detailed modules such as the cellular-localized ones, characterizing disease-relevant modules in terms of both biological processes and cellular locations. The application results clearly demonstrate that 2-dimensional approach complementary to current 1-dimensional approach is powerful for finding modules highly relevant to diseases.

  12. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    Science.gov (United States)

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  13. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.

    NARCIS (Netherlands)

    Franke, L.; Bakel, H. van; Fokkens, L.; Jong, E.D. de; Egmont-Peterson, M.; Wijmenga, C.

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain

  14. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.

    NARCIS (Netherlands)

    Franke, L.; Bakel, H. van; Fokkens, L.; Jong, E.D. de; Egmont-Peterson, M.; Wijmenga, C.

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain

  15. Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica

    Directory of Open Access Journals (Sweden)

    Yellina Aravinda L

    2010-12-01

    Full Text Available Abstract Background The floral homeotic C function gene AGAMOUS (AG confers stamen and carpel identity and is involved in the regulation of floral meristem termination in Arabidopsis. Arabidopsis ag mutants show complete homeotic conversions of stamens into petals and carpels into sepals as well as indeterminacy of the floral meristem. Gene function analysis in model core eudicots and the monocots rice and maize suggest a conserved function for AG homologs in angiosperms. At the same time gene phylogenies reveal a complex history of gene duplications and repeated subfunctionalization of paralogs. Results EScaAG1 and EScaAG2, duplicate AG homologs in the basal eudicot Eschscholzia californica show a high degree of similarity in sequence and expression, although EScaAG2 expression is lower than EScaAG1 expression. Functional studies employing virus-induced gene silencing (VIGS demonstrate that knock down of EScaAG1 and 2 function leads to homeotic conversion of stamens into petaloid structures and defects in floral meristem termination. However, carpels are transformed into petaloid organs rather than sepaloid structures. We also show that a reduction of EScaAG1 and EScaAG2 expression leads to significantly increased expression of a subset of floral homeotic B genes. Conclusions This work presents expression and functional analysis of the two basal eudicot AG homologs. The reduction of EScaAG1 and 2 functions results in the change of stamen to petal identity and a transformation of the central whorl organ identity from carpel into petal identity. Petal identity requires the presence of the floral homeotic B function and our results show that the expression of a subset of B function genes extends into the central whorl when the C function is reduced. We propose a model for the evolution of B function regulation by C function suggesting that the mode of B function gene regulation found in Eschscholzia is ancestral and the C-independent regulation as

  16. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions.

    Science.gov (United States)

    Leister, Dario; Wang, Xi; Haberer, Georg; Mayer, Klaus F X; Kleine, Tatjana

    2011-09-01

    Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.

  17. A Theory of Decomposition of Complex Chemical Networks using the Hill Functions

    CERN Document Server

    Chikayama, Eisuke

    2014-01-01

    The design and synthesis of complex and large mimicked biochemical networks de novo is an unsolved problem in synthetic biology. To address this limitation without resorting to ad hoc computations and experiments, a predictive mathematical theory is required to reduce these complex chemical networks into natural physico-chemical expressions. Here we provide a mathematical theory that offers a physico-chemical expression for a large chemical network that is almost arbitrarily both nonlinear and complex. Unexpectedly, the theory demonstrates that such networks can be decomposed into reactions based solely on the Hill equation, a simple chemical logic gate. This theory, analogous to implemented electrical logic gates or functional algorithms in a computer, is proposed for implementing regulated sequences of functional chemical reactions, such as mimicked genes, transcriptional regulation, signal transduction, protein interaction, and metabolic networks, into an artificial designed chemical network.

  18. Characterization of the major histocompatibility complex class II genes in miiuy croaker.

    Directory of Open Access Journals (Sweden)

    Tianjun Xu

    Full Text Available Major histocompatibility complex (MHC has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. In order to study the molecular function and genomic characteristic of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy. As in other teleost, four exons and three introns were identified in miiuy croaker class IIA gene; but the difference is that six exons and five introns were identified in the miiuy croaker class IIB gene. The deduced amino acid sequence of class IIA and class IIB had 26.3-85.7% and 11.0-88.8% identity with those of mammal and teleost, respectively. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in ten normal tissues; expression levels of MHC genes were found first upregulated and then downregulated, and finally by a recovery to normal level throughout the pathogenic bacteria infection process. In addition, we report on the underlying mechanism that maintains sequences diversity among many fish species. A series of site-model tests implemented in the CODEML program revealed that positive Darwinian selection is likely the cause of the molecular evolution in the fish MHC class II genes.

  19. Structure and function of florigen and the receptor complex.

    Science.gov (United States)

    Taoka, Ken-ichiro; Ohki, Izuru; Tsuji, Hiroyuki; Kojima, Chojiro; Shimamoto, Ko

    2013-05-01

    In the 1930s, the flowering hormone, florigen, was proposed to be synthesized in leaves under inductive day length and transported to the shoot apex, where it induces flowering. More recently, generated genetic and biochemical data suggest that florigen is a protein encoded by the gene, FLOWERING LOCUS T (FT). A rice (Oryza sativa) FT homolog, Hd3a, interacts with the rice FD homolog, OsFD1, via a 14-3-3 protein. Formation of this tri-protein complex is essential for flowering promotion by Hd3a in rice. In addition, the multifunctionality of FT homologs, other than for flowering promotion, is an emerging concept. Here we review the structural and biochemical features of the florigen protein complex and discuss the molecular basis for the multifunctionality of FT proteins.

  20. Disorder and strain-induced complexity in functional materials

    CERN Document Server

    Saxena, Avadh; Planes, Antoni; Kakeshita, Tomoyuki

    2012-01-01

    This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.

  1. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    Science.gov (United States)

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  2. Measuring the evolution of ontology complexity: the gene ontology case study.

    Science.gov (United States)

    Dameron, Olivier; Bettembourg, Charles; Le Meur, Nolwenn

    2013-01-01

    Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable.

  3. Winge's sex-linked color patterns and SDL in the guppy: genes or gene complexes?

    Directory of Open Access Journals (Sweden)

    I. Valentin Petrescu-Mag

    2009-01-01

    Full Text Available In Poecilia reticulata, different phenotypes appear due to dominance, codominance, poligeny, or some demonstrated interallelic interactions. Recent(both molecular and classical investigations suggest a mechanism of expression of several different loci in a single color pattern, resulting in high numbers of possible color pattern phenotypes. The color pattern seems to be determined by complex interactions of many genes (at the same locus or not, located on the same chromosome or not, under variable environmental conditions. For example, the Maculatus color pattern is due to the presence of  both Maculatus red and Maculatus black elements. On their turn, having in view the latest definitions of  the gene, both Maculatus red and Maculatus black could have a composite nature, too. Sexdetermination in the guppy is studied since the 1920s. The deepest mechanism of sex determination is not clear yet, but classical studies of Winge early in the past century and recent molecular studies revealed a possible composite nature of the so called master sex determining gene, located at SDL of the Y chromosome.

  4. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions.

    Science.gov (United States)

    Finotti, Alessia; Bianchi, Nicoletta; Fabbri, Enrica; Borgatti, Monica; Breveglieri, Giulia; Gasparello, Jessica; Gambari, Roberto

    2015-01-01

    Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G+C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.

  5. Monitoring aromatic hydrocarbon biodegradation by functional marker genes

    Energy Technology Data Exchange (ETDEWEB)

    Nyyssoenen, Mari [Technical Research Centre of Finland, Espoo (Finland)], E-mail: mari.nyyssonen@vtt.fi; Piskonen, Reetta; Itaevaara, Merja [Technical Research Centre of Finland, Espoo (Finland)

    2008-07-15

    The development of biological treatment technologies for contaminated environments requires tools for obtaining direct information about the biodegradation of specific contaminants. The potential of functional gene array analysis to monitor changes in the amount of functional marker genes as indicators of contaminant biodegradation was investigated. A prototype functional gene array was developed for targeting key functions in the biodegradation of naphthalene, toluene and xylenes. Internal standard probe based normalization was introduced to facilitate comparison across multiple samples. Coupled with one-colour hybridization, the signal normalization improved the consistency among replicate hybridizations resulting in better discrimination for the differences in the amount of target DNA. During the naphthalene biodegradation in a PAH-contaminated soil slurry microcosm, the normalized hybridization signals in naphthalene catabolic gene probes were in good agreement with the amount of naphthalene-degradation genes and the production of {sup 14}CO{sub 2}. Gene arrays provide efficient means for monitoring of contaminant biodegradation in the environment. - Functional gene array analysis coupled with one-colour hybridization and internal standard based signal normalization provides efficient tool for monitoring contaminant biodegradation processes.

  6. Purification of the Pyruvate Dehydrogenase Multienzyme Complex of Zymomonas mobilis and Identification and Sequence Analysis of the Corresponding Genes

    Science.gov (United States)

    Neveling, Ute; Klasen, Ralf; Bringer-Meyer, Stephanie; Sahm, Hermann

    1998-01-01

    The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1α (38 kDa) and E1β (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAα (1,065 bp) and pdhAβ (1,389 bp), encoding the E1α and E1β subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAα, pdhAβ, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1β subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs. PMID:9515924

  7. Tumour necrosis factor gene complex polymorphisms in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Ruse, Charlotte E; Hill, Maureen C; Tobin, Martin; Neale, Natalie; Connolly, Martin J; Parker, Stuart G; Wardlaw, Andrew J

    2007-02-01

    We aimed to examine the role of tumour necrosis factor gene complex polymorphisms in subjects with chronic obstructive pulmonary disease (COPD). We hypothesized that individuals possessing polymorphic variants associated with higher tumour necrosis factor (TNF) secretion would be more susceptible to and/or have more severe disease. Patients with COPD and population controls underwent detailed clinical phenotyping. Genotyping for the tumour necrosis factor-308 and the lymphotoxin alpha NcoI (LTalpha polymorphisms was carried out by 'blinded' laboratory staff. Three hundred and sixty one individuals (220 cases and 141 controls) were recruited. We showed an association between the LTalphaNcol polymorphism and forced vital capacity (FVC) in a population of older adults with and without COPD. The LTalphaNcol*2 allele was associated with poorer lung function, under a codominant model, with a fall in FVC (expressed as a percentage of its predicted value) of 3.7% for each copy of the LTalphaNcol*2 allele possessed (for FVC, regression coefficient (95% CI)=-3.73(-7.01 to -0.44), P=0.026; for FEV(1) regression coefficient=-3.56(-7.80 to 0.70), P=0.101. However, there was no difference in genotype distribution between the case and control populations. This study adds weight to the suggestion that the TNF gene complex is involved in physiological alterations (FVC) that may affect the development and severity of COPD. The absence of a significant association between the TNF gene-complex polymorphisms in this study does not rule out a modest effect of these polymorphisms on the risk of COPD, as much larger studies are needed to detect modest gene effects on binary disease endpoints.

  8. Complexity of Propositional Abduction for Restricted Sets of Boolean Functions

    CERN Document Server

    Creignou, Nadia; Thomas, Michael

    2009-01-01

    Abduction is a fundamental and important form of non-monotonic reasoning. Given a knowledge base explaining how the world behaves it aims at finding an explanation for some observed manifestation. In this paper we focus on propositional abduction, where the knowledge base and the manifestation are represented by propositional formulae. The problem of deciding whether there exists an explanation has been shown to be SigmaP2-complete in general. We consider variants obtained by restricting the allowed connectives in the formulae to certain sets of Boolean functions. We give a complete classification of the complexity for all considerable sets of Boolean functions. In this way, we identify easier cases, namely NP-complete and polynomial cases; and we highlight sources of intractability. Further, we address the problem of counting the explanations and draw a complete picture for the counting complexity.

  9. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea.

  10. Prioritising risk pathways of complex human diseases based on functional profiling.

    Science.gov (United States)

    Li, Yan; Huang, Teng; Xiao, Yun; Ning, Shangwei; Wang, Peng; Wang, Qianghu; Chen, Xin; Chaohan, Xu; Sun, Donglin; Li, Xia; Li, Yixue

    2013-06-01

    Analysis of the biological pathways involved in complex human diseases is an important step in elucidating the pathogenesis and mechanism of diseases. Most pathway analysis approaches identify disease-related biological pathways using overlapping genes between pathways and diseases. However, these approaches ignore the functional biological association between pathways and diseases. In this paper, we designed a novel computational framework for prioritising disease-risk pathways based on functional profiling. The disease gene set and biological pathways were translated into functional profiles in the context of GO annotations. We then implemented a semantic similarity measurement for calculating the concordance score between a functional profile of disease genes and a functional profile of pathways (FPP); the concordance score was then used to prioritise and infer disease-risk pathways. A freely accessible web toolkit, 'Functional Profiling-based Pathway Prioritisation' (FPPP), was developed (http://bioinfo.hrbmu.edu.cn/FPPP). During validation, our method successfully identified known disease-pathway pairs with area under the ROC curve (AUC) values of 96.73 and 95.02% in tests using both pathway randomisation and disease randomisation. A robustness analysis showed that FPPP is reliable even when using data containing noise. A case study based on a dilated cardiomyopathy data set indicated that the high-ranking pathways from FPPP are well known to be linked with this disease. Furthermore, we predicted the risk pathways of 413 diseases by using FPPP to build a disease similarity landscape that systematically reveals the global modular organisation of disease associations.

  11. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  12. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  13. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.

    Science.gov (United States)

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y; Chen, Jin

    2015-02-14

    Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited. Supplementary information and software are available at http://www.msu.edu/~jinchen/NETSIM .

  14. Structure and function of the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    De Stefani, Diego; Patron, Maria; Rizzuto, Rosario

    2015-09-01

    The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²⁺ uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²⁺ uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²⁺ concentration, with low activity at resting [Ca²⁺] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²⁺ signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  15. Functional Insight From Fruit Flies on Human ADHD Candidate Genes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Arvidson, Sandra Marie Neumann

    2015-01-01

    , and increased risk of mental comorbidities, makes ADHD a disorder with high individual and societal costs. We use Drosophila melanogaster as a model to investigate the phenotypic consequences of gene disruption of 14 genes with human orthologs, selected by their proposed contribution to increased risk...... for other mutants. Decreased activity level, when treated with dexamphetamine, is seen when using other ADHD animal models. Our findings suggest involvement of the proposed candidate genes Genes, Brain, and Behavior 2015 36 Talk Abstracts in hyperactivity in D. melanogaster, providing functional evidence...

  16. Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes.

    Science.gov (United States)

    Carranza, Julio César; Kowaltowski, Alicia J; Mendonça, Marco Aurélio G; de Oliveira, Thays C; Gadelha, Fernanda R; Zingales, Bianca

    2009-06-01

    In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

  17. Caenorhabditis elegans lin-35/Rb, efl-1/E2F and other synthetic multivulva genes negatively regulate the anaphase-promoting complex gene mat-3/APC8.

    Science.gov (United States)

    Garbe, David; Doto, Jeffrey B; Sundaram, Meera V

    2004-06-01

    Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.

  18. Integrase-directed recovery of functional genes from genomic libraries.

    Science.gov (United States)

    Rowe-Magnus, Dean A

    2009-09-01

    Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.

  19. Ranking, selecting, and prioritising genes with desirability functions

    Directory of Open Access Journals (Sweden)

    Stanley E. Lazic

    2015-11-01

    Full Text Available In functional genomics experiments, researchers often select genes to follow-up or validate from a long list of differentially expressed genes. Typically, sharp thresholds are used to bin genes into groups such as significant/non-significant or fold change above/below a cut-off value, and ad hoc criteria are also used such as favouring well-known genes. Binning, however, is inefficient and does not take the uncertainty of the measurements into account. Furthermore, p-values, fold-changes, and other outcomes are treated as equally important, and relevant genes may be overlooked with such an approach. Desirability functions are proposed as a way to integrate multiple selection criteria for ranking, selecting, and prioritising genes. These functions map any variable to a continuous 0–1 scale, where one is maximally desirable and zero is unacceptable. Multiple selection criteria are then combined to provide an overall desirability that is used to rank genes. In addition to p-values and fold-changes, further experimental results and information contained in databases can be easily included as criteria. The approach is demonstrated with a breast cancer microarray data set. The functions and an example data set can be found in the desiR package on CRAN (https://cran.r-project.org/web/packages/desiR/ and the development version is available on GitHub (https://github.com/stanlazic/desiR.

  20. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Meehan Conor J

    2012-11-01

    Full Text Available Abstract Background Several links have been established between the human gut microbiome and conditions such as obesity and inflammatory bowel syndrome. This highlights the importance of understanding what properties of the gut microbiome can affect the health of the human host. Studies have been undertaken to determine the species composition of this microbiome and infer functional profiles associated with such host properties. However, lateral gene transfer (LGT between community members may result in misleading taxonomic attributions for the recipient organisms, thus making species-function links difficult to establish. Results We identified a peptides/nickel transport complex whose components differed in abundance based upon levels of host obesity, and assigned the encoded proteins to members of the microbial community. Each protein was assigned to several distinct taxonomic groups, with moderate levels of agreement observed among different proteins in the complex. Phylogenetic trees of these proteins produced clusters that differed greatly from taxonomic attributions and indicated that habitat-directed LGT of this complex is likely to have occurred, though not always between the same partners. Conclusions These findings demonstrate that certain membrane transport systems may be an important factor within an obese-associated gut microbiome and that such complexes may be acquired several times by different strains of the same species. Additionally, an example of individual proteins from different organisms being transferred into one operon was observed, potentially demonstrating a functional complex despite the donors of the subunits being taxonomically disparate. Our results also highlight the potential impact of habitat-directed LGT on the resident microbiota.

  1. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat.

    Science.gov (United States)

    Buchner, Peter; Hawkesford, Malcolm J

    2014-10-01

    NPF (formerly referred to as low-affinity NRT1) and 'high-affinity' NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling.

  2. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain

    Directory of Open Access Journals (Sweden)

    Lumsden Andrew

    2009-09-01

    Full Text Available Abstract Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh signalling from the zona limitans intrathalamica (ZLI, a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.

  3. FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    Directory of Open Access Journals (Sweden)

    Khlestkina E.

    2012-08-01

    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  4. Recent Achievement in Gene Cloning and Functional Genomics in Soybean

    Directory of Open Access Journals (Sweden)

    Zhengjun Xia

    2013-01-01

    Full Text Available Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean.

  5. Expression and evolution of functionally distinct haemoglobin genes in plants.

    Science.gov (United States)

    Hunt, P W; Watts, R A; Trevaskis, B; Llewelyn, D J; Burnell, J; Dennis, E S; Peacock, W J

    2001-11-01

    Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.

  6. Wave-function and density functional theory studies of dihydrogen complexes

    CERN Document Server

    Fabiano, E; Della Sala, F

    2014-01-01

    We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave-function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of non-local exchange contributions.

  7. Cost benefit theory and optimal design of gene regulation functions

    Science.gov (United States)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  8. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy

    NARCIS (Netherlands)

    Brown, Sara J.; Asai, Yuka; Cordell, Heather J.; Campbell, Linda E.; Zhao, Yiwei; Liao, Haihui; Northstone, Kate; Henderson, John; Alizadehfar, Reza; Ben-Shoshan, Moshe; Morgan, Kenneth; Roberts, Graham; Masthoff, Laury J. N.; Pasmans, Suzanne G. M. A.; van den Akker, Peter C.; Wijmenga, Cisca; Hourihane, Jonathan O'B.; Palmer, Colin N. A.; Lack, Gideon; Clarke, Ann; Hull, Peter R.; Irvine, Alan D.; McLean, W. H. Irwin

    2011-01-01

    Background: IgE-mediated peanut allergy is a complex trait with strong heritability, but its genetic basis is currently unknown. Loss-of-function mutations within the filaggrin gene are associated with atopic dermatitis and other atopic diseases; therefore, filaggrin is a candidate gene in the etiol

  9. Functional evaluations of genes disrupted in patients with Tourette’s Disorder

    Directory of Open Access Journals (Sweden)

    Nawei eSun

    2016-02-01

    Full Text Available Tourette Disorder (TD is a highly heritable neurodevelopmental disorder with complex genetic architecture and unclear neuropathology. Disruptions of particular genes have been identified in subsets of TD patients. However, none of the findings has been replicated, probably due to the complex and heterogeneous genetic architecture of TD that involves both common and rare variants. To understand the etiology of TD, functional analyses are required to characterize the molecular and cellular consequences caused by mutations in candidate genes. Such molecular and cellular alterations may converge into common biological pathways underlying the heterogeneous genetic etiology of TD patients. Herein, we review specific genes implicated in TD etiology, discuss the functions of these genes in the mammalian central nervous system and the corresponding behavioral anomalies exhibited in animal models and, importantly, review functional analyses that can be performed to evaluate the role(s that the genetic disruptions might play in TD. Specifically, the functional assays include novel cell culture systems, genome editing techniques, bioinformatics approaches, transcriptomic analyses and genetically modified animal models applied or developed to study genes associated with TD or with other neurodevelopmental and neuropsychiatric disorders. By describing methods used to study diseases with genetic architecture similar to TD, we hope to develop a systematic framework for investigating the etiology of TD and related disorders.

  10. The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region.

    Science.gov (United States)

    Hauth, Amy M; Maier, Uwe G; Lang, B Franz; Burger, Gertraud

    2005-01-01

    To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs approximately 40-700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, approximately 3 kb, inverted repeat and several potentially stable approximately 40-80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved.

  11. Calcitonin gene related peptide and its functions

    Directory of Open Access Journals (Sweden)

    Karimian M

    1998-07-01

    Full Text Available Calcitonin Gene Related Peptide (CGRP was first reported in 1982. This peptide contains 37 amino acids which could be found in Alpha and Beta forms. CGRP shows diversity both in its receptors and biological effects and up to now four different types of receptors have been reported. It can act like a neurotransmitter, local hormone and neuromodulator. They have a variety of effects on different organs such as a potent effect on vasodilation and smooth muscle relaxation. Ability of CGRP for induction of protein extravasation from blood vessels was uncertain. In this study intra-articular infusion of 10^-6 M CGRP to the rat knee joint induced significant protein extravasation into the rat knee joint space. The amount of protein was detected by modified Iawata method which could detect amount of protein between 5-500 mg/L. Higher and lower concentrations failed to induce protein extravasation. Failure in higher concentration was likely due to significant fall in blood pressure. In the presence of an arterial hypotension induced by an ? adenoreceptor antagonist, 10^-6 M of CGRP failed to produce protein extravasation. This effect of CGRP was a specific active effect and not a passive effect due to its potent vasodilation effect, as similar vasodilatory response induced by a ?-adrenoreceptor agonist failed to induce protein extravasation. There is more than 50% of sensory neurons which contain CGRP and they are spread in all over the body and joints, therefore CGRP induced protein extravasation can potentiate inflammation in different organs.

  12. Novel redox nanomedicine improves gene expression of polyion complex vector

    Science.gov (United States)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  13. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  14. hELP3 Subunit of the Elongator Complex Regulates the Transcription of HSP70 Gene in Human Cells

    Institute of Scientific and Technical Information of China (English)

    Qiuju HAN; Xiaozhe HOU; Dongmei SU; Lina PAN; Jizhou DUAN; Liguo CUI; Baiqu HUANG; Jun LU

    2007-01-01

    The human Elongator complex is remarkably similar to its yeast counterpart in several aspects.In a previous study, we analyzed the functions of the human elongation protein 3 (hELP3) subunit of the human Elongator by using an in vivo yeast complementation system. However, direct evidence for hELP3 functions in regulating gene expression in human cells was not obtained. In this study, we used hELP3 antisense oligonucleotide inhibitors to knock down hELP3 gene expression to investigate its function in human 293T cells. The results showed that specific reduction of hELP3 mRNA and protein caused a significant suppression of HSP70-2 gene expression, and this was accompanied by histone H3 hypoacetylation and decreased RNA polymerase Ⅱ density at the HSP70-2 gene. Moreover, the data also showed that hELP3 exerted the transcriptional regulatory function directly through its presence on the HSP70-2 gene. Data presented in this report provide further insight and direct evidence of the functions of hELP3 in HSP70-2 gene transcriptional elongation in human cells.

  15. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  16. Primary functional identification of gene TMSG-1

    Institute of Scientific and Technical Information of China (English)

    MA; Chunshu; (马春树); NING; Junyu; (宁钧宇); YOU; Jiangfeng; (由江峰); LIU; Lin; (柳林); WANG; Jieliang; (王洁良); CUI; Xianglin; (崔湘琳); WU; Bingquan; (吴秉铨); ZHENG; Jie; (郑杰)

    2003-01-01

    TMSG-1 was a tumor metastasis-related gene identified using mRNA differential display, whose expression level was lower in cancer cell lines with higher metastatic potential and in tumor tissue with metastasis. TMSG-1 was transfected to prostate cancer cell line (PC-3M-1E8) with high metastatic potential to observe the effects of increased expression of TMSG-1 on V-ATPase activity, intracellular pH and cell apoptosis. Subcellular localization of the encoded protein of TMSG-1 was determined by using GFP. Results showed that there were no differences of V-ATPase activity among parental PC-3M-1E8 cell line, pcDNA3 transfectant and anti-TMSG-1 transfectant, whereas the V-ATPase activity was significantly higher in TMSG-1 transfectant than that in parental PC-3M-1E8 cell line, pcDNA3 transfectant and Anti-TMSG-1 transfectant (p<0.001). Intracellular pH (pHi) was detected by using the pH-dependent fluorescence probe BECEF. Results showed the pHi was significantly increased in TMSG-1 transfectant. Cell apoptosis assay demonstrated cell apoptosis was significantly higher in -1 transfectant (p<0.01) and BCL2 expression was down regulated. Subcellular localization of TMSG-1 protein showed TMSG-1 was a transmembrane protein, which predicted TMSG-1 protein was located in cytoplasm system, such as endoplasmic reticulum and mitochondrial. These results indicated TMSG-1 up regulation in prostate cancer cell line could promote V-ATPase activity, increase pHi and cell apoptosis, and inhibit the expression of BCL2.

  17. Time scale hierarchies in the functional organization of complex behaviors.

    Directory of Open Access Journals (Sweden)

    Dionysios Perdikis

    2011-09-01

    Full Text Available Traditional approaches to cognitive modelling generally portray cognitive events in terms of 'discrete' states (point attractor dynamics rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human behaviour is decomposable into functional modes (elementary units, which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds. The ensemble of modes at an agent's disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals, in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time.

  18. Annotation of gene function in citrus using gene expression information and co-expression networks.

    Science.gov (United States)

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  19. A REVIEW ON THERMODYNAMICS AND FUNCTIONAL PROPERTIES OF COMPLEX COACERVATES

    Directory of Open Access Journals (Sweden)

    R. Gupta

    2012-12-01

    Full Text Available Complex coacervation is defined as associative interactions between oppositely charged functional groups of proteins and polysaccharides, which on separation, form a phase rich in polymeric compounds in equilibrium with another aqueous phase. So coacervates are macro-ionic hydrated complexes of two charged neutralized bioploymers. Voorn and Overbeek developed the first model on complex coacervation by applying Flory-Huggins theory for random mixing of polyions. Alternatively, Veis and Aryani proposed that initially charged pair of symmetrical aggregates forms, followed by phase separation, for modeling diverse range of aggregates. Physicochemical properties such as pH, ionic strength, ratio of protein to polysaccharide, polysaccharide and protein charge, and molecular weight, mechanical properties (shear force and temperature affect the formation and stability of coacervates. Improved structural, rheological, interfacial and delivery properties of these complexes than individual biopolymer can be exploited in numerous domains. This article intends to elucidate the salient features of coacervates which may contribute to better understanding of protein-polysaccharide systems, for their application in foods, cosmetics, pharmaceutical, and medicine.

  20. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  1. Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast.

    Science.gov (United States)

    Kaida, Daisuke; Toh-e, Akio; Kikuchi, Yoshiko

    2003-07-11

    Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae and is concerned with many functions such as endocytosis and transcription through ubiquitination of various substrates. Bul1 or its homologue Bul2 binds to Rsp5 through the PY-motif and the bul1 bul2 double mutant is sensitive to various stresses. We demonstrate here that heat shock element (HSE)-mediated gene expression was defective in both rsp5-101 and bul1 bul2 mutants under high temperature condition. The bul1 gene containing mutations in the PY motif region did not recover this defective gene expression of the bul1 bul2 mutant. The protein level and phosphorylation state of the HSE-binding transcription factor, Hsf1, was not affected by these mutations. Thus, the Rsp5-Bul1/2 complex has a new function for the HSE-mediated gene expression and may regulate it through other factors than Hsf1.

  2. Development of a Multi-functional Nano-device for Safe and Effective Gene Delivery to Target Organs.

    Science.gov (United States)

    Kodama, Yukinobu

    2016-01-01

     Nucleic acids are expected as novel effective medicines, although they require a drug delivery system (DDS). Complexes of nucleic acids with cationic liposomes and cationic polymers have been mainly used as DDS for clinical use. However, most cationic complexes have disadvantages such as strong cytotoxicity and low biocompatibility. We previously found that a plasmid DNA (pDNA) complex coated with biodegradable γ-polyglutamic acid (γ-PGA) provided adequate gene expression without cytotoxicity. Based on these results, we developed a new DDS (multi-functional Nano-device) of pDNA using biodegradable polyamino acids. A typical cationic polyamino acid, poly-L-lysine (PLL), was complexed with pDNA. The binary complexes, however, showed low gene expression and high cytotoxicity. Gene expression was enhanced by addition of poly-L-histidine (PLH) to the binary complexes. PLH can increase endosome escape of the complexes by inducing pH-buffering effects. The quaternary complexes (pDNA-PLL-PLH-γ-PGA complexes) exhibited high gene expression and low cytotoxicity. Furthermore, we used dendrigraft poly-L-lysine (DGL) instead of PLL and PLH to enhance gene expression. DGL had sterically congested cations and was biodegradable. The ternary complexes (pDNA-DGL-γ-PGA complexes) exhibited markedly high gene expression and low cytotoxicity. The pDNA-DGL-γ-PGA complexes also had high gene expression in the marginal zone (rich dendritic cells) of the spleen after intravenous injection into mice. These results indicate that pDNA-DGL-γ-PGA complexes may be useful as vaccine vectors. Therefore we prepared a novel malaria DNA vaccine using Plasmodium yoelii GPI8p-transamidase-related protein pDNA (PyTAM). The PyTAM-DGL-γ-PGA complexes markedly improved survival time of model mice infected with malaria.

  3. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  5. Sucrose metabolism gene families and their biological functions.

    Science.gov (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  6. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  7. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  8. The use of multiple hierarchically independent gene ontology terms in gene function prediction and genome annotation

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Burgt, van der A.; Bink, M.C.A.M.; Braak, ter C.J.F.; Ham, van R.C.H.J.

    2007-01-01

    The Gene Ontology (GO) is a widely used controlled vocabulary for the description of gene function. In this study we quantify the usage of multiple and hierarchically independent GO terms in the curated genome annotations of seven well-studied species. In most genomes, significant proportions (6 -

  9. Characterization, polymorphism and selection of major histocompatibility complex (MHC DAB genes in vulnerable Chinese egret (Egretta eulophotes.

    Directory of Open Access Journals (Sweden)

    Zeng Wang

    Full Text Available The major histocompatibility complex (MHC is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes. Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.

  10. Multiple enhancers contribute to spatial but not temporal complexity in the expression of the proneural gene, amos

    Directory of Open Access Journals (Sweden)

    zur Lage Petra I

    2006-11-01

    Full Text Available Abstract Background The regulation of proneural gene expression is an important aspect of neurogenesis. In the study of the Drosophila proneural genes, scute and atonal, several themes have emerged that contribute to our understanding of the mechanism of neurogenesis. First, spatial complexity in proneural expression results from regulation by arrays of enhancer elements. Secondly, regulation of proneural gene expression occurs in distinct temporal phases, which tend to be under the control of separate enhancers. Thirdly, the later phase of proneural expression often relies on positive autoregulation. The control of these phases and the transition between them appear to be central to the mechanism of neurogenesis. We present the first investigation of the regulation of the proneural gene, amos. Results Amos protein expression has a complex pattern and shows temporally distinct phases, in common with previously characterised proneural genes. GFP reporter gene constructs were used to demonstrate that amos has an array of enhancer elements up- and downstream of the gene, which are required for different locations of amos expression. However, unlike other proneural genes, there is no evidence for separable enhancers for the different temporal phases of amos expression. Using mutant analysis and site-directed mutagenesis of potential Amos binding sites, we find no evidence for positive autoregulation as an important part of amos control during neurogenesis. Conclusion For amos, as for other proneural genes, a complex expression pattern results from the sum of a number of simpler sub-patterns driven by specific enhancers. There is, however, no apparent separation of enhancers for distinct temporal phases of expression, and this correlates with a lack of positive autoregulation. For scute and atonal, both these features are thought to be important in the mechanism of neurogenesis. Despite similarities in function and expression between the Drosophila

  11. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-06-01

    Full Text Available Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C, nitrogen (N, and phosphorus (P cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip, we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH, transformation of hydroxylamine to nitrite (hao and ammonification (gdh genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated

  12. ABOUT COMPLEX APPROACH TO MODELLING OF TECHNOLOGICAL MACHINES FUNCTIONING

    Directory of Open Access Journals (Sweden)

    A. A. Honcharov

    2015-01-01

    Full Text Available Problems arise in the process of designing, production and investigation of a complicated technological machine. These problems concern not only properties of some types of equipment but they have respect to regularities of control object functioning as a whole. A technological machine is thought of as such technological complex where it is possible to lay emphasis on a control system (or controlling device and a controlled object. The paper analyzes a number of existing approaches to construction of models for controlling devices and their functioning. A complex model for a technological machine operation has been proposed in the paper; in other words it means functioning of a controlling device and a controlled object of the technological machine. In this case models of the controlling device and the controlled object of the technological machine can be represented as aggregate combination (elements of these models. The paper describes a conception on realization of a complex model for a technological machine as a model for interaction of units (elements in the controlling device and the controlled object. When a control activation is given to the controlling device of the technological machine its modelling is executed at an algorithmic or logic level and the obtained output signals are interpreted as events and information about them is transferred to executive mechanisms.The proposed scheme of aggregate integration considers element models as object classes and the integration scheme is presented as a combination of object property values (combination of a great many input and output contacts and combination of object interactions (in the form of an integration operator. Spawn of parent object descendants of the technological machine model and creation of their copies in various project parts is one of the most important means of the distributed technological machine modelling that makes it possible to develop complicated models of

  13. Comparative and functional analysis of cardiovascular-related genes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-01

    The ability to detect putative cis-regulatory elements in cardiovascular-related genes has been accelerated by the availability of genomic sequence data from numerous vertebrate species and the recent development of comparative genomic tools. This improvement is anticipated to lead to a better understanding of the complex regulatory architecture of cardiovascular (CV) genes and how genetic variants in these non-coding regions can potentially play a role in cardiovascular disease. This manuscript reviews a recently established database dedicated to the comparative sequence analysis of 250 human CV genes of known importance, 37 of which currently contain sequence comparison data for organisms beyond those of human, mouse and rat. These data have provided a glimpse into the variety of possible insights from deep vertebrate sequence comparisons and the identification of putative gene regulatory elements.

  14. Gene analogue finder: a GRID solution for finding functionally analogous gene products

    Directory of Open Access Journals (Sweden)

    Licciulli Flavio

    2007-09-01

    Full Text Available Abstract Background To date more than 2,1 million gene products from more than 100000 different species have been described specifying their function, the processes they are involved in and their cellular localization using a very well defined and structured vocabulary, the gene ontology (GO. Such vast, well defined knowledge opens the possibility of compare gene products at the level of functionality, finding gene products which have a similar function or are involved in similar biological processes without relying on the conventional sequence similarity approach. Comparisons within such a large space of knowledge are highly data and computing intensive. For this reason this project was based upon the use of the computational GRID, a technology offering large computing and storage resources. Results We have developed a tool, GENe AnaloGue FINdEr (ENGINE that parallelizes the search process and distributes the calculation and data over the computational GRID, splitting the process into many sub-processes and joining the calculation and the data on the same machine and therefore completing the whole search in about 3 days instead of occupying one single machine for more than 5 CPU years. The results of the functional comparison contain potential functional analogues for more than 79000 gene products from the most important species. 46% of the analyzed gene products are well enough described for such an analysis to individuate functional analogues, such as well-known members of the same gene family, or gene products with similar functions which would never have been associated by standard methods. Conclusion ENGINE has produced a list of potential functionally analogous relations between gene products within and between species using, in place of the sequence, the gene description of the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the quality of the associations of many gene products from non

  15. Coastline complexity: A parameter for functional classification of coastal environments

    Science.gov (United States)

    Bartley, J.D.; Buddemeier, R.W.; Bennett, D.A.

    2001-01-01

    To understand the role of the world's coastal zone (CZ) in global biogeochemical fluxes (particularly those of carbon, nitrogen, phosphorus, and sediments) we must generalise from a limited number of observations associated with a few well-studied coastal systems to the global scale. Global generalisation must be based on globally available data and on robust techniques for classification and upscaling. These requirements impose severe constraints on the set of variables that can be used to extract information about local CZ functions such as advective and metabolic fluxes, and differences resulting from changes in biotic communities. Coastal complexity (plan-view tortuosity of the coastline) is a potentially useful parameter, since it interacts strongly with both marine and terrestrial forcing functions to determine coastal energy regimes and water residence times, and since 'open' vs. 'sheltered' categories are important components of most coastal habitat classification schemes. This study employs the World Vector Shoreline (WVS) dataset, originally developed at a scale of 1:250 000. Coastline complexity measures are generated using a modification of the Angle Measurement Technique (AMT), in which the basic measurement is the angle between two lines of specified length drawn from a selected point to the closest points of intersection with the coastline. Repetition of these measurements for different lengths at the same point yields a distribution of angles descriptive of the extent and scale of complexity in the vicinity of that point; repetition of the process at different points on the coast provides a basis for comparing both the extent and the characteristic scale of coastline variation along different reaches of the coast. The coast of northwestern Mexico (Baja California and the Gulf of California) was used as a case study for initial development and testing of the method. The characteristic angle distribution plots generated by the AMT analysis were

  16. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  17. Photo-functional materials based on copper(Ⅰ) complexes

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanmin; TENG Feng; XU Zheng; QIAN Lei; ZHANG Ting; LIU Deang

    2004-01-01

    Copper(Ⅰ) complexes are attractive photo-functional materials due to their rich photochemical and photophysical properties. It has been proved that these new materials have potential application in many fields, such as organic light-emitting diodes, optical sensor, nonlinear optics and dye sensitized solar cells. The goal of this review is to outline the progress in this field. Many aspects, including new ligands, stereochemical control and the construction of supramolecules, design of the excited states, the high-energy emission and low-energy emission, the Cu-Cu bonding interactions and applications, are discussed.

  18. A complex network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  19. Impact of five SNPs in dopamine-related genes on executive function.

    Science.gov (United States)

    Mitaki, S; Isomura, M; Maniwa, K; Yamasaki, M; Nagai, A; Nabika, T; Yamaguchi, S

    2013-01-01

    Dopamine neurotransmission is a critical factor for executive function, which is controlled by the prefrontal cortex in humans. Although the contribution of genetic factors to the regulation of brain dopaminergic activity is widely acknowledged, identification of a genotype-phenotype association has not yet been clearly established. In this study, we therefore evaluated the effects of five functional single-nucleotide polymorphisms (SNPs) in specific genes related to dopamine neurotransmission on executive function in a general population. Participants of the health examination at the Shimane Institute of Health Science were recruited for this study (n = 964). To evaluate executive function, the Frontal Assessment Battery (FAB) was administered. SNPs were genotyped using the TaqMan method. A significant association was found between an SNP in the catechol-O-methyltransferase (COMT) gene (rs4680) encoding the low-activity Met allele and FAB score (P = 0.003). Of note, the flexibility subset of the FAB was associated with the SNP in COMT (P = 0.003) after adjustment for confounding factors. The generalized multifactor dimensionality reduction method identified that the combination of two SNPs in the COMT gene (rs4680) and the dopamine D4 receptor gene (rs1800955) had a significant effect on FAB score. Our study indicates a contribution of rs4680 in the COMT gene to the variability in executive function, as assessed by the FAB. In addition, we have indicated that a complex gene-gene interaction between SNPs in the genes related to dopamine neurotransmission may influence executive function in a general population. © 2012 John Wiley & Sons A/S.

  20. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  1. Complex analysis fundamentals of the classical theory of functions

    CERN Document Server

    Stalker, John

    1998-01-01

    This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...

  2. Magnetization patterns in ferromagnetic nanoelements as functions of complex variable.

    Science.gov (United States)

    Metlov, Konstantin L

    2010-09-03

    The assumption of a certain hierarchy of soft ferromagnet energy terms, realized in small enough flat nanoelements, allows us to obtain explicit expressions for their magnetization distributions. By minimizing the energy terms sequentially, from the most to the least important, magnetization distributions are expressed as solutions of the Riemann-Hilbert boundary value problem for a function of complex variable. A number of free parameters, corresponding to positions of vortices and antivortices, still remain in the expression. Thus, the presented approach is a factory of realistic Ritz functions for analytical (or numerical) micromagnetic calculations. Examples are given for multivortex magnetization distributions in a circular cylinder, and for two-dimensional domain walls in thin magnetic strips.

  3. Reelin and its complex involvement in brain development and function.

    Science.gov (United States)

    Lakatosova, Silvia; Ostatnikova, Daniela

    2012-09-01

    Reelin is a neuroprotein with crucial role during neurodevelopment and also in postnatal period. It regulates neuronal migration and positioning in developing neocortex and cerebellar cortex. Postnatally it participates in regulation of dendritic and axonal growth, synaptogenesis, neurotransmission and it contribute to synaptic plasticity necessary for learning and memory functions. Role of Reelin seems to be rather complex, profound research gradually uncovers its further functions. Deficits of Reelin were detected in neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism. Pathogenesis of these disorders is far from being clearly understood. Reelin contribution to these diseases seems to be vital, since genetic variants of Reelin were associated with these diseases and often influence symptom severity. Reelin is a promising candidate molecule with potential future use in diagnostics and therapy, however further detailed research is essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Solvation of complex surfaces via molecular density functional theory

    CERN Document Server

    Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-01-01

    We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...

  5. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Science.gov (United States)

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  6. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  7. Structure and function of Rac genes in higher plants

    Institute of Scientific and Technical Information of China (English)

    LUO Min; WU Naihu

    2003-01-01

    As the sole ubiquitous signal GTP-binding protein in higher plants, Rac genes act as pivotal molecular switches and participate in regulations of many life activities, such as cell morphogenesis and polarity growth, programmed cell death, production of H2O2, cell differentiation, and hormone reaction. Based on our work on rice Rac genes, this paper summarizes the researches on Rac genes in higher plant of the last ten years. It will help us to understand the relation between the signal tranduction and the biological functions of plant Rac.

  8. Diversity of total and functional microbiome of anammox reactors fed with complex and synthetic nitrogen-rich wastewaters

    DEFF Research Database (Denmark)

    Gülay, Arda; Pellicer i Nàcher, Carles; Mutlu, Ayten Gizem

    There are few comparitive studies of microbial structure, composition and phylogenetic diversity of the anammox reactors as a function of substrate complexity exist, representing a large gap in the scientific literature. In this study, we applied 16S rRNA gene (rDNA) tag-based 454 pyrosequencing ...

  9. Complex analysis I entire and meromorphic functions polyanalytic functions and their generalizations

    CERN Document Server

    Havin, V; Nikolski, N

    1997-01-01

    The first part of the volume contains a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications. It includes the fundamental notions, methods and results on the growth of entire functions and the distribution of their zeros, the Rolf Nevanlinna theory of distribution of values of meromorphic functions including the inverse problem, the theory of completely regular growth, the concept of limit sets for entire and subharmonic functions. The authors describe the interpolation by entire functions, to entire and meromorphic solutions of ordinary differential equations, to the Riemann boundary problem with an infinite index and to the arithmetic of the convolution semigroup of probability distributions. Polyanalytic functions form one of the most natural generalizations of analytic functions and are described in Part II. They emerged for the first time in plane elasticity theory where they found important applications (due to Kolossof, Mushelishvili e...

  10. A new gene ontology-based measure for the functional similarity of gene products

    Institute of Scientific and Technical Information of China (English)

    QI Guo-long; QIAN Shi-yu; FANG Ji-qian

    2013-01-01

    Background Although biomedical ontologies have standardized the representation of gene products across species and databases,a method for determining the functional similarities of gene products has not yet been developed.Methods We proposed a new semantic similarity measure based on Gene Ontology that considers the semantic influences from all of the ancestor terms in a graph.Our measure was compared with Resnik's measure in two applications,which were based on the association of the measure used with the gene co-expression and the proteinprotein interactions.Results The results showed a considerable association between the semantic similarity and the expression correlation and between the semantic similarity and the protein-protein interactions,and our measure performed the best overall.Conclusion These results revealed the potential value of our newly proposed semantic similarity measure in studying the functional relevance of gene products.

  11. PHYLOGENOMICS - GUIDED VALIDATION OF FUNCTION FOR CONSERVED UNKNOWN GENES

    Energy Technology Data Exchange (ETDEWEB)

    V, DE CRECY-LAGARD; D, HANSON A

    2012-01-03

    Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown function, or wrongly or vaguely annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We accordingly set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction is integrative, coupling the extensive post-genomic resources available for plants with comparative genomics based on hundreds of microbial genomes, and functional genomic datasets from model microorganisms. The early phase is computer-assisted; later phases incorporate intellectual input from expert plant and microbial biochemists. The approach thus bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is much more powerful than purely computational approaches to identifying gene-function associations. Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) are conserved between plants and prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology .. independent characteristics associated in the SEED database with the prokaryotic members of each family, specifically gene clustering and phyletic spread, as well as availability of functional genomics data, and publications that could link candidate families to general metabolic areas, or to specific functions. In-depth comparative genomic analysis was then performed for about 500 top candidate families, which connected ~55 of them to general areas of metabolism and led to specific functional predictions for a subset of ~25 more. Twenty predicted functions were experimentally tested in at least one prokaryotic organism

  12. Ontology-Based Prediction and Prioritization of Gene Functional Annotations.

    Science.gov (United States)

    Chicco, Davide; Masseroli, Marco

    2016-01-01

    Genes and their protein products are essential molecular units of a living organism. The knowledge of their functions is key for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. The association of a gene or protein with its functions, described by controlled terms of biomolecular terminologies or ontologies, is named gene functional annotation. Very many and valuable gene annotations expressed through terminologies and ontologies are available. Nevertheless, they might include some erroneous information, since only a subset of annotations are reviewed by curators. Furthermore, they are incomplete by definition, given the rapidly evolving pace of biomolecular knowledge. In this scenario, computational methods that are able to quicken the annotation curation process and reliably suggest new annotations are very important. Here, we first propose a computational pipeline that uses different semantic and machine learning methods to predict novel ontology-based gene functional annotations; then, we introduce a new semantic prioritization rule to categorize the predicted annotations by their likelihood of being correct. Our tests and validations proved the effectiveness of our pipeline and prioritization of predicted annotations, by selecting as most likely manifold predicted annotations that were later confirmed.

  13. Using genetically engineered animal models in the postgenomic era to understand gene function in alcoholism.

    Science.gov (United States)

    Reilly, Matthew T; Harris, R Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene's function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput "next-generation sequencing" technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism.

  14. Development and application of functional gene arrays for microbial community analysis

    Institute of Scientific and Technical Information of China (English)

    Z.L.HE; J.D.VAN NOSTRAND; L.Y.WU; J.Z.ZHOU

    2008-01-01

    Functional gene markers can provide important information about functional gene diversity and potential activity of microbial communities.Although microarray technology has been successfully applied to study gene expression for pure cultures,simple,and artificial microbial communities,adapting such a technology to analyze complex microbial communities still presents a lot of challenges in terms of design,sample preparation,and data analysis.This work is focused on the development and application of functional gene arrays (FGAs) to target key functional gene markers for microbial community studies.A few key issues specifically related to FGAs,such as oligonucleotide probe design,nucleic acid extraction and purification,data analysis,specificity,sensitivity,and quantitative capability are discussed in detail.Recent studies have demonstrated that FGAs can provide specific,sensitive,and potentially quantitative information about microbial communities from a variety of natural environments and controlled ecosystems.This technology is expected to revolutionize the analysis of microbial communities,and link microbial structure to ecosystem functioning.

  15. Karyopherins regulate nuclear pore complex barrier and transport function.

    Science.gov (United States)

    Kapinos, Larisa E; Huang, Binlu; Rencurel, Chantal; Lim, Roderick Y H

    2017-09-01

    Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)-specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine-glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control. © 2017 Kapinos et al.

  16. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression.

    Science.gov (United States)

    Whitton, Laura; Cosgrove, Donna; Clarkson, Christopher; Harold, Denise; Kendall, Kimberley; Richards, Alex; Mantripragada, Kiran; Owen, Michael J; O'Donovan, Michael C; Walters, James; Hartmann, Annette; Konte, Betina; Rujescu, Dan; Gill, Michael; Corvin, Aiden; Rea, Stephen; Donohoe, Gary; Morris, Derek W

    2016-12-01

    Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross-referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2. Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P = 0.001) and episodic memory (P = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    Energy Technology Data Exchange (ETDEWEB)

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The

  18. A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System

    Science.gov (United States)

    Tononi, Giulio; Sporns, Olaf; Edelman, Gerald M.

    1994-05-01

    In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (C_N), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. C_N is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. C_N is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of C_N. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.

  19. Emergence of Complexity in Protein Functions and Metabolic Networks

    Science.gov (United States)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  20. NUCLEAR GENE MUTATIONS AS THE CAUSE OF MITOCHONDRIAL COMPLEX III DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Erika eFernandez-Vizarra

    2015-04-01

    Full Text Available Complex III (CIII deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than ten years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last three-four years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided.

  1. Complex evolution of orthologous and paralogous decarboxylase genes.

    Science.gov (United States)

    Sáenz-de-Miera, L E; Ayala, F J

    2004-01-01

    The decarboxylases are involved in neurotransmitter synthesis in animals, and in pathways of secondary metabolism in plants. Different decarboxylase proteins are characterized for their different substrate specificities, but are encoded by homologous genes. We study, within a maximum-likelihood framework, the evolutionary relationships among dopa decarboxylase (Ddc), histidine decarboxylase (Hdc) and alpha-methyldopa hypersensitive (amd) in animals, and tryptophan decarboxylase (Wdc) and tyrosine decarboxylase (Ydc) in plants. The evolutionary rates are heterogeneous. There are differences between paralogous genes in the same lineages: 4.13 x 10(-10) nucleotide substitutions per site per year in mammalian Ddc vs. 1.95 in Hdc; between orthologous genes in different lineages, 7.62 in dipteran Ddc vs. 4.13 in mammalian Ddc; and very large temporal variations in some lineages, from 3.7 up to 54.9 in the Drosophila Ddc lineage. Our results are inconsistent with the molecular clock hypothesis.

  2. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions.

    Directory of Open Access Journals (Sweden)

    Ana Rita Araújo

    Full Text Available The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth, has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila, a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.

  3. Gene network analysis in a pediatric cohort identifies novel lung function genes.

    Directory of Open Access Journals (Sweden)

    Bruce A Ong

    Full Text Available Lung function is a heritable trait and serves as an important clinical predictor of morbidity and mortality for pulmonary conditions in adults, however, despite its importance, no studies have focused on uncovering pediatric-specific loci influencing lung function. To identify novel genetic determinants of pediatric lung function, we conducted a genome-wide association study (GWAS of four pulmonary function traits, including FVC, FEV1, FEV1/FVC and FEF25-75% in 1556 children. Further, we carried out gene network analyses for each trait including all SNPs with a P-value of <1.0 × 10(-3 from the individual GWAS. The GWAS identified SNPs with notable trends towards association with the pulmonary function measures, including the previously described INTS12 locus association with FEV1 (pmeta=1.41 × 10(-7. The gene network analyses identified 34 networks of genes associated with pulmonary function variables in Caucasians. Of those, the glycoprotein gene network reached genome-wide significance for all four variables. P-value range pmeta=6.29 × 10(-4 - 2.80 × 10(-8 on meta-analysis. In this study, we report on specific pathways that are significantly associated with pediatric lung function at genome-wide significance. In addition, we report the first loci associated with lung function in both pediatric Caucasian and African American populations.

  4. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils

    NARCIS (Netherlands)

    Hannula, S.E.; van Veen, J.A.

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in

  5. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection.

    Science.gov (United States)

    Gu, Jijin; Wang, Xiao; Jiang, Xinyi; Chen, Yanzuo; Chen, Liangcen; Fang, Xiaoling; Sha, Xianyi

    2012-01-01

    Biomaterials coated polymer/DNA complexes are developed as an efficient non-viral gene delivery system. It is able to circumvent the changes of various biophysical properties of the biomaterials and the corresponding polymer/DNA nanoparticles with covalent linkage. In the present study, we introduced pH-sensitive carboxymethyl poly (l-histidine) (CM-PLH) and poly (β-amino ester) (PbAE) as functional biomaterials to form CM-PLH/PbAE/DNA core-shell ternary complexes system based on electrostatically adsorbed coatings for gene efficient delivery and transfection. The preparation of the complexes was performed self-assembly in 25 mm sodium acetate buffer solution at pH 5.2. The complexes kept stable nano-size, behaving good condensation capacity and low toxicity, even provided a higher transfection efficiency than the binary complexes (PbAE/DNA without CM-PLH) and transfected up to (89.6 ± 4.45) % in HEK293 and (57.1 ± 2.10) % in B16-F10 in vitro. The ternary complexes significantly enhanced their cellular uptake and endosomal escape which were proved by the results that the complexes could evade the endosomal lumen and localize in the nucleus of treated cells visualized under Fluorescence Confocal Microscopy (FCM). The aforementioned results indicated that CM-PLH with pH-sensitive imidazole groups played an important role in enhancing the endosomal escape and transfection efficiency. The in vivo gene transfection confirmed that the ternary complexes with pGL3-promoter as led to effectively deposit at the tumor site by the EPR effect and shown 4 fold higher luciferase expression in B16-F10 tumor than the binary complexes. Consequently, CM-PLH/PbAE/DNA ternary complexes system exhibited significant improvements in transfection efficiency in comparison with non-coated PbAE/DNA both in vitro and in vivo, highlighting their functional prospect. Our approach and the gene delivery system fabrication could potentially be useful for effective gene delivery and therapies to

  6. A functional gene array for detection of bacterial virulence elements.

    Directory of Open Access Journals (Sweden)

    Crystal Jaing

    Full Text Available Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples.

  7. Functional and hierarchical interactions among zebrafish vox/vent homeobox genes.

    Science.gov (United States)

    Gilardelli, Claudio N; Pozzoli, Ombretta; Sordino, Paolo; Matassi, Giorgio; Cotelli, Franco

    2004-07-01

    The vertebrate Vox/Vent family of transcription factors plays a crucial role in the establishment of the dorsoventral (DV) axis, by repressing organizer genes such as bozozok/dharma, goosecoid, and chordino. In Danio rerio (zebrafish), members of the vox/vent gene family (vox/vega1, vent/vega2, and ved) are thought to share expression patterns and functional properties. Bringing novel insights in the differential activity of the zebrafish vox/vent genes, we propose a critical role for the ved gene in DV patterning of vertebrate embryos. ved is not only expressed as a maternal gene, but it also appears to function as a repressor of dorsal factors involved in organizer formation. At early- and mid-gastrula stage, ved appears to be finely controlled by antagonist crosstalks in a complex regulatory network, involving gradients of bone morphogenetic protein (BMP) activity, dorsal factors, and vox/vent family members. We show that ved transcripts are ventrally restricted by BMP factors such as bmp2b, bmp7, smad5, and alk8, and by dorsal factors (chd and gsc). Alteration of ved expression in both vox and vent deletion mutants and vox and vent mRNAs-injected embryos, suggests that vox and vent function downstream of BMP signaling to negatively regulate ved expression. This inhibitory role is emphasized by a vox and vent redundant activity, compared with single gene effects.

  8. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    Science.gov (United States)

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  9. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  10. New gene functions in megakaryopoiesis and platelet formation

    Science.gov (United States)

    Gieger, Christian; Radhakrishnan, Aparna; Cvejic, Ana; Tang, Weihong; Porcu, Eleonora; Pistis, Giorgio; Serbanovic-Canic, Jovana; Elling, Ulrich; Goodall, Alison H.; Labrune, Yann; Lopez, Lorna M.; Mägi, Reedik; Meacham, Stuart; Okada, Yukinori; Pirastu, Nicola; Sorice, Rossella; Teumer, Alexander; Voss, Katrin; Zhang, Weihua; Ramirez-Solis, Ramiro; Bis, Joshua C.; Ellinghaus, David; Gögele, Martin; Hottenga, Jouke-Jan; Langenberg, Claudia; Kovacs, Peter; O’Reilly, Paul F.; Shin, So-Youn; Esko, Tõnu; Hartiala, Jaana; Kanoni, Stavroula; Murgia, Federico; Parsa, Afshin; Stephens, Jonathan; van der Harst, Pim; van der Schoot, C. Ellen; Allayee, Hooman; Attwood, Antony; Balkau, Beverley; Bastardot, François; Basu, Saonli; Baumeister, Sebastian E.; Biino, Ginevra; Bomba, Lorenzo; Bonnefond, Amélie; Cambien, François; Chambers, John C.; Cucca, Francesco; D’Adamo, Pio; Davies, Gail; de Boer, Rudolf A.; de Geus, Eco J. C.; Döring, Angela; Elliott, Paul; Erdmann, Jeanette; Evans, David M.; Falchi, Mario; Feng, Wei; Folsom, Aaron R.; Frazer, Ian H.; Gibson, Quince D.; Glazer, Nicole L.; Hammond, Chris; Hartikainen, Anna-Liisa; Heckbert, Susan R.; Hengstenberg, Christian; Hersch, Micha; Illig, Thomas; Loos, Ruth J. F.; Jolley, Jennifer; Khaw, Kay Tee; Kühnel, Brigitte; Kyrtsonis, Marie-Christine; Lagou, Vasiliki; Lloyd-Jones, Heather; Lumley, Thomas; Mangino, Massimo; Maschio, Andrea; Leach, Irene Mateo; McKnight, Barbara; Memari, Yasin; Mitchell, Braxton D.; Montgomery, Grant W.; Nakamura, Yusuke; Nauck, Matthias; Navis, Gerjan; Nöthlings, Ute; Nolte, Ilja M.; Porteous, David J.; Pouta, Anneli; Pramstaller, Peter P.; Pullat, Janne; Ring, Susan M.; Rotter, Jerome I.; Ruggiero, Daniela; Ruokonen, Aimo; Sala, Cinzia; Samani, Nilesh J.; Sambrook, Jennifer; Schlessinger, David; Schreiber, Stefan; Schunkert, Heribert; Scott, James; Smith, Nicholas L.; Snieder, Harold; Starr, John M.; Stumvoll, Michael; Takahashi, Atsushi; Tang, W. H. Wilson; Taylor, Kent; Tenesa, Albert; Thein, Swee Lay; Tönjes, Anke; Uda, Manuela; Ulivi, Sheila; van Veldhuisen, Dirk J.; Visscher, Peter M.; Völker, Uwe; Wichmann, H.-Erich; Wiggins, Kerri L.; Willemsen, Gonneke; Yang, Tsun-Po; Zhao, Jing Hua; Zitting, Paavo; Bradley, John R.; Dedoussis, George V.; Gasparini, Paolo; Hazen, Stanley L.; Metspalu, Andres; Pirastu, Mario; Shuldiner, Alan R.; van Pelt, L. Joost; Zwaginga, Jaap-Jan; Boomsma, Dorret I.; Deary, Ian J.; Franke, Andre; Froguel, Philippe; Ganesh, Santhi K.; Jarvelin, Marjo-Riitta; Martin, Nicholas G.; Meisinger, Christa; Psaty, Bruce M.; Spector, Timothy D.; Wareham, Nicholas J.; Akkerman, Jan-Willem N.; Ciullo, Marina; Deloukas, Panos; Greinacher, Andreas; Jupe, Steve; Kamatani, Naoyuki; Khadake, Jyoti; Kooner, Jaspal S.; Penninger, Josef; Prokopenko, Inga; Stemple, Derek; Toniolo, Daniela; Wernisch, Lorenz; Sanna, Serena; Hicks, Andrew A.; Rendon, Augusto; Ferreira, Manuel A.; Ouwehand, Willem H.; Soranzo, Nicole

    2012-01-01

    Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function. PMID:22139419

  11. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  12. Investigation of gene expression profiles in coronary heart disease and functional analysis of target gene

    Institute of Scientific and Technical Information of China (English)

    YIN HuiJun; MA Xiaoduan; JIANG YueRong; SHI DaZhuo; CHEN KeJi

    2009-01-01

    The research outlined here includes constitution of the differential gene expression profile by means of oligonucleotide gene microarray and functional analysis of the target gene for coronary heart disease (CHD). In a microarray screening experiment, the predominance of inflammation-and immune-related genes is presented in the expression profile of 107 differential genes based on the analysis of gene ontology and gene pathway. IL-8, an inflammatory factor, is identified as one of the genes that were markedly up-regulated in CHD. The plasma level of IL-8 is significantly raised in patients with CHD (n = 30) compared with healthy controls (n = 40), which underscores the clinical relevance of the in vitro finding. The further functional analysis shows that IL-8 affects platelet aggregation percentage, ex-pression of CD62p and platelet aggregation morphology in 12 healthy volunteers to some extent. These findings suggest the relevance of inflammation and immune responses to CHD at the DNA level. Moreover, IL-8 may be involved in the pathogenesis of CHD through the pathway of platelet activation.

  13. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  14. Size dependence of complex refractive index function of growing nanoparticles

    Science.gov (United States)

    Eremin, A.; Gurentsov, E.; Popova, E.; Priemchenko, K.

    2011-08-01

    The evidence of the change of the complex refractive index function E( m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr-F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E( m) variation. Small carbon particles of about 1-14 nm in diameter had a low value of E( m)˜0.05-0.07, which tends to increase up to a value of 0.2-0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E( m) rise from ˜0.1 for particles 1-3 nm in diameter up to ˜0.2 for particles >12 nm in diameter.

  15. Information theory applied to the sparse gene ontology annotation network to predict novel gene function

    Science.gov (United States)

    Tao, Ying; Li, Jianrong

    2010-01-01

    Motivation Despite advances in the gene annotation process, the functions of a large portion of the gene products remain insufficiently characterized. In addition, the “in silico” prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or function genomics approaches. Results We propose a novel approach, Information Theory-based Semantic Similarity (ITSS), to automatically predict molecular functions of genes based on Gene Ontology annotations. We have demonstrated using a 10-fold cross-validation that the ITSS algorithm obtains prediction accuracies (Precision 97%, Recall 77%) comparable to other machine learning algorithms when applied to similarly dense annotated portions of the GO datasets. In addition, such method can generate highly accurate predictions in sparsely annotated portions of GO, in which previous algorithm failed to do so. As a result, our technique generates an order of magnitude more gene function predictions than previous methods. Further, this paper presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions for an evaluation than generally used cross-validations type of evaluations. By manually assessing a random sample of 100 predictions conducted in a historical roll-back evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43%–58%) can be achieved for the human GO Annotation file dated 2003. Availability The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset are available at http://phenos.bsd.uchicago.edu/mphenogo/prediction_result_2005.txt. PMID:17646340

  16. Predictive screening for regulators of conserved functional gene modules (gene batteries in mammals

    Directory of Open Access Journals (Sweden)

    Sigvardsson Mikael

    2005-05-01

    Full Text Available Abstract Background The expression of gene batteries, genomic units of functionally linked genes which are activated by similar sets of cis- and trans-acting regulators, has been proposed as a major determinant of cell specialization in metazoans. We developed a predictive procedure to screen the mouse and human genomes and transcriptomes for cases of gene-battery-like regulation. Results In a screen that covered ~40 per cent of all annotated protein-coding genes, we identified 21 co-expressed gene clusters with statistically supported sharing of cis-regulatory sequence elements. 66 predicted cases of over-represented transcription factor binding motifs were validated against the literature and fell into three categories: (i previously described cases of gene battery-like regulation, (ii previously unreported cases of gene battery-like regulation with some support in a limited number of genes, and (iii predicted cases that currently lack experimental support. The novel predictions include for example Sox 17 and RFX transcription factor binding sites that were detected in ~10% of all testis specific genes, and HNF-1 and 4 binding sites that were detected in ~30% of all kidney specific genes respectively. The results are publicly available at http://www.wlab.gu.se/lindahl/genebatteries. Conclusion 21 co-expressed gene clusters were enriched for a total of 66 shared cis-regulatory sequence elements. A majority of these predictions represent novel cases of potential co-regulation of functionally coupled proteins. Critical technical parameters were evaluated, and the results and the methods provide a valuable resource for future experimental design.

  17. PRODH gene is associated with executive function in schizophrenic families.

    Science.gov (United States)

    Li, Tao; Ma, Xiaohong; Hu, Xun; Wang, Yingcheng; Yan, Chengying; Meng, Huaqing; Liu, Xiehe; Toulopoulou, Timothea; Murray, Robin M; Collier, David A

    2008-07-05

    The aim of this study was to investigate the relationship between polymorphisms in the PRODH and COMT genes and selected neurocognitive functions. Six SNPs in PRODH and two SNPs in COMT were genotyped in 167 first-episode schizophrenic families who had been assessed by a set of 14 neuropsychological tests. Neuropsychological measures were selected as quantitative traits for association analysis. The haplotype of SNPs PRODH 1945T/C and PRODH 1852G/A was associated with impaired performance on the Tower of Hanoi, a problem-solving task mainly reflecting planning capacity. There was no significant evidence for association with any other neuropsychological traits for other SNPs or haplotypes of paired SNPs in the two genes. This study takes previous findings of association between PRODH and schizophrenia further by associating variation within the gene with performance on a neurocognitive trait characteristic of the illness. It fails to confirm previous reports of an association between COMT and cognitive function.

  18. JAG: A Computational Tool to Evaluate the Role of Gene-Sets in Complex Traits.

    Science.gov (United States)

    Lips, Esther S; Kooyman, Maarten; de Leeuw, Christiaan; Posthuma, Danielle

    2015-05-14

    Gene-set analysis has been proposed as a powerful tool to deal with the highly polygenic architecture of complex traits, as well as with the small effect sizes typically found in GWAS studies for complex traits. We developed a tool, Joint Association of Genetic variants (JAG), which can be applied to Genome Wide Association (GWA) data and tests for the joint effect of all single nucleotide polymorphisms (SNPs) located in a user-specified set of genes or biological pathway. JAG assigns SNPs to genes and incorporates self-contained and/or competitive tests for gene-set analysis. JAG uses permutation to evaluate gene-set significance, which implicitly controls for linkage disequilibrium, sample size, gene size, the number of SNPs per gene and the number of genes in the gene-set. We conducted a power analysis using the Wellcome Trust Case Control Consortium (WTCCC) Crohn's disease data set and show that JAG correctly identifies validated gene-sets for Crohn's disease and has more power than currently available tools for gene-set analysis. JAG is a powerful, novel tool for gene-set analysis, and can be freely downloaded from the CTG Lab website.

  19. JAG: A Computational Tool to Evaluate the Role of Gene-Sets in Complex Traits

    Directory of Open Access Journals (Sweden)

    Esther S. Lips

    2015-05-01

    Full Text Available Gene-set analysis has been proposed as a powerful tool to deal with the highly polygenic architecture of complex traits, as well as with the small effect sizes typically found in GWAS studies for complex traits. We developed a tool, Joint Association of Genetic variants (JAG, which can be applied to Genome Wide Association (GWA data and tests for the joint effect of all single nucleotide polymorphisms (SNPs located in a user-specified set of genes or biological pathway. JAG assigns SNPs to genes and incorporates self-contained and/or competitive tests for gene-set analysis. JAG uses permutation to evaluate gene-set significance, which implicitly controls for linkage disequilibrium, sample size, gene size, the number of SNPs per gene and the number of genes in the gene-set. We conducted a power analysis using the Wellcome Trust Case Control Consortium (WTCCC Crohn’s disease data set and show that JAG correctly identifies validated gene-sets for Crohn’s disease and has more power than currently available tools for gene-set analysis. JAG is a powerful, novel tool for gene-set analysis, and can be freely downloaded from the CTG Lab website.

  20. A functional TOC complex contributes to gravity signal transduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Allison Karen Strohm

    2014-04-01

    Full Text Available Although plastid sedimentation has long been recognized as important for a plant’s perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in Toc132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  1. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    Science.gov (United States)

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  2. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  3. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    Directory of Open Access Journals (Sweden)

    Sepil Irem

    2012-05-01

    Full Text Available Abstract Background The critical role of Major Histocompatibility Complex (Mhc genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help

  4. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  5. The dystrophin gene and cognitive function in the general population

    NARCIS (Netherlands)

    D. Vojinovic (Dina); H.H.H. Adams (Hieab); S. van der Lee (Sven); C.A. Ibrahim-Verbaas (Carla); R.W.W. Brouwer (Rutger); M.C.G.N. van den hout (Mirjam); E. Oole (Edwin); J. van Rooij (Jeroen); A.G. Uitterlinden (André); A. Hofman (Albert); W.F.J. van IJcken (Wilfred); A. Aartsma-Rus (Annemieke); G.-J.B. Van Ommen (Gert-Jan B.); M.A. Ikram (Arfan); C.M. van Duijn (Cornelia M.); N. Amin (Najaf)

    2015-01-01

    textabstractThe aim of our study is to investigate whether single-nucleotide dystrophin gene (DMD) variants associate with variability in cognitive functions in healthy populations. The study included 1240 participants from the Erasmus Rucphen family (ERF) study and 1464 individuals from the Rotterd

  6. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  7. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  8. Complex graphemes as functional spelling units: evidence from acquired dysgraphia.

    Science.gov (United States)

    Tainturier, M J; Rapp, B C

    2004-04-01

    The visual word recognition literature suggests that complex graphemes (or digraphs) such as CK function as units. This proposal has also been put forward in recent spelling models (Houghton and Zorzi, 2003) and the study we report on here provides initial empirical support for the claim. We performed detailed analyses of the spelling performance of two brain-damaged individuals with graphemic buffer deficits. Results revealed that (a) FM and BWN made fewer errors on consonant digraphs (e.g., CK) than on matched controls clusters (e.g., CR) and (b) BWN produced more transposition errors on vowel digraphs than on control clusters. These result support the view that digraphs are represented as units in which the relative order of constituent letters is encoded.

  9. Hash function construction using weighted complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper.First,the original message is divided into blocks.Then,each block is divided into components,and the nodes and weighted edges are well defined from these components and their relations.Namely,the WCDN closely related to the original message is established.Furthermore,the node dynamics of the WCDN are chosen as a chaotic map.After chaotic iterations,quantization and exclusive-or operations,the fixed-length hash value is obtained.This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN,leading to very different hash values.Analysis and simulation show that the scheme possesses good statistical properties,excellent confusion and diffusion,strong collision resistance and high efficiency.

  10. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation

    Science.gov (United States)

    Neuvonen, Minna-Maria; Tamarit, Daniel; Näslund, Kristina; Liebig, Juergen; Feldhaar, Heike; Moran, Nancy A.; Guy, Lionel; Andersson, Siv G. E.

    2016-01-01

    Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species name Candidatus Tokpelaia hoelldoblerii. A phylogenetic analysis reveals a relationship to Bartonella and Brucella, which infect mammals. Novel gene acquisitions include a gene for a putative extracellular protein of more than 6,000 amino acids secreted by the type I secretion system, which may be involved in attachment to the gut epithelium. No genes for nitrogen fixation could be identified, but genes for a multi-subunit urease protein complex are present in the genome. The urease genes are also present in Brucella, which has a fecal-oral transmission pathway, but not in Bartonella, which use blood-borne transmission pathways. We hypothesize that the gain and loss of the urease function is related to transmission strategies and lifestyle changes in the host-associated members of the Rhizobiales. PMID:27976703

  11. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    Science.gov (United States)

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  12. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  13. Complex Subduction Imaged by Diffractional Tomography of USArray Receiver Functions

    Science.gov (United States)

    Zhou, Y.

    2016-12-01

    Subduction of a large oceanic plate beneath a continental plate is a complex process. In the Western United States, fragmentation of the Farallon slab has been reported in recent tomographic models. In this study, we measure finite-frequency travel times of P410s and P660s receiver functions recorded at USArray Transportable Array (TA) stations for teleseismic events occurred between 2015 and 2011. We calculate the finite-frequency sensitivities of receiver functions to depth perturbations of the 410-km and 660-km discontinuities to obtain high resolution mantle transition zone models based on diffractional tomography. The high-resolution discontinuity models reveal several interesting anomalies associated with complex subduction of the Farallon plate. In particular, we observe a linear feature in both the 410-km and 660-km discontinuity models. This mantle transition zone anomaly is roughly located in the western Snake River Plain and aligns with a major slab gap imaged in an earlier finite-frequency S-wave velocity model. We show that non-stationary upwellings generated by eastward propagation of a slab tearing event, together with a westward motion of the North American plate at a rate of about 1 to 1.5 centimeters per year (comparable to the half spreading rate of the Mid-Atlantic Ridge) in the past 16 million years can explain the age-progressive Snake River Plain / Yellowstone volcanic track. The slab to the west of the anomaly shows a near vertical subduction, it is heavily fragmented and the 410-km and 660-km discontinuity topography indicates that the southern fragment north of the Mendocino triple junction has subducted down to the mantle transition zone.

  14. Establishment of the Comprehensive Shape Similarity Model for Complex Polygon Entity by Using Bending Mutilevel Chord Complex Function

    Directory of Open Access Journals (Sweden)

    CHEN Zhanlong

    2016-02-01

    Full Text Available A method about shape similarity measurement of complex holed objects is proposed in this paper. The method extracts features including centroid distance, multilevel chord length, bending degree and concavity-convexity of a geometric object, to construct complex functions based on multilevel bending degree and radius. The complex functions are capable of describing geometry shape from entirety to part. The similarity between geometric objects can be measured by the shape descriptor which is based on the fast Fourier transform of the complex functions. Meanwhile, the matching degree of each scene of complex holed polygons can be got by scene completeness and shape similarity model. And using the feature of multi-level can accomplish the shape similarity measurement among complex geometric objects. Experimenting on geometric objects of different space complexity, the results match human's perceive and show that this method is simple with precision.

  15. Using complex plant pedigrees to map valuable genes

    NARCIS (Netherlands)

    Jannink, Jean-Luc; Bink, Marco C.A.M.; Jansen, Ritsert C.

    2001-01-01

    Statistical methods pioneered by human and animal geneticists use marker and pedigree information to detect quantitative trait loci within complex pedigrees. These methods, adapted to plants, promise to expand the range of data useful for identifying the genetic factors influencing plant growth, dev

  16. Elucidating gene function and function evolution through comparison of co-expression networks in plants

    Directory of Open Access Journals (Sweden)

    Marek eMutwil

    2014-08-01

    Full Text Available The analysis of gene expression data has shown that transcriptionally coordinated (co-expressed genes are often functionally related, enabling scientists to use expression data in gene function prediction. This Focused Review discusses our original paper (Large-scale co-expression approach to dissect secondary cell wall formation across plant species, Frontiers in Plant Science 2:23. In this paper we applied cross-species analysis to co-expression networks of genes involved in cellulose biosynthesis. We show that the co-expression networks from different species are highly similar, indicating that whole biological pathways are conserved across species. This finding has two important implications. First, the analysis can transfer gene function annotation from well-studied plants, such as Arabidopsis, to other, uncharacterized plant species. As the analysis finds genes that have similar sequence and similar expression pattern across different organisms, functionally equivalent genes can be identified. Second, since co-expression analyses are often noisy, a comparative analysis should have higher performance, as parts of co-expression networks that are conserved are more likely to be functionally relevant. In this Focused Review, we outline the comparative analysis done in the original paper and comment on the recent advances and approaches that allow comparative analyses of co-function networks. We hypothesize that, in comparison to simple co-expression analysis, comparative analysis would yield more accurate gene function predictions. Finally, by combining comparative analysis with genomic information of green plants, we propose a possible composition of cellulose biosynthesis machinery during earlier stages of plant evolution.

  17. Major histocompatibility complex genes in the common carp (Cyprinus carpio L.).

    NARCIS (Netherlands)

    Erp, van S.H.M.

    1996-01-01

    This thesis describes a study of the major histocompatibility complex (Mhc) genes of the common carp (Cyprinus carpio L.). The molecules encoded by Mhc genes play an essential role in the specific immune response, by presenting antigens to T lymphocytes. Knowledge of the Mhc of carp, therefore, cont

  18. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils

    Science.gov (United States)

    Hannula, S. Emilia; van Veen, Johannes A.

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose. PMID:27965632

  19. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils.

    Science.gov (United States)

    Hannula, S Emilia; van Veen, Johannes A

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.

  20. Primer sets developed for fungal functional genes reveal shifts in functionality of fungal community in soils

    Directory of Open Access Journals (Sweden)

    Emilia Silja Hannula

    2016-11-01

    Full Text Available Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.

  1. Recent Positive Selection in Genes of the Mammalian Epidermal Differentiation Complex Locus

    Science.gov (United States)

    Goodwin, Zane A.; de Guzman Strong, Cristina

    2017-01-01

    The epidermal differentiation complex (EDC) is the most rapidly evolving locus in the human genome compared to that of the chimpanzee. Yet the EDC genes that are undergoing positive selection across mammals and in humans are not known. We sought to identify the positively selected genetic variants and determine the evolutionary events of the EDC using mammalian-wide and clade-specific branch- and branch-site likelihood ratio tests and a genetic algorithm (GA) branch test. Significant non-synonymous substitutions were found in filaggrin, SPRR4, LELP1, and S100A2 genes across 14 mammals. By contrast, we identified recent positive selection in SPRR4 in primates. Additionally, the GA branch test discovered lineage-specific evolution for distinct EDC genes occurring in each of the nodes in the 14-mammal phylogenetic tree. Multiple instances of positive selection for FLG, TCHHL1, SPRR4, LELP1, and S100A2 were noted among the primate branch nodes. Branch-site likelihood ratio tests further revealed positive selection in specific sites in SPRR4, LELP1, filaggrin, and repetin across 14 mammals. However, in addition to continuous evolution of SPRR4, site-specific positive selection was also found in S100A11, KPRP, SPRR1A, S100A7L2, and S100A3 in primates and filaggrin, filaggrin2, and S100A8 in great apes. Very recent human positive selection was identified in the filaggrin2 L41 site that was present in Neanderthal. Together, our results identifying recent positive selection in distinct EDC genes reveal an underappreciated evolution of epidermal skin barrier function in primates and humans. PMID:28119736

  2. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes

    Science.gov (United States)

    Dozmorov, Mikhail G

    2015-01-01

    Although age-associated gene expression and methylation changes have been reported throughout the literature, the unifying epigenomic principles of aging remain poorly understood. Recent explosion in availability and resolution of functional/regulatory genome annotation data (epigenomic data), such as that provided by the ENCODE and Roadmap Epigenomics projects, provides an opportunity for the identification of epigenomic mechanisms potentially altered by age-associated differentially methylated regions (aDMRs) and regulatory signatures in the promoters of age-associated genes (aGENs). In this study we found that aDMRs and aGENs identified in multiple independent studies share a common Polycomb Repressive Complex 2 signature marked by EZH2, SUZ12, CTCF binding sites, repressive H3K27me3, and activating H3K4me1 histone modification marks, and a “poised promoter” chromatin state. This signature is depleted in RNA Polymerase II-associated transcription factor binding sites, activating H3K79me2, H3K36me3, H3K27ac marks, and an “active promoter” chromatin state. The PRC2 signature was shown to be generally stable across cell types. When considering the directionality of methylation changes, we found the PRC2 signature to be associated with aDMRs hypermethylated with age, while hypomethylated aDMRs were associated with enhancers. In contrast, aGENs were associated with the PRC2 signature independently of the directionality of gene expression changes. In this study we demonstrate that the PRC2 signature is the common epigenomic context of genomic regions associated with hypermethylation and gene expression changes in aging. PMID:25880792

  3. Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays

    DEFF Research Database (Denmark)

    Francis, C.A.; Jackson, G.A.; Ward, B.B.

    2008-01-01

    total RNA extracts) targets were hybridized to the same array to compare the profiles of community composition at the DNA (relative abundance) and mRNA (gene expression) levels. Only the three dominant denitrifying groups (in terms of relative strength of DNA hybridization signal) were detected at the m......A functional gene microarray was used to investigate denitrifier community composition and nitrite reductase (nirS) gene expression in sediments along the estuarine gradient in Chesapeake Bay, USA. The nirS oligonucleotide probe set was designed to represent a sequence database containing 539...

  4. The microRNA (miRNA): overview of the RNA genes that modulate gene function.

    Science.gov (United States)

    Ying, Shao-Yao; Chang, Donald C; Lin, Shi-Lung

    2008-03-01

    MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.

  5. Syntenator: Multiple gene order alignments with a gene-specific scoring function

    Directory of Open Access Journals (Sweden)

    Dieterich Christoph

    2008-11-01

    Full Text Available Abstract Background Identification of homologous regions or conserved syntenies across genomes is one crucial step in comparative genomics. This task is usually performed by genome alignment softwares like WABA or blastz. In case of conserved syntenies, such regions are defined as conserved gene orders. On the gene order level, homologous regions can even be found between distantly related genomes, which do not align on the nucleotide sequence level. Results We present a novel approach to identify regions of conserved synteny across multiple genomes. Syntenator represents genomes and alignments thereof as partial order graphs (POGs. These POGs are aligned by a dynamic programming approach employing a gene-specific scoring function. The scoring function reflects the level of protein sequence similarity for each possible gene pair. Our method consistently defines larger homologous regions in pairwise gene order alignments than nucleotide-level comparisons. Our method is superior to methods that work on predefined homology gene sets (as implemented in Blockfinder. Syntenator successfully reproduces 80% of the EnsEMBL man-mouse conserved syntenic blocks. The full potential of our method becomes visible by comparing remotely related genomes and multiple genomes. Gene order alignments potentially resolve up to 75% of the EnsEMBL 1:many orthology relations and 27% of the many:many orthology relations. Conclusion We propose Syntenator as a software solution to reliably infer conserved syntenies among distantly related genomes. The software is available from http://www2.tuebingen.mpg.de/abt4/plone.

  6. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  7. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway.

    Science.gov (United States)

    Nougué, Odrade; Corbi, Jonathan; Ball, Steven G; Manicacci, Domenica; Tenaillon, Maud I

    2014-05-15

    Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called "Escape from Adaptive Conflict" (EAC) model. Because none of the

  8. Towards revealing the functions of all genes in plants.

    Science.gov (United States)

    Rhee, Seung Yon; Mutwil, Marek

    2014-04-01

    The great recent progress made in identifying the molecular parts lists of organisms revealed the paucity of our understanding of what most of the parts do. In this review, we introduce computational and statistical approaches and omics data used for inferring gene function in plants, with an emphasis on network-based inference. We also discuss caveats associated with network-based function predictions such as performance assessment, annotation propagation, the guilt-by-association concept, and the meaning of hubs. Finally, we note the current limitations and possible future directions such as the need for gold standard data from several species, unified access to data and tools, quantitative comparison of data and tool quality, and high-throughput experimental validation platforms for systematic gene function elucidation in plants.

  9. Solvation of complex surfaces via molecular density functional theory.

    Science.gov (United States)

    Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-12-14

    We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.

  10. Orofacial complex regional pain syndrome: pathophysiologic mechanisms and functional MRI.

    Science.gov (United States)

    Lee, Yeon-Hee; Lee, Kyung Mi; Kim, Hyug-Gi; Kang, Soo-Kyung; Auh, Q-Schick; Hong, Jyung-Pyo; Chun, Yang-Hyun

    2017-08-01

    Complex regional pain syndrome (CRPS) is one of the most challenging chronic pain conditions and is characterized by burning pain, allodynia, hyperalgesia, autonomic changes, trophic changes, edema, and functional loss involving mainly the extremities. Until recently, very few reports have been published concerning CRPS involving the orofacial area. We report on a 50-year-old female patient who presented with unbearable pain in all of her teeth and hypersensitivity of the facial skin. She also reported intractable pain in both extremities accompanied by temperature changes and orofacial pain that increased when the other pains were aggravated. In the case of CRPS with trigeminal neuropathic pain, protocols for proper diagnosis and prompt treatment have yet to be established in academia or in the clinical field. We performed functional magnetic resonance imaging for a thorough analysis of the cortical representation of the affected orofacial area immediately before and immediately after isolated light stimulus of the affected hand and foot and concluded that CRPS can be correlated with trigeminal neuropathy in the orofacial area. Furthermore, the patient was treated with carbamazepine administration and stellate ganglion block, which can result in a rapid improvement of pain in the trigeminal region. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of functional gene arrays for elucidating in situ biodegradation

    Directory of Open Access Journals (Sweden)

    Joy D. Van Nostrand

    2012-09-01

    Full Text Available Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N-fixation, metal resistance from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulphur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB. Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.

  12. High-throughput Binary Vectors for Plant Gene Function Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong Lei; Ping Zhao; Min-Jie Cao; Rong Cui; Xi Chen; Li-Zhong Xiong; Qi-Fa Zhang; David J. Oliver; Cheng-Bin Xiang

    2007-01-01

    A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing,and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.

  13. The Apolipoprotein E Gene, Attention, and Brain Function

    OpenAIRE

    Parasuraman, Raja; Pamela M Greenwood; Sunderland, Trey

    2002-01-01

    The ɛ4 allele of the apolipoprotein E (ApoE) gene is associated with alterations in brain function and is a risk factor for Alzheimer’s disease (AD). Changes in components of visuospatial attention with ApoE-ɛ4, aging, and AD are described. Healthy middle-aged adults without dementia who have the ApoE-ɛ4 gene show deficits in spatial attention and working memory that are qualitatively similar to those seen in clinically diagnosed AD patients. The findings support an association between ApoE p...

  14. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  15. Functional epigenomics identifies genes frequently silenced in prostate cancer.

    Science.gov (United States)

    Lodygin, Dimitri; Epanchintsev, Alexey; Menssen, Antje; Diebold, Joachim; Hermeking, Heiko

    2005-05-15

    In many cases, silencing of gene expression by CpG methylation is causally involved in carcinogenesis. Furthermore, cancer-specific CpG methylation may serve as a tumor marker. In order to identify candidate genes for inactivation by CpG methylation in prostate cancer, the prostate cancer cell lines LNCaP, PC3, and Du-145 were treated with 5-aza-2' deoxycytidine and trichostatin A, which leads to reversion of epigenetic silencing. By microarray analysis of 18,400 individual transcripts, several hundred genes were found to be induced when compared with cells treated with trichostatin A. Fifty re-expressed genes were selected for further analysis based on their known function, which implied a possible involvement in tumor suppression. Twelve of these genes showed a significant degree of CpG methylation in their promoters. Six genes were silenced by CpG methylation in the majority of five analyzed prostate cancer cell lines, although they displayed robust mRNA expression in normal prostate epithelial cells obtained from four different donors. In primary prostate cancer samples derived from 41 patients, the frequencies of CpG methylation detected in the promoter regions of these genes were: GPX3, 93%; SFRP1, 83%; COX2, 78%; DKK3, 68%; GSTM1, 58%; and KIP2/p57, 56%. Ectopic expression of SFRP1 or DKK3 resulted in decreased proliferation. The expression of DKK3 was accompanied by attenuation of the mitogen-activated protein kinase pathway. The high frequency of CpG methylation detected in the promoters of the identified genes suggests a potential causal involvement in prostate cancer and may prove useful for diagnostic purposes.

  16. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently

  17. Functional discrimination of gene expression patterns in terms of the gene ontology.

    Science.gov (United States)

    Badea, Liviu

    2003-01-01

    The ever-growing amount of experimental data in molecular biology and genetics requires its automated analysis, by employing sophisticated knowledge discovery tools. We use an Inductive Logic Programming (ILP) learner to induce functional discrimination rules between genes studied using microarrays and found to be differentially expressed in three recently discovered subtypes of adenocarcinoma of the lung. The discrimination rules involve functional annotations from the Proteome HumanPSD database in terms of the Gene Ontology, whose hierarchical structure is essential for this task. While most of the lower levels of gene expression data (pre)processing have been automated, our work can be seen as a step toward automating the higher level functional analysis of the data. We view our application not just as a prototypical example of applying more sophisticated machine learning techniques to the functional analysis of genes, but also as an incentive for developing increasingly more sophisticated functional annotations and ontologies, that can be automatically processed by such learning algorithms.

  18. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    Directory of Open Access Journals (Sweden)

    Parida Swarup K

    2012-08-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure in rice. Results Of the 384 putative SNPs assayed, we successfully validated and genotyped 362 (94.3%. Of these 325 (84.6% showed polymorphism among the 91 rice genotypes examined. Physical distribution, degree of allele sharing, admixtures and introgression, and amino acid replacement of SNPs in 263 abiotic and 62 biotic stress-responsive genes provided clues for identification and targeted mapping of trait-associated genomic regions. We assessed the functional and adaptive significance of validated SNPs in a set of contrasting drought tolerant upland and sensitive lowland rice genotypes by correlating their allelic variation with amino acid sequence alterations in catalytic domains and three-dimensional secondary protein structure encoded by stress-responsive genes. We found a strong genetic association among SNPs in the nine stress-responsive genes with upland and lowland ecological adaptation. Higher nucleotide diversity was observed in indica accessions compared with other rice sub-populations based on different population genetic parameters. The inferred ancestry of 16% among rice genotypes was derived from admixed populations with the maximum between upland aus and wild Oryza species. Conclusions SNPs validated in biotic and abiotic stress-responsive rice genes can be used in association analyses to identify candidate genes and develop functional markers for stress tolerance in rice.

  19. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression.

    Science.gov (United States)

    Archacki, Rafal; Yatusevich, Ruslan; Buszewicz, Daniel; Krzyczmonik, Katarzyna; Patryn, Jacek; Iwanicka-Nowicka, Roksana; Biecek, Przemyslaw; Wilczynski, Bartek; Koblowska, Marta; Jerzmanowski, Andrzej; Swiezewski, Szymon

    2017-04-07

    ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. GeneLink: a database to facilitate genetic studies of complex traits

    Directory of Open Access Journals (Sweden)

    Wolfsberg Tyra G

    2004-10-01

    Full Text Available Abstract Background In contrast to gene-mapping studies of simple Mendelian disorders, genetic analyses of complex traits are far more challenging, and high quality data management systems are often critical to the success of these projects. To minimize the difficulties inherent in complex trait studies, we have developed GeneLink, a Web-accessible, password-protected Sybase database. Results GeneLink is a powerful tool for complex trait mapping, enabling genotypic data to be easily merged with pedigree and extensive phenotypic data. Specifically designed to facilitate large-scale (multi-center genetic linkage or association studies, GeneLink securely and efficiently handles large amounts of data and provides additional features to facilitate data analysis by existing software packages and quality control. These include the ability to download chromosome-specific data files containing marker data in map order in various formats appropriate for downstream analyses (e.g., GAS and LINKAGE. Furthermore, an unlimited number of phenotypes (either qualitative or quantitative can be stored and analyzed. Finally, GeneLink generates several quality assurance reports, including genotyping success rates of specified DNA samples or success and heterozygosity rates for specified markers. Conclusions GeneLink has already proven an invaluable tool for complex trait mapping studies and is discussed primarily in the context of our large, multi-center study of hereditary prostate cancer (HPC. GeneLink is freely available at http://research.nhgri.nih.gov/genelink.

  1. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    Science.gov (United States)

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  2. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  3. Functions of genes and enzymes involved in phenalinolactone biosynthesis.

    Science.gov (United States)

    Daum, Martina; Schnell, Hans-Jörg; Herrmann, Simone; Günther, Andreas; Murillo, Renato; Müller, Rolf; Bisel, Philippe; Müller, Michael; Bechthold, Andreas

    2010-07-05

    Phenalinolactones are novel terpene glycoside antibiotics produced by Streptomyces sp. Tü6071. Inactivation of three oxygenase genes (plaO2, plaO3 and plaO5), two dehydrogenase genes (plaU, plaZ) and one putative acetyltransferase gene (plaV) led to the production of novel phenalinolactone derivatives (PL HS6, PL HS7, PL HS2 and PL X1). Furthermore, the exact biosynthetic functions of two enzymes were determined, and their in vitro activities were demonstrated. PlaO1, an Fe(II)/alpha-ketoglutarate-dependent dioxygenase, is responsible for the key step in gamma-butyrolactone formation, whereas PlaO5, a cytochrome P450-dependent monooxygenase, catalyses the 1-C-hydroxylation of phenalinolactone D. In addition, stable isotope feeding experiments with biosynthetic precursors shed light on the origin of the carbons in the gamma-butyrolactone moiety.

  4. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  5. Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination

    Science.gov (United States)

    Srivastava, Rakesh; Rai, Krishan Mohan; Pandey, Bindu; Singh, Sudhir P.; Sawant, Samir V.

    2015-01-01

    The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses. PMID:26263547

  6. Spt-Ada-Gcn5-Acetyltransferase (SAGA Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination.

    Directory of Open Access Journals (Sweden)

    Rakesh Srivastava

    Full Text Available The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.

  7. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  8. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    Science.gov (United States)

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  9. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    Science.gov (United States)

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  10. Interferon-Stimulated Genes: A Complex Web of Host Defenses

    Science.gov (United States)

    Schneider, William M.; Chevillotte, Meike Dittmann; Rice, Charles M.

    2015-01-01

    Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape. PMID:24555472

  11. Functional analysis of the Myostatin gene promoter in sheep

    Institute of Scientific and Technical Information of China (English)

    DU; Rong; AN; XiaoRong; CHEN; YongFu; QIN; Jian

    2007-01-01

    Compared with the understanding for the functional mechanism of the myostatin gene, little is known about the regulatory mechanism of the myostatin gene transcription and expression. To better understand the function of the myostatin gene promoter (MSTNpro) in the transcriptional regulation of the myostatin gene and to further investigate the transcriptional regulation mechanism of the myostatin gene, the promoter region of the myostatin gene in sheep has been cloned in our recent study (AY918121). In this study, the wild (W) type MSTNProW-EGFP vectors and E-box (E) (CANNTG) mutant (M) type MSTNProE(3+5+7)M-EGFP vectors were constructed and the transcriptional regulation activities were compared by detecting the fluorescent strength of EGFP (enhanced green fluorescent protein) in C2C12 myoblasts (or myotubes) and sheep fibroblasts transfected with the vectors. Results showed that the 0.3―1.2 kb sheep myostatin promoter could activate the transcription and expression of EGFP gene in C2C12 myoblasts to different extent and the 1.2 kb promoter was the strongest. However, fluorescence was not observed in the sheep fibroblasts transfected with the 1.2 kb sheep myostatin promoter. These results suggested that the specific nature of the myostatin gene expression in skeletal muscle was attributed to the specific nature of the myostatin promoter activity. The increasing growth density of C2C12 myoblasts inhibited the transcriptional regulation activity of the wild type sheep myostatin promoter by a mechanism of feedback. The transcriptional regulation activity of the 1.2 kb wild type sheep myostatin promoter increased significantly after C2C12 myoblasts were differentiated, while the activity of 1.2 kb E(3+5+7)-mutant type myostatin promoter had no obvious change. This result suggested that MyoD may be responsible for the difference of the myostatin gene transcription and expression between growing and differentiating conditions by binding to E-box of the myostatin

  12. Functional genomics and structural biology in the definition of gene function.

    Science.gov (United States)

    Hrmova, Maria; Fincher, Geoffrey B

    2009-01-01

    By mid-2007, the three-dimensional (3D) structures of some 45,000 proteins have been solved, over a period where the linear structures of millions of genes have been defined. Technical challenges associated with X-ray crystallography are being overcome and high-throughput methods both for crystallization of proteins and for solving their 3D structures are under development. The question arises as to how structural biology can be integrated with and adds value to functional genomics programs. Structural biology will assist in the definition of gene function through the identification of the likely function of the protein products of genes. The 3D information allows protein sequences predicted from DNA sequences to be classified into broad groups, according to the overall 'fold', or 3D shape, of the protein. Structural information can be used to predict the preferred substrate of a protein, and thereby greatly enhance the accurate annotation of the corresponding gene. Furthermore, it will enable the effects of amino acid substitutions in enzymes to be better understood with respect to enzyme function and could thereby provide insights into natural variation in genes. If the molecular basis of transcription factor-DNA interactions were defined through precise 3D knowledge of the protein-DNA binding site, it would be possible to predict the effects of base substitutions within the motif on the specificity and/or kinetics of binding. In this chapter, we present specific examples of how structural biology can provide valuable information for functional genomics programs.

  13. Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex.

    Science.gov (United States)

    Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Schedl, Paul; Karch, Francois

    2015-11-01

    Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C.

  14. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  15. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases were...... to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...... identified complexes in Parkinson disease, cardiomyopathies, and muscular dystrophy syndromes that are similarly tissue specific. Our method represents a conceptual scaffold for organism-spanning analyses and reveals an extensive list of tissue-specific draft molecular pathways, both known and unexpected...

  16. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul

    2015-12-23

    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  17. Structure and function study of the complex that synthesizes S-adenosylmethionine

    Directory of Open Access Journals (Sweden)

    Ben Murray

    2014-07-01

    Full Text Available S-Adenosylmethionine (SAMe is the principal methyl donor of the cell and is synthesized via an ATP-driven process by methionine adenosyltransferase (MAT enzymes. It is tightly linked with cell proliferation in liver and colon cancer. In humans, there are three genes, mat1A, mat2A and mat2B, which encode MAT enzymes. mat2A and mat2B transcribe MATα2 and MATβ enzyme subunits, respectively, with catalytic and regulatory roles. The MATα2β complex is expressed in nearly all tissues and is thought to be essential in providing the necessary SAMe flux for methylation of DNA and various proteins including histones. In human hepatocellular carcinoma mat2A and mat2B genes are upregulated, highlighting the importance of the MATα2β complex in liver disease. The individual subunits have been structurally characterized but the nature of the complex has remained elusive despite its existence having been postulated for more than 20 years and the observation that MATβ is often co-localized with MATα2. Though SAMe can be produced by MAT(α24 alone, this paper shows that the Vmax of the MATα2β complex is three- to fourfold higher depending on the variants of MATβ that participate in complex formation. Using X-ray crystallography and solution X-ray scattering, the first structures are provided of this 258 kDa functional complex both in crystals and solution with an unexpected stoichiometry of 4α2 and 2βV2 subunits. It is demonstrated that the N-terminal regulates the activity of the complex and it is shown that complex formation takes place surprisingly via the C-terminal of MATβV2 that buries itself in a tunnel created at the interface of the MAT(α22. The structural data suggest a unique mechanism of regulation and provide a gateway for structure-based drug design in anticancer therapies.

  18. Gene therapy rescues cone function in congenital achromatopsia

    Science.gov (United States)

    Komáromy, András M.; Alexander, John J.; Rowlan, Jessica S.; Garcia, Monique M.; Chiodo, Vince A.; Kaya, Asli; Tanaka, Jacqueline C.; Acland, Gregory M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2010-01-01

    The successful restoration of visual function with recombinant adeno-associated virus (rAAV)-mediated gene replacement therapy in animals and humans with an inherited disease of the retinal pigment epithelium has ushered in a new era of retinal therapeutics. For many retinal disorders, however, targeting of therapeutic vectors to mutant rods and/or cones will be required. In this study, the primary cone photoreceptor disorder achromatopsia served as the ideal translational model to develop gene therapy directed to cone photoreceptors. We demonstrate that rAAV-mediated gene replacement therapy with different forms of the human red cone opsin promoter led to the restoration of cone function and day vision in two canine models of CNGB3 achromatopsia, a neuronal channelopathy that is the most common form of achromatopsia in man. The robustness and stability of the observed treatment effect was mutation independent, but promoter and age dependent. Subretinal administration of rAAV5–hCNGB3 with a long version of the red cone opsin promoter in younger animals led to a stable therapeutic effect for at least 33 months. Our results hold promise for future clinical trials of cone-directed gene therapy in achromatopsia and other cone-specific disorders. PMID:20378608

  19. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  20. Vertebrate pigmentation: from underlying genes to adaptive function.

    Science.gov (United States)

    Hubbard, Joanna K; Uy, J Albert C; Hauber, Mark E; Hoekstra, Hopi E; Safran, Rebecca J

    2010-05-01

    Animal coloration is a powerful model for studying the genetic mechanisms that determine phenotype. Genetic crosses of laboratory mice have provided extensive information about the patterns of inheritance and pleiotropic effects of loci involved in pigmentation. Recently, the study of pigmentation genes and their functions has extended into wild populations, providing additional evidence that pigment gene function is largely conserved across disparate vertebrate taxa and can influence adaptive coloration, often in predictable ways. These new and integrative studies, along with those using a genetic approach to understand color perception, raise some important questions. Most notably, how does selection shape both phenotypic and genetic variation, and how can we use this information to further understand the phenotypic diversity generated by evolutionary processes? Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    Directory of Open Access Journals (Sweden)

    Naruo Nikoh

    2010-02-01

    Full Text Available Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria, which have highly reduced genomes (420-650 kb, raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA, five rare lipoprotein As (RlpA1-5, N-acetylmuramoyl-L-alanine amidase (AmiD, 1,4-beta-N-acetylmuramidase (bLys, DNA polymerase III alpha chain (psiDnaE, and ATP synthase delta chain (psiAtpH. Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH. Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria. At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5 are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the

  2. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  3. The single amphioxus Mox gene: insights into the functional evolution of Mox genes, somites, and the asymmetry of amphioxus somitogenesis.

    Science.gov (United States)

    Minguillón, Carolina; Garcia-Fernàndez, Jordi

    2002-06-15

    Mox genes are members of the "extended" Hox-cluster group of Antennapedia-like homeobox genes. Homologues have been cloned from both invertebrate and vertebrate species, and are expressed in mesodermal tissues. In vertebrates, Mox1 and Mox2 are distinctly expressed during the formation of somites and differentiation of their derivatives. Somites are a distinguishing feature uniquely shared by cephalochordates and vertebrates. Here, we report the cloning and expression of the single amphioxus Mox gene. AmphiMox is expressed in the presomitic mesoderm (PSM) during early amphioxus somitogenesis and in nascent somites from the tail bud during the late phase. Once a somite is completely formed, AmphiMox is rapidly downregulated. We discuss the presence and extent of the PSM in both phases of amphioxus somitogenesis. We also propose a scenario for the functional evolution of Mox genes within chordates, in which Mox was co-opted for somite formation before the cephalochordate-vertebrate split. Novel expression sites found in vertebrates after somite formation postdated Mox duplication in the vertebrate stem lineage, and may be linked to the increase in complexity of vertebrate somites and their derivatives, e.g., the vertebrae. Furthermore, AmphiMox expression adds new data into a long-standing debate on the extent of the asymmetry of amphioxus somitogenesis.

  4. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing.

    Science.gov (United States)

    Nagamatsu, Atsushi; Masuta, Chikara; Senda, Mineo; Matsuura, Hideyuki; Kasai, Atsushi; Hong, Jin-Sung; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2007-11-01

    Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.

  5. Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes.

    Science.gov (United States)

    Setijadi, Eki; Tao, Lei; Liu, Jingquan; Jia, Zhongfan; Boyer, Cyrille; Davis, Thomas P

    2009-09-14

    Three-armed biodegradable star polymers made from polystyrene (polySt) and poly (polyethylene glycol) acrylate (polyPEG-A) were synthesized via a "core first" methodology using a trifunctional RAFT agent, created by attaching RAFT agents to a core via their R-groups. The resultant three-armed polymeric structures were well-defined, with polydispersity indices less than 1.2. Upon aminolysis and further reaction with dithiodipyridine (DTDP), these three-armed polymers could be tailored with sulfhydryl and pyridyldisulfide (PDS) end functionalities, available for further reaction with any free-sulfhydryl group containing precursors to form disulfide linkages. Nuclear magnetic resonance (NMR) confirmed that more than 98% of the polymer arms retained integral trithiocarbonate active sites after polymerization. Intradisulfide linkages between the core and the arms conferred biodegradability on the star architectures. Subsequently, the arm-termini were attached to cholesterol also via disulfide linkages. The cholesterol terminated arms were then used to form supramolecular structures via inclusion complex formation with beta-cyclodextrin (beta-CD). The star architectures were found to degrade rapidly on treatment with DL-dithiothereitol (DTT). The star polymers and supramolecular structures were characterized using gel permation chromatography (GPC), static light scattering (SLS), 2D NMR, and fluorescence spectroscopy.

  6. Functional Loop Dynamics of the Streptavidin-Biotin Complex

    Science.gov (United States)

    Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.

    2015-01-01

    Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer.

  7. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  8. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    Directory of Open Access Journals (Sweden)

    Yu eChen

    2016-02-01

    Full Text Available Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum, a halophytic perennial grass species, using the yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high quality entry library was constructed, which contained 9.9×106 clones with an average inserted fragments length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including 5 Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and 5 Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be mainly involved in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes from seashore paspalum could be associated with regulating pathways involved in phytochelatin synthesis, HSFA4-relsted stress protection, CYP450 complex and sugar metabolism. The 18 salinity-tolerance genes and 5 Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.

  9. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    Science.gov (United States)

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 106 clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  10. Actin and nuclear myosin Ⅰ are associated with RNAP Ⅱ and function in gene transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU XiaoJuan; HUANG BaiQu; WANG XingZhi; HAO Shui; ZENG XianLu

    2007-01-01

    The presence of actin in the nucleus as well as its functions in various nuclear processes has been made clear in the past few years. Actin is known to be a part of chromatin-remodeling complexes BAF,which are required for maximal ATPase activity of the Brg1 component of the BAF complex. Moreover,the essential roles of acfin in transcription mediated by RNA polymerases Ⅰ, Ⅱ and Ⅲ have been demonstrated recently. On the other hand, a myosin Ⅰ isoform, which contains a unique NH2-terminal extension for nucleus localization, has been specifically localized in nucleus. As is well known, myosin Ⅰis an actin-binding protein and plays an important role in various cellular activities. Though actin and nuclear myosin Ⅰ (NM Ⅰ) have been implicated to play distinct roles in gene expression, there has been no evidence for the actin-myosin interaction that might be involved in gene transcription mediated by RNA polymerase Ⅱ (RNAP Ⅱ). Here we show evidence that both actin and NM Ⅰ are associated with RNAP Ⅱ in nucleus by using co-localization and co-IP assays, and they may act together on gene transcription.The antibodies against β-actin or NM Ⅰ can block RNA synthesis in a eukaryotic in vitro transcription system with template DNA comprising the promoter and the coding region of human autocrine motility factor receptor (hAMFR) gene; the antibodies pre-adsorbed with purified actin and NM Ⅰ have no effect in transcriptional inhibition, indicating that the inhibition of transcription by anti-actin and anti-NM Ⅰ is specific. These results suggest a direct involvement of actin-myosin complexes in regulating transcription. It also implicates that actin and NM Ⅰ may co-exist in a same complex with RNAP Ⅱ and the interaction of RNAP Ⅱ with actin and NM Ⅰ functions in the RNAP Ⅱ-mediated transcription.

  11. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    Science.gov (United States)

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  12. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  13. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery.

    Science.gov (United States)

    Trubetskoy, V S; Wong, S C; Subbotin, V; Budker, V G; Loomis, A; Hagstrom, J E; Wolff, J A

    2003-02-01

    The intravenous delivery of plasmid DNA complexed with either cationic lipids (CL) or polyethyleneimine (PEI) enables high levels of foreign gene expression in lung. However, these cationic DNA complexes cause substantial toxicity. The present study found that the inclusion of polyacrylic acid (pAA) with DNA/polycation and DNA/CL complexes prevented the serum inhibition of the transfection complexes in cultured cells. The mechanism mediating this increase seems to involve both particle size enlargement due to flocculation and electrostatic shielding from opsonizing serum proteins. The use of pAA also increased the levels of lung expression in mice in vivo substantially above the levels achieved with just binary complexes of DNA and linear PEI (lPEI) or CL and reduced their toxicity. Also, the use of a "chaser" injection of pAA 30 min after injection of the ternary DNA/lPEI/pAA complexes further aided this effort to reduce toxicity while not affecting foreign gene expression. By optimizing the amount of pAA, lPEI, and DNA within the ternary complexes and using the "chaser" injection, substantial levels of lung expression were obtained while avoiding adverse effects in lung or liver. These developments will aid the use of cationic DNA complexes in animals and for eventual human gene therapy.

  14. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-05-01

    Full Text Available Abstract Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and

  15. Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration.

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    Full Text Available This study assessed the concept of whether delivery of magnetic nanobeads (MNBs/adenoviral vectors (Ad-encoded hVEGF gene (Ad(hVEGF could regenerate ischaemically damaged hearts in a rat acute myocardial infarction model under the control of an external magnetic field. Adenoviral vectors were conjugated to MNBs with the Sulfo-NHS-LC-Biotin linker. In vitro transduction efficacy of MNBs/Ad-encoded luciferase gene (Ad(luc was compared with Ad(luc alone in human umbilical vein endothelial cells (HUVECs under magnetic field stimulation. In vivo, in a rat acute myocardial infarction (AMI model, MNBs/Ad(hVEGF complexes were injected intravenously and an epicardial magnet was employed to attract the circulating MNBs/Ad(hVEGF complexes. In vitro, compared with Ad(luc alone, MNBs/Ad(luc complexes had a 50-fold higher transduction efficiency under the magnetic field. In vivo, epicardial magnet effectively attracted MNBs/Ad(hVEGF complexes and resulted in strong therapeutic gene expression in the ischemic zone of the infarcted heart. When compared to other MI-treated groups, the MI-M(+/Ad(hVEGF group significantly improved left ventricular function (p<0.05 assessed by pressure-volume loops after 4 weeks. Also the MI-M(+/Ad(hVEGF group exhibited higher capillary and arteriole density and lower collagen deposition than other MI-treated groups (p<0.05. Magnetic targeting enhances transduction efficiency and improves heart function. This novel method to improve gene therapy outcomes in AMI treatment offers the potential into clinical applications.

  16. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    Full Text Available Abstract Background The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides as well as in three major non-neural tissues (spleen, liver and kidney using the Applied Biosystems Rat Genome Survey Microarray. Results By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side. Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous

  17. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    Science.gov (United States)

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants.

  18. Extension Theorem for Complex Clifford Algebras-Valued Functions on Fractal Domains

    Directory of Open Access Journals (Sweden)

    Bory-Reyes Juan

    2010-01-01

    Full Text Available Monogenic extension theorem of complex Clifford algebras-valued functions over a bounded domain with fractal boundary is obtained. The paper is dealing with the class of Hölder continuous functions. Applications to holomorphic functions theory of several complex variables as well as to that of the so-called biregular functions will be deduced directly from the isotonic approach.

  19. Elementary theory of analytic functions of one or several complex variables

    CERN Document Server

    Cartan, Henri

    1995-01-01

    Noted mathematician offers basic treatment of theory of analytic functions of a complex variable, touching on analytic functions of several real or complex variables as well as the existence theorem for solutions of differential systems where data is analytic. Also included is a systematic, though elementary, exposition of theory of abstract complex manifolds of one complex dimension. Topics include power series in one variable, holomorphic functions, Cauchy's integral, more. Exercises. 1973 edition.

  20. Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells.

    Science.gov (United States)

    Ishihara, Kaori; Yamazaki, Tomohiro; Ishida, Yoko; Suzuki, Tomoyuki; Oda, Kimimitsu; Nagao, Masaya; Yamaguchi-Iwai, Yuko; Kambe, Taiho

    2006-06-30

    Zinc transporters play important roles in a wide range of biochemical processes. Here we report an important function of ZnT5/ZnT6 hetero-oligomeric complexes in the secretory pathway. The activity of human tissue-nonspecific alkaline phosphatase (ALP) expressed in ZnT5(-)ZnT7(-/-) cells was significantly reduced compared with that expressed in wild-type cells as in the case of endogenous chicken tissue-nonspecific ALP activity. The inactive human tissue-nonspecific ALP in ZnT5(-)ZnT7(-/-) cells was degraded by proteasome-mediated degradation without being trafficked to the plasma membrane. ZnT5(-)ZnT7(-/-) cells showed exacerbation of the unfolded protein response as did the wild-type cells cultured under a zinc-deficient condition, revealing that both complexes play a role in homeostatic maintenance of secretory pathway function. Furthermore, we showed that expression of ZnT5 mRNA was up-regulated by the endoplasmic reticulum stress in various cell lines. The up-regulation of the hZnT5 transcript was mediated by transcription factor XBP1 through the TGACGTGG sequence in the hZnT5 promoter, and this sequence was highly conserved in the ZnT5 genes of mouse and chicken. These results suggest that zinc transport into the secretory pathway is strictly regulated for the homeostatic maintenance of secretory pathway function in vertebrate cells.

  1. Functional dissection of the proton pumping modules of mitochondrial complex I.

    Directory of Open Access Journals (Sweden)

    Stefan Dröse

    2011-08-01

    Full Text Available Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5 of the three subunits with homology to bacterial Mrp-type Na(+/H(+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.

  2. Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes.

    Science.gov (United States)

    Xiao, Yun; Gong, Yonghui; Lv, Yanling; Lan, Yujia; Hu, Jing; Li, Feng; Xu, Jinyuan; Bai, Jing; Deng, Yulan; Liu, Ling; Zhang, Guanxiong; Yu, Fulong; Li, Xia

    2015-06-03

    Genome-wide transcriptome profiling after gene perturbation is a powerful means of elucidating gene functional mechanisms in diverse contexts. The comprehensive collection and analysis of the resulting transcriptome profiles would help to systematically characterize context-dependent gene functional mechanisms and conduct experiments in biomedical research. To this end, we collected and curated over 3000 transcriptome profiles in human and mouse from diverse gene perturbation experiments, which involved 1585 different perturbed genes (microRNAs, lncRNAs and protein-coding genes) across 1170 different cell lines/tissues. For each profile, we identified differential genes and their associated functions and pathways, constructed perturbation networks, predicted transcription regulation and cancer/drug associations, and assessed cooperative perturbed genes. Based on these transcriptome analyses, the Gene Perturbation Atlas (GPA) can be used to detect (i) novel or cell-specific functions and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades affected by perturbed genes, and (iii) perturbed gene-mediated cooperative effects. The GPA is a user-friendly database to support the rapid searching and exploration of gene perturbations. Particularly, we visualized functional effects of perturbed genes from multiple perspectives. In summary, the GPA is a valuable resource for characterizing gene functions and regulatory mechanisms after single-gene perturbations. The GPA is freely accessible at http://biocc.hrbmu.edu.cn/GPA/.

  3. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system.

    Science.gov (United States)

    Schlecht, Ulrich; Suresh, Sundari; Xu, Weihong; Aparicio, Ana Maria; Chu, Angela; Proctor, Michael J; Davis, Ronald W; Scharfe, Curt; St Onge, Robert P

    2014-04-05

    Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.

  4. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci.

    Science.gov (United States)

    Martin, Paul; McGovern, Amanda; Orozco, Gisela; Duffus, Kate; Yarwood, Annie; Schoenfelder, Stefan; Cooper, Nicholas J; Barton, Anne; Wallace, Chris; Fraser, Peter; Worthington, Jane; Eyre, Steve

    2015-11-30

    Genome-wide association studies have been tremendously successful in identifying genetic variants associated with complex diseases. The majority of association signals are intergenic and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use Capture Hi-C to investigate, for the first time, the interactions between associated variants for four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report numerous looping interactions and provide evidence that only a minority of interactions are common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific; some disease-associated SNPs do not interact with the nearest gene but with more compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases away; and finally, regions associated with different autoimmune diseases interact with each other and the same promoter suggesting common autoimmune gene targets (for example, PTPRC, DEXI and ZFP36L1).

  5. The plant mitochondrial mat-r gene/nad1 gene complex. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wolstenholme, D.R.

    1994-06-01

    The authors have completed sequencing the segments (totalling 19 kb, both complementary strands) of the maize mtDNA molecule that encode the entire NADH dehydrogenase subunit (nadl) gene. They have identified nucleotides in mature transcripts of the nadl gene that are edited and have generated clones of cDNAs of entire mature (fully spliced) nadl transcripts. They have examined the relative rates of splicing in transcripts of the four nadl gene group II introns and begun examining nadl intron cDNAs to determine the extent and distribution of RNA edits in introns, in order to evaluate the possibility that intron excision and exon splicing might be editing independent.

  6. Orthologous transcription factors in bacteria have different functions and regulate different genes.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2007-09-01

    Full Text Available Transcription factors (TFs form large paralogous gene families and have complex evolutionary histories. Here, we ask whether putative orthologs of TFs, from bidirectional best BLAST hits (BBHs, are evolutionary orthologs with conserved functions. We show that BBHs of TFs from distantly related bacteria are usually not evolutionary orthologs. Furthermore, the false orthologs usually respond to different signals and regulate distinct pathways, while the few BBHs that are evolutionary orthologs do have conserved functions. To test the conservation of regulatory interactions, we analyze expression patterns. We find that regulatory relationships between TFs and their regulated genes are usually not conserved for BBHs in Escherichia coli K12 and Bacillus subtilis. Even in the much more closely related bacteria Vibrio cholerae and Shewanella oneidensis MR-1, predicting regulation from E. coli BBHs has high error rates. Using gene-regulon correlations, we identify genes whose expression pattern differs between E. coli and S. oneidensis. Using literature searches and sequence analysis, we show that these changes in expression patterns reflect changes in gene regulation, even for evolutionary orthologs. We conclude that the evolution of bacterial regulation should be analyzed with phylogenetic trees, rather than BBHs, and that bacterial regulatory networks evolve more rapidly than previously thought.

  7. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.

    Science.gov (United States)

    Tchasovnikarova, Iva A; Timms, Richard T; Douse, Christopher H; Roberts, Rhys C; Dougan, Gordon; Kingston, Robert E; Modis, Yorgo; Lehner, Paul J

    2017-07-01

    Dominant mutations in the MORC2 gene have recently been shown to cause axonal Charcot-Marie-Tooth (CMT) disease, but the cellular function of MORC2 is poorly understood. Here, through a genome-wide CRISPR-Cas9-mediated forward genetic screen, we identified MORC2 as an essential gene required for epigenetic silencing by the HUSH complex. HUSH recruits MORC2 to target sites in heterochromatin. We exploited a new method, differential viral accessibility (DIVA), to show that loss of MORC2 results in chromatin decompaction at these target loci, which is concomitant with a loss of H3K9me3 deposition and transcriptional derepression. The ATPase activity of MORC2 is critical for HUSH-mediated silencing, and the most common alteration affecting the ATPase domain in CMT patients (p.Arg252Trp) hyperactivates HUSH-mediated repression in neuronal cells. These data define a critical role for MORC2 in epigenetic silencing by the HUSH complex and provide a mechanistic basis underpinning the role of MORC2 mutations in CMT disease.

  8. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Directory of Open Access Journals (Sweden)

    Catherine J Merrick

    Full Text Available Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3 in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  9. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains.

    Science.gov (United States)

    Merrick, Catherine J; Jiang, Rays H Y; Skillman, Kristen M; Samarakoon, Upeka; Moore, Rachel M; Dzikowski, Ron; Ferdig, Michael T; Duraisingh, Manoj T

    2015-01-01

    Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.

  10. Complex cooperative functions of heparan sulfate proteoglycans shape nervous system development in Caenorhabditis elegans.

    Science.gov (United States)

    Díaz-Balzac, Carlos A; Lázaro-Peña, María I; Tecle, Eillen; Gomez, Nathali; Bülow, Hannes E

    2014-08-05

    The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate-dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans.

  11. Functional MR imaging in the patients with complex partial seizures

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin Il; Chang, Kee Hyun; Song, In Chan; Goo, Jin Mo; Chung, Chun Kee; Lee, Sang Kun; Kim, Hong Dae; Han, Moon Hee [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Sam Soo [Boramae City Hospital, Seoul (Korea, Republic of)

    1999-09-01

    To evaluate the clinical usefulness of functional MR imaging (fMRI) for localization of the cerebral motor and sensory cortices and language center in patients with complex partial seizure. A total of 47 fMRIs were obtained in 14 patients (M:F = 9:5; age 15-50 years; 13 right handed and 1 ambidextrous) with complex partial seizure (6 temporal lobe epilepsy, 6 frontal lobe epilepsy, 1 occipitotemporal lobe epilepsy, 1 hemispheric epilepsy). Conventional MR imaging revealed no abnormality in four patients, localized cerebral atrophy in one, hippocampal sclerosis in four, and benign neoplasm in the remaining five. fMRI was performed on a 1.5 T MR scanner (GE Signa Horizon) using gradient-echo singleshot EPI. Nineteen fMRIs were obtained in eight patients who performed the language task, 16 fMRIs in ten who performed the motor task and 12 fMRIs in ten who performed the somatosensory task. The activation task consisted of three language tasks (silent picture naming , word generation from a character, categorical word generation), motor tasks (opposition of thumb and index finger for hand/dorsifexion or extension for foot), and sensory tasks (passive tactile stimulation of hand or foot using a toothbrush). The data were analyzed using z-score (p<0.05), clustering, and cross-correlation analysis based upon homemade software, IDL 5.1. The success rate for obtaining meaningful fMRI was evaluated and activated regions were assessed on the basis of each fMRI obtained during, language, motor, and somatosensory tasks. fMRI findings were compared with those of the Wada test (n = 7) for language lateralization and with invasive cortical mapping (n = 3) for the localization of eloquent cerebral cortex, especially around the central sulcus. The overall success rate of fMRI was 79 % (37/47); success rates of fMRI with language, sensory, and motor task were 89% (17/19), 83 % (10/12), and 63 % (10/16), respectively. Areas activated during language tasks (n=17) included the

  12. Brain imaging genetics in ADHD and beyond - mapping pathways from gene to disorder at different levels of complexity.

    Science.gov (United States)

    Klein, Marieke; Onnink, Marten; van Donkelaar, Marjolein; Wolfers, Thomas; Harich, Benjamin; Shi, Yan; Dammers, Janneke; Arias-Va Squez, Alejandro; Hoogman, Martine; Franke, Barbara

    2017-01-31

    Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.

  13. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  14. Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family.

    Directory of Open Access Journals (Sweden)

    Carsten Rautengarten

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html, as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  15. Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html , as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  16. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes.

    Science.gov (United States)

    Wei, Zihao; Gao, Yanxiang

    2016-05-01

    The objectives of the present study were to first synthesize chitosan-chlorogenic acid (CA) covalent complex and then compare structural and functional properties between chitosan-CA covalent complex and physical complex. First, chitosan-CA covalent complex was synthesized and its total phenolic content was as high as 276.5 ± 6.2 mg/g. Then structural and functional properties of chitosan-CA covalent and physical complexes were analyzed. The covalent reaction induced formation of both amide and ester bonds in chitosan. Data of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the complexations of CA changed crystallinity and morphology of chitosan, and covalent complexation induced a larger change of physical structure than physical complexation. In terms of functional properties, chitosan-CA covalent complex exhibited better thermal stability than physical complex in terms of antioxidant activity, and the viscosity of chitosan was significantly increased by covalent modification.

  17. The human homolog of a candidate mouse t complex responder gene: conserved motifs and evolution with punctuated equilibria.

    Science.gov (United States)

    Islam, S D; Pilder, S H; Decker, C L; Cebra-Thomas, J A; Silver, L M

    1993-12-01

    The mouse Tcp-10 gene has been established as a molecular candidate for the t complex responder locus which plays a central role in the transmission ratio distortion phenotype expressed by males heterozygous for a t haplotype. Here we describe a comparison of the mouse and human TCP10 coding sequences. The results show that whole exons have been added or eliminated from the transcripts expressed in each species, suggesting an evolutionary process of punctuated equilibria for this gene. Two of the polypeptide regions that are most conserved between the two species contain specific peptide motifs. The conserved C-terminal region contains a unique nonapeptide repeat of unknown function and the conserved N-terminal region contains a pair of leucine zippers within a region that shows additional similarity to the coiled-coil regions of various cytosolic polypeptides. These results are discussed in terms of the possible function of the TCP10 protein.

  18. Strigolactone biology: genes, functional genomics, epigenetics and applications.

    Science.gov (United States)

    Makhzoum, Abdullah; Yousefzadi, Morteza; Malik, Sonia; Gantet, Pascal; Tremouillaux-Guiller, Jocelyne

    2017-03-01

    Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional role in plant and rhizosphere interactions. These compounds stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. In addition, they are involved in the control of plant architecture by inhibiting bud outgrowth as well as many other morphological and developmental processes together with other plant hormones such as auxins and cytokinins. The biosynthetic pathway of SLs that are derived from carotenoids was partially decrypted based on the identification of mutants from a variety of plant species. Only a few SL biosynthetic and regulated genes and related regulatory transcription factors have been identified. However, functional genomics and epigenetic studies started to give first elements on the modality of the regulation of SLs related genes. Since they control plant architecture and plant-rhizosphere interaction, SLs start to be used for agronomical and biotechnological applications. Furthermore, the genes involved in the SL biosynthetic pathway and genes regulated by SL constitute interesting targets for plant breeding. Therefore, it is necessary to decipher and better understand the genetic determinants of their regulation at different levels.

  19. Association of lung function genes with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kim, Woo Jin; Lim, Myoung Nam; Hong, Yoonki; Silverman, Edwin K; Lee, Ji-Hyun; Jung, Bock Hyun; Ra, Seung Won; Choi, Hye Sook; Jung, Young Ju; Park, Yong Bum; Park, Myung Jae; Lee, Sei Won; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang Do

    2014-08-01

    Spirometric measurements of pulmonary function are important in diagnosing and determining the severity of chronic obstructive pulmonary disease (COPD). We performed this study to determine whether candidate genes identified in genome-wide association studies of spirometric measurements were associated with COPD and if they interacted with smoking intensity. The current analysis included 1,000 COPD subjects and 1,000 controls recruited from 24 hospital-based pulmonary clinics. Thirteen SNPs, chosen based on genome-wide association studies of spirometric measurements in the Korean population cohorts, were genotyped. Genetic association tests were performed, adjusting for age, sex, and smoking intensity, using models including a SNP-by-smoking interaction term. PID1 and FAM13A were significantly associated with COPD susceptibility. There were also significant interactions between SNPs in ACN9 and FAM13A and smoking pack-years, and an association of ACN9 with COPD in the lowest smoking tertile. The risk allele of FAM13A was associated with increased expression of FAM13A in the lung. We have validated associations of FAM13A and PID1 with COPD. ACN9 showed significant interaction with smoking and is a potential candidate gene for COPD. Significant associations of genetic variants of FAM13A with gene expression levels suggest that the associated loci may act as genetic regulatory elements for FAM13A gene expression.

  20. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis

    NARCIS (Netherlands)

    Bajaj, I.; Veiga, T.; Van Dissel, D.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Background Microbial gene expression is strongly influenced by environmental growth conditions. Comparison of gene expression under different conditions is frequently used for functional analysis and to unravel regulatory networks, however, gene expression responses to co-cultivation with other micr

  1. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  2. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Directory of Open Access Journals (Sweden)

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  3. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  4. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Directory of Open Access Journals (Sweden)

    Daniel Wuttke

    Full Text Available Dietary restriction (DR, limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/. To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2 had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of

  5. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  6. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    Science.gov (United States)

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Tatsuke, Tsuneyuki; Zhu, Li; Xu, Jian; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2012-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  7. Primary function analysis of human mental retardation related gene CRBN.

    Science.gov (United States)

    Xin, Wang; Xiaohua, Ni; Peilin, Chen; Xin, Chen; Yaqiong, Sun; Qihan, Wu

    2008-06-01

    The mutation of human cereblon gene (CRBN) is revealed to be related with mild mental retardation. Since the molecular characteristics of CRBN have not been well presented, we investigated the general properties of CRBN. We analyzed its gene structure and protein homologues. The CRBN protein might belong to a family of adenosine triphosphate (ATP)-dependent Lon protease. We also found that CRBN was widely expressed in different tissues, and the expression level in testis is significantly higher than other tissues. This may suggested it could play some important roles in several other tissues besides brain. Transient transfection experiment in AD 293 cell lines suggested that both CRBN and CRBN mutant (nucleotide position 1,274(C > T)) are located in the whole cells. This may suggest new functions of CRBN in cell nucleolus besides its mitochondria protease activity in cytoplasm.

  8. Involvement of distinct PKC gene products in T cell functions

    Directory of Open Access Journals (Sweden)

    Gottfried eBaier

    2012-08-01

    Full Text Available It is well established that members of the Protein kinase C(PKC family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the flavor of PKC in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.

  9. Functional characterisation of the TSC1–TSC2 complex to assess multiple TSC2 variants identified in single families affected by tuberous sclerosis complex

    Directory of Open Access Journals (Sweden)

    Dommering Charlotte

    2008-02-01

    Full Text Available Abstract Background Tuberous sclerosis complex (TSC is an autosomal dominant disorder characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR. Methods We have used a combination of different assays to characterise the effects of a number of pathogenic TSC2 amino acid substitutions on TSC1–TSC2 complex formation and mTOR signalling. Results We used these assays to compare the effects of 9 different TSC2 variants (S132C, F143L, A196T, C244R, Y598H, I820del, T993M, L1511H and R1772C identified in individuals with symptoms of TSC from 4 different families. In each case we were able to identify the pathogenic mutation. Conclusion Functional characterisation of TSC2 variants can help identify pathogenic changes in individuals with TSC, and assist in the diagnosis and genetic counselling of the index cases and/or other family members.

  10. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    Science.gov (United States)

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  11. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    Directory of Open Access Journals (Sweden)

    Vita M. Golubovskaya

    2014-01-01

    Full Text Available Focal Adhesion Kinase (FAK is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53−/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05 in HCT116 p53+/+ cells but not in p53−/− cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach.

  12. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses.

    Science.gov (United States)

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

  13. Functional annotation and identification of candidate disease genes by computational analysis of normal tissue gene expression data.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available BACKGROUND: High-throughput gene expression data can predict gene function through the "guilt by association" principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG, small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. CONCLUSIONS/SIGNIFICANCE: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several genetic diseases of unknown molecular basis.

  14. Functional group diversity increases with modularity in complex food webs.

    Science.gov (United States)

    Montoya, D; Yallop, M L; Memmott, J

    2015-06-10

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  15. How complexity increases in development: An analysis of the spatial-temporal dynamics of 1218 genes in Drosophila melanogaster.

    Science.gov (United States)

    Salvador-Martínez, Irepan; Salazar-Ciudad, Isaac

    2015-09-15

    One of the most apparent phenomena in development is that it starts with something apparently simple and leads to something clearly complex with a specific and functional structure. At the level of gene expression it seems also clear that the embryo becomes progressively compartmentalized over time and space. However, there have not been any systematic attempts to quantify how this occurs. Here, we present a quantitative analysis of the compartmentalization and spatial complexity of gene expression in Drosophila melanogaster over developmental time by analyzing thousands of gene expression spatial patterns from FlyExpress database. We use three different mathematical measures of compartmentalization of gene expression in space. All these measures show a similar non-linear increase in compartmentalization over time, with the most dramatic change occurring from the maternal to the early gastrula stage. Transcription factors and growth factors showed an earlier compartmentalization. Finally, we partitioned the embryo space in 257 equally sized regions and clustered them depending on their expression similarity, within and between stages. This provides a global overview about the effective degree of differentiation and compartmentalization between body parts at each developmental stage and when and where in the embryo there are more changes, due to signaling or movement.

  16. Sex in smut fungi: Structure, function and evolution of mating-type complexes.

    Science.gov (United States)

    Bakkeren, Guus; Kämper, Jörg; Schirawski, Jan

    2008-08-01

    Smut fungi are basidiomycete plant pathogens that pose a threat to many important cereal crops. In order to be pathogenic on plants, smut fungal cells of compatible mating-type need to fuse. Fusion and pathogenicity are regulated by two loci, a and b, which harbor conserved genes. The functions of the encoded mating-type complexes have been well-studied in the model fungus Ustilago maydis and will be briefly reviewed here. Sequence comparison of the mating-type loci of different smut and related fungi has revealed that these loci differ substantially in structure. These structural differences point to an evolution from tetrapolar to bipolar mating behavior, which might have occurred several independent times during fungal speciation.

  17. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  18. Three-dimensional potential flows from functions of a 3D complex variable

    Science.gov (United States)

    Kelly, Patrick; Panton, Ronald L.; Martin, E. D.

    1990-01-01

    Potential, or ideal, flow velocities can be found from the gradient of an harmonic function. An ordinary complex valued analytic function can be written as the sum of two real valued functions, both of which are harmonic. Thus, 2D complex valued functions serve as a source of functions that describe two-dimensional potential flows. However, this use of complex variables has been limited to two-dimensions. Recently, a new system of three-dimensional complex variables has been developed at the NASA Ames Research Center. As a step toward application of this theory to the analysis of 3D potential flow, several functions of a three-dimensional complex variable have been investigated. The results for two such functions, the 3D exponential and 3D logarithm, are presented in this paper. Potential flows found from these functions are investigated. Important characteristics of these flows fields are noted.

  19. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    Science.gov (United States)

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  20. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    Science.gov (United States)

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-06-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the "weak link" approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems.

  1. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...... can all be predicted. Although the method relies on protein sequences as the sole input, it does not rely on sequence similarity, but instead on sequence derived protein features such as predicted post translational modifications (PTMs), protein sorting signals and physical/chemical properties...

  2. New polypyridine anchoring ligands for coordination complexes and surface functionalization

    OpenAIRE

    Müller, Steffen

    2015-01-01

    This PhD thesis focuses on the synthesis of new polypyridine anchoring ligands and several dfferent applications. The ligands consist of a coordinating part, a flexible linker and an anchoring group. Due to the fact that different anchoring groups were used, the ligands can be applied for several types of surface-materials. Using these anchoring ligands, several coordination complexes were synthesized. Ruthenium-based complexes, bearing an ion-sensitive ligand, were tested towards...

  3. A TDG/CBP/RARα Ternary Complex Mediates the Retinoic Acid-dependent Expression of DNA Methylation-sensitive Genes

    Directory of Open Access Journals (Sweden)

    Hélène Léger

    2014-02-01

    Full Text Available The thymine DNA glycosylase (TDG is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα, resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG’s epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.

  4. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2007-04-01

    Full Text Available Abstract Background The Allen Brain Atlas (ABA project systematically profiles three-dimensional high-resolution gene expression in postnatal mouse brains for thousands of genes. By unveiling gene behaviors at both the cellular and molecular levels, ABA is becoming a unique and comprehensive neuroscience data source for decoding enigmatic biological processes in the brain. Given the unprecedented volume and complexity of the in situ hybridization image data, data mining in this area is extremely challenging. Currently, the ABA database mainly serves as an online reference for visual inspection of individual genes; the underlying rich information of this large data set is yet to be explored by novel computational tools. In this proof-of-concept study, we studied the hypothesis that genes sharing similar three-dimensional expression profiles in the mouse brain are likely to share similar biological functions. Results In order to address the pattern comparison challenge when analyzing the ABA database, we developed a robust image filtering method, dubbed histogram-row-column (HRC algorithm. We demonstrated how the HRC algorithm offers the sensitivity of identifying a manageable number of gene pairs based on automatic pattern searching from an original large brain image collection. This tool enables us to quickly identify genes of similar in situ hybridization patterns in a semi-automatic fashion and consequently allows us to discover several gene expression patterns with expression neighborhoods containing genes of similar functional categories. Conclusion Given a query brain image, HRC is a fully automated algorithm that is able to quickly mine vast number of brain images and identify a manageable subset of genes that potentially shares similar spatial co-distribution patterns for further visual inspection. A three-dimensional in situ hybridization pattern, if statistically significant, could serve as a fingerprint of certain gene function

  5. Gene regulation in S. mutans: complex control in a complex environment.

    Science.gov (United States)

    Smith, E G; Spatafora, G A

    2012-02-01

    Dental caries is a chronic infectious disease of multifactorial etiology that derives from the interplay among cariogenic bacteria on the dentition, the host diet, and other environmental exposures. Streptococcus mutans proliferates as a biofilm on the tooth surface, where it obtains nutrients and metabolizes fermentable dietary carbohydrates. The accumulation of lactic acid as a by-product of fermentation results in acidification of the plaque biofilm and demineralization of tooth enamel, marking the onset of decay. The ability of S. mutans to respond to environmental stresses presented by salivary flow, acid pH, oxidative stress, and changes in carbohydrate source and availability is essential for its survival and predominance in caries lesions. Importantly, S. mutans has evolved a network of regulators to integrate its cellular response to environmental change. Herein we describe the latest insights into global gene regulation in S. mutans, including mechanisms of signal transduction, carbon catabolite repression, and quorum-sensing. An improved understanding of these regulatory networks can provide a basis for novel therapeutic applications aimed at treating and/or preventing caries.

  6. Component Thermodynamical Selection Based Gene Expression Programming for Function Finding

    Directory of Open Access Journals (Sweden)

    Zhaolu Guo

    2014-01-01

    Full Text Available Gene expression programming (GEP, improved genetic programming (GP, has become a popular tool for data mining. However, like other evolutionary algorithms, it tends to suffer from premature convergence and slow convergence rate when solving complex problems. In this paper, we propose an enhanced GEP algorithm, called CTSGEP, which is inspired by the principle of minimal free energy in thermodynamics. In CTSGEP, it employs a component thermodynamical selection (CTS operator to quantitatively keep a balance between the selective pressure and the population diversity during the evolution process. Experiments are conducted on several benchmark datasets from the UCI machine learning repository. The results show that the performance of CTSGEP is better than the conventional GEP and some GEP variations.

  7. Statistical analysis of genomic protein family and domain controlled annotations for functional investigation of classified gene lists

    Directory of Open Access Journals (Sweden)

    Masseroli Marco

    2007-03-01

    Full Text Available Abstract Background The increasing protein family and domain based annotations constitute important information to understand protein functions and gain insight into relations among their codifying genes. To allow analyzing of gene proteomic annotations, we implemented novel modules within GFINDer, a Web system we previously developed that dynamically aggregates functional and phenotypic annotations of user-uploaded gene lists and allows performing their statistical analysis and mining. Results Exploiting protein information in Pfam and InterPro databanks, we developed and added in GFINDer original modules specifically devoted to the exploration and analysis of functional signatures of gene protein products. They allow annotating numerous user-classified nucleotide sequence identifiers with controlled information on related protein families, domains and functional sites, classifying them according to such protein annotation categories, and statistically analyzing the obtained classifications. In particular, when uploaded nucleotide sequence identifiers are subdivided in classes, the Statistics Protein Families&Domains module allows estimating relevance of Pfam or InterPro controlled annotations for the uploaded genes by highlighting protein signatures significantly more represented within user-defined classes of genes. In addition, the Logistic Regression module allows identifying protein functional signatures that better explain the considered gene classification. Conclusion Novel GFINDer modules provide genomic protein family and domain analyses supporting better functional interpretation of gene classes, for instance defined through statistical and clustering analyses of gene expression results from microarray experiments. They can hence help understanding fundamental biological processes and complex cellular mechanisms influenced by protein domain composition, and contribute to unveil new biomedical knowledge about the codifying genes.

  8. A Study of I-Function of Several Complex Variables

    OpenAIRE

    Prathima Jayarama; Vasudevan Nambisan Theke Madam; Shantha Kumari Kurumujji

    2014-01-01

    The aim of this paper is to introduce a natural generalization of the well-known, interesting, and useful Fox H-function into generalized function of several variables, namely, the I-function of ‘‘r’’ variables. For r=1, we get the I-function introduced and studied by Arjun Rathie (1997) and, for r=2, we get I-function of two variables introduced very recently by ShanthaKumari et al. (2012). Convergent conditions, elementary properties, and special cases have also been given. T...

  9. Equine herpesvirus 1 gene 12, the functional homologue of herpes simplex virus VP16, transactivates via octamer sequences in the equine herpesvirus IE gene promoter.

    Science.gov (United States)

    Elliott, G; O'Hare, P

    1995-10-20

    The HSV-1 transactivator of immediate-early (IE) gene expression, VP16, has several functional homologues among the alphaherpesviruses which have not yet been extensively studied in relation to their modes of action. To date, nothing is known of the exact sites or mechanism of interaction of the equine herpesvirus type 1 (EHV-1) homologue, the gene 12 protein, with the EHV-1 IE promoter. We show that the gene 12 protein utilises the promoter proximal region of the IE gene to induce activation and identify four potential octamer DNA binding sites within that region. Although there was divergence from its consensus, Oct-1 bound to each of these sites in an in vitro complex formation assay, and in the presence of the gene 12 product a second complex of slower migration, which was also dependent on Oct-1, was detected. When each site was inserted into a basal promoter, two conferred activation by gene 12 with a resulting increase in expression of up to 50-fold compared to basal levels. These results show that, despite the differences between the two proteins, the mechanism of interaction of the gene 12 protein with its target is analogous to that of VP16.

  10. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.

    Science.gov (United States)

    Sun, Yan V; Hu, Yi-Juan

    2016-01-01

    Complex and dynamic networks of molecules are involved in human diseases. High-throughput technologies enable omics studies interrogating thousands to millions of makers with similar biochemical properties (eg, transcriptomics for RNA transcripts). However, a single layer of "omics" can only provide limited insights into the biological mechanisms of a disease. In the case of genome-wide association studies, although thousands of single nucleotide polymorphisms have been identified for complex diseases and traits, the functional implications and mechanisms of the associated loci are largely unknown. Additionally, the genomic variants alone are not able to explain the changing disease risk across the life span. DNA, RNA, protein, and metabolite often have complementary roles to jointly perform a certain biological function. Such complementary effects and synergistic interactions between omic layers in the life course can only be captured by integrative study of multiple molecular layers. Building upon the success in single-omics discovery research, population studies started adopting the multi-omics approach to better understanding the molecular function and disease etiology. Multi-omics approaches integrate data obtained from different omic levels to understand their interrelation and combined influence on the disease processes. Here, we summarize major omics approaches available in population research, and review integrative approaches and methodologies interrogating multiple omic layers, which enhance the gene discovery and functional analysis of human diseases. We seek to provide analytical recommendations for different types of multi-omics data and study designs to guide the emerging multi-omic research, and to suggest improvement of the existing analytical methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A novel dRYBP-SCF complex functions to inhibit apoptosis in Drosophila.

    Science.gov (United States)

    Fereres, Sol; Simón, Rocío; Busturia, Ana

    2013-12-01

    A balanced response to intrinsic and extrinsic apoptotic signals is crucial to support homeostatic development and animal survival. Regulation of activation and inhibition of apoptotic pathways involves diverse mechanisms including protein ubiquitylation to control expression levels of apoptotic factors. Here we report that drosophila Ring and YY1 Binding Protein (dRYBP) protein interacts both genetically and biochemically with the E3 ubiquitin ligase SKPA, dCULLIN, F-box (SCF) complex to synergistically inhibit apoptosis in Drosophila. Further, we show that the loss of skpA function activates the intrinsic pathway of apoptosis and down-regulates the levels of expression of the anti-apoptotic DIAP1 protein. Accordingly, the apoptosis induced by inactivation of skpA and dRYBP is rescued by loss of function of the pro-apoptotic gene reaper and overexpression of DIAP1. Of interest, we also find that high levels of SKPA protein rescue the wing phenotype induced by overexpression of Reaper protein. Finally, we demonstrate that overexpression of SKPA inhibits both developmental and radiation-induced apoptosis. We propose that the function of the dRYBP-SCF complex in the inhibition of apoptosis might possibly be to control the levels of the pro-apoptotic and anti-apoptotic proteins most likely by promoting their ubiquitylation and consequently, proteasomal degradation. Given the evolutionary conservation of the dRYBP and the SCF proteins, our results suggest that their mammalian homologs may function in balancing cell survival versus cell death during normal and pathological development.

  12. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex

    Directory of Open Access Journals (Sweden)

    Gribble Kristin E

    2012-08-01

    Full Text Available Abstract Background Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP, a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Results Isolates of the B. plicatilis species complex have 1–4 copies of mmr-b, each composed of 2–9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Conclusions Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving

  13. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    Science.gov (United States)

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  14. Functional and Structural Characterization of FAU Gene/Protein from Marine Sponge Suberites domuncula.

    Science.gov (United States)

    Perina, Dragutin; Korolija, Marina; Hadžija, Marijana Popović; Grbeša, Ivana; Belužić, Robert; Imešek, Mirna; Morrow, Christine; Marjanović, Melanija Posavec; Bakran-Petricioli, Tatjana; Mikoč, Andreja; Ćetković, Helena

    2015-07-07

    Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (FAU) gene is down-regulated in human prostate, breast and ovarian cancers. Moreover, its dysregulation is associated with poor prognosis in breast cancer. Sponges (Porifera) are animals without tissues which branched off first from the common ancestor of all metazoans. A large majority of genes implicated in human cancers have their homologues in the sponge genome. Our study suggests that FAU gene from the sponge Suberites domuncula reflects characteristics of the FAU gene from the metazoan ancestor, which have changed only slightly during the course of animal evolution. We found pro-apoptotic activity of sponge FAU protein. The same as its human homologue, sponge FAU increases apoptosis in human HEK293T cells. This indicates that the biological functions of FAU, usually associated with "higher" metazoans, particularly in cancer etiology, possess a biochemical background established early in metazoan evolution. The ancestor of all animals possibly possessed FAU protein with the structure and function similar to evolutionarily more recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis. It provides an opportunity to use pre-bilaterian animals as a simpler model for studying complex interactions in human cancerogenesis.

  15. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  16. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  17. Gene-environment interaction and male reproductive function

    DEFF Research Database (Denmark)

    Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L;

    2010-01-01

    As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between...... that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism...... of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity...

  18. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex<