WorldWideScience

Sample records for complex formation reactions

  1. Kinetic and mechanism formation reaction of complex compound Cu with di-n-buthildithiocarbamate (dbdtc) ligand

    Science.gov (United States)

    Haryani, S.; Kurniawan, C.; Kasmui

    2018-04-01

    Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).

  2. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  3. Physics of positronium acceptor complex formation reactions

    International Nuclear Information System (INIS)

    Gangopadhyay, Debarshi; Ganguly, Bichitra Nandi; Mukherjee, Tapas; Dutta-Roy, Binayak

    2002-01-01

    Positronium (P s ) reaction rates (κ) with weak Acceptors (Ac) leading to the formation of Ps-Ac complexes show several interesting features: non-monotonic temperature dependence of κ(departing from the usual Arrhenius behaviour), considerable variability of κ with respect to different solvents, and anomalies in response to external pressure at ambient temperature. The object of this work is to explain all these phenomena using a remarkably simple bubble model (the widely used model for the pick-off component of ortho-positronium decay in liquids), which has been revisited several times in the context and as a result smooth diffuse boundary of the bubble was suggested that yields reasonable agreement of the experimental data. The contractile force on the bubble relies much on the surface tension of the liquid, through our calculation the notion of critical surface tension emerges and enables us to explain the experimental observations satisfactorily. (author)

  4. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  5. On determination of enthalpies of complex formation reactions by means of temperature coefficient of complexing degree

    International Nuclear Information System (INIS)

    Povar, I.G.

    1995-01-01

    Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs

  6. The Possibility of Ce3+ and Mn2+ Complex Ions Formation With Iodine Species in a Dushman Reaction

    Directory of Open Access Journals (Sweden)

    Iurie Ungureanu

    2018-06-01

    Full Text Available This contribution presents investigations into possible effects of Ce3+ and Mn2+ on the reduction of UV-spectral signal for I3- observed e.g. in the Dushman reaction. The potential of the metal ions to form complexes with iodine-containing species was analysed. It was shown that no complex ions are formed between Ce3+ and Mn2+ metals ions with IO3-, I-, I2 species. Only the formation of a very weak CeI32+ complex ion was found to occur. An effect of a complex formation on the studied systems could be excluded.

  7. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  8. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  9. Formation of quinones, indanones and furans by the reaction of molybdenum carbene complexes with alkynes

    International Nuclear Information System (INIS)

    Doetz, K.H.; Larbig, H.

    1992-01-01

    (Alkoxy)carbene complexes of molybdenum react with terminal alkynes to give carbene annulation of cycloaddition products, the skeleton of which depends on the carbene substitution pattern and the alkyne used. (CO) 5 Mo=C(OMe)-p-tol undergoes carbene annulation upon reaction with trimethylsilylacetylene leading to naphthoquinone after oxidative work-up. Similar products are obtained from (CO) 5 Mo=C(OMe)2-furyl and hex-1-yne or oct-1-yne. The reaction of these alkynes results in the formation of indanones as five-membered annulation products. In the presence of 3.3-dimethylbut-1-yne the (phenyl) carbene ligands act as a C 1 -synthon, which is incorporated into the furan cycloaddition products

  10. Thermodynamic Characteristics of Reactions of the Formation of Complexes between Triglycine and Ni2+ Ions in Aqueous Solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2018-05-01

    Thermal effects of reactions of the formation of complexes between Ni(II) and triglycine are determined via direct calorimetry in aqueous solutions at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexing processes in the investigated systems are calculated. The structures of triglycinate complexes NiL+, NiH-1L, NiL2, NiH-2L2- 2, NiL- 3, and NiH-3L4- 3 are introduced to compare the obtained values and data on the thermodynamics of triglycinate complexes of Ni(II).

  11. Reactions of sigma-bonded organochromium(III)complexes

    International Nuclear Information System (INIS)

    Leslie, J.P. II.

    1975-12-01

    Three projects were carried out, each dealing with the kinetics and mechanism of reactions of sigma-bonded organochromium(III) complexes of the form (H 2 O) 5 CrR 2+ . Part I describes the kinetics of the reaction of dichloromethylchromium(III) ion with chromium(II) ion in aqueous acid. Part II deals with the radioexchange of 4-pyridinomethylchromium(III) ion with 51 Cr 2+ and the kinetics of formation of the organochromium species at 55 0 in 1 M H + . Part III deals with the reactions of Hg 2+ and CH 3 Hg + with a series of (H 2 O) 5 CrR 2+ complexes, in which R is an aliphatic alkyl group, a haloalkyl group, or an aralkyl group

  12. Reaction-diffusion controlled growth of complex structures

    Science.gov (United States)

    Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna

    2013-03-01

    Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support

  13. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  14. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    International Nuclear Information System (INIS)

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO 2 + - Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La 3+ , Eu 3+ , Dy 3+ , and Fe 3+ with CLIII. Rate determining step in each system is an intramolecular process, the NpO 2 + -CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are ΔH=46.2±0.3 kJ/m and ΔS=7± J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are ΔH=38.8±0.6 kJ/m, ΔS=-96±18 J/mK, ΔH=70.0± kJ/m, and ΔS=17±1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO 2 + , UO 2 2+ , Th 4+ , and Zr 4+ . Rates of CLIII complex formation reactions for Fe 3+ , Zr 4+ , NpO 2 + , UO 2 2+ , Th 4+ , La 3+ , Eu 3+ , and Dy 3+ correlate with cation radius rather than charge/radius ratio

  15. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  16. Complex formation reactions of uranyl(VI) with neutral N-donors in dimethyl sulfoxide. Influence of small amounts of water

    International Nuclear Information System (INIS)

    Cassol, A.; Di Bernardo, P.; Zanonato, P.; Portanova, R.; Tolazzi, M.

    1990-01-01

    Quantitative information about the existence and thermodynamic stability of uranyl(VI) ion complexes based solely upon nitrogen coordination has been obtained in the solvent dimethyl sulfoxide. Calorimetric, potentiometric, and FT-IR investigations, under controlled anhydrous conditions, show that the uranyl(VI) ion can form both mono and bis chelates with the ethylenediamine ligand and only a mono chelate of rather low stability with propylenediamine. With the monodentate ligand n-butylamine only a very weak metal-ligand interaction has been detected. The stability constants and the enthalpy and entropy changes have been calculated for the identified coordinated species. All data refer to 25.0 degree C and a tetraethylammonium perchlorate medium of ionic strength 0.1 M. All the complexes are enthalpy stabilized whereas the entropy contributions oppose the complex formation. Calorimetric and FT-IR measurements carried out to investigate the effects of small amounts of water present show that a very low water concentration, comparable to that of the coordinating metal ion, can give rise to hydrolysis reactions that may compete with complex formation. This is due to the combined action of different factors that are discussed. 39 refs., 6 figs., 1 tab

  17. complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wei Liansheng; Lin Zhangji

    1998-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am(III) with humic acid is studied with solvent extraction technique. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 mol/kg NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am(III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 = 6.56 +- 0.05, lgβ 2 = 10.77 +- 0.31 at pH 4.0. lgβ 1 = 7.94 +- 0.11, lgβ 2 = 11.80 +- 0.21 at pH = 5.0. lgβ 1 = 10.74 +- 0.28, lgβ 2 = 12.88 +- 0.49 at pH = 6.0. lgβ 1 = 12.85 +- 0.30, lgβ 2 = 14.80 +- 0.62 at pH = 7.0. lgβ 1 = 14.88 +- 0.48, lgβ 2 = 15.65 +- 0.69 at pH = 8.0, respectively. The dependence of the complex formation constant on pH is: lgβ 1 = 2.16 (+-0.98)pH-2.34(+-0.93),lgβ 2 1.28(+-1.04)pH+5.52(+-1.21), respectively

  18. Complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wen Liansheng; Lin Zhangji

    2004-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am (III) with humic acid is studied with solvent extraction technique in this paper. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 M NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am (III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 =6.56±0.05, lgβ 2 =10.77±0.31 at pH=4.0; lgβ 1 =7.94±0.11, lgβ 2 =11.80±0.21 at pH=5.0; lgβ 1 =10.74±0.28, lgβ 2 =12.88±0.49 at pH=6.0; lgβ 1 =12.85±0.30, lgβ 2 =14.80±0.62 at pH=7.0; lgβ 1 =14.88±0.48, lgβ 2 =15.65±0.69 at pH=8.0, respectively. The dependence of the complex of the complex formation constant on pH is: lgβ 1 =2.16(±0.98)pH-2.34(±1.03), lgβ 2 =1.28(±1.04)pH+5.52(±1.21), respectively. (author)

  19. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2002-01-01

    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  20. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  1. Simulations of photochemical smog formation in complex urban areas

    Science.gov (United States)

    Muilwijk, C.; Schrijvers, P. J. C.; Wuerz, S.; Kenjereš, S.

    2016-12-01

    In the present study we numerically investigated the dispersion of photochemical reactive pollutants in complex urban areas by applying an integrated Computational Fluid Dynamics (CFD) and Computational Reaction Dynamics (CRD) approach. To model chemical reactions involved in smog generation, the Generic Reaction Set (GRS) approach is used. The GRS model was selected since it does not require detailed modeling of a large set of reactive components. Smog formation is modeled first in the case of an intensive traffic emission, subjected to low to moderate wind conditions in an idealized two-dimensional street canyon with a building aspect ratio (height/width) of one. It is found that Reactive Organic Components (ROC) play an important role in the chemistry of smog formation. In contrast to the NOx/O3 photochemical steady state model that predicts a depletion of the (ground level) ozone, the GRS model predicts generation of ozone. Secondly, the effect of direct sunlight and shadow within the street canyon on the chemical reaction dynamics is investigated for three characteristic solar angles (morning, midday and afternoon). Large differences of up to one order of magnitude are found in the ozone production for different solar angles. As a proof of concept for real urban areas, the integrated CFD/CRD approach is applied for a real scale (1 × 1 km2) complex urban area (a district of the city of Rotterdam, The Netherlands) with high traffic emissions. The predicted pollutant concentration levels give realistic values that correspond to moderate to heavy smog. It is concluded that the integrated CFD/CRD method with the GRS model of chemical reactions is both accurate and numerically robust, and can be used for modeling of smog formation in complex urban areas.

  2. Facile reactions of gold(i) complexes with tri(tert-butyl)azadiboriridine.

    Science.gov (United States)

    Shang, Rong; Saito, Souta; Jimenez-Halla, J Oscar C; Yamamoto, Yohsuke

    2018-04-17

    Direct structural evidence for group 11 metal-mediated B-B bond activation was obtained from reactions of tri(tert-butyl)azadiboriridine (1) with AuCl(L) complexes. The AuCl(SMe2) reaction afforded [η2-B,B-B(tBu)N(tBu)B(tBu)]AuCl (2) by ligand displacement. More donating phosphines as co-ligands led to B-B bond cleavage accompanied by either halide or L migration to form boron-gold complexes 3 (L = PPh3) and 4 (L = PMe3). A similar product 5, which is isostructural to 4, was obtained by the addition of dimethylaminopyridine (DMAP) to 2-4. Complexes 2-5 constitute rare examples of metal complexes bearing two Lewis acidic centres. The effect of the boryl ligand was demonstrated in the formation of a gold(i) complex 6 bearing a 5-membered heterocycle from 3 and tert-butylisonitrile. Plausible reaction mechanisms that led to these complexes and their bonding situation were explored computationally at the DFT level.

  3. Rethinking pattern formation in reaction-diffusion systems

    Science.gov (United States)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  4. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  5. Substitution reactions of technetium complexes

    International Nuclear Information System (INIS)

    Omori, T.

    1997-01-01

    Substitution reactions of a series of technetium complexes are considered in comparison with corresponding reactions of rhenium. Rhenium and technetium complexes are rather inert in substitution reactions, the latter are characterized by greater rate constants when they proceed according to dissociative mechanism. In rare cases when k Tc /k Re id little it is assumed that the reaction proceeds according to the associative mechanism. (author)

  6. Quantum-chemical analysis of formation reactions of Со2+ complexes

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to coordination compounds of Co2+ions with H2O, NH3, OH–, F–, Cl–, Br–, I–, CN–, Ac–, Ak– generally given by [Co(H2O6–nLn]2+nx, it has been demonstrated that within the selected series of ligands, there is no correlation between the amount of energy of monosubstituted cobalt aqua complexes formation(∆Е and pK1,just like between the effective nuclear charge of the central atom (z*Со and pK1. According to the behavior of ∆Е and z*Со,we identified two groups of ligands. The first group (OH–, F–, Ac–, Ak–, CN–, NH3 demonstrates logical ∆Е decrease caused by the growth of z*Со. On the contrary, the second group (Cl–, Br–, I– demonstrates ∆Е increase caused by the growth of z*Со. This phenomenon is explained by the change in electronegativity and polarizability of donor atoms in groups and periods of the periodic table. It is established that linear correlations given by lgK = A + B·z*Со can be actualized only for complexes having ligands with similar donor atoms. Referring to the literature on stepwise complex formation of hydroxide, amine and chloride cobalt complexes in combination with z*Со calculations results, we determined A and B constants of lgK, z*Со-correlations for the atoms of oxygen (30.2, –17.7; nitrogen (125.4, –69.9 and chlorine (–6.3, 5.8. The existence of the detected correlation series enables us to lean on lgK,z*М–dependence parameters for the fixed donor atom and to determine Kn values for various complexes with complex-based ligands using calculations and z*М data. This applies to complexes having central atoms of the same nature as well as simple monodentate ligands. The mentioned approach was used to calculate the stability constants for acrylate cobalt complexes (lgK1 = 1.2 и lgК2 = 4.3, which are not covered in literature.

  7. Spur Reaction Model of Positronium Formation

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1974-01-01

    A new model of positronium (Ps) formation is proposed. Positronium is assumed to be formed by a reaction between a positron and an electron in the positron spur. Ps formation must compete with electron‐ion recombination and electron or positron reactions with solvent molecules and scavenger...

  8. Formation of nitrogen complexes when [Ru(NH3)5H2O]2+ ion reaction with diazo-acetic ester and aromatic salts of diazonium

    International Nuclear Information System (INIS)

    Shur, V.B.; Tikhonova, I.A.; Vol'pin, M.E.

    1978-01-01

    A possibility of formation of nitrogen complexes during transition metal compound interaction with aliphatic and aromatic diazo compounds is studied. It is shown that at the interaction of [Ru(NH 3 ) 5 H 2 O] 2+ with diazo-acetic ester in water (pH7) at 20 deg, quick splitting of the CN-bond in the ester molecule takes place with the formation of [Ru(NH 3 ) 5 N 2 ] 2+ and [(NH 3 ) 5 RuN 2 Ru(NH 3 ) 5 ] 4+ (NRRN) nitrogen complexes. The sum yield of complexes comprises 86% taking into acount diazo-acetic ester. Aromatic salts of diazonium, n-O 3 SC 6 H 4 N 2 and p-quinone diazide react with the [Ru(NH 3 ) 5 H 2 O] 2+ excess forming NRRN (the yield equals 40-53%). The reaction mechanism is discussed

  9. Characterising Complex Enzyme Reaction Data.

    Directory of Open Access Journals (Sweden)

    Handan Melike Dönertaş

    Full Text Available The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG. Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  10. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  11. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  12. Markovian dynamics on complex reaction networks

    International Nuclear Information System (INIS)

    Goutsias, J.; Jenkinson, G.

    2013-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples

  13. Formation of nitridotechnetium(VI) μ-oxo dimer complexes with EDTA and EDDA

    International Nuclear Information System (INIS)

    Takayama, T.; Kani, Y.; Sekine, T.; Kudo, H.; Yoshihara, K.

    1995-01-01

    Reactions of [ 99 TcNCl 4 ] - with ethylenediaminetetraacetic acid 4 (ETDA) and ethylenediamine-N,N'-diacetic acid (EDDA) in a mixture of water and acetone gave Tc VI N-EDTA and Tc VI N-EDTA complexes. The infrared spectra of both reaction products showed the existence of the Tc≡N and C=O groups. The elemental analysis indicated the 1:1 TcN-ligand ratio in the EDTA and EDDA complexes. Electrophoresis showed that the Tc VI -EDTA complex was an anionic species in a perchlorate solution. For the Tc VI N-EDDA complex, neutral and anionic species were formed, depending on the pH of the solution. Formation of the μ-oxo dimer complexes was suggested from the UV-Vis absorption spectra. (author) 11 refs.; 4 figs.; 1 tab

  14. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  15. Kinetics of contrail particles formation and heterogeneous reactions on such particles

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, M.N.; Butkovsky, A.V.; Erofeev, A.I.; Freedlender, O.G.; Makashev, N.K. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    The research of impact of aircraft emissions upon the atmosphere is very complex and difficult problem. More than two decades of intensive investigations of the problem of ozone decay do not permit to make definite conclusions. Many important problems still remain unsolved in the aircraft/atmosphere interaction: engine, nozzle, jet, jet/vortex system interaction, vortex breakdown, contrail formation, meso-scale and global processes, their effects on climate. The particles formation and heterogeneous reactions play an important role in some of these processes. These problems are discussed. (author) 11 refs.

  16. Kinetics of contrail particles formation and heterogeneous reactions on such particles

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, M N; Butkovsky, A V; Erofeev, A I; Freedlender, O G; Makashev, N K [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1998-12-31

    The research of impact of aircraft emissions upon the atmosphere is very complex and difficult problem. More than two decades of intensive investigations of the problem of ozone decay do not permit to make definite conclusions. Many important problems still remain unsolved in the aircraft/atmosphere interaction: engine, nozzle, jet, jet/vortex system interaction, vortex breakdown, contrail formation, meso-scale and global processes, their effects on climate. The particles formation and heterogeneous reactions play an important role in some of these processes. These problems are discussed. (author) 11 refs.

  17. Mechanisms of reactions of organoaluminium compounds with alkenes and alkynes catalyzed by Zr complexes

    International Nuclear Information System (INIS)

    Parfenova, L V; Khalilov, Leonard M; Dzhemilev, Usein M

    2012-01-01

    The results of studies dealing with mechanisms of hydro-, carbo- and cycloalumination of alkenes and alkynes catalyzed by zirconium complexes are generalized and systematized for the first time. Data about the structures of intermediates responsible for the formation of the target compounds are presented and the available data on the effect of the structure of organoaluminium compounds and the electronic and steric factors determining the catalytic activity of metal complexes in these reactions are considered in detail. Much attention is paid to studies of the influence of reaction conditions on the chemo-, regio- and stereoselectivity of the Zr-containing complex catalysts. The bibliography includes 217 references.

  18. A study of fundamental reaction pathways for transition metal alkyl complexes. I. The reaction of a nickel methyl complex with alkynes. Ii. The mechanism of aldehyde formation in the reaction of a molybdenum hydride with molybdenum alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, John Mitchell [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1980-06-12

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl-acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO)3H (1a) with CpMo(CO)3R (2, R= CH3, C2H5) at 50°C in THF gives the aldehyde RCHO and the dimers [CpMo(CO)3]2 (3a) and [CpMo(CO)2]2 (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand

  19. FORMATION AND ELECTROCHEMICAL BEHAVIOUR OF POLYION COMPLEXES FOR ELECTROCHROMIC DISPLAY MATERIAL

    Institute of Scientific and Technical Information of China (English)

    WAN Guoxiang; WANG Bing; DENG Zhenghua; LUO Chunqiao

    1988-01-01

    Formation of intermacromolecular complexes containing viologen and electron-transfer reaction occurred on the electrode modified by the complex films were studied. Compositions and morphology of the complexes depend on the properties of polyanion and chemical environment of complexation. The analytical results of cyclic voltammetry (CV) and rotating disk voltammetry(RDV) indicated: (1) active sites of viologen in network of complexes transferred single electron reversibly; (2) the redox peak currents showed excellent symmetry and stability; (3) redox potentials were related to properties of polyanions, varying from -0.4 to -0.6V (vs. SCE). Electrochromic materials with different displaying colors could be obtained by changing the structure of polyviologen.

  20. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    International Nuclear Information System (INIS)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-01-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude

  1. Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts

    Science.gov (United States)

    Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.

    2016-04-01

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  2. FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Wirström, Eva S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2016-04-10

    During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.

  3. Complex formation of technetium with the methyl esters of MAG2 and MAG1

    International Nuclear Information System (INIS)

    Noll, B.; Noll, S.; Grosse, B.; Johannsen, B.; Spies, H.

    1993-01-01

    Mercaptoacetylglycine methyl ester (MAG 2 ester) and mercaptoacetyldiglycine methyl ester (MAG 1 ester) were included to investigate complex formation of SH/amide ligands with technetium. The studies are aimed at finding out how blocking the carboxylic groups influences the complexation reaction, with a view to finding an approach to new lipophilic species. (orig./BBR)

  4. Use of frontal analysis in ion exchange chromatography for the study of reactions of formation of complexes in solution. Application to hydrochloric complexes of nickel (II), cobalt (II) and copper (II)

    International Nuclear Information System (INIS)

    Tremillon, Bernard

    1959-01-01

    The ion exchanger column frontal analysis method provides a convenient way to study complex formation reactions when they are very unstable. It has the advantage of being much more sensitive and precise than the method (already used by other authors) of simple equilibrium between a solution and an ion exchanger. As an illustration of this method, the hydrochloric acid complexes NiCl + , CoCl + and CuCl + , have been studied, and their dissociation constants were determined (respectively 4.6 ± 0.1; 4.0 ± 0.1 and 2.5 ± 0.1, at an ionic strength substantially equal to 1.5). Reprint of a paper published in Bulletin de la Societe Chimique de France, 1958, p. 1483-1487 [fr

  5. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  6. Interest of uranium complexes for the mechanism study of the McMurry reaction; Interet des complexes de l`uranium pour l`etude du mecanisme de la reaction de McMurry

    Energy Technology Data Exchange (ETDEWEB)

    Maury, O

    1997-07-04

    The reducing coupling reactions of ketones in diols and olefins are generally carried out with titanium or samarium compounds. In this work uranium complexes have been used. They have allowed to study the chemical reaction mechanism. This thesis is divided into three parts: 1) the reduction mechanism of uranium tetrachloride by cyclic voltametry has been studied at first. It has been shown that this reduction is followed by a transfer reaction of chlorides between the reduced specie of the higher electronic density and UCl . 2) In the second part is described: the synthesis, the crystal structure, the reactivity of the chemical agents, the stereochemistry of diols and alkenes formation and the pinacolisation reaction catalysis. 3) In the last part, the limits of the McMurry reaction are given by the study of the aromatic ketones pinacolisation reaction by-products. The obtained results show that the complexes of the metals which present a high reducing and oxo-philic (Ti, Sm, U..) character react in a similar way with the carbonyl compounds. If the uranium compounds are less used than those of the titanium in the field of the organic synthesis applications, they are precious auxiliaries and excellent models for reactions mechanisms study and for the synthesis methods optimization. (O.M.). 284 refs.

  7. Interest of uranium complexes for the mechanism study of the McMurry reaction

    International Nuclear Information System (INIS)

    Maury, O.

    1997-01-01

    The reducing coupling reactions of ketones in diols and olefins are generally carried out with titanium or samarium compounds. In this work uranium complexes have been used. They have allowed to study the chemical reaction mechanism. This thesis is divided into three parts: 1) the reduction mechanism of uranium tetrachloride by cyclic voltametry has been studied at first. It has been shown that this reduction is followed by a transfer reaction of chlorides between the reduced specie of the higher electronic density and UCl . 2) In the second part is described: the synthesis, the crystal structure, the reactivity of the chemical agents, the stereochemistry of diols and alkenes formation and the pinacolisation reaction catalysis. 3) In the last part, the limits of the McMurry reaction are given by the study of the aromatic ketones pinacolisation reaction by-products. The obtained results show that the complexes of the metals which present a high reducing and oxo-philic (Ti, Sm, U..) character react in a similar way with the carbonyl compounds. If the uranium compounds are less used than those of the titanium in the field of the organic synthesis applications, they are precious auxiliaries and excellent models for reactions mechanisms study and for the synthesis methods optimization. (O.M.)

  8. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H. [LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Institut Pierre Simon Laplace, Labex ESEP, Paris (France); Duvernay, F.; Chiavassa, T., E-mail: vvinogradoff@mnhn.fr [PIIM, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, UMR CNRS 7345, Marseille (France)

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  9. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    International Nuclear Information System (INIS)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-01-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H 2 O, NH 3 , CO 2 , H 2 CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites

  10. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    Science.gov (United States)

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  11. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    Science.gov (United States)

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  12. Reaction mechanisms of metal complexes

    CERN Document Server

    Hay, R W

    2000-01-01

    This text provides a general background as a course module in the area of inorganic reaction mechanisms, suitable for advanced undergraduate and postgraduate study and/or research. The topic has important research applications in the metallurgical industry and is of interest in the science of biochemistry, biology, organic, inorganic and bioinorganic chemistry. In addition to coverage of substitution reactions in four-, five- and six-coordinate complexes, the book contains further chapters devoted to isomerization and racemization reactions, to the general field of redox reactions, and to the reactions of coordinated ligands. It is relevant in other fields such as organic, bioinorganic and biological chemistry, providing a bridge to organic reaction mechanisms. The book also contains a chapter on the kinetic background to the subject with many illustrative examples which should prove useful to those beginning research. Provides a general background as a course module in the area of inorganic reaction mechanis...

  13. Equilibria and partitioning of complexes in the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.

    1987-01-01

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a reaction in which the [enzyme-ATP-methionine] complex reacts to form an intermediate [enzyme-AdoMet-PPPi] complex: hydrolysis of PPPi yields an [enzyme-AdoMet-PPi-Pi] complex from which AdoMet is the last product to dissociate. Analysis of reaction mixtures which were quenched with acid during turnover of E. coli AdoMet synthetase with saturating substrates containing [α - 32 P]ATP showed that PPPi is present in an amount corresponding to 45% of the total enzyme active sites, reflecting the portion of enzyme present in an [enzyme-AdoMet-PPPi] complex. Similar experiments in which excess pyrophosphatase was included (to hydrolyze PPi as it was released from AdoMet synthetase), showed that enzyme-bound PPi is present in an amount corresponding to 22% of the total AdoMet synthetase. The enzyme not present in complexes with PPPi or PPi is probably distributed between the [enzyme-ATP-methionine] and the [enzyme-AdoMet] complexes. AdoMet synthetase forms enzyme-bound 32 PPPi from added 32 PPi and Pi; the equilibrium constant [enzyme-AdoMet-PPi-Pi]/[enzyme-AdoMet-PPPi] is 2.0, greatly displaced from the equilibrium for hydrolysis of free PPPi. Since the ratio of enzyme-bound PPi to PPPi is 0.5 during the steady state, the PPPi hydrolysis step is not at equilibrium during turnover. Formation of [ 32 P]ATP from the [enzyme-AdoMet- 32 PPPi] complex was not detected

  14. Photoinitiated reactions in weakly bonded complexes

    International Nuclear Information System (INIS)

    Wittig, C.

    1993-01-01

    This paper discusses photoinitiated reactions in weakly bonded binary complexes in which the constituents are only mildly perturbed by the intermolecular bond. Such complexes, with their large zero point excursions, set the stage for events that occur following electronic excitation of one of the constituents. This can take several forms, but in all cases, entrance channel specificity is imposed by the character of the complex as well as the nature of the photoinitiation process. This has enabled us to examine aspects of bimolecular processes: steric effects, chemical branching ratios, and inelastic scattering. Furthermore, monitoring reactions directly in the time domain can reveal mechanisms that cannot be inferred from measurements of nascent product excitations. Consequently, we examined several systems that had been studied previously by our group with product state resolution. With CO 2 /HI, in which reaction occurs via a HOCO intermediate, the rates agree with RRKM predictions. With N 2 O/HI, the gas phase single collision reaction yielding OH + N 2 has been shown to proceed mainly via an HNNO intermediate that undergoes a 1,3-hydrogen shift to the OH + N 2 channel. With complexes, ab initio calculations and high resolution spectroscopic studies of analogous systems suggest that the hydrogen, while highly delocalized, prefers the oxygen to the nitrogen. We observe that OH is produced with a fast risetime (< 250 fs) which can be attributed to either direct oxygen-side attack or rapid HNNO decomposition and/or a termolecular contribution involving the nearby iodine

  15. Electron transfer reactions of metal complexes in solution

    International Nuclear Information System (INIS)

    Sutin, N.

    1977-01-01

    A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer

  16. Reaction kinetic model of the surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol on a CuP/Silica suface

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, S.; Khachatryan, L.; Dellinger, B. [Louisiana State Univ., Baton Rouge (United States). Dept. of Chemistry

    2004-09-15

    One of the major challenges in developing predictive models of the surface mediated pollutant formation and fuel combustion is the construction of reliable reaction kinetic mechanisms and models. While the homogeneous, gas-phase chemistry of various light fuels such as hydrogen and methane is relatively well-known large uncertainties exist in the reaction paths of surface mediated reaction mechanisms for even these very simple species. To date, no detailed kinetic consideration of the surface mechanisms of formation of complex organics such as PCDD/F have been developed. In addition to the complexity of the mechanism, a major difficulty is the lack of reaction kinetic parameters (pre-exponential factor and activation energy) of surface reactions, Consequently, numerical studies of the surface-mediated formation of PCDD/F have often been incorporated only a few reactions. We report the development of a numerical multiple-step surface model based on experimental data of surface mediated (5% CuO/SiO2) conversion of 2-monochlorphenol (2-MCP) to PCDD/F under pyrolytic or oxidative conditions. A reaction kinetic model of the catalytic conversion of 2-MCP on the copper oxide catalyst under pyrolytic conditions was developed based on a detailed multistep surface reaction mechanism developed in our laboratory. The performance of the chemical model is assessed by comparing the numerical predictions with experimental measurements. SURFACE CHEMKIN (version 3.7.1) software was used for modeling. Our results confirm the validity of previously published mechanism of the reaction and provides new insight concerning the formation of PCDD/F formation in combustion processes. This model successfully explains the high yields of PCDD/F at low temperatures that cannot be explained using a purely gas-phase mode.

  17. Study of the competitive reaction ability of harmine and harmaline during complex formation with transition metals

    International Nuclear Information System (INIS)

    Chepulsky, S.A.; Kadirova, Z.Ch.; Parpiev, N.A.

    2006-01-01

    New coordination compounds of d-metals (Zn(II), Co(II), Mn(II), Mo(VI), Cr(VI)) β-carboline alkaloids were synthesized. The structure of obtained substances was established by IR, PMR spectroscopy. The quantum-chemical assessment of the harmine and harmaline reactivity in complexation reactions with d-metals was carried out. (author)

  18. Complexity and formative experiences

    Directory of Open Access Journals (Sweden)

    Roque Strieder

    2017-12-01

    Full Text Available The contemporaneity is characterized by instability and diversity calling into question certainties and truths proposed in modernity. We recognize that the reality of things and phenomena become effective as a set of events, interactions, retroactions and chances. This different frame extends the need for revision of the epistemological foundations that sustain educational practices and give them sense. The complex thinking is an alternative option for acting as a counterpoint to classical science and its reductionist logic and knowledge compartmentalization, as well as to answer to contemporary epistemological and educational challenges. It aims to associate different areas and forms of knowledge, without, however merge them, distinguishing without separating the several disciplines and instances of the realities. This study, in theoretical references, highlights the relevance of complex approaches to support formative experiences because also able to produce complexities in reflections about educational issues. We conclude that formative possibilities from complexity potentialize the resignification of human’s conception and the understanding of its singularity in interdependence; The understanding that pedagogical and educational activities is a constant interrogation about the possibilities of knowing the knowledge and reframe learning, far beyond knowing its functions and utilitarian purposes; and, as a formative possibility, places us on the trail of responsibility, not as something eventual, but present and indicative of freedom to choose to stay or go beyond.

  19. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  20. Open complex-balanced mass action chemical reaction networks

    NARCIS (Netherlands)

    Rao, Shodhan; van der Schaft, Arjan; Jayawardhana, Bayu

    We consider open chemical reaction networks, i.e. ones with inflows and outflows. We assume that all the inflows to the network are constant and all outflows obey the mass action kinetics rate law. We define a complex-balanced open reaction network as one that admits a complex-balanced steady state.

  1. Thermodynamics of formation for the 18-crown-6-triglycine molecular complex in water-dimethylsulfoxide solvents

    Science.gov (United States)

    Usacheva, T. R.; Lan, Pham Thi; Sharnin, V. A.

    2014-06-01

    The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from log K ∘ = 1.10 to log K ∘ = 2.44, and an increase in the exothermicity of the reaction of its formation, from -5.9 to -16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents' solvation characteristics reveals that the increase in the reaction's exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ↔ [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G ∘([3Gly18C6])-Δtr G ∘(3Gly)).

  2. Possible self-complexity and affective reactions to goal-relevant evaluation.

    Science.gov (United States)

    Niedenthal, P M; Setterlund, M B; Wherry, M B

    1992-07-01

    The complexity of people's self-concept appears to be inversely related to the intensity of their reactions to evaluative feedback about present goals and abilities (Linville, 1985, 1987). The idea that the complexity of individuals' possible self-concept similarly mediates reactions to feedback regarding future goals was investigated. Two preliminary studies suggested that complexity of the actual self only explains 20% to 30% of the variance in possible self-complexity. Three studies were conducted. Support was found for the idea that possible self-complexity mediates affective reactions to evaluative feedback about future goals and actual self-complexity mediates affective reactions to evaluative feedback about present goals. The findings underscore the independent roles of the organization of actual and possible self-concepts in affective processes.

  3. The reaction of 1,2-Dichloro-4,5-dinitrobenzene with hydroxide ion: roles of Meisenheimer complexes and radical pairs

    Energy Technology Data Exchange (ETDEWEB)

    Blasko, Andrei; Bunton, Clifford A.; Gillitt, Nichollas D.; Bacaloglu, Radu [Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA (United States); Yunes, Santiago F.; Zucco, Cesar, E-mail: c.zucco@ufsc.br, E-mail: santiago.yunes@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    The reaction of 1,2-dichloro-4,5-dinitrobenzene (DCDNB) with aqueous OH{sup -} produces (after acidification) 2-nitro-4,5-dichlorophenol with loss of NO{sub 2} . Nevertheless, with > 2 mol L{sup -1} OH{sup -}, only DCDNB was recovered due to the formation of the long-lived 3,6-dihydroxy Meisenheimer complex (M{sup 2-}), and that in acid, reverted to the starting material. Fast formation of monohydroxy Meisenheimer complex (M{sup 1-}) can be followed in DMSO:H{sub 2}O 7:3 v/v and rate constants for its interconversion with DCDNB and for formation and return with M{sup 2-} complex were estimated, with evidence for these reactions in DMSO:H{sub 2}O 1:1 v/v and H{sub 2}O. The rapid hydrogen exchange in OD{sup -}/D{sub 2}O limits the use of {sup 1}H nuclear magnetic resonance (NMR) spectroscopy in identifying intermediates. {sup 1}H and {sup 13}C NMR signals of M{sup 2-} complex were observed in DMSO-H{sub 2}O-KOH. There is evidence for the formation of free radicals in DMSO:H{sub 2} O 4:1 v/v, and overall kinetics in more aqueous medium were treated in terms of the transient existence of anionic radical pairs. (author)

  4. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    Science.gov (United States)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  5. Formation of flavour compounds in the Maillard reaction

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2006-01-01

    This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of

  6. Formation of mixed ligand complexes of UO22+ involving some nitrogen and oxygen donor ligands

    International Nuclear Information System (INIS)

    Singh, Mamta; Ram Nayan

    1996-01-01

    The complexation reactions of UO 2 2+ ion with nitrogen and oxygen donor ligands, 1-amino-2-naphthol-4-sulphonic acid, o-aminophenol (ap), 2-hydroxybenzoic acid (sa), 3-carboxy-4-hydroxybenzenesulphonic acid (ss) and 1,2-dihydroxybenzene (ca) have been investigated in aqueous solution employing the pH-titration technique. Analysis of the experimental data recorded at 25 degC and at an ionic strength of 0.10 M KNO 3 indicates formation of binary, hydroxo and ternary complexes of uranium. Formation constant values of the existing species have been evaluated and the results have been discussed. (author). 21 refs., 2 figs., 2 tabs

  7. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    Science.gov (United States)

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  8. Complex formation of p-carboxybenzeneboronic acid with fructose

    International Nuclear Information System (INIS)

    Bulbul Islam, T.M.; Yoshino, K.

    2000-01-01

    To increase the solubility of p-caboxybenzeneboronic acid (PCBA) in physiological pH 7.4, the complex formation of PCBA with fructose has been studied by 11 B-NMR. PCBA formed complex with fructose and the complex increased the solubility of PCBA. The complex formation constant (log K) was obtained in pH 7.4 as 2.75 from the 11 B-NMR spectra. Based on this result the complex formation ability of PCBA with fructose has been discussed. (author)

  9. EXFOR Basics. A short guide to the neutron reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.; NUCLEAR DATA CENTER NETWORK

    2000-01-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data

  10. Formation of high-molecular-weight angiotensinogen during pregnancy is a result of competing redox reactions with the proform of eosinophil major basic protein

    DEFF Research Database (Denmark)

    Kløverpris, Søren; Skov, Louise Lind; Glerup, Simon

    2013-01-01

    compared to monomeric AGT and the proMBP-AGT complex. Furthermore, we have used recombinant proteins to analyse the formation of the proMBP-PAPP-A and the proMBP-AGT complexes, and we demonstrate that they are competing reactions, depending on the same cysteine residue of proMBP, but differentially...... on the redox potential, potentially important for the relative amounts of the complexes in vivo. These findings may be important physiologically, since the biochemical properties of the proteins change as a consequence of complex formation....

  11. The formation reaction of calcium hexa-aluminate

    International Nuclear Information System (INIS)

    Tuganova, S.Kh.; Sirajiddinov, N.A.

    1990-01-01

    The formation reaction of CaAl 12 O 19 at interaction of calcium oxide and aluminium in solid form has been studied. Some physical-chemical characteristics of calcium hexa-aluminate are given. (author)

  12. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    Science.gov (United States)

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  13. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  14. Reactions and mass spectra of complex particles using Aerosol CIMS

    Science.gov (United States)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  15. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  16. Buffering dissociation/formation reaction of biogenic calcium carbonate.

    Science.gov (United States)

    Ichikawa, Kazuhiko

    2007-01-01

    The oscillating stability of coral reef seawater pH has been maintained at around physiological pH values over the past 300 years (Pelejero et al., 2005). The stability mechanism of its pH has been interpreted in terms of the buffering dissolution/formation reaction of CaCO(3) as well as the proton consumption/generation reaction in CaCO(3)-saturated water. Here the pH-dependent solubility product [HCO(3)(-)][Ca(2+)] has been derived on the basis of the actual pH-dependent reactions for the atmospheric CO(2)/CO(2 (aq.))/HCO(3)(-)/CO(3)(2-)/Ca(2+)/CaCO(3) system. Overbasic pH peaks appeared between pH approximately 8 and approximately 9.5 during sodium hydroxide titration, as a result of simultaneous CaCO(3) formation and proton generation. The spontaneous and prompt water pH recovery from the acidic to the physiological range has been confirmed by the observation of acid/base time evolution, because of simultaneous CaCO(3) dissolution and proton consumption. The dissolution/formation of CaCO(3) in water at pH 7.5-9 does not take place without a proton consumption/generation reaction, or a buffering chemical reaction of HCO(3)(-)+Ca(2+)right arrow over left arrowCaCO(3)+H(+). SEM images of the CaCO(3) fragments showed that the acid water ate away at the CaCO(3) formed at physiological pH values. Natural coral reefs can thus recover the physiological pH levels of seawater from the acidic range through partial dissolution of their own skeletons.

  17. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  18. Classical and quasi-classical trajectory calculations of isotope exchange and ozone formation proceeding through O+O2 collision complexes

    Science.gov (United States)

    Baker, Thomas A.; Gellene, Gregory I.

    2002-10-01

    The isotope exchange reaction, and the three-body ozone formation rate proceeding through an ozone complex, have been studied by classical and quasi-classical trajectory techniques. The exchange rate studies indicate that the rate of this reaction is dominantly sensitive to the O+O2 entrance channel characteristics of the potential energy surface. A detailed consideration of the dynamics of the intermediate ozone complex reveals three important classes. In one class, the complex adopts an ozonelike geometry, largely undergoing asymmetric stretchinglike motion until it dissociates. In a second class, the oxygen atom and molecule never visit the ozonelike geometry but rather remain separated by relatively large distances trapped near the angular momentum barrier in the entrance channel of a pseudo-effective potential. These complexes, which cannot undergo exchange, are, nevertheless, found to contribute significantly to ozone formation at high density of the third body suggesting that the association of the high-density effective formation rate constant with twice the exchange rate may not be valid. The third class can be considered a hybrid of the first two, spending some time as an ozonelike complex and some time as a large atom-diatomic complex. This third class provides a mechanism for rearranging atom locations in the complex (e.g., end and middle position swapping) and, consequently, would not be well accounted for by statistical treatments of the ozone complex based on a single ozonelike reference geometry. In general, the survival time distributions of the complexes are found to be nonexponential. However, when the detailed survival time distributions are coupled with a Lennard-Jones collision model for the stabilization step, the experimental ozone formation rate can be adequately modeled over a broad range of temperature and density.

  19. EXFOR basics: A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data

  20. Features of E-Z-photoisomerization reversible reaction of 4-styrylpyridine crown-containing complexes with different cations

    International Nuclear Information System (INIS)

    Fedorov, Yu.V.; Shepel', N.Eh.; Chernikova, E.Yu.; Fedorova, O.A.; Gulakova, E.N.; Avakyan, V.G.; Jonushauskas, G.

    2008-01-01

    E-Z-Photoisomerization reversible reaction of crown-containing 4-styrylpyridine in the presence of alkali metal perchlorates (Ca 2+ , Mg 2+ , Ba 2+ ) gifted in the formation of complexes with crown-ether fragments, as well as heavy metal perchlorates (Hg 2+ , Cd 2+ ) gifted in the coordination with nitrogen atom of heterocyclic residuum has been studied. Effect of complexing on the photoisomerization is determined by electron spectroscopy and NMR 1 H, structures of the formed Z-isomers are established. The possibility of the E-Z-isomerization control with the use of supramolecular complexing is confirmed by the investigations [ru

  1. Role of complex formation in the photosensitized degradation of DNA induced by N'-formylkynurenine

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Charlier, M.

    1976-01-01

    N'-Formylkynurenine derivatives efficiently bind to DNA or polynucleotides. Homopolynucleotides and DNA displayed marked differences in the binding process. Association constants were derived which indicated that the oxidized indole ring is more strongly bound to DNA than the unoxidized one. Irradiation of such complexes with wavelengths greater than 320 nm induced pyrimidine dimer formation as well as DNA chain breaks. Complex formation is shown to play an important role in these photosensitized reactions. The photodynamic action of N-formylkynurenine on DNA constituents was negligible at neutral pH but guanine and xanthine derivatives were sensitizable at higher pH. Thymine dimer splitting can occur in aggregated frozen aqueous solutions of N'-formylkynurenine and thymine dimer but this photosensitized splitting was negligible in liquid solutions at room temperature. (author)

  2. Positive photocatalysis of a Diels-Alder reaction by quenching of excited naphthalene-indole charge-transfer complex with cyclohexadiene.

    Science.gov (United States)

    Gonzalez-Béjar, María; Stiriba, Salah-Eddine; Miranda, Miguel A; Pérez-Prieto, Julia

    2007-02-01

    [reaction: see text] Naphthalene photo-catalyzes formation of cyclohexadiene-indole cycloadducts in a wavelength-dependent process. Steady-state irradiation and time-resolved fluorescence studies agree well with NP-InH ground-state charge transfer (CT) complexes as the key species responsible for the photo-catalyzed process.

  3. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  4. Reactions of dihydridotetrakis(triphenylphosphine)ruthenium(II) with olefins and isolation of new ruthenium-olefin complexes

    International Nuclear Information System (INIS)

    Komiya, Sanshiro; Yamamoto, Akio

    1976-01-01

    Dihydridotetrakis(triphenylphosphine)ruthenium (II), RuH 2 (PPh 3 ) 4 , reacts with olefins (ethylene, propylene, stylene and butadiene) to give olefin-coordinated complexes of the type, Ru(olefin)(PPh 3 ) 3 and equimolar amounts of their hydrogenation products per mol of the dihydride complex. The olefin coordinated with ruthenium can be exchanged with other olefins. Olefin-coordinated complexes easily react with molecular hydrogen to afford tetrahydridotris(triphenylphosphine)ruthenium, RuH 4 (PPh 3 ) 3 , releasing alkane at room temperature, Under hydrogen atmosphere catalytic hydrogenation of the olefins smoothly takes place with RuH 2 (PPh 3 ) 4 . (Ethylene)tris(triphenylphosphine)ruthenium(0) reacts with methyl iodide to give propylene and a trace of butadiene along with methane, ethylene, and small amounts of ethane and butenes. The formation of propylene suggests that oxidative addition involving cleavage of the C-H bond of ethylene to ruthenium giving a hydridovinyl complex may be taking place. Reactions of Ru(C 2 H 4 )(PPh 3 ) 3 with methyl-d 3 iodide and ethyl iodide, and of Ru(C 3 H 6 )(PPh 3 ) 3 with methyl iodide were examined to test the generality of this type of reaction. The reaction of Ru(C 2 H 4 )(PPh 3 ) 3 with CD 3 I released CD 4 and CD 2 H 2 together with CD 3 H suggesting the involvement of α-hydrogen abstraction. (auth.)

  5. Reactions of phenols and alcohols over thoria: mechanism of ether formation

    International Nuclear Information System (INIS)

    Karuppannasamy, S.; Narayanan, K.; Pillai, C.N.

    1980-01-01

    The dehydration of phenols and alkylation of phenols by alcohols over thoria were studied at 400 to 500 0 C and atmospheric pressure. Phenol and cresols, when dehydrated gave diaryl ethers as main products. With para-substituted phenols such as p-methoxy, p-t-butyl, p-chloro, and p-nitrophenol no ether formation was noticed. All the reactions were accompanied by considerable amount of coke formation. Alkylation of phenols by alcohols gave a mixture of O- and C-alkylated products under the same reaction conditions. O-alkylation and C-alkylation are parallel reactions. The mechanistic aspects of the reactions are discussed. 3 figures, 3 tables

  6. EXFOR Systems Manual Nuclear reaction Data Exchange Format

    International Nuclear Information System (INIS)

    McLane, V.

    2000-01-01

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format

  7. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  8. Production of complex particles in low energy spallation and in fragmentation reactions by in-medium random clusterization

    International Nuclear Information System (INIS)

    Lacroix, D.; Durand, D.

    2005-09-01

    Rules for in-medium complex particle production in nuclear reactions are proposed. These rules have been implemented in two models to simulate nucleon-nucleus and nucleus-nucleus reactions around the Fermi energy. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The concepts of total available phase-space and explored phase-space under constraint imposed by the reaction are clarified. The compatibility of experimental observations with a random clusterization is illustrated in a schematic scenario of a proton-nucleus collision. The role of randomness under constraint is also illustrated in the nucleus-nucleus case. (authors)

  9. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  10. STAR FORMATION ACROSS THE W3 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio [Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana–Ensenada, Ensenada 22860 (Mexico); Megías, Guillermo D. [Facultad de Física. Universidad de Sevilla. Dpto. Física Atómica, Molecular y Nuclear, Sevilla, E-41080 (Spain); Lada, Elizabeth A. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, FL 32611 (United States); Alves, Joáo F. [Institute of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2015-09-15

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts a large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.

  11. Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd-C Bond Insertion Reactions with Coordinated Alkynylphosphanes

    KAUST Repository

    Chen, Shuli

    2013-09-17

    Phenylbis(phenylethynyl)phosphane PhP(C≡CPh)2 coordinates regiospecifically to the α-methyl-chiral ortho-platinated and -palladated naphthylamine units at the positions trans to the nitrogen donors. The P→Pt coordination bond is kinetically inert, whereas the P→Pd bond is labile. Upon heating of these phosphane complexes at 70 °C, one of the C≡C bonds in the coordinated PhP(C≡CPh)2 was activated towards an intermolecular Pd-C bond insertion reaction with an external ortho-palladated naphthylamine ring. No intramolecular insertion reaction occurred. In contrast to its palladium analogue, the ortho-platinated ring is not reactive towards coordinated PhP(C≡CPh)2, although it can promote the Pd-C bond insertion reaction. However, despite the high kinetic stability of the P→Pt coordination, the organoplatinum unit is a noticeably weaker activator than its organopalladium counterpart. The chirality of the reacting ortho-metallated naphthylamine ligand exhibited high stereochemical influence on the formation of the new stereogenic phosphorus center during the course of these C-C bond-formation reactions. The coordination chemistry and the absolute stereochemistry of the dimetallic products were determined by single-crystal X-ray crystallographic analysis. The asymmetric monoinsertion of PhP(C≡CPh)2 coordinated to a cyclometallated N,N-dimethyl naphthyl/benzylamine template into the Pd-C bonds of N,N-dimethylnaphthylamine palladacycles has been demonstrated for the synthesis of a variety of new P-stereogenic homo- or heterodimetallic complexes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    Science.gov (United States)

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  13. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    Science.gov (United States)

    Jaisi, Deb P.; Eberl, Dennis D.; Dong, Hailiang; Kim, Jinwook

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65°C) were the most favorable conditions for the formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  14. Redox reactions of Cu(II)-amine complexes in aqueous solutions

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Kishore, Kamal

    2003-01-01

    A number of amines can be employed for all volatile treatment (AVT) of steam generator (SG) systems of nuclear power reactors. These amines form complexes with Cu 2+ and Ni 2+ ions which come into water due to corrosion. The redox reactions of a number of Cu(II)-AVT amine complexes and the stability of the transient species formed have been studied by pulse radiolysis technique. Rate constants for the reaction of e aq - with a number of Cu(II)-amine complexes have been determined by following the decay of e aq - absorption. Stability of Cu(I)-amine complexes was studied by following the kinetics of the bleaching signal formed at the λ max of the Cu(II) amine complex. Except for Cu(I)-triethanolamine complex all other Cu(I)-amine complexes were found to be stable. One-electron oxidation of Cu(II) amine complexes was studied using azidyl radicals for the oxidation reaction as OH radicals react with the alcohol groups present in the amines used in this study. Cu(III)-amine complexes were found to be unstable and decayed by second-order kinetics

  15. An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Agnieszka Golon

    2014-08-01

    Full Text Available Thermal treatment of food changes its chemical composition drastically with the formation of “so-called” Maillard reaction products, being responsible for the sensory properties of food, along with detrimental and beneficial health effects. In this contribution, we will describe the reactivity of several amino acids, including arginine, lysine, aspartic acid, tyrosine, serine and cysteine, with carbohydrates. The analytical strategy employed involves high and ultra-high resolution mass spectrometry followed by chemometric-type data analysis. The different reactivity of amino acids towards carbohydrates has been observed with cysteine and serine, resulting in complex MS spectra with thousands of detectable reaction products. Several compounds have been tentatively identified, including caramelization reaction products, adducts of amino acids with carbohydrates, their dehydration and hydration products, disproportionation products and aromatic compounds based on molecular formula considerations.

  16. Pattern formation in reaction diffusion systems with finite geometry

    International Nuclear Information System (INIS)

    Borzi, C.; Wio, H.

    1990-04-01

    We analyze the one-component, one-dimensional, reaction-diffusion equation through a simple inverse method. We confine the system and fix the boundary conditions as to induce pattern formation. We analyze the stability of those patterns. Our goal is to get information about the reaction term out of the preknowledgment of the pattern. (author). 5 refs

  17. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  18. Complexity of formation in holography

    International Nuclear Information System (INIS)

    Chapman, Shira; Marrochio, Hugo; Myers, Robert C.

    2017-01-01

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  19. Complexity of formation in holography

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Shira [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Marrochio, Hugo [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute,University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Myers, Robert C. [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada)

    2017-01-16

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  20. Pulse radiolysis studies of the reactions of bromine atoms and dimethyl sulfoxide bromine atom complexes with alcohols

    Science.gov (United States)

    Sumiyoshi, Takashi; Fujiyoshi, Ryoko; Katagiri, Miho; Sawamura, Sadashi

    2007-05-01

    Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×10 9 M -1 s -1 and 6300 M -1 cm -1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl 3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ˜10 8 M -1 s -1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ˜ 10 7 M -1 s -1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes.

  1. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  2. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  3. Thermodynamics and kinetics insight into reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} nanoink based on binary metal-amine complexes in polyetheramine-synthesized process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jie [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, National University of Tainan, 700, Taiwan, ROC (China); Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2016-08-15

    This paper reports on the reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) nanoink via a solvent-thermal reflux method using copper (Cu), zinc (Zn), tin (Sn), and selenium (Se) powders as precursors and polyetheramine as a reaction solvent. The formation of CZTSe nanoparticles in polyetheramine began with the formation of binary phase CuSe and CuSe{sub 2} due to the strong catalysis provided by polyetheramine. Finally, ternary crystals of Cu{sub 2}SnSe{sub 3} transformed into well-dispersed nanocrystals of Cu{sub 2}ZnSnSe{sub 4}. The size of the crystals was shown to decrease with reaction time due to the emulsification effect of the polyetheramine epoxy group. The PH value-reaction time curves for single Cu, Zn elements and CZTSe from all participants elements reacted together have a relationship just reversed each other and both multistage feature were observed, which indicates that the CZTSe reaction was dominated by copper and zinc elements. The PH-temperature mechanism demonstrates that the reaction was controlled by the formation of metal-amine complexes, especially, after heating the PH-time variation manner is the same for pure element and all four elements reacted together. To the best of our knowledge, this is the first study on the mechanism underlying CZTSe formation based on the reactivity and stability of reaction species. - Highlights: • Reaction mechanism of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) nanoink via a solvent-thermal reflux method using polyetheramine was developed. • PH effect on thermal dynamics and characteristics of reagents and solvents in the CZTSe nanoink has been realized. • PH-temperature mechanism demonstrates that the reaction controlled by the formation of metal-amine complexes.

  4. Zinc and cadmium complexes of a plant metallothionein under radical stress: desulfurisation reactions associated with the formation of trans-lipids in model membranes.

    Science.gov (United States)

    Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos

    2009-06-08

    Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.

  5. Formation of cyclobutanones by the photolytic reaction of (CO)/sub 5/Cr/double bond/C(OMe)Me with electron-rich olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, M.A.; Hegedus, L.S.

    1989-03-15

    Recent research has centered on the development of useful organic synthetic methodology based on the photolytic reactions of chromium Fischer carbene complexes, particularly in regards to the development of new /beta/-lactam syntheses. In the course of these studies it became evident that photolysis of chromium-carbene complexes resulted in the reversible production of chromium-ketene complexes, by a photochemically driven CO insertion into the chromium-carbene carbon double bond and that this unstable intermediate was responsible for /beta/-lactam formation.

  6. Spectroscopy and dynamics of chemical reactions in van der Waals complexes

    International Nuclear Information System (INIS)

    Soorkia, Satchin

    2008-09-01

    Transition metal elements have d valence electrons and are characterized by a great variety of electronic configurations responsible for their specific reactivity. The elements of the second row in particular have 4d and 5s atomic orbitals of similar size and energy which can be both involved in chemical processes. We have been interested in the reactivity of a transition metal element, zirconium, combined with a simple organic functionalized molecule in a van der Waals complex formed in a supersonic molecular beam in the model reaction Zr + CH 3 F. In this context, one of the chemicals reactions that we are interested in leads to the formation of ZrF. The electronic spectroscopy of ZrF in the spectral domain 400 - 470 nm is extremely rich and surprising for a diatomic molecule. With this study, we have been able to identify the ground state of ZrF (X 2 Δ) by simulating the observed rotational structures and obtain essential information on the electronic structure. These experimental results are in agreement with ab initio calculations. The excited states of the complex Zr...F-CH 3 have been studied with a depopulation method. The spectral domain 615 - 700 nm is particularly interesting because it reveals a group of diffuse bands red-shifted and broadened with respect to the transition a 3 F → z 3 F in the metal. This transition is forbidden from the ground state a 3 F 2 of zirconium but allowed from the a 3 F 4 state. Complexation of the metal atom with a CH 3 F molecule allows coupling of these two states to occur which ensures the optical transition from the ground state of the complex. (author)

  7. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  8. The reactions of SO3 with HO2 radical and H2O...HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4.

    Science.gov (United States)

    Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M

    2010-03-07

    The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.

  9. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    International Nuclear Information System (INIS)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C.

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H 2 Y) and with 6-mercaptopurine (H 2 MP) in dioxane-water (50%) leads to the formation of CdY x 2H 2 O and Cd(HMP) 2 x 2H 2 O, respectively. In methanolic medium Cd(II) and H 2 MP give Cd(MP) x H 2 O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1 0 C and 1M ionic strength with NaClO 4 in dioxane-water medium is logβ = 10.25 +- 0.05. (Author)

  10. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product.

    Science.gov (United States)

    Choi, Junghoon; Valentine, Richard L

    2002-02-01

    Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction between DMA and monochloramine indicating that it should be considered a potential disinfection by-product. The formation of NDMA increased with increased monochloramine concentration and showed maximum in yield when DMA was varied at fixed monochloramine concentrations. The mass spectra of the NDMA formed from DMA and 15N isotope labeled monochloramine (15NH2Cl) showed that the source of one of the nitrogen atoms in the nitroso group in NDMA was from monochloramine. Addition of 0.05 and 0.5 mM of preformed monochloramine to a secondarily treated wastewater at pH 7.2 also resulted in the formation of 3.6 and 111 ng/L of NDMA, respectively, showing that this is indeed an environmentally relevant NDMA formation pathway. The proposed NDMA formation mechanism consists of (i) the formation of 1,1-dimethylhydrazine (UDMH) intermediate from the reaction of DMA with monochloramine followed by, (ii) the oxidation of UDMH by monochloramine to NDMA, and (iii) the reversible chlorine transfer reaction between monochloramine and DMA which is parallel to (i). We conclude that reactions involving monochloramine in addition to classical nitrosation reactions are potentially important pathways for NDMA formation.

  11. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  12. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    Science.gov (United States)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  13. Reaction of Non-Symmetric Schiff Base Metallo-Ligand Complexes Possessing an Oxime Function with Ln Ions

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Costes

    2018-03-01

    Full Text Available The preparation of non-symmetric Schiff base ligands possessing one oxime function that is associated to a second function such as pyrrole or phenol function is first described. These ligands, which possess inner N4 or N3O coordination sites, allow formation of cationic or neutral non-symmetric CuII or NiII metallo-ligand complexes under their mono- or di-deprotonated forms. In presence of Lanthanide ions the neutral complexes do not coordinate to the LnIII ions, the oxygen atom of the oxime function being only hydrogen-bonded to a water molecule that is linked to the LnIII ion. This surprising behavior allows for the isolation of LnIII ions by non-interacting metal complexes. Reaction of cationic NiII complexes possessing a protonated oxime function with LnIII ions leads to the formation of original and dianionic (Gd(NO352− entities that are well separated from each other. This work highlights the preparation of well isolated mononuclear LnIII entities into a matrix of diamagnetic metal complexes. These new complexes complete our previous work dealing with the complexing ability of the oxime function toward Lanthanide ions. It could open the way to the synthesis of new entities with interesting properties, such as single-ion magnets for example.

  14. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  15. EXFOR systems manual: Nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  16. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  17. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    Science.gov (United States)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  19. Reaction pathway towards formation of cobalt single chain magnets and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, G.; Desilva, Rohini M.; Palshin, V. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Desilva, N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Palmer, G. [Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main street, Houston, TX 77251 (United States); Kumar, Challa S.S.R., E-mail: ckumar1@lsu.ed [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States)

    2010-03-15

    With the advent of molecular magnets the quest for suitable high density magnetic storage materials has fuelled further research in this area. Here in this report, we present a detailed mechanistic investigation of thermal decomposition of cyclopentadienyl cobalt [CoCp(CO){sub 2}] precursor where Cp is the cyclopentadienyl moiety. The reaction revealed the formation of cobalt nanoparticles (Co-NPs) through an isolable reaction intermediate characterized as a Single Chain Magnet (SCM), [Co(Cp){sub 2}]{sub 2}CoCl{sub 4} (1). The SQUID magnetic measurements showed the presence of very strong antiferromagnetic interactions between Co{sup 2+} ions. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves branch out below 5 K and there is evidence for frequency dependent complex susceptibility along with a maximum observed around 2.5 K. The optical studies indicated that the Co{sup 2+} d-d transition is influenced by the polarity of the solvents. The cobalt nanoparticles (Co-NPs) were obtained, either directly from 1 or from its precursor. They are spherical in shape with a mean size 15 nm, have fcc crystal structure and were found to be ferromagnetic at room temperature.

  20. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fluoridonitrosyl complexes of technetium(I) and technetium(II). Synthesis, characterization, reactions, and DFT calculations.

    Science.gov (United States)

    Balasekaran, Samundeeswari Mariappan; Spandl, Johann; Hagenbach, Adelheid; Köhler, Klaus; Drees, Markus; Abram, Ulrich

    2014-05-19

    A mixture of [Tc(NO)F5](2-) and [Tc(NO)(NH3)4F](+) is formed during the reaction of pertechnetate with acetohydroxamic acid (Haha) in aqueous HF. The blue pentafluoridonitrosyltechnetate(II) has been isolated in crystalline form as potassium and rubidium salts, while the orange-red ammine complex crystallizes as bifluoride or PF6(-) salts. Reactions of [Tc(NO)F5](2-) salts with HCl give the corresponding [Tc(NO)Cl4/5](-/2-) complexes, while reflux in neat pyridine (py) results in the formation of the technetium(I) cation [Tc(NO)(py)4F](+), which can be crystallized as hexafluoridophosphate. The same compound can be synthesized directly from pertechnetate, Haha, HF, and py or by a ligand-exchange procedure starting from [Tc(NO)(NH3)4F](HF2). The technetium(I) cation [Tc(NO)(NH3)4F](+) can be oxidized electrochemically or by the reaction with Ce(SO4)2 to give the corresponding Tc(II) compound [Tc(NO)(NH3)4F](2+). The fluorido ligand in [Tc(NO)(NH3)4F](+) can be replaced by CF3COO(-), leaving the "[Tc(NO)(NH3)4](2+) core" untouched. The experimental results are confirmed by density functional theory calculations on [Tc(NO)F5](2-), [Tc(NO)(py)4F](+), [Tc(NO)(NH3)4F](+), and [Tc(NO)(NH3)4F](2+).

  2. Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, Geert; van Beckum, F.P.H.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  3. Mass transfer with complex reversible chemical reactions. II: parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; van Swaaij, W.P.M.

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  4. Complex formation of hypoxanthine and 6-mercaptopurine with Cd(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Perello, L.; Borras, J.; Soto, L.; Gordo, F.J.; Gordo, J.C. (Valencia Univ. (Spain))

    1984-01-01

    Reaction of Cd(II) ion with hypoxanthine (H/sub 2/Y) and with 6-mercaptopurine (H/sub 2/MP) in dioxane-water (50%) leads to the formation of CdY x 2H/sub 2/O and Cd(HMP)/sub 2/ x 2H/sub 2/O, respectively. In methanolic medium Cd(II) and H/sub 2/MP give Cd(MP) x H/sub 2/O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25 +- 0.1/sup 0/C and 1M ionic strength with NaClO/sub 4/ in dioxane-water medium is log..beta.. = 10.25 +- 0.05.

  5. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    International Nuclear Information System (INIS)

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  6. Reaction of Titanocene Alkyls with Pyridines; A Novel Type of Cyclometallation Reaction

    NARCIS (Netherlands)

    Klei, E.; Teuben, J.H.

    1981-01-01

    Reaction of Cp2TiR (R = alkyl) with 2-substituted-pyridines and with quinolines leads to α-metallation of these ligands with formation of triangular titanocycles containing TiIII. Proof of the metallation at the α-position comes from reactions of the complexes formed with I2 and D2O/DCl which yield

  7. Chemical proprieties of the iron-quinone complex in mutated reaction centers of Rb. sphaeroides

    International Nuclear Information System (INIS)

    Hałas, Agnieszka; Derrien, Valerie; Sebban, Pierre; Matlak, Krzysztof; Korecki, Józef; Kruk, Jerzy; Burda, Kvĕtoslava

    2012-01-01

    We investigated type II bacterial photosynthetic reaction centers, which contain a quinone - iron complex (Q A -Fe-Q B ) on their acceptor side. Under physiological conditions it was observed mainly in a reduced high spin state but its low spin ferrous states were also observed. Therefore, it was suggested that it might regulate the dynamical properties of the iron–quinone complex and the protonation and deprotonation events in its neighbourhood. In order to get insight into the molecular mechanism of the NHFe low spin state formation, we preformed Mössbauer studies of a wild type of Rb. sphaeroides and its two mutated forms. Our Mössbauer measurements show that the hydrophobicity of the Q A binding site can be crucial for stabilization of the high spin ferrous state of NHFe.

  8. Skeletal Diversity in Combinatorial Fashion: A New Format for the Castagnoli-Cushman Reaction.

    Science.gov (United States)

    Lepikhina, Anastasia; Dar'in, Dmitry; Bakulina, Olga; Chupakhin, Evgeny; Krasavin, Mikhail

    2017-11-13

    A new format for the Castagnoli-Cushman reaction of structurally diverse dicarboxylic acids, amines, and aldehydes in the presence of acetic anhydride as dehydrating agent is described. The reaction is distinctly amenable to parallel format: the combinatorial array of 180 reactions delivered 157 products of >85% purity without chromatographic purification (of this number, 143 compounds had >94% purity). The new method offers a convenient preparation of the skeletally and peripherally diverse, lead- and druglike γ- and δ-lactam carboxylic acids with high diastereoselectivity in combinatorial fashion.

  9. Glycoconjugate Oxime Formation Catalyzed at Neutral pH: Mechanistic Insights and Applications of 1,4-Diaminobenzene as a Superior Catalyst for Complex Carbohydrates.

    Science.gov (United States)

    Østergaard, Mads; Christensen, Niels Johan; Hjuler, Christian T; Jensen, Knud J; Thygesen, Mikkel B

    2018-04-18

    The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.

  10. Characterization of reversible reactions of isocyanides with molybdenum dithiolate complexes

    International Nuclear Information System (INIS)

    Miller, D.J.; DuBois, M.R.

    1980-01-01

    Dimeric molybdenum complexes with bridging dithiocarbonimidate ligands of the formula [C 5 H 5 MoS 2 CNR] 2 (where R = CH 3 , CH 2 C 6 H 5 , C 6 H 11 , and n-C 4 H 9 ) have been synthesized and characterized. The syntheses involve the room-temperature reactions of excess isocyanides with solutions of the dimeric complex [C 5 H 5 MoSC 3 H 6 S] 2 . During the course of these reactions, propene is displaced from the sulfur atoms of the bridging dithiolate ligands. Addition of excess alkene reverses the above reactions. Equilibrium constants have been calculated for the following reactions by integration of NMR resonances: [CH 3 C 5 H 4 MoSC 2 H 4 S] 2 + RNC reversible (CH 3 C 5 H 4 Mo) 2 (SC 2 H 4 S)(S 2 CNR) + C == C, K 1 = 2.9 +- 0.2; (CH 3 C 5 H 4 Mo) 2 (SC 2 H 4 S)(S 2 CNR) + RNC reversible [CH 3 C 5 H 4 MoS 2 CNR] 2 + C == C, K 2 = 0.7 +- 0.1 (R = CH 2 C 6 H 5 ). The dithiocarbonimidate complexes react cleanly with the electrophiles CH 3 OSO 2 F and HOSO 2 CF 3 to form [C 5 H 5 MoS 2 CNRR'] 2 2+ where R' = H or CH 3 . These products have been characterized by spectral and conductivity methods. The reactions of the dithiocarbonimidate complexes with reducing agents and with carbon monoxide are discussed. 1 figure, 2 tables

  11. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  12. Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation.

    Science.gov (United States)

    Ishida, Akihiko; Yamada, Yasuko; Kamidate, Tamio

    2008-11-01

    In hygiene management, recently there has been a significant need for screening methods for microbial contamination by visual observation or with commonly used colorimetric apparatus. The amount of adenosine triphosphate (ATP) can serve as the index of a microorganism. This paper describes the development of a colorimetric method for the assay of ATP, using enzymatic cycling and Fe(III)-xylenol orange (XO) complex formation. The color characteristics of the Fe(III)-XO complexes, which show a distinct color change from yellow to purple, assist the visual observation in screening work. In this method, a trace amount of ATP was converted to pyruvate, which was further amplified exponentially with coupled enzymatic reactions. Eventually, pyruvate was converted to the Fe(III)-XO complexes through pyruvate oxidase reaction and Fe(II) oxidation. As the assay result, yellow or purple color was observed: A yellow color indicates that the ATP concentration is lower than the criterion of the test, and a purple color indicates that the ATP concentration is higher than the criterion. The method was applied to the assay of ATP extracted from Escherichia coli cells added to cow milk.

  13. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Trevitt, Adam J.; Wilson, Kevin R.; Leone, Stephen R.

    2010-03-16

    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and the result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.

  14. Identifying Slow Molecular Motions in Complex Chemical Reactions.

    Science.gov (United States)

    Piccini, GiovanniMaria; Polino, Daniela; Parrinello, Michele

    2017-09-07

    We have studied the cyclization reaction of deprotonated 4-chloro-1-butanethiol to tetrahydrothiophene by means of well-tempered metadynamics. To properly select the collective variables, we used the recently proposed variational approach to conformational dynamics within the framework of metadyanmics. This allowed us to select the appropriate linear combinations from a set of collective variables representing the slow degrees of freedom that best describe the slow modes of the reaction. We performed our calculations at three different temperatures, namely, 300, 350, and 400 K. We show that the choice of such collective variables allows one to easily interpret the complex free-energy surface of such a reaction by univocal identification of the conformers belonging to reactants and product states playing a fundamental role in the reaction mechanism.

  15. Study of the formation of complexes of nitrosyl-rhutenium nitrates with thiourea

    International Nuclear Information System (INIS)

    Floh, B.

    1977-01-01

    A method for the treatment of spent uranium fuel is presented, based on the Purex process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru/SC(NH)(NH 2 )/ 2+ and Ru/SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex process (e.g. F.D. sub(Ru)=10). For this reason, the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100 g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. With this procedure a decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages [pt

  16. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    Science.gov (United States)

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  18. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  19. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Brighli, M.

    1984-07-01

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO 2 2+ and UO 4 species of uranium VI is studied in aqueous solution (NaClO 4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO 4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO 2 2+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO 4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO 2 2+ and its complexes on mercury drop are proposed. 143 refs [fr

  20. Reactions of 3d-series metallocenes with organic cadmium compounds

    International Nuclear Information System (INIS)

    Razuvaev, G.A.; Mar'in, V.P.; Vyshinskaya, L.I.; Grinval'd, I.I.; Spiridonova, N.N.

    1987-01-01

    Interaction of organic cadmium compounds and 3d-series metallocenes, Cp 2 M (M=V, Cr, Mn, Ni, Co) has been studied. It is shown that direction of these reactions is determined by metallocene nature. Reactions of oxidizing addition leading to σ-complexes formation are characteristic for vanadium and chromium metallocenes. When reacting cobaltocene with R 2 Cd, R group introduction to cyclopentadienyl ring and elimination of cobalt diene complexes take place. Manganocene and nickelocene interaction goes through the stage of complex formation with transition metal - cadmium bond

  1. Pulse radiolytic study of the oxidation reaction of uric acid in presence of bovine serum albumin: evidence of possible complex formation in the transient state

    International Nuclear Information System (INIS)

    Adhikari, S.; Gopinathan, C.

    1996-01-01

    The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The reaction of CCl 3 OO . radical with uric acid produces a transient having absorption maximum at 330 nm and that with BSA produces transient having absorption maximum at 410 nm. In a composition of equal concentration of uric acid and BSA the CCl 3 OO . radical produces a transient absorption spectrum which shows two peaks at 330 nm and 350 nm and a shoulder at 410 nm. The peak at 350 nm is ascribed due to weak complex formation between BSA and uric acid radicals. The rate constant of CCl 3 OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. (author). 4 refs., 2 figs., 1 tab

  2. Solution chemistry of element 105. Pt. III. Hydrolysis and complex formation of Nb, Ta, Db and Pa in HF and HBr solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Bastug, T.

    1999-01-01

    Calculations of the electronic structure of MF 6 - and MBr 6 - complexes of Nb, Ta, Pa and element 105, Db, formed in HF and HBr solutions have been performed using the Dirac-Slater Discrete Variational method. On the basis of results of these calculations, relative values of the free energy change of reactions of complex formation have been determined. The order of the complex formation for both acids is shown to be Pa >> Nb > Db > Ta. Such a sequence is defined by a predominant electrostatic energy of the metal-ligand interaction. The hydrolysis of compounds, as a reverse process, proved to change as Ta > Db > Nb >> Pa. Using the theory of metal extraction by anion exchange, the following trend in the extraction of the anionic species from both the HF and HBr aqueous solutions has been predicted: Pa >> Nb ≥ Db > Ta. The strength of the ML 6 - complexes is shown to decrease from MF 6 , to MCl 6 and further to MBr 6 - which is reflected by shifting the complex formation process to the area of higher acid concentrations. (orig.)

  3. Formation of methemoglobin and metmyoglobin using 8-aminoquinoline derivatives or sodium nitrite and subsequent reaction with cyanide.

    Science.gov (United States)

    Steinhaus, R K; Baskin, S I; Clark, J H; Kirby, S D

    1990-10-01

    The kinetics of the oxidation of hemoglobin (Hb) and myoglobin (Mb) by sodium nitrite, 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-quinoline diphosphate (primaquine), 6-methoxy-8-(6-diethylaminohexylamino)-4-methyl-quinoline dihydrochloride (WR6026) and 8-[(4-amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl- 5-[(3-trifluoromethyl)phenoxy]quinoline succinate (WR238,605) were studied at pH values ranging from 7.4 to 7.6 and at 37 +/- 1 degrees C. The reaction between Hb and primaquine, WR6026 and WR238,605 resulted in precipitation, as did the reaction between Mb and WR238,605. The reaction between nitrite ion (NO2-) and Hb showed a lag period followed by an autocatalytic phase. The data in this study are consistent with and substantiate the proposed mechanism for the Hb-NO2- oxidation reaction. The reaction between Mb and NO2- at higher NO2- concentrations also showed a lag period followed by an autocatalytic period, while at lower NO2- concentrations no lag period was seen. The data suggest a shift in rate constant at these lower NO2- concentrations. The reaction between Mb and both WR6026 and primaquine followed a two-term rate law with oxidant-dependent and -independent terms. Concentration-effect curve data, along with these results, suggest the presence of a catalytic pathway. The rates of formation of cyanomethemoglobin and cyanometmyoglobin complexes from cyanide ion and methemoglobin (MHb) and metmyoglobin (MMb), respectively, were followed in the presence of the heme oxidants. The rate constants were all within a narrow range and suggest that complexation of cyanide by MHb and MMb is not affected by the presence of oxidants.

  4. Formation of phosphonates and pyrophosphates in the reactions of ...

    Indian Academy of Sciences (India)

    Bu-4-Me-C6H2O)2P(O)]2O (8) could be isolated, although the reaction mixture showed several other compounds in the phosphorus NMR. A possible pathway for the formation of phosphonate salts is proposed. The X-ray crystal structures of 4, ...

  5. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents.

    Science.gov (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj

    2016-12-12

    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  7. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  8. Reaction of iminopropadienones with amines: mechanistic explanations of zwitterionic intermediate, ketene and ketenimine formation.

    Science.gov (United States)

    Koch, Rainer; Finnerty, Justin J; Bruhn, Torsten; Borget, Fabien; Wentrup, Curt

    2008-09-25

    The complex reaction of thermally generated iminopropadienones with amines in the gas phase and upon matrix deposition and its varying product composition is investigated using density functional theory. In the high energy gas phase addition a single amine molecule reacts readily with iminopropadienone with the decisive step being a 1,3-hydrogen shift and activation barriers of at least 100 kJ/mol. In accordance with the experiment, the formation of ketenes is favored. In the condensed phase of an amine matrix, the utilization of amine dimers both as reagents and as explicit solvents lowers the activation energy required to a feasible 20-30 kJ/mol and predicts ketenimines as the main products, as observed experimentally.

  9. Fragment formation in light-ion induced reactions

    International Nuclear Information System (INIS)

    Hirata, Yuichi

    2001-01-01

    The intermediate mass fragment (IMF) formation in the 12 GeV proton induced reaction on Au target is analyzed by the quantum molecular dynamics model combined with the JAM hadronic cascade model and the non-equilibrated percolation model. We show that the sideward peaked angular distribution of IMF occur in the multifragmentation at very short time scale around 20 fm/c where non-equilibrated features of the residual nucleus fluctuates the nucleon density and fragments in the repulsive Coulomb force are pushed for the sideward direction. (author)

  10. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  11. Kinetic Study of Iron (III) Salicyl Hydroxamate Complexes

    International Nuclear Information System (INIS)

    Ali, K.; Ashiq, U.; Ara, R.; Kazmi, R.

    2005-01-01

    The formation of Salicylhydroxamic acid iron (III) complexes were studied at different pH. The reaction at pH 8 and 6 between iron nitrate and salicylhydroxamic acid is very fast and reddish brown colour with iron at 425 nm appears within seconds i.e. within mixing time. The concentration of salicylhydroxamic acid was 20-80 times higher than the concentration of iron (III) solution in order to fulfill pseudo first order conditions. The reddish brown colour appears within mixing time and further change in colour was very slow and observed at 425 nm wave length. The rate constant at pH 8 is 0.1886 sec and at pH 6 is 1.472 sec. The sharp appearance of colour is due to formation of 1:1 and 1:2 complexes while the observed slow change in colour may be due to rearrangement of salicylhydroxamic acid from bidentate to tridentate or it may be due to the formation of 1:3 complex. In the next set of reactions the 1:1 complex of salicylhydroxamic acid iron (III) was prepared by mixing iron (III) and salicylhydroxamic acid in 1:1 mole ratio and then the formation of 1:2 complex was observed at pH 5, 4.5 and 4. The concentration of salicylhydroxamic acid solution was 2-10 times higher than the 1:1 complex of salicylhydroxamic acid iron (III) complex. The observed reactions were very fast and were not truly a first order reaction. The rate constant is 24.85 sec at pH 4.5 and 16.98 sec at pH4. The reaction of 1:1 complex with salicylhydroxamic acid at pH3 was very fast. The lamda max of iron complex is 500 nm and of final mixture is 476 nm. The reaction was assumed to be reversible. The absorbance of both species at a particular wavelength is additive. Using this property the equilibrium constant was calculated which was not constant at different ratios of 1:1 complex and salicylhydroxamic acid, which further indicate the possibility of rearrangement reaction. (author)

  12. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    International Nuclear Information System (INIS)

    Kelley, D.

    1990-01-01

    The kinetics of the reactions of C 2 H 5 radical with Co(NH 3 ) 5 X 2+ , Ru(NH 3 ) 5 X 2+ , and Co(dmgH) 2 (X) (Y) (X = Br, Cl, N 3 , SCN; Y = H 2 O, CH 3 CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with β-Ni(cyclam) 2+ were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ were studied. Activation parameters were obtained for the unimolecular homolysis of C 2 H 5 Ni(cyclam)H 2 O 2+ . Kinetic and thermodynamic data obtained from these reactions were compared with those for the σ-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ complexes were studied by monitoring the formation of the oxygen insertion product RO 2 Ni(cyclam)H 2 O 2+ . The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs

  13. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  14. New Ru(II)N'NN'-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO_2 or bicarbonates to formate salts

    International Nuclear Information System (INIS)

    Zengjin Dai; Qi Luo; Hengjiang Cong; Jing Zhang; Tianyou Peng

    2017-01-01

    [RuCl(L1)(MeCN)_2]Cl (1) and [RuCl(L2)(MeCN)_2]Cl (2) complexes were prepared through the reaction of [RuCl2(p-cymene)]_2 with 2,6-bis(benzimidazole-2-yl)-4-hydroxy-pyridine (L1) or 2,6-bis(benzimidazole- 2-yl) pyridine (L2) in acetonitrile, respectively. The treatment of [Ru(OTf)(L2)(MeCN)_2]OTf (3) with 1 equivalent of PPh_3 in ethanol resulted in the formation of [Ru(L2"-"1)(MeCN)(PPh_3)_2]OTf (4), in which one of the N-H moieties of L2 is deprotonated to give an anionic ligand (L2"-"1). It was found that complex 1 can catalyze the hydrogenation of CO_2 to formate salts, producing sodium formate in 34.0% yield with a turnover number (TON) of 407 under the optimized conditions. Further investigations revealed that complexes 1-4 can efficiently catalyze the hydrogenation of sodium bicarbonate to sodium formate, and the catalytic activity follows the order 4 ≥ 1 ≥ 2 ≅ 3. In particular, sodium formate was obtained in good yield (77%) with a high TON (1530) when complex 4 was used as the catalyst. The present results illustrate a new example of Ru(II) complexes bearing a rigid N'NN' framework for the efficient hydrogenation of CO_2 to formate salts in a homogeneous system. (authors)

  15. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    Science.gov (United States)

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  17. Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes

    Directory of Open Access Journals (Sweden)

    Le Novère Nicolas

    2010-03-01

    Full Text Available Abstract Background Most cellular signal transduction mechanisms depend on a few molecular partners whose roles depend on their position and movement in relation to the input signal. This movement can follow various rules and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes. Results Meredys allows for the simulation of multi-component, multi-feature state molecular species in two and three dimensions. Several compartments can be defined with different diffusion and boundary properties. The software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level, based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML input file. The simulation volume can be split in subvolumes to speed up run-time. Conclusions Meredys provides a powerful and versatile way to run accurate simulations of molecular and sub-cellular systems, that complement existing multi-agent simulation systems. Meredys is a Free Software and the source code is available at http://meredys.sourceforge.net/.

  18. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  19. Religion, Repulsion, and Reaction Formation: Transforming Repellent Attractions and Repulsions.

    Science.gov (United States)

    Cohen, Dov; Kim, Emily; Hudson, Nathan W

    2017-06-12

    Protestants were more likely than non-Protestants to demonstrate phenomena consistent with the use of reaction formation. Lab experiments showed that when manipulations were designed to produce taboo attractions (to unconventional sexual practices), Protestants instead showed greater repulsion. When implicitly conditioned to produce taboo repulsions (to African Americans), Protestants instead showed greater attraction. Supportive evidence from other studies came from clinicians' judgments, defense mechanism inventories, and a survey of respondent attitudes. Other work showed that Protestants who diminished and displaced threatening affect were more likely to sublimate this affect into creative activities; the present work showed that Protestants who do not or cannot diminish or displace such threatening affect instead reverse it. Traditional individual difference variables showed little ability to predict reaction formation, suggesting that the observed processes go beyond what we normally study when we talk about self-control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  1. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.

    Science.gov (United States)

    Kayala, Matthew A; Baldi, Pierre

    2012-10-22

    Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of Reaction

  2. VIRGIN2007, Calculates Un-collided Neutron Flux and Neutron Reactions from Transmission in ENDF Format

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: VIRGIN calculates un-collided flux and reactions due to transmission of a mono-directional beam of neutrons through any thickness of material. In order to simulate an experimental measurement the results are given as integrals over energy tally groups (as opposed to point-wise in energy). IAEA0932/10: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Virgin VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased in-core page size from 60,000 to 240,000. 2 - Method of solution: By taking the ratio of reactions to flux in each group an equivalent spatially dependent group averaged cross section is calculated. 3 - Restrictions on the complexity of the problem: The evaluated data must be in the ENDF/B format. However it must be linear-linear interpolable in energy-cross section between tabulated points. Since only cross sections (file 3) are used, this program will work on any version of ENDF/B

  3. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  4. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important)

  5. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-12-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

  6. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  7. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    Science.gov (United States)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  9. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Science.gov (United States)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-09-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  10. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, S. G. [Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation); Burshtein, A. I. [Weizmann Institute of Science, 76100, Rehovot (Israel)

    2014-09-21

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  11. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    International Nuclear Information System (INIS)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-01-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics

  12. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  13. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  14. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase*

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K.; Du, Jian; Patel, Aashka R.; Lancaster, Jack R.

    2014-01-01

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with •NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged •NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief •NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief •NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of •NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of •NO. PMID:24891512

  15. Complex formation between uranium(VI) and α-D-glucose 1-phosphate

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.

    2003-01-01

    The complex formation of uranium(VI) with α-D-glucose 1-phosphate (C 6 H 11 O 6 PO 3 2- , G1P) was determined by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pH 4 and potentiometric titration in the pH range from 3 to 10. Both measurements show the formation of a 1 : 1 complex at lower pH values. The formation constant of UO 2 (C 6 H 11 O 6 PO 3 ) was calculated from TRLFS measurements to be log β 11 = 5.72±0.12, and from potentiometric titration log β 11 = 5.40±0.25, respectively. It was found by potentiometric titration that at higher pH values the complexation changes to a 1 : 2 complex. The stability constant for this complex was calculated to be log β 12 = 8.96±0.18. (orig.)

  16. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  17. The factor that determines photo-induced crystalline-state reaction

    International Nuclear Information System (INIS)

    Takenaka, Y.

    1995-01-01

    The photo-induced crystalline-state reaction of cobaloxime complexes were investigated by X-ray diffraction method. The reactivity or the reaction rate is dependent only on the volume of the reaction cavity. The hydrogen bond formation of the reactive group and the difference of the base ligand have no effect. (author)

  18. Characterization of ESIPT reactions with instant spectra of fluorescence and complexation processes

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2016-01-01

    Proton transfer processes and especially excited-state intramolecular proton transfer (ESIPT) are of interest not only in physical studies but in a wide range of biological and chemical researches, since they play an important role in different fundamental reactions. Moreover, occurrence of ESIPT very often causes two-bands emission spectra corresponding to the normal and photoproduct (tautomer) forms of molecular structure. It allows carrying out unique measurement of microcharacteristics in chemical and biological researches by using substances with ESIPT as molecular probes, because its dual emission is very sensitive to parameters of microenvironment. Dual fluorescence signal is very convenient for two wavelength ratiometric measurements as they are more sensitive to variations of sample characteristics. Recently new approach for revealing type of excited state reaction which is based on analysis of dynamic changes of relative intensities in instant spectra of fluorescence ESIPT solutes was suggested and tested for neat solutions. Now we generalize this method on solutions in which ESIPT solute may participate also in creating fluorescent complexes. We demonstrate that relative intensities of instant spectra of fluorescence registered with high time resolution allow to get valuable information referring to type of excited state reaction in which dye may undergo complexation reactions with ions in solvent. In addition we show how it is possible in such case to determine characteristics of complexation as, for example, stability constant and efficiency of complexation.

  19. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  20. Complex Reaction Environments and Competing Reaction Mechanisms in Zeolite Catalysis: Insights from Advanced Molecular Dynamics

    NARCIS (Netherlands)

    De Wispelaere, K.; Ensing, B.; Ghysels, A.; Meijer, E.J.; van Van Speybroeck, V.

    2015-01-01

    The methanol-to-olefin process is a showcase example of complex zeolite-catalyzed chemistry. At real operating conditions, many factors affect the reactivity, such as framework flexibility, adsorption of various guest molecules, and competitive reaction pathways. In this study, the strength of first

  1. Reversibility and Relaxation Behavior of Polyelectrolyte Complex Micelle Formation

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien A. Cohen

    2009-01-01

    In this study, the formation and disintegration of polyelectrolyte complex micelles is studied by dynamic light scattering titrations with the aim to assess the extent to which these complexes equilibrate. Also, the time evolution of samples at fixed (electroneutral) composition was followed to

  2. Thermodynamics of the complex formation between thorium(IV) and some polydentate ligands in aqueous solution

    International Nuclear Information System (INIS)

    Di Bernado, P.; Cassol, A.; Tomat, G.; Bismondo, A.; Magon, L.

    1983-01-01

    The changes in free energy, enthalpy, and entropy for the formation of thorium(IV)-oxydiacetate, -iminodiacetate, -thiodiacetate, and -succinate complexes have been determined by potentiometric and calorimetric titrations at 25 deg C in aqueous 1 mol dm - 3 sodium perchlorate. All the ligands form 1:1 chelate complexes with the thorium(IV) ion the stability of which is dependent on both the chelate ring dimensions and the nature of the donor group in the chain. The order of the relative stabilities (iminodiacetate > oxydiacetate > thiodiacetate > succinate) is mainly dependent on the reaction enthalpies, since the δS values are close to each other. In the thorium(IV)-oxydiacetate system the maximum number of three ligands for every metal ion was reached. Because of precipitation of solid compounds in the other systems, it was only possible to define complexes with a lower number of co-ordinated ligands: two for succinate and thiodiacetate, and one for iminodiacetate. Owing to the lower stability of the chelate ring of thiodiacetate and succinate complexes and the high basicity of the amino-group of iminodiacetate, these ligands form also unchelated protonated complexes. (author)

  3. Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics

    Directory of Open Access Journals (Sweden)

    Elena Agliari

    2018-01-01

    Full Text Available Complex biochemical pathways can be reduced to chains of elementary reactions, which can be described in terms of chemical kinetics. Among the elementary reactions so far extensively investigated, we recall the Michaelis-Menten and the Hill positive-cooperative kinetics, which apply to molecular binding and are characterized by the absence and the presence, respectively, of cooperative interactions between binding sites. However, there is evidence of reactions displaying a more complex pattern: these follow the positive-cooperative scenario at small substrate concentration, yet negative-cooperative effects emerge as the substrate concentration is increased. Here, we analyze the formal analogy between the mathematical backbone of (classical reaction kinetics in Chemistry and that of (classical mechanics in Physics. We first show that standard cooperative kinetics can be framed in terms of classical mechanics, where the emerging phenomenology can be obtained by applying the principle of least action of classical mechanics. Further, since the saturation function plays in Chemistry the same role played by velocity in Physics, we show that a relativistic scaffold naturally accounts for the kinetics of the above-mentioned complex reactions. The proposed formalism yields to a unique, consistent picture for cooperative-like reactions and to a stronger mathematical control.

  4. Chemical pathways for the formation of ammonia in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

  5. Chemical pathways for the formation of ammonia in Hanford wastes

    International Nuclear Information System (INIS)

    Stock, L.M.; Pederson, L.R.

    1997-09-01

    This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence

  6. Effect of electrostatic interactions on electron-transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    Fast reactions of electron transfer are studied by pulsed radiolysis. By this technique radicals and ionic radicals with high redox potentials are created homogeneously in the solution in about 10 -8 second. For solvated electron effect of electrostatic interaction on kinetics of reactions limited by diffusion is obtained with a good approximation by the Debye equation when ion mobility is known. Deviation from the theory occurs in ion pair formation, which is evidenced experimentally in reactions between anions when cations are complexed by a cryptate. Slow reactions k 8 M -1 s -1 are more sensitive to electrostatic interactions than reactions limited by diffusion. When there is no ion pair formation the velocity constant depends upon dielectric constant of the solvent and reaction distance. 17 refs

  7. Reactions of diiron m-aminocarbyne complexes containing nitrile ligands

    Directory of Open Access Journals (Sweden)

    Busetto Luigi

    2003-01-01

    Full Text Available The acetonitrile ligand in the mu-aminocarbyne complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCMe(Cp2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c (Xyl = 2,6-Me2C6H3 is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{mu-CN(MeR}(mu-CO(CO(X(Cp2 ] (X = Br, I, CN. Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic alpha hydrogens has been used in place of MeCN to form the complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCCMe3 (Cp2][SO3CF3] (7a-c. Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me, followed by treatment with HSO3CF3, yielded the imino complex [Fe2{mu-CN(MeXyl}(mu-CO(CO {N(HC(CºCC6H4Me-4CMe3}(Cp 2][SO3CF3 ] (8, obtained via acetilyde addition at the coordinated NCCMe3.

  8. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  9. Formation of Aqueous MgUO2(CO3)32- Complex and Uranium Anion Exchange Mechanism onto an Exchange Resin

    International Nuclear Information System (INIS)

    Dong, Wenming; Brooks, Scott C

    2008-01-01

    The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH = 8.1, total [U(VI)] = 10.4 mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)32- complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: log = 25.8 b 0.5 using Davies equation and = 25.02 b 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)32- that had a lower affinity for the resin than UO2(CO3)34-. Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)34- species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)32- complex did not sorb

  10. Formation of intermediate structures during the thermal transformation of lignin. 5. Contribution of the reactions of formation and recombination of paramagnetic centres

    Energy Technology Data Exchange (ETDEWEB)

    Domburg, G E; Skripchenko, T N

    1982-01-01

    ESR spectra were determined for samples of softwood (spruce) lignin and hardwood (aspen or birch) lignin at 20-400 degrees C and after cooling to 20 degrees C. Results provide evidence for a change from low-temperature to high-temperature reactions at 300-350 degrees C (higher in hardwoods than softwoods) associated with increased formation and recombination of paramagnetic centres (free radicals). A scheme is presented for the sequence of reactions leading to charcoal formation over the temperature range 100-500 degrees C.

  11. Asymmetry of limbic structure (hippocampal formation and amygdaloidal complex at PTSD

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2003-05-01

    Full Text Available Defining exact position of weak anatomic function which is find in a base of neurological and psychiatric disorder is just became the subject of intensive research interest. For this purposes it is important to implement structural and functional MRI techniques, also for further lightening and seeing subject of this work, more concretely connected to PTSD. Therefore, exactly MRI gives most sensitive volumetric measuring of hippocampal formation and amygdaloidal complex.The goal of this work was to research asymmetry of hippocampal formation and amygdaloidal complex to the PTSD patients.Results showed that at the axial slice length of hippocampal formation on the left and right side of all patients are significantly asymmetric. At the sagittal slice from the left side of hippocampal formation is in many cases longer than right about 50 %. At the coronal slice, there are no significant differences toward patient proportion according to symm. / asymm. of the hippocampal formation width at the right and left side. Difference in volume average of hippocampal formation between right and left side for axial and coronal slice is not statistically significant, but it is significant for sagittal slice. In about amygdaloidal complex patients with PTSD toward symm. / asymm. Amygdaloidal complex at the right and left side of axial and sagittal slice in all three measurement shows asymmetry, what is especially shown at sagittal slice. Difference in average length of amygdaloidal complex at the right and left side is not statistically significant for no one slice.Therefore, results of a new research that are used MRI, showed smaller hippocampal level at PTSD (researched by Van der Kolka 1996, Pitman 1996, Bremner et al., 1995.. Application of MRI technique in research of asymmetry of hippocampal formation and amygdaloidal complex, which we used in our research, we recommend as a template for future researches in a sense of lightening anatomic function that is

  12. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  13. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou

    2018-02-01

    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  14. C-C bond formation in the intramolecular Diels-Alder reaction of triene amides.

    Science.gov (United States)

    Benallou, Abdelilah; El Alaoui El Abdallaoui, Habib; Garmes, Hocine

    2018-02-01

    The mechanism nature of the intramolecular Diels-Alder reaction has been performed; and thus, the changes of C-C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C-C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2-C3 σ bond while the second stage aims for C1-C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  15. Adverse reaction to veterinary multivitamins and vitamin B complex ...

    African Journals Online (AJOL)

    It has been reported that dogs in South-western Nigeria react adversely to injectable veterinary multivitamins and human vitamin B complex preparations. Experimentation and interview survey were concurrently conducted to identify the type of Adverse Drug Reactions (ADRs) that the indications produced. For the survey ...

  16. Effects of online advertising format and persuasion knowledge on audience reactions

    NARCIS (Netherlands)

    Tutaj, K.; van Reijmersdal, E.A.

    2012-01-01

    In an experiment (N = 99), effects of subtle and prominent online advertising formats, respectively sponsored content and banner ads, on audience reactions toward the advertisement are tested. In addition, the role of several persuasion knowledge elements such as understanding of persuasive intent

  17. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O.; Savee, John D.; Osborn, David L.; Zádor, Judit; Taatjes, Craig A.; Sheps, Leonid

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed

  18. Heterogeneous reactions and aerosol formation in flue gas cleaning by electron beam

    International Nuclear Information System (INIS)

    Baumann, W.; Jordan, S.; Leichsenring, C.H.; Maetzing, H.; Paur, H.R.; Schikarski, W.

    1990-08-01

    The electron beam dry scrubbing process is a simultaneous method for the removal of SO 2 and NO x from flue gas. By electron irradiation radicals (OH, O 2 H, O) are formed from the main flue gas components which oxidize NO x and SO 2 into the acids HNO 3 and H 2 SO 4 . These are then neutralized by the injection of NH 3 . A submicron aerosol consisting of ammonium salts is formed which is filtered from the offgas. The main pathways of the gas phase chemistry and product formation have been elucidated by experimental and theoretical studies. Back reactions which occur in the gas and the particle phase limit the energy efficiency of the process. By recirculation of irradiated gas into the reaction vessel (multiple irradiation) a significant improvement of removal yields was obtained. This enhancement of the energy efficiency requires the removal of products between the irradiation steps. Studies show that the material balance is complete. Deficits in the N and S balance of the process are due to the additional formation of molecular nitrogen and the deposition of ammonium sulfate in the ducts. Aerosol formation participates only with 30% in the material balance. The remaining 70% of the product are formed by surface reactions in the filter cake (40%) and in the ducts (30%). (orig.) With 38 figs., 29 tabs [de

  19. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  20. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    Science.gov (United States)

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  1. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    Science.gov (United States)

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  2. Reaction of cyanide with Pt-nucleobase complexes: preparative, spectroscopic, and structural studies. Unexpected stability of Pt-thymine and Pt-uracil complexes

    International Nuclear Information System (INIS)

    Raudaschl-Sieber, G.; Lippert, B.

    1985-01-01

    In order to improve the understanding of the nature of the strongly bound cisplatin on DNA, the reactivity of a large number of complexes of cis-(NH 3 ) 2 Pt/sup II/ with the model nucleobases, 9-ethylguanine, 9-methyladenine, 1-methylcytisine, 1-methylthymine, and i-methyluracil, toward a large excess of cyanide was studied. The behavior of Pt-nucleobase complexes toward CN - is compared with that of simple Pt-amine complexes, and reactions of thiourea with two selected nucleobase complexes is reported. The relevance of these findings with respect to substitution reactions of Pt-nucleobase complexes and the nature of the tightly DNA-bound Pt, which cannot be removed by excess KCN, is discussed

  3. Pattern formation in three-dimensional reaction-diffusion systems

    Science.gov (United States)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  4. Arenethiolatecopper(I) complexes as homogeneous catalysts for Michael addition reactions

    NARCIS (Netherlands)

    Koten, G. van; Klaveren, M. van; Lambert, F.; Eijkelkamp, D.J.F.M.; Grove, D.M.

    1994-01-01

    Arenethiolatocopper(I) complexes are shown to be efficient homogeneous catalysts in Michael addition reactions of several Grignard reagents to acyclic enones; the addition products are formed with excellent chemoselectivity (>99%) and good enantioselectivity (76% e.e.).

  5. SPECTROPHOTOMETRIC STUDIES OF SANGUINARINE-Β-CYCLODEXTRIN COMPLEX FORMATION

    Directory of Open Access Journals (Sweden)

    Veaceslav Boldescu

    2008-06-01

    Full Text Available The main aim of this study was to investigate the influence of pH and the presence of hydrophilic polymer polyvinylpyrrolidone on the formation of sanguinarine-β-cyclodextrin (SANG-β-CD inclusion complex. Spectrophotometric studies of the SANG-β-CD systems in the presence and without 0.1 % PVP at the pH 5.0 did not show any evidence of the complex formation. However, the same systems showed several obvious evidences at the pH 8.0: the hyperchromic and the hypochromic effects and the presence of the isosbestic point in the region of 200 – 210 nm. The association constants calculated by three linear methods: Benesi-Hildebrand, Scott and Scatchard, were two times higher for the systems with addition of 0.1% PVP than for the systems without it.

  6. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  7. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The formation of urea in space. I. Ion-molecule, neutral-neutral, and radical gas-phase reactions

    Science.gov (United States)

    Brigiano, Flavio Siro; Jeanvoine, Yannick; Largo, Antonio; Spezia, Riccardo

    2018-02-01

    Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N-C-O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C-O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.

  9. Reactions, accuracy and response complexity of numerical typing on touch screens.

    Science.gov (United States)

    Lin, Cheng-Jhe; Wu, Changxu

    2013-01-01

    Touch screens are popular nowadays as seen on public kiosks, industrial control panels and personal mobile devices. Numerical typing is one frequent task performed on touch screens, but this task on touch screen is subject to human errors and slow responses. This study aims to find innate differences of touch screens from standard physical keypads in the context of numerical typing by eliminating confounding issues. Effects of precise visual feedback and urgency of numerical typing were also investigated. The results showed that touch screens were as accurate as physical keyboards, but reactions were indeed executed slowly on touch screens as signified by both pre-motor reaction time and reaction time. Provision of precise visual feedback caused more errors, and the interaction between devices and urgency was not found on reaction time. To improve usability of touch screens, designers should focus more on reducing response complexity and be cautious about the use of visual feedback. The study revealed that slower responses on touch screens involved more complex human cognition to formulate motor responses. Attention should be given to designing precise visual feedback appropriately so that distractions or visual resource competitions can be avoided to improve human performance on touch screens.

  10. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    Science.gov (United States)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  11. Program-technical complex for collection, processing and archiving of the physical information about chain nuclear reaction based on VMEbus. I. Subsystem for energy supplying control

    International Nuclear Information System (INIS)

    Alpatov, S.V.; Golovanova, Eh.Z.; Gorskaya, E.A.; Dobryanskij, V.M.; Makan'kin, A.M.; Puzynin, V.I.; Samojlov, V.N.; Cheker, A.V.

    1996-01-01

    The substantiation of choice of the hardware and software for integration in program-technical complex is given. The complex is intended for automation of the physical experiments connected with chain nuclear reaction investigations. The subsystem for energy supplying control of experiment is considered in detail. For building the subsystem the 'client-server' architecture is used. The subsystem includes the work station and VMEbus measuring modules in the net. The description of the programs and result formats are given. 5 refs., 6 figs

  12. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.

    Science.gov (United States)

    Chen, Zhuo; Valentine, Richard L

    2006-12-01

    This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.

  13. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1993-01-01

    The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain

  14. Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination

    Science.gov (United States)

    Derayea, Sayed M.; Omar, Mahmoud A.; Abu-hassan, Ahmed A.

    2018-03-01

    A simple, sensitive and non-extractive spectrofluorimetric method has been developed and validated for the determination of two psychoanaleptic drugs, atomoxetine and fluvoxamine, in pure forms and pharmaceutical dosage forms. The proposed method is based on the formation of binary complexes between eosin Y and the studied drugs in the presence of a Teorell-Stenhagen buffer. The quenching of the native fluorescence of eosin Y due to complex formation with the studied drugs was measured spectrofluorimetrically at 545 nm after excitation at 302 nm. At the optimum reaction conditions, the fluorescence quenching values (ΔF) and concentrations were rectilinear over the concentration ranges of 0.2-2.2 and 0.3-2.2 µg ml-1 for atomoxetine and fluvoxamine, respectively. The developed method was successfully applied for the determination of the studied drugs in their pharmaceutical formulations with average percentage recoveries of 100.13 ± 0.66 and 99.69 ± 0.44 for atomoxetine and fluvoxamine, respectively (n = 5), without interference from common excipients.

  15. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products

    Science.gov (United States)

    Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin

    Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0

  16. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  17. Formation of Nitriles in the Interstellar Medium via Reactions of Cyano Radicals, CN(X2Σ+), with Unsaturated Hydrocarbons

    Science.gov (United States)

    Balucani, N.; Asvany, O.; Huang, L. C. L.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.; Bettinger, H. F.

    2000-12-01

    Crossed molecular beam experiments of cyano radicals, CN(X2Σ+, ν=0), in their electronic and vibrational ground state reacting with unsaturated hydrocarbons acetylene, C2H2(X1Σ+g), ethylene, C2H4(X1Ag), methylacetylene, CH3CCH(X1A1), allene, H2CCCH2(X1A1), dimethylacetylene, CH3CCCH3(X1A1'), and benzene, C6H6 (X1A1g), were performed at relative collision energies between 13.3 and 36.4 kJ mol-1 to unravel the formation of unsaturated nitriles in the outflows of late-type AGB carbon stars and molecular clouds. In all reactions, the CN radical was found to attack the π electron density of the hydrocarbon molecule with the radical center located at the carbon atom; the formation of an initial addition complex is a prevalent pathway on all the involved potential energy surfaces. A subsequent carbon-hydrogen bond rupture yields the nitriles cyanoacetylene, HCCCN (X1Σ+), vinylcyanide, C2H3CN (X1A'), 1-methylcyanoacetylene, CH3CCCN (X1A1), cyanoallene, H2CCCH(CN) (X1A'), 3-methylcyanoacetylene, HCCCH2CN(X1A'), 1,1-cyanomethylallene, H2CCC(CN)(CH3) (X1A'), and cyanobenzene, C6H5CN (X1A1). In case of acetylene and ethylene, a second reaction channel involves a [1, 2]-H atom shift in the initial HCCHCN and H2CCH2CN collision complexes prior to a hydrogen atom release to form cyanoacetylene, HCCCN (X1Σ+), and vinylcyanide, C2H3CN (X1A'). Since all these radical-neutral reactions show no entrance barriers, have exit barriers well below the energy of the reactant molecules, and are exothermic, the explicit identification of this CN versus H atom exchange pathway under single collision conditions makes this reaction class a compelling candidate to synthesize unsaturated nitriles in interstellar environments holding temperatures as low as 10 K. This general concept makes it even feasible to predict the formation of nitriles once the corresponding unsaturated hydrocarbons are identified in the interstellar medium. Here HCCCN, C2H3CN, and CH3CCCN have been already observed

  18. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  19. Vinylogous Nicholas reactions in the synthesis of bi- and tricyclic cycloheptynedicobalt complexes.

    Science.gov (United States)

    Kolodziej, Izabela; Green, James R

    2015-11-28

    The Lewis acid mediated intramolecular Nicholas reactions of allylic acetate enyne-Co2(CO)6 complexes afford cycloheptenyne-Co2(CO)6 complexes in three manifestations. Electron rich aryl substituted alkyne complexes give tricyclic 6,7,x-benzocycloheptenyne complexes, with x = 5, 6, or 7. Allylsilane substituted complexes afford exo methylene bicyclic x,7-cycloheptenyne complexes (x = 6,7). The allyl acetate function may also be replaced by a benzylic acetate, to afford dibenzocycloheptyne-Co2(CO)6 complexes. Following reductive complexation, the methodology may be applied to the synthesis of the icetexane diterpene carbon framework.

  20. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  1. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  2. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  3. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  4. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  5. Thermodynamics of inclusion complex formation of β-cyclodextrin with a variety of surfactants differing in the nature of headgroup

    International Nuclear Information System (INIS)

    Benkő, Mária; Király, Zoltán

    2012-01-01

    Highlights: ► Inclusion complexation of β-cyclodextrins with various surfactants. ► Thermodynamic parameters determined by titration microcalorimetry. ► Stoichiometry of complexation is 1:1. ► The binding constant decreases linearly with increasing temperature. ► Enthalpy–entropy compensation is independent of the nature of the headgroup. - Abstract: The inclusion complexation of β-cyclodextrin with various surfactants, possessing the same alkyl chain length but differing in the hydrophilic headgroup, was investigated by isothermal titration microcalorimetry. Sodium dodecyl sulfate, sodium dodecyl sulfonate, dodecyltrimethylammonium bromide and dodecyl(dimethyl)amine oxide were investigated. The major aim of this study was to elucidate the effects of temperature and the nature of the headgroup on the complex formation. Thermometric titrations were effected between the temperatures (288 and 348) K. The results provided the stoichiometry, the equilibrium constant and the reaction enthalpy of complexation. Changes in Gibbs energy, entropy and van’t Hoff enthalpy were additionally calculated.

  6. Electrolytic formation of technetium complexes with π-acceptor ligands

    International Nuclear Information System (INIS)

    Cerda, F.; Kremer, C.; Gambino, D.; Kremer, E.

    1994-01-01

    Electrolytic reduction of pertechnetate was performed in aqueous solution containing π-acceptor ligands. Cyanide and 1,10-phenanthroline were the selected ligands. In both cases, electrolyses produced a cathodic TcO 2 deposit and soluble Tc complexes. When cyanide was the ligand, the complexes formed were [Tc(CN) 6 ] 5- and [TcO 2 (CN) 4 ] 3- . When working with the amine, [Tc(phen) 3 ] 2+ and another positively charged species were found after reaction. Results are compared with previous studies with amines, and the usefulness of the electrolytic route to obtain Tc complexes is evaluated. (author) 11 refs.; 2 figs.; 1 tab

  7. Kinetics and mechanism of the furan peroxide formation in the reaction of furfural with hydrogen peroxide in the presence and absence of sodium molybdate

    International Nuclear Information System (INIS)

    Grunskaya, E.P.; Badovskaya, L.A.; Kaklyugina, T.Ya.; Poskonin, V.V.

    2000-01-01

    Kinetics of the initial stage of the reaction of furfural with hydrogen peroxide are studied in the presence of Na 2 MoO 4 in water and without catalytic additions in n-butanol. Organic peroxide having in its disposal Mo(6), which is the only product on the initial stage of the reaction, is formed since the first minutes of oxidation of furfural by hydrogen peroxide with the presence of Na 2 MoO 4 . The mechanisms of conversion of furfural in the Na 2 MoO 4 - H 2 O system and its oxidation by peroxide without sodium molybdate are discussed. Schemes of formation of furfural complexes based on the results of kinetic studies are suggested. Comparison of obtained data demonstrates that presence of the sodium molybdates in the reaction medium trends to change of reaction procedure in the hydrogen peroxide [ru

  8. Formation and reactions of radical cations of substituted benzenes in aqueous media

    International Nuclear Information System (INIS)

    Holcman, J.

    1977-08-01

    Radical cations of anisole, methylated benzenes, ethylbenzene, isopropylbenzene, tert-butylbenzene and N,N-dimethylaniline were studied in aqueous media by pulse radiolytic technique. Absorption spectra and reaction kinetics of the radical cations were recorded. The radical cations are formed from the corresponding OH adducts by the elimination of OH - , either by a simple dissociation or by an acid catalyzed reaction. The rate constants of the formation of the radical cations and their reactions with water, OH - and Fe 2+ , or the reaction of a proton loss, were measured. The rate constants for the reaction with water and OH - , together with the rate constants for the dissociation of the OH adducts, are correlated with the ionization potential of the parent compound. These correlations offer a possibility of predicting the acid-base properties of radical cations of substituted benzenes, or the estimation of their ionization potential. (author)

  9. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  10. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  11. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    Science.gov (United States)

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, Preaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction. © 2015 by the Association of Clinical Scientists, Inc.

  12. Recoil implantation reactions in binary mixtures of catcher complexes and in mixed ligand catchers

    International Nuclear Information System (INIS)

    Sekine, Tsutomu; Sano, Masaaki; Yoshihara, Kenji

    1989-01-01

    Recoil implantation reactions were studied in binary mixtures of catcher complexes of tris(β-diketonato)metal(III) and in single-component catcher complexes of Cr(acac) n (dbm) 3-n where n=1 and 2. For the mixtures of M(acac) 3 and M(dbm) 3 , the products of 51 Cr(acac) 3 and 51 Cr(dbm) 3 were obtained as major components while 51 Cr(acac) 2 (dbm) and 51 Cr(acac)(dbm) 2 were seen as minor components. For the single component catcher complexes, predominant chemical species were parent retention type compounds. In addition to retentions there were product distributions which indicated a strong preference for acac pickup. The results were interpreted by a model which involves displacement reaction as a main process and ligand pickup reactions as side processes. (orig.)

  13. Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model.

    Science.gov (United States)

    Raszewski, Grzegorz; Diner, Bruce A; Schlodder, Eberhard; Renger, Thomas

    2008-07-01

    Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His(198), the axial ligand of the special-pair chlorophyll P(D1), and D1-Thr(179), an amino-acid residue nearest to the accessory chlorophyll Chl(D1), on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns Chl(D1). Compared to isolated reaction centers, the site energy of Chl(D1) is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on Chl(D1) rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by approximately 10 nm than the low-energy exciton state of the two special-pair chlorophylls P(D1) and P(D2) which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for Chl(D1) and P(D1), reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are

  14. A theoretical quantum chemical study of alanine formation in interstellar medium

    Science.gov (United States)

    Shivani; Pandey, Parmanad; Misra, Alka; Tandon, Poonam

    2017-08-01

    The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G( d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

  15. Complex formation between glutamic acid and molybdenum (VI)

    International Nuclear Information System (INIS)

    Gharib, Farrokh; Khorrami, S.A.; Sharifi, Sasan

    1997-01-01

    Equilibria of the reaction of molybdenum (VI) with L-glutamic acid have been studied in aqueous solution in the pH range 2.5 to 9.5, using spectrophotometric and optical rotation methods at constant ionic strength (0.15 mol dm -3 sodium perchlorate) and temperature 25 ± 0.1 degC. Our studies have shown that glutamic acid forms a mononuclear complex with Mo(VI) of the type MoO 3 L 2- at pH 5.5. The stability constant of this complexation and the dissociation constants of L-glutamic acid have been determined. (author). 17 refs., 2 figs., 4 tabs

  16. Analysis of the complex formation of heparin with protamine by light scattering and analytical ultracentrifugation: implications for blood coagulation management.

    Science.gov (United States)

    Maurer, Jürgen; Haselbach, Stephanie; Klein, Oliver; Baykut, Doan; Vogel, Vitali; Mäntele, Werner

    2011-02-02

    Heparin, a linear glycosaminoglycan, is used in different forms in anticoagulation treatment. Protamine, a highly positive charged peptide containing about 32 amino acids, acts as an antagonist for heparin to restore normal blood coagulation. The complex formation of protamine with heparin was analyzed by a combination of analytical ultracentrifugation and light scattering. Titration of heparin with protamine in blood plasma preparations results in a drastic increase of turbidity, indicating the formation of nanoscale particles. A similar increase of turbidity was observed in physiological saline solution with or without human serum albumin (HSA). Particle size analysis by analytical ultracentrifugation revealed a particle radius of approximately 30 nm for unfractionated heparin and of approximately 60 nm for low molecular weight heparin upon complexation with excess protamine, in agreement with atomic force microscopy data. In the absence of HSA, larger and more heterogeneous particles were observed. The particles obtained were found to be stable for hours. The particle formation kinetics was analyzed by light scattering at different scattering angles and was found to be complete within several minutes. The time course of particle formation suggests a condensation reaction, with sigmoidal traces for low heparin concentrations and quasi-first-order reaction for high heparin concentrations. Under all conditions, the final scattering intensity reached after several minutes was found to be proportional to the amount of heparin in the blood plasma or buffer solution, provided that excess protamine was available and no multiple scattering occurred. On the basis of a direct relation between particle concentration and the heparin concentration present before protaminization, a light scattering assay was developed which permits the quantitative analysis of the heparin concentration in blood plasma and which could complement or even replace the activated clotting time test

  17. Calculations of radiation defect formation cross sections in reactor materials in (n,p) and (n,α) reactions

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Omarbekova, Zh.

    2001-01-01

    In the work an experimental data analysis by integral σ(E 1 ) and differential [dσ(E 1 ,E 2 )]/dE 2 neutron interaction cross sections with reactor materials with the secondary protons and alpha particles generation as well as with the primarily knock-on atoms production in such reactions are carried out. It is shown, that in the (n,p) and (n',α) reactions the recoil nuclei receive essential energy portion and they are the patriarchs for atom-atom cascades in the substance. Nuclear reactions with formation of the secondary α-particles and and recoil nuclei are considered. It is shown, that these reactions are effectively proceeding within neutrons energy range 0.3-15 MeV. The nuclear reactions kinematics of above mentioned processes is studied. Energy conservation law for these reaction is applied. Deferential cross section conservation and transformation law for radiation defect formation in the (n,α) reaction are considered as well

  18. Systematics of complex fragment emission from La induced reactions at E/A = 47 MeV

    International Nuclear Information System (INIS)

    Kehoe, W.L.; Mignerey, A.C.; Bradley, S.

    1989-03-01

    Complex fragment (Z > 2) emission was studied in the reverse kinematics reactions of 139 La on 27 Al and /sup nat./Cu at a bombarding energy of E/A = 47 MeV. Experimental results from inclusive and coincidence measurements for two- and three-fold complex fragments events are presented. Measured cross sections and Z 1 -Z 2 correlations show a predominately binary-decay process for the La + Al reaction, while the La + Cu reaction is dominated by multi-body decay. 18 refs., 9 figs., 1 tab

  19. Reaction of nitriles intercalation in tantalum pentachloride complexes with amines

    International Nuclear Information System (INIS)

    Glushkova, M.A.; Chumaevskij, N.A.; Khmelevskaya, L.V.; Ershova, M.M.; Buslaev, Yu.A.

    1987-01-01

    Data on the study of aceto-, propio- and benzonitrile intercalation in TaCl 5 complexes with diethyl- and triethylamines in CCl 4 solution are discussed. Using the methods of IR and Raman spectroscopy it has been established that it is the nature of ligand, and not nitrile intercalated in the complex, that affects greatly the composition of final products. In contrast to acetonitrile, intercalation in the complex of propio- and benzonitriles is observed already at room temperature. On the basis of spectral data a supposition is made that carbon tetrachloride used as a solvent accelerates the reaction of nitrile intercalation and promotes their deprotonation in the presence of aprotonic amine

  20. Study on complex formation of dicyclohexyl-18-crown-6 with Mg2+, Ca2+ and Sr2+ in acetonitrile-water binary mixtures by conductometry

    OpenAIRE

    Mallika Sanyal

    2017-01-01

    The complexation reactions between Mg2+, Ca2+ and Sr2+ cations and dicyclohexyl-18-crown-6 (DCH 18C6) have been studied in acetonitrile–water binary mixtures at different temperatures by conductometry. The formation constants of the resulting 1:1 (M:L) complexes for all the three cations were determined from computer fitting of the molar conductance versus mole ratio data. The results show that the selectivity order of DCH 18C6 for the metal cations in the acetonitrile-water binary solvent at...

  1. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    Science.gov (United States)

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  2. Formation of covalent complexes between human O sup 6 -alkylguanine-DNA alkyltransferase and BCNU-treated defined length synthetic oligodeoxynucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Brent, T.P.; Remack, J.S. (St. Jude Children' s Research Hospital, Memphis, TN (USA))

    1988-07-25

    Repair of chloroethylnitrosourea (CENU)-induced precursors of DNA interstrand cross-links by O{sup 6}-alkylguanine-DNA alkyltransferase (GAT or GATase) appears to be a factor in tumor resistance to therapy with this class of antineoplastic drugs. Since human GAT is highly specific for O{sup 6}-guanine, yet the probably cross-link structure is N{prime}-Guanine N{sup 3}cytosine ethane, rearrangement of the initial O{sup 6}-guanine adduct via O{sup 6},N{sup 1}ethanoguanine has been proposed. The authors suggested that GAT reaction with this intermediate would produce DNA covalently linked to protein through an ethane link from N{sup 1}-guanine to the alkylacceptor site on GAT. In preliminary studies they demonstrated a covalent complex between GAT and carmustine (BCNU)-treated DNA by a precipitation assay method. They have now developed a method for isolating the reaction product of BCNU-treated synthetic 14-mer ({sup 32}P)-labeled oligodeoxynucleotide and GAT using polyacrylamide gel electrophoresis. This approach can be used to characterize the adducts induced by CENUs that lead to complex formation with GAT.

  3. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaogang [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Li, Zhenlin [Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Dong, Huiyu [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Goodman, Bernard A. [College of Physical Science and Engineering, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 520004, Guangxi (China); Qiang, Zhimin, E-mail: qiangz@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China)

    2017-01-05

    This study investigated systematically the factors influencing the formation of iodinated disinfection by-products (I-DBPs) during chloramination of I{sup −}-containing waters, including reaction time, NH{sub 2}Cl dose, I{sup −} concentration, pH, natural organic matter (NOM) concentration, Br{sup −}/I{sup −} molar ratio, and water matrix. Among the I-DBPs detected, iodoform (CHI{sub 3}), iodoacetic acid (IAA), diiodoacetic acid (DIAA), triiodoacetic acid (TIAA), and diiodoacetamide (DIAcAm) were the major species produced from reactions between reactive iodine species (HOI/I{sub 2}) and NOM. A kinetic model involving the reactions of NH{sub 2}Cl auto-decomposition, iodine species transformation and NOM consumption was developed, which could well describe NH{sub 2}Cl decay and HOI/I{sub 2} evolution. Higher concentrations of CHI{sub 3}, IAA, DIAA, TIAA, and DIAcAm were observed in chloramination than in chlorination, whereas IO{sub 3}{sup −} was only formed significantly in chlorination. Maximum formation of I-DBPs occurred at pH 8.0, but acidic conditions favored the formation of iodinated haloacetic acids and DIAcAm. Increasing Br{sup −}/I{sup −} molar ratio from 1 to 10 did not increase the total amount of I-DBPs, but produced more bromine-substituting species. In addition, chloramination of 18 model compounds indicated that low-SUVA{sub 254} (specific ultraviolet absorbance at 254 nm) NOM generally favored the formation of I-DBPs compared to high-SUVA{sub 254} NOM. Finally, potential pathways for I-DBPs formation from chloramination of NOM were proposed.

  4. Reaction of hydroborate anions with liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.

    1978-01-01

    The reaction of anhydrous liquid HF with salts of the decahydro-closodecarborate (2) ion B 10 H 10 2- at room temperature or a decreased temperature leads to the formation of complex mixtures of high-molecular boranes with yields of 88 to 92 %. This solid, yellow, nonvolatile product contains traces of B 10 H 14 and B 18 H 22 . The average molecular masses of the borane mixtures obtained are in the range of 438 - 992. The complex composition of the mixtures was confirmed by thin-layer chromatography on silica gel. The IR and NMR spectra of the products are presented. The possible mechanism of the reaction between HF and B 10 H 10 2- with the formation of higher boron hydrides is discussed. Salts of B 12 H 10 2- and B 10 Cl 10 2- do not react with HF; KBF 4 and CsB 9 H 14 are decomposed by HF with the formation of MBF 4

  5. Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Kelic, A.; Napolitani, P.; Schmidt, K.H.; Yordanov, O.; Ignatyuk, A.V.; Rejmund, F.

    2003-12-01

    Complex structural effects in the nuclide production from the projectile fragmentation of 1 A GeV 238 U nuclei in a titanium target are reported. The structure seems to be insensitive to the excitation energy induced in the reaction. This is in contrast to the prominent structural features found in nuclear fission and in transfer reactions, which gradually disappear with increasing excitation energy. Using the statistical model of nuclear reactions, relations to structural effects in nuclear binding and in the nuclear level density are demonstrated. (orig.)

  6. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  7. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    ... of a low concentration of ions forming the perovskite structure PZT (Pb2+, Zr4+ et Ti4+) by other ions (Zn2+, Cr3+ et Sb+5 in our study) alters the reaction sequences training of the solid solution PZT and especially the formation of intermediate phase. Keywords: PZT / Calcination / TGA / DTA / RX / Piezoelectric Ceramics ...

  8. Cerimetric determination of simvastatin in pharmaceuticals based on redox and complex formation reactions

    International Nuclear Information System (INIS)

    Basavaiah, K.; Devi, O.Z

    2008-01-01

    Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves the reduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer's law for 0.6-7.5 and 0.5-5.0 μg mL -1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol -1 cm -1 , respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039 μg cm -2 , respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student's t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure. (author)

  9. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Elimelech, Orian [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel; Liu, Jing [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Plonka, Anna M. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Frenkel, Anatoly I. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Banin, Uri [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel

    2017-07-19

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.

  10. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    Science.gov (United States)

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  11. Redox reactions of the α-synuclein-Cu(2+) complex and their effects on neuronal cell viability.

    Science.gov (United States)

    Wang, Chengshan; Liu, Lin; Zhang, Lin; Peng, Yong; Zhou, Feimeng

    2010-09-21

    α-Synuclein (α-syn), a presynaptic protein believed to play an important role in neuropathology in Parkinson's disease (PD), is known to bind Cu(2+). Cu(2+) has been shown to accelerate the aggregation of α-syn to form various toxic aggregates in vitro. Copper is also a redox-active metal whose complexes with amyloidogenic proteins/peptides have been linked to oxidative stress in major neurodegenerative diseases. In this work, the formation of the Cu(2+) complex with α-syn or with an N-terminal peptide, α-syn(1-19), was confirmed with electrospray-mass spectrometry (ES-MS). The redox potentials of the Cu(2+) complex with α-syn (α-syn-Cu(2+)) and α-syn(1-19) were determined to be 0.018 and 0.053 V, respectively. Furthermore, the Cu(2+) center(s) can be readily reduced to Cu(+), and possible reactions of α-syn-Cu(2+) with cellular species (e.g., O(2), ascorbic acid, and dopamine) were investigated. The occurrence of a redox reaction can be rationalized by comparing the redox potential of the α-syn-Cu(2+) complex to that of the specific cellular species. For example, ascorbic acid can directly reduce α-syn-Cu(2+) to α-syn-Cu(+), setting up a redox cycle in which O(2) is reduced to H(2)O(2) and cellular redox species is continuously exhausted. In addition, the H(2)O(2) generated was demonstrated to reduce viability of the neuroblastoma SY-HY5Y cells. Although our results ruled out the direct oxidation of dopamine by α-syn-Cu(2+), the H(2)O(2) generated in the presence of α-syn-Cu(2+) can oxidize dopamine. Our results suggest that oxidative stress is at least partially responsible for the loss of dopaminergic cells in PD brain and reveal the multifaceted role of the α-syn-Cu(2+) complex in oxidative stress associated with PD symptoms.

  12. A study on complex formation of cadmium (II) ions, 9

    International Nuclear Information System (INIS)

    Matsui, Haruo

    1984-01-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm -3 LiClO 4 as a constan ionic medium at 25 0 C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log βsub(pr)= log([Cdsub(p)Lsub(r)sup((2p-2r)+)]/([Cd 2+ ]sup(p)[L 2- ]sup(r))), of the complexes were: log β 11 = 1.98, log β 12 = 3.05 for cadmium (11)-malonic acid; log β 11 = 2.28, log β 12 = 3.06 for cadmium (11)-methylmalonic acid; log β 11 = 1.78, log β 12 = 3.08 for cadmium (11)-succinic acid; log β 11 = 1.85, log β 12 = 3.28 for cadmium (11)-glutaric acid complexes. (author)

  13. Studying the association complex formation of atomoxetine and fluvoxamine with eosin Y and its application in their fluorimetric determination.

    Science.gov (United States)

    Derayea, Sayed M; Omar, Mahmoud A; Abu-Hassan, Ahmed A

    2018-03-01

    A simple, sensitive and non-extractive spectrofluorimetric method has been developed and validated for the determination of two psychoanaleptic drugs, atomoxetine and fluvoxamine, in pure forms and pharmaceutical dosage forms. The proposed method is based on the formation of binary complexes between eosin Y and the studied drugs in the presence of a Teorell-Stenhagen buffer. The quenching of the native fluorescence of eosin Y due to complex formation with the studied drugs was measured spectrofluorimetrically at 545 nm after excitation at 302 nm. At the optimum reaction conditions, the fluorescence quenching values (Δ F ) and concentrations were rectilinear over the concentration ranges of 0.2-2.2 and 0.3-2.2 µg ml -1 for atomoxetine and fluvoxamine, respectively. The developed method was successfully applied for the determination of the studied drugs in their pharmaceutical formulations with average percentage recoveries of 100.13 ± 0.66 and 99.69 ± 0.44 for atomoxetine and fluvoxamine, respectively ( n  = 5), without interference from common excipients.

  14. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan; Maity, Niladri; Tripathy, Suman Kumar; Basset, Jean-Marie; Patra, Srikanta

    2016-01-01

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction

  15. The role of plasma proteins in formation of obstructive protamine complexes

    International Nuclear Information System (INIS)

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B.

    1991-01-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood

  16. Kinetics and mechanism of aquation and formation reactions of carbonato complexes. XII. Deuterium solvent isotope effect on the rate of acid-catalyzed decarboxylation of the carbonatobis (ethylenediamine) cobalt(III) complex ion. A mechanistic reappraisal

    International Nuclear Information System (INIS)

    Harris, G.M.; Hyde, K.E.

    1978-01-01

    A recent study of the acid-catalyzed decarboxylation of the carbonatotetrakis(pyridine)cobalt(III) complex ion showed there to be rate acceleration in D 2 O solvent, consistent with a proton-preequilibration mechanism. This observation directly contradicts the results of a similar study made some years ago of the analogous ion, carbonatobis(ethylenediamine)cobalt(III), for which there appeared to be deceleration in D 2 O solvent. A reinvestigation of the latter reaction over a much wider acidity range has now shown the earlier work to be in error. The previously proposed generalized mechanism for aquation of chelated carbonato complex ions of the form CoN 4 CO 3 + (N 4 identical with various tetramine ligand groupings of uni-, bi-, or quadridentate type) has thus been revised to include a proton equilibration step. An unexpected complication arises in the interpretation of the data for the bis(ethylenediamine) complex ion in the acidity range 0.1 + ] + ] term, overtakes and exceeds the true first-order rate constant for CO 2 release. The interesting implications of this unusual first-order successive reaction system are fully explored in the context of the present study

  17. Radiation induced Maillard reactions (the kinetic of colour formation during heating)

    International Nuclear Information System (INIS)

    Tegota, A.; Bachman, S.

    1998-01-01

    The results are presented of the investigation of the effect of ionizing radiation from 60 Co on the acceleration of the Maillard reactions in a model system containing an aqueous solution of fructose (F) at 0.03 mol/dm 3 and alanine (Ala) at 0.01 mol/dm 3 . Solutions of F/Ala irradiated with 5 to 30 kGy at a dose rate 1.4 Gy/s were then heated for a few hours at different temperatures: 400, 600, 800, and 1000 deg C. The colour intensity of the solutions was measured via their absorbance at 450 nm. The reaction constant estimates increased with increasing radiation dose and temperature. The activation energy of colour development determined over the range of 600 deg C to 1000 deg C decreased with dose from 70.6 kJ/mol for 5 kGy to 60.7 kJ/mol for 30 kGy. The results confirmed the formation of carbonyl products from fructose radiolysis and their participation in the acceleration of the non-enzymatic browning reactions. The aldehyde products formed from the amino acids as a result of the Strecker degradation are responsible for the formation of odour typical of the Maillard reaction during heating. The changes in the F and Ala concentrations during irradiation of the solutions were proportional to the radiation dose. The radiation yield of fructose and alanine decomposition was G = 2.6 and 0.22, respectively. In the irradiated solutions of F/Ala, serine has been found, which has not been mentioned so far as a product of alanine radiolysis. The study demonstrates the influence of radiation and acceleration of the Maillard reaction during subsequent heating at 400 deg C up to 1000 deg C of systems containing reducing sugars and amino acids. It should be taken under consideration in the studies on introducing radiation technology of food products preservation connected with further thermal treatment

  18. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    Science.gov (United States)

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    Science.gov (United States)

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the

  20. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  1. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure; Besnard, Cé line; Kü ndig, E. Peter

    2014-01-01

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  2. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  3. Investigation into cobalt, copper and vanadium complexes with phenylbenzimidazolylazoketoxime and o-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Dubinina, L F; Lipunova, G N; Medvedeva, L I; Mertsalov, S L [Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR)

    1983-01-01

    Complex formation of phenylbenzimidozolylazoketoxime (PhBAKO) with Co(2), Cu(2) and V(5) ions in aqueous-ethanol medium at different pH values, is investigated. In aqueous-ethanol medium PhBAKO forms coloured complexes. Reagent has a low selectivity under these conditions. It is found that the addition of phenanthroline not only increases the contrast of the reaction but considerably increases its selectivity. The optimum range of pH value of complex formation for vanadium is 6.0-8.2. A high selectivity of PhBAKO and the contrast nature of complex formation reaction of the reagent with cobalt copper and vanadium ions, different stability of complexes in the acidic medium have permitted to develop the photometric method of determination of these elements in natural waters in the case of their mutual presence. The limit of vanadium detection is 0.01 ..mu..g/ml.

  4. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  5. Two-center three-electron bonding in ClNH{sub 3} revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH{sub 3} → ClNH{sub 2} + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Christopher P.; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Xie, Changjian; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Kaufmann, Matin [Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-04-28

    Pyrolytic dissociation of Cl{sub 2} is employed to dope helium droplets with single Cl atoms. Sequential addition of NH{sub 3} to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH{sub 3} → ClNH{sub 2} + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C{sub 3v} symmetric top. Frequency shifts from NH{sub 3} and dipole moment measurements are consistent with a ClNH{sub 3} complex containing a relatively strong two-center three-electron (2c–3e) bond. The nature of the 2c–3e bonding in ClNH{sub 3} is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH{sub 3}Cl and Cl–HNH{sub 2}, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH{sub 3} → HCl + NH{sub 2}.

  6. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    Science.gov (United States)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  7. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS)

    Garmestani, S.K.; Firouzbakht, M.L.; Rack, E.P.

    1979-01-01

    Reactions of recoil produced iodine-128 with isomers of butyne were studied in gaseous, high pressure, and condensed phase conditions, with rare gas additives and in the presence and absence of radical scavengers (I 2 and O 2 ). It was found that recoil iodine-128 reactions were initiated by thermal electronically excited I + species for both 1-butyne and 2-butyne systems. While the diverse and complex nature of the reactions cannot be explained by simple chemical parameters, comparisons among the alkyne systems demonstrate preferential attack of iodine at the triple bond resulting, mainly, in electronically excited intermediates. A comparison of the various product formation routes results in the characterization of general traits common to the alkynes. 6 figures, 4 tables

  8. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amyloselysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  9. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  10. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  11. Thermodynamic parameters of the complexation of uranyl(VI) by diethylenetriamine in dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Cassol, A.; Bernardo, P. di; Portanova, R.; Tolazzi, M.; Tomat, G.; Zanonato, P.L.

    1993-01-01

    The changes in free energy, enthalpy, and entropy for the complex formation reactions between uranyl(VI) ion and diethylenetriamine (dien) in dimethyl sulfoxide have been determined by potentiometric and calorimetric measurements at 25 C in a medium of ionic strength 0.1 mol dm -3 . The amine forms a very stable 1:1 complex which results stabilized only by the highly favourable enthalpy change. Entropy change is negative and opposes the reaction. The comparison of the thermodynamic data concerning complexation of uranyl(VI) by charged and uncharged ligands reveals that in this case (uncharged ligand) the enthalpy contribution is mainly related to the formation of the metal-ligand bonds while the entropy term might be associated with the decrease in the translational and conformational entropy occurring in the complexation of the ligand. FTIR and calorimetric measurements have been carried out to study the effect of traces of water on the equilibria in solution. It has been found that water can interfere in the complexation reaction giving rise to the formation of a dinuclear hydroxo complex in which probably two μ 2 -OH bridges link two monomer moieties. (orig.)

  12. Study on the kinetics of gel formation in the radiation crosslinking reaction

    International Nuclear Information System (INIS)

    Wang Mingjun; Liu Yuming

    1988-01-01

    From the kinetic equation of gel formation obtained by the authors, the mechanism of gel formation may be interpreted clearly as follows: (1) When the degree of crosslinking q g , the system is sol and the crosslinking reaction is only carried out between the sol molecules. (q g is the gel point). (2) When q=q g , there exists a beginning point where the gel is coexisted with the sol, and the system is still sol, and the crosslinking reaction is still carried out between the sol molecules. (3) When q>q g , the crosslinking reaction exceeds the gel point and the gel is coexisted with the sol. The kinetic equation shows clearly that the transformation from sol into gel is caused by crosslinking reaction of the uncrosslinked chain units between the sol and gel molecules. As a result the sol molecules are transformed into the gel molecules gradually, and the sol fraction is reduced. When the chain units P-barw(s)S(1-s)dq in sol are crosslinked with gel, the sol fraction in the system is reduced ds (where P-barw(s) is a function of the radiation dose and s is sol frection). The degree of crosslinking per unit dose (q 0 ) is a reduced function of dose (R). The equation for calculating its value for every irradiation dose is obtained. After knowing the correlation between P-bar W(s) vs R and q 0 vs R, the distribution of gel and sol in the process of radiation crosslinking can be discussed as well

  13. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  14. The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose–lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  15. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  16. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    DEFF Research Database (Denmark)

    Giacometti, Simone; Benbahouche, Nour El Houda; Domanski, Michal

    2017-01-01

    The nuclear cap-binding complex (CBC) stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC......-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis....

  17. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  18. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  19. Mechanism of chimera formation during the Multiple Displacement Amplification reaction

    Directory of Open Access Journals (Sweden)

    Stockwell Timothy B

    2007-04-01

    Full Text Available Abstract Background Multiple Displacement Amplification (MDA is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.

  20. Reactivity of the parent amido complexes of iridium with olefins: C-NH2 bond formation versus C-H activation.

    Science.gov (United States)

    Mena, Inmaculada; García-Orduña, Pilar; Polo, Víctor; Lahoz, Fernando J; Casado, Miguel A; Oro, Luis A

    2017-08-29

    Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH 2 )(tfbb)} 3 ] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH 2 )(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH 2 bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,2-η 2 -4-κ-C 12 H 8 F 4 N)(dppp)} 2 (μ-dppp)] (4) has been isolated. On the contrary, the diiridium amido-bridged complex [{Ir(μ-NH 2 )(cod)} 2 ] (2; cod = 1,5-cyclooctadiene) in the presence of dppb (dppb = bis(diphenylphosphane)butane) allows the isolation of a mononuclear complex [Ir(1,2,3-η 3 -6-κ-C 8 H 10 )H(dppb)] (5), as a consequence of the extrusion of ammonia. The monitoring of the reaction of 2 with dppb (and dppp) allowed us to detect terminal amido complexes [Ir(NH 2 )(P-P)(cod)] (P-P = dppb (6), dppp (7)) in solution, as confirmed by an X-ray analysis of 7. Complex 7 was observed to evolve into hydrido species 5 at room temperature. DFT studies showed that C-H bond activation occurs through the deprotonation of one methylene fragment of the cod ligand by the highly basic terminal amido moiety instead of C-H oxidative addition to the Ir(i) center.

  1. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production

  2. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  3. Influence of phase transition on pattern formation during catalytic reactions

    OpenAIRE

    Andrade, Roberto Fernandes Silva; Lima, D.; Cunha, F. B.

    2000-01-01

    p.434–445 We investigate the influence of the order of surface phase transitions on pattern formation during chemical reaction on mono-crystal catalysts. We use a model consisting of two partial differential equations, one of which describes the dynamics of the surface state with the help of a Ginzburg–Landau potential. Second- or first-order transitions are described by decreasing or increasing the relative value of the third-order coefficient of the potential. We concentrate on the stabi...

  4. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    Science.gov (United States)

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Model of deep centers formation and reactions in electron irradiated InP

    International Nuclear Information System (INIS)

    Sibille, A.; Suski, J.; Gilleron, M.

    1986-01-01

    We present a model of the production of deep centers and their reactions following electron irradiations in InP. We propose that the dominant hole traps in p-InP and electron traps in p + n InP junctions are complexes between shallow acceptors and a common intrinsic entity, the phosphorus interstitial or vacancy. The reactions observed below and above room temperature are then due to a local mobility of this entity, which can be obtained as well by thermal as by electronic stimulation of the reactions. This model implies the long-range migration (at least down to 16 K) of this entity, and explains the strongly different behavior of n-InP compared to p-InP samples

  6. Studies on Ternary Complex Formation of U(VI)-salicylate by Using Time-resolved Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, H. R.; Park, K. K.; Kim, W. H.; Jung, E. C. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Organic ligands containing carboxylic and phenolic functional groups naturally occur in groundwater environment, particularly in forms of polyelectrolytes such as humic and fulvic acids, from microbial degradation of biomass, e.g., plant and animal tissues. These ligands play important roles in dissolution and migration of actinide radionuclide species since they can form stable ternary actinide complexes with common inorganic ions like hydroxides and carbonates. Therefore, model ternary complexes of lanthanides and actinides have been targets of studies to understand their chemical behaviors under near-neutral pH groundwater conditions. Previous model carboxylic ligands include phthalates, maleic acids, or alpha- substituted carboxylic acids. However, majority of previous studies investigated binary systems or used potentiometric titration method that requires high ligand concentration in mM levels. Recently, highly sensitive time-resolved laserinduced fluorescence spectroscopy (TRLFS) has been used to investigate lower concentration (e.g., a few {mu}M levels) reactions of binary complexes between of ligands and metal ions. This technique provides information regarding electronic structures and complexation constants as well as fluorescence quenching mechanism. In the present study, we studied the U(VI)-OH-salicylate (SA) ternary complex formation at higher pH (> 4) via TRLF spectrum and UV-Vis absorbance measurement. Preliminary studies show that the fluorescence (FL) intensity of hydroxouranyl species at pH 4.5 decreases as SA concentration elevates in aqueous solution. Fluorescence quenching mechanism by SA is suggested based on FL intensity (I) and lifetime (tau) measurement via TRLFS

  7. Formation constants of binary complexes of lanthanides with 2-hydroxymethyl-benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Nagendram, A; Omprakash, K L; Chandra Pal, A V; Reddy, M L.N.

    1988-03-01

    Proton-ligand and metal-ligand formation constants of binary complexes of La(III), Pr(III), Nd(III), Gd(III), Dy(III) and Y(III) with 2-hydroxymethylbenzimidazole have been determined pH-metrically in 50 per cent v/v aq dioxane medium at 30deg, 40deg and 50degC and I=0.1 M (NaClO/sub 4/). The theromdynamic parameters of complex formation have been evaluated. Stabilities (log ..beta../sub 2/ values) of the chelates increase with decrease in ionic radius of the metal (Dy(III) > Gd(III) > Y(III) > Nd(III) > Pr(III) > La(III)). (author). 7 refs.

  8. Synthesis of sp3-rich scaffolds for molecular libraries through complexity-generating cascade reactions

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Min, Geanna; Bonnet, K.

    2016-01-01

    An efficient strategy for the synthesis of complex small molecules from simple building blocks is presented. Key steps of the strategy include tandem Petasis and Diels–Alder reactions, and divergent complexity-generating cyclization cascades from a key dialdehyde intermediate. The methodology...

  9. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO 2 HA, NpO 2 A - , and NpOHA 2- , has been demonstrated with salicylaldehyde thiosemicarbazone (H 2 L) and salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q) at t = 25 +/- 1 0 C and μ = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H 2 L and H 2 Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO 2 OHL 2- and NpO 2 OHQ 2- were also determined, and found to be equal to (2.23 +/-0.37) x 10 -5 and (5.02 +/- 0.9) x 10 -5 , respectively. In the case of S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide (H 2 Z), only one type of complex is formed under these experimental conditions, namely, NpO 2 Z - , with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H 2 Q and H 2 Z were also determined

  10. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  11. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  12. Complex formation between menadione and cetylethylmorpholinium ethosulfate: effect on uv photodegradation of menadione

    International Nuclear Information System (INIS)

    Kowarski, C.R.; Ghandi, H.I.

    1975-01-01

    The process of menadione photodegradation can be enhanced or diminished by other compounds. The presence of the quaternary ammonium compound cetylethylmorpholinium ethosulfate (I) in solutions of menadione was found to slow the rate of photodegradation by uv light (253.7 nm). The mechanism of this effect may be due to complex formation between menadione and I. Complex formation was demonstrated by a shift in the absorption peaks of menadione from 245 and 260 nm to 251.5 and 261.5 nm, respectively. The equilibrium constant of this complex was calculated to be 1.647 M

  13. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Chemistry Research Div.

    2012-07-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K{sub 1:1} and log K{sub 1:2}) are as follows: 12.5 {+-} 0.1 and 11.4 {+-} 0.2 for salicylate, 11.2 {+-} 0.1 and 10.1 {+-} 0.2 for 5-sulfosalicylate, and 12.4 {+-} 0.1 and 11.4 {+-} 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO{sub 2}(HSal){sup +} and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K{sub S}) obtained are 3.3 {+-} 0.1, 4.9 {+-} 0.1, and 4.4 {+-} 0.1 for UO{sub 2}{sup 2+}, (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} and (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, respectively. (orig.)

  14. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    International Nuclear Information System (INIS)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K.

    2012-01-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K 1:1 and log K 1:2 ) are as follows: 12.5 ± 0.1 and 11.4 ± 0.2 for salicylate, 11.2 ± 0.1 and 10.1 ± 0.2 for 5-sulfosalicylate, and 12.4 ± 0.1 and 11.4 ± 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO 2 (HSal) + and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K S ) obtained are 3.3 ± 0.1, 4.9 ± 0.1, and 4.4 ± 0.1 for UO 2 2+ , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + , respectively. (orig.)

  15. Formation of americium and europium humate complexes

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Meguro, Y.

    1991-01-01

    Binding constants of americium and europium with a humic acid were determined to study if complex formation of trivalent actinide-humates affects dissolved species of the actinides in hydrosphere. The purified humic acid was characterized by means of UV-vis, IR, and pH titration, indicating high carboxylate capacity and low aromaticity. Binding constants of americium and europium humates were determined at pH 4.6 and 6.0 by solvent extraction using 241 Am or 152 Eu as a tracer. The binding constants for americium-humate obtained preliminarily suggest that complexes with humic acid are not negligible in speciation of trivalent actinides in hydrosphere. The obtained binding constants were nearly identical with those determined previously by the same procedures, but with humic acids of different origin and compositions. (author)

  16. Vanadocene reactions with hydroxy acids

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Ehllert, O.G.; Arsen'eva, T.I.

    1984-01-01

    To prepare a series of vanadium cyclopentadienylcarboxylates soluble in water, the vanadocene reactions with lactic, γ-oxybutyric-, salicylic,- gallic-, orotic-, and acetylsalicylic acids have been studied. To determine the influence of cyclopentadienyl groups, bound with a vanadium atom, on the physiological activity of the complexes formed, vanadium halides are made to react with lactic acid. Only the vanadocene reaction with orotic acid was conducted in an aqueous medium, other interactions were realized in the diethyl ether, toluene, T, H, P medium. The interaction of vanadocene and vanadium halides with lactic-, salicylic-, acetylsalicylic- and gallic acids was found to lead to the formation of water-soluble vanadium complexes of Cp 2 , VOCOR or CpV (OCOR) 2 type. The data on the produced compounds yield, their IR spectra, decomposition temperatures, solubility, effective magnetic moments are presented

  17. Formation of methane versus benzene in the reactions of (C{sub 5}Me{sub 5}){sub 2}Th(CH{sub 3}){sub 2} with [CH{sub 3}PPh{sub 3}]X (X=Cl, Br, I) yielding thorium-carbene or thorium-ylide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rungthanaphatsophon, Pokpong; Behrle, Andrew C.; Barnes, Charles L.; Walensky, Justin R. [Department of Chemistry, University of Missouri, Columbia, MO (United States); Bathelier, Adrien; Castro, Ludovic; Maron, Laurent [Toulouse Univ. and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO (France)

    2017-10-09

    The reaction of (C{sub 5}Me{sub 5}){sub 2}Th(CH{sub 3}){sub 2} with the phosphonium salts [CH{sub 3}PPh{sub 3}]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C{sub 5}Me{sub 5}){sub 2}Th[CHPPh{sub 3}]X, rare terminal phosphorano-stabilized carbenes with thorium. These complexes feature the shortest thorium-carbon bonds (∼2.30 Aa) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C{sub 5}Me{sub 5}){sub 2}Th[κ{sup 2}-(C,C{sup '})-(CH{sub 2})(CH{sub 2})PPh{sub 2}]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH{sub 3}PPh{sub 3}]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Complex formation between uranyl and various thiosemicarbazide derivatives

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H 2 L), salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q), S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide(H 2 Z), and thiosemicarbazidodiacetic acid (H 2 R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO 2 A have been calculated. Solid uranyl derivatives having the composition UO 2 L x 2H 2 O, UO 2 Q x 2H 2 O, UO 2 Z x 2H 2 O, and UO 2 R x 2H 2 O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated

  19. Multi-Level Formation of Complex Software Systems

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-05-01

    Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.

  20. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes...

  1. Study of Reaction of Curium Oxy-Compound Formation in Molten Chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, A.G.; Mayorshin, A.A.; Bychkov, A.V. [Dimitrovgrad-10, Ulyanovsk region, 433510 (Russian Federation)

    2008-07-01

    The method of potentiometric titration using oxygen sensors with solid electrolyte membrane was applied for the study of the interaction of curium cations with oxygen anions in the molten alkali metal chlorides in the temperature range of 450-850 C degrees depending on oxy-acidity of the environment. Assumptions were made concerning ion and phase composition of the obtained high-temperature compounds and chemical reactions taking place in the melts. This scheme assumes that as the basicity of the melt increases, initially the formation of soluble curium oxychlorides takes place in the melt (presumably CmO{sup -}) that is followed by formation of solid CmOCl and finally sesquioxide Cm{sub 2}O{sub 3}. Basic thermodynamic values were calculated for the resultant curium oxy-compounds.

  2. UKE, Format Conversion from UKNDL to ENDF/B

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: UKE reads a card image tape of data in the UK format and translates neutron cross sections, angular distributions, and secondary energy distributions to the ENDF/B card image format. 2 - Restrictions on the complexity of the problem: Maximum number of cross section data points allowed for each reaction type is 4000

  3. Electrolytic conductivity of synthetic organomineral complexes

    Directory of Open Access Journals (Sweden)

    Ksiezopolska Alicja

    2005-01-01

    Full Text Available The mechanism of the formation of organomineral complexes in soils is very complex and still little known. Examination of the complexes in unaltered form, as isolated from the soil, is very difficult due to the dispersing effect of all extraction agents which break the complexes up, destroying their natural properties. It is much easier to perform most of the tests on preparations of organomineral complexes obtained under laboratory conditions. This paper is concerned with model research on the formation of synthetic complexes of humic acids with minerals: Na-montmorillonite, mica, kaolinite at various pH values (3-7 and in the presence of aluminum ions. The aim of the research was to develop an optimum reaction of suspension for the synthesis of organomineral complexes, to study the role of aluminum ions, and to attempt to determine the degree of their complexity on the basis of the electrolytic conductivity (EC. An important influence of the suspension pH value on the value of EC was observed. The greatest correlation was found in the organomineral preparations with kaolinite and with aluminum (r = 0.93***. Generally, it can be stated that the degree of reaction of humic acids with minerals depended most of all on the type of mineral, on the pH value, and on the presence of aluminum.

  4. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates.

    Science.gov (United States)

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred

    2018-04-10

    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  5. Application of adjustable pulse lasers to studying rapid reaction kinetics of excited lanthanide complexing

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, V.P. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1983-12-01

    Using some europium (3) ion complexes new possibilities to be opened by application of adjustable pulse lasers for studying rapid reactions of electron-excited metal ion complexing are demonstrated. The 6Zh rhodamine pulse laser is used as a source of nonequilibrium photoexcitation of an array of Eu/sup 3 +/ complexes in the luminescent kinetic spectroscopy method. The following results are obtained: for the first time the rate of reaction of acetate ion substitution for water molecules of an excited (/sup 5/D/sub 0/) ion of Eu/sup 3 +/ was measured to be (0.7+-0.2)x10/sup 7/ s/sup -1/; using direct experiments the lower limit for the rate of transition of one isomeric form of the excited Eu x EDTA complex into another one in an aqueous solution is determined to be 5x10/sup 5/ s/sup -1/ at 295 K; the kinetics of the excitation energy migration beteen aqueous solvates of Eu/sup 3 +/ and EuxEDTA complexes is investigated.

  6. EXFOR basics. A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, Victoria

    2000-01-01

    EXFOR is the agreed exchange format for the transmission of experimental nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. This report is intended as a guide to data users. For a complete guide to the EXFOR system see: EXFOR Systems Manual, IAEA-NDS-207 (BNL-NCS-63330-00/04-Rev.) (author)

  7. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  8. The olefin metathesis reaction: reorganization and cyclization of organic compounds

    International Nuclear Information System (INIS)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John

    2005-01-01

    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  9. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  10. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.

    2005-01-01

    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  11. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  12. Electrochemical reactions of uranyl(VI) complexes in aqueous solution, non-aqueous solvents, and ionic liquids

    International Nuclear Information System (INIS)

    Ikeda, Yasuhisa

    2006-01-01

    Author's recent experimental results on the chemistry of U(V) in aqueous solution, non-aqueous solvents, and ionic solvents by cyclic voltametry are described. The U(V) was produced by electrochemical reduction of uranyl U(VI) ions or complexes such as carbonates, DMF(N, N-dimethylformamide), DMSO(dimethylsulfoxide), acetylacetonato, and other organic polydental ligands. The produced U(V) complexes were studied by spectrophotometry using optical-transmission thin-layer electrode. The U(V) complexes in non-aqueous solvents were found to be rather stable, they undergo ligand-dissociation reaction but not disproportionation reaction. The structure and electronic spectra as well as IR spectra of the complexes were studied. The present method was further developed to study the behavior of U(V) complexes in ionic liquids as molten salts, e.g., alkaline metals chlorides. Thus, the present research contributes to understanding the chemistry of 5fl system. Application to such nuclear technology as spent fuel reprocessing is discussed. (S. Ohno)

  13. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  14. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  15. Formation, separation and detection of evaporation residues produced in complete fusion reactions

    CERN Document Server

    Sagaidak, R N

    2015-01-01

    Some aspects of formation, separation and detection of evaporation residues (ERs) produced in complete fusion reactions induced by accelerated heavy ions are considered. These reactions allow to obtain heavy neutron-deficient nuclei and to study their properties. The statistical model analysis of the production cross sections for these nuclei obtained in a wide range of their neutron numbers allows to trace the changes in their macroscopic properties such as fission barriers. The fusion probability of massive projectile and target nuclei is of interest. Empirical estimates of this value allow to verify the predictions of theoretical models for the optimal ways of synthesis of unknown nuclei. Some peculiarities in the separation and detection of ERs in experiments are briefly considered by the example of the Ra ERs produced in the 12 C+Pb reactions. The reliable cross sections for ERs produced in very asymmetric projectile-target combination, such as 12 C+Pb, are important for the em...

  16. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  17. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  18. DFT study of benzyl alcohol/TiO2 interfacial surface complex: reaction pathway and mechanism of visible light absorption.

    Science.gov (United States)

    Zhao, Lei; Gu, Feng Long; Kim, Minjae; Miao, Maosheng; Zhang, Rui-Qin

    2017-09-24

    We propose a new pathway for the adsorption of benzyl alcohol on the surface of TiO 2 and the formation of interfacial surface complex (ISC). The reaction free energies and reaction kinetics were thoroughly investigated by density functional calculations. The TiO 2 surfaces were modeled by clusters consisting of 4 Ti atoms and 18 O atoms passivated by H, OH group and H 2 O molecules. Compared with solid-state calculations utilizing the periodicity of the materials, such cluster modeling allows inclusion of the high-order correlation effects that seem to be essential for the adsorption of organic molecules onto solid surfaces. The effects of both acidity and solvation are included in our calculations, which demonstrate that the new pathway is competitive with a previous pathway. The electronic structure calculations based on the relaxed ISC structures reveal that the chemisorption of benzyl alcohol on the TiO 2 surface greatly alters the nature of the frontier molecular orbitals. The resulted reduced energy gap in ISC matches the energy of visible light, showing how the adsorption of benzyl alcohol sensitizes the TiO 2 surface. Graphical Abstract The chemisorption of benzyl alcohol on TiO 2 surface greatly alters the nature of the frontier molecular orbitals and the formed interfacial surface complex can be sensitized by visible light.

  19. Discovery of Amadori-Type Conjugates in a Peptide Maillard Reaction and Their Corresponding Influence on the Formation of Pyrazines.

    Science.gov (United States)

    Zou, Tingting; Liu, Jianbin; Song, Huanlu; Liu, Ye

    2018-05-10

    Knowledge of the role of peptides in the Maillard reaction is rather limited. In this study, peptide Maillard reaction model systems were established. Volatile and nonvolatile MRPs (Maillard reaction products) were investigated by GC-O-MS and LC-MS. Carbohydrate module labeling (CAMOLA) experiments were performed to elucidate the carbon skeleton of these compounds. Results showed that the peptide reaction system generated more pyrazines than the free amino acid group. Several new Amadori-type conjugates were identified as novel Maillard reaction products that could greatly influence the formation of pyrazines. Our work suggested anew mechanism involving these Amadori-type conjugates and subsequent investigation revealed that the conjugates could be important intermediate products in the reaction between dicarbonyl and dipeptide. Our findings demonstrate anew pyrazine generation mechanism in the dipeptide Maillard reaction. We found that a dipeptide Maillard reaction system generated more pyrazines than a reaction system composed of free amino acids. New cross-linked peptide-sugar compounds were identified and found to impact the formation of pyrazines. The results of this study may help in the preparation of thermal reaction flavors using enzymatically hydrolyzed vegetable/animal proteins, which contain a considerable amount of peptides, as one of the major reactants. © 2018 Institute of Food Technologists®.

  20. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  1. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    Science.gov (United States)

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  2. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  3. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  4. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya; Raj, Abhijeet; Chung, Suk-Ho

    2015-01-01

    and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics

  5. Some studies on the reaction between nitrous acid and plutonium(IV)

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Bagawde, S.V.; Ramakrishna, V.V.; Patil, S.K.

    1976-01-01

    In the ion exchange and solvent extraction studies nitrous acid is used as an oxidant for Pu(IV) in perchloric acid. Earlier studies had indicated that Pu(IV) forms complex with nitrous acid. The present investigation aimed to study this complex formation by solvent extraction and spectrophotometric methods, revealed that is no significant complex formation between Pu(IV) and nitrous acid. The high apparent equilibrium constant for the complex formation is caused by the partial reduction of Pu(IV) to Pu(III) by nitrous acid. The nitrate complexing is negligible in the case of Th(IV) and Np(IV) as well. Systematic investigation on the redox reactions of plutonium in different oxidation states with nitrous acid is now in progress. The preliminary results obtained indicate that Pu(IV) is reduced to Pu(III) by nitrous acid with a rate that can be conveniently followed spectrophotometrically. (T.I.)

  6. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.

    Science.gov (United States)

    Watts, Heath D; Mohamed, Mohamed Naseer Ali; Kubicki, James D

    2011-12-21

    Five potential reaction mechanisms, each leading to the formation of an α-O-4-linked coniferyl alcohol dimer, and one scheme leading to the formation of a recently proposed free-radical coniferyl alcohol trimer were assessed using density functional theory (DFT) calculations. These potential reaction mechanisms were evaluated using both the calculated Gibbs free energies, to predict the spontaneity of the constituent reactions, and the electron-density mapped Fukui function, to determine the most reactive sites of each intermediate species. The results indicate that each reaction in one of the six mechanisms is thermodynamically favorable to those in the other mechanisms; what is more, the Fukui function for each free radical intermediate corroborates with the thermochemical results for this mechanism. This mechanism proceeds via the formation of two distinct free-radical intermediates, which then react to produce the four α-O-4 stereoisomers.

  7. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  8. Control of cell fate by the formation of an architecturally complex bacterial community.

    Science.gov (United States)

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-04-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

  9. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  10. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    Science.gov (United States)

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  11. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  12. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  13. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Karayildirim, T. [Department of Chemistry, Science Faculty, Ege University, Bornova-Izmir (Turkey); Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, Besevler-Ankara (Turkey); Kruse, A. [Institut fuer Technische Chemie CPV, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)

    2008-11-15

    The hydrothermal biomass gasification is a promising technology to produce hydrogen and/or methane from wet biomass with a water content of {>=}80 % (g/g). In the process, the coke formation usually is very low, but already low amounts may cause problems like, e.g., fouling in the heat exchanger. To learn more about the product formation, the results of the hydrothermal treatment (at 400,500,600 C and 1 h) of different biomass feedstocks (artichoke stalk, pinecone, sawdust, and cellulose as model biomass) in a microreactor are compared. The gas composition and the total organic carbon content of the aqueous phase were determined after reaction. The gas formation rises with increasing temperature. The formation of carbon deposits and their characterization has been investigated by scanning electron microscopy (SEM). The variation of the solid morphology during the hydrothermal conversion is discussed based on chemical pathways occurring during hydrothermal biomass degradation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    Science.gov (United States)

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  15. Synthesis and structure determination of a stable organometallic uranium(V) imine complex and its isolobal anionic U(IV)-ate complex

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.; Botoshanskii, M.; Eisen, M.S. [Schulich Faculty of Chemistry, and Institute of Catalysis Science and Technology, Technion Israel Institute of Technology, Haifa (Israel); Bannenberg, Th.; Tamm, M. [Institut fur Anorganische und Analytische Chemie, Technische Universitat Braunschweig (Germany)

    2010-06-15

    The reaction of one equivalent of Cp*{sub 2}UCl{sub 2} with 2-(trimethylsilyl-imino)-1,3-di-tert-butyl-imidazoline in boiling toluene afforded a one electron oxidation of the uranium metal and the opening of the N-heterocyclic ring, resulting in the formation of an organometallic uranium(V) imine complex. This complex crystallized with one molecule of toluene in the unit cell, and its solid-state structure was determined by X-ray diffraction analysis. When the same reaction was performed in perdeuterated toluene, a myriad of organometallic complexes were obtained, however, when equimolar amounts of water were used in toluene, the same complex was obtained, and its solid state characterization shows two independent molecules in the unit cell with an additional water molecule. For comparison of the geometric parameters, the corresponding isolobal anionic uranium(IV) complex [Cp*{sub 2}UCl{sub 3}]{sup -} was synthesized by the reaction of Cp*{sub 2}UCl{sub 2} with 1,3-di-tert-butyl-imidazolium chloride, and the resulting U(IV)-ate complex was characterized by X-ray diffraction analysis. (authors)

  16. Reactions of stabilized Criegee Intermediates

    Science.gov (United States)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  17. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: Importance of the protein rearrangement for the intracomplex electron-transfer reaction

    International Nuclear Information System (INIS)

    Peerey, L.M.; Kostic, N.M.

    1989-01-01

    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide in the same general orientation in which they associate electrostatically. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. For isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN) 6 ] 3- and somewhat promotes oxidation of this protein by [Fe(C 5 H 5 ) 2 ] + . These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of ≥5 x 10 6 and 1 x 10 5 M -1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 x 10 3 s -1 , regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex

  18. Post-prior equivalence for transfer reactions with complex potentials

    Science.gov (United States)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  19. (γ,2n) reactions in complexe nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1976-01-01

    The Monte Carlo Method has been used in the intranuclear cascade model for the calculation of the cross sections of the (γ,2n) reactions in complex nuclei 9 Be, 12 C, 16 O, 59 Co, 103 Rh, 127 I, 197 Au and 209 Bi at intermediate energies (200MeV-1000MeV). The initial photon-interaction via the photomesonic and quasi-deuteron mechanisms have been taken into account. The nuclear model used was a degenerate Fermi gas of nucleons, and the Pauli exclusion principle was considered in all secondary interactions. To improve accuracy in the results of the calculations, 30000 cascades have been followed for each target nucleus at a given incident photon energy. The probabilities of the various (γ,2n) reactions, as well as the correspondent cross section obtained, are summarized in tables and graphs. New data on the cross sections of the 59 Co (γ,2n) and 209 Bi (γ,2n) reactions at photon energies between 300 MeV and 1000MeV are also reported. These measurements were obtained with the Bremsstrahlung beams of the Frascati 1 GeV Electron Synchrotron. A comparison between all existing data in the literature on the (γ,2n) reaction cross sections and the estimates by the Monte Carlo Method, is presented. (Author) [pt

  20. DHA- RICH FISH OIL IMPROVES COMPLEX REACTION TIME IN FEMALE ELITE SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    José F. Guzmán

    2011-06-01

    Full Text Available Omega-3 fatty acids (n-3 has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12 or olive oil (OO = 12 over 4 weeks of training. Two measurements (pre- and post-treatment of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post and experimental group (FO/OO on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004 and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003. It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players

  1. Sources and characteristics of complex fragments in La-induced reactions

    International Nuclear Information System (INIS)

    Roussel-Chomaz, P.; Blumenfeld, Y.; Charity, R.; Colonna, M.; Colonna, N.; Libby, B.; Hanold, K.; Moretto, L.; Peaslee, G.; Wozniak, G.

    1991-01-01

    Complex fragment emission has been studied for a variety of reactions at intermediate energies. Multifragment events are shown to be associated with specific sources characterized by their mass and excitation energy through the incomplete fusion model. Excitation functions for the different multifragment decay channels are found to be almost independent of the system and the incident energy. Preliminary comparisons of the data with dynamical calculations followed by statistical decay calculations are discussed. 11 refs., 7 figs

  2. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  3. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    Science.gov (United States)

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Emotional reactions of different interface formats: Comparing digital and traditional board games

    Directory of Open Access Journals (Sweden)

    Yu-Min Fang

    2016-03-01

    Full Text Available Some games provide both traditional board games and digital versions at the same time in the market. Why the rise of virtual games has not forced traditional physical board games to disappear? Do traditional physical games evoke different emotional reactions and interpersonal relationships? This article explored the subjects’ preferences toward traditional and digital versions of the same game and investigated social interaction while playing games. Based on Norman’s three emotional design levels—visceral, behavioral, and reflective levels—this study examined players’ satisfaction degree. This study also applied Positive and Negative Affect Schedule to measure subjects’ emotional reactions. Monopoly and Jenga games were selected as stimuli. A total of 77 subjects received tests of three different interface formats (physical, desktop, and tablet and then filled out the questionnaire. The findings successfully evidenced the significant differences between digital and traditional board games. The statistical results indicated that satisfaction degrees of digital games declined in visceral, behavioral, and reflective levels. Traditional games not only evoked users’ stronger emotional reactions but also received higher preferences. Traditional games could improve interpersonal relationships as well.

  5. The synthesis of complex molecules in interstellar clouds

    Science.gov (United States)

    Huntress, W. T., Jr.; Mitchell, G. F.

    1979-01-01

    The abundances of polyatomic molecules that may be formed by CH3(+) radiative association reactions in dense interstellar molecular clouds are reevaluated. The formation of a number of complex interstellar molecules via radiative association reactions involving ionic precursors other than CH3(+) is also investigated; these additional precursors include CH3O(+), CH3CO(+), CH5(+), HCO(+), NO(+), H2CN(+), C2H2(+), and NH3(+). The results indicate that the postulated gas-phase ion-molecule radiative association reactions could potentially explain the synthesis of most of the more complex species observed in dense molecular clouds such as Sgr B2. It is concluded, however, that in order to be conclusive, laboratory data are needed to show whether or not these reactions proceed at the required rates at low temperatures.

  6. The influence of atomic number on the complex formation constants by visible spectrophotometric method

    International Nuclear Information System (INIS)

    Samin; Kris-Tri-Basuki; Farida-Ernawati

    1996-01-01

    The influence of atomic number on the complex formation constants and it's application by visible spectrophotometric method has been carried out. The complex compound have been made of Y, Nd, Sm and Gd with alizarin red sulfonic in the mole fraction range of 0.20 - 0.53 and pH range of 3.5 - 5. The optimum condition of complex formation was found in the mole fraction range of 0.30 - 0.53, range of pH 3.75 - 5, and the total concentration was 0.00030 M. It was found that the formation constant (β) of alizarin red S. complex by continued variation and matrix disintegration techniques were β : (7.00 ± 0.64).10 9 of complex 3 9γ,β : (4.09±0.34).10 8 of 6 0Nd, β : (7.26 ± 0.42).10 8 of 62 S m and β : (8.38 ± 0.70).10 8 of 64 G d. It can be concluded that the atomic number of Nd is bigger than Sm which is bigger than Gd. The atomic number of Y is the smallest. (39) and the complex formation constant is a biggest. The complex compound can be used for sample analysis with limit detection of Y : 2.2 .10 -5 M, Nd : 2.9 .10 -5 M, Sm : 2.6 .10 -5 M and Gd : 2.4 .10 -5 M. The sensitivity of analysis are Y>Gd>Sm>Nd. The Y 2 O 3 sample of product result from xenotime sand contains Y 2 O 3 : 98.96 ± 1.40 % and in the filtrate (product of monazite sand) contains Nd : 0.27 ± 0.002 M

  7. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C4H5, from reaction of C(3Pj) with propylene, C3H6 (X1A)

    International Nuclear Information System (INIS)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G.

    1997-01-01

    The reaction between ground state carbon atoms and propylene, C 3 H 6 , was studied at average collision energies of 23.3 and 45.0 kJmol -1 using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C 4 H 5 at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest 3 A surface via an initial addition of the carbon atom to the π-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3 endash 0.6 ps, 1,2-butadiene decomposes through carbon endash hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C 4 H 5 under single collision conditions represents a further example of a carbon endash hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. copyright 1997 American Institute of Physics

  8. Interference-mediated synaptonemal complex formation with embedded crossover designation

    Science.gov (United States)

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  9. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  10. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph)2C(Ph)2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono

  11. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  12. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    OpenAIRE

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+.

  13. Formation of Broensted acids sites in the reaction of cyclohexanol on NaCeY zeolites

    International Nuclear Information System (INIS)

    Vogt, O.; Nattich, M.; Datka, J.; Gil, B.

    2002-01-01

    This study was undertaken to elucidate why the catalytic activity of NaCeY in cyclohexanol reactions carried out in a pulse reactor increases with the pulse number. We studied therefore the effect of cyclohexanol and also of ethanol and water on catalytic activity NaCeY (of exchange degrees 36 and 72%) in cyclohexanol reactions: isomerization and disproportionation. We also studied the reaction of cyclohexanol and water with NaCeY zeolite by IR spectroscopy. Our results evidenced that new Broensted acid sites were formed by the reaction of cyclohexanol and water. This was shown by IR spectroscopy: the increase of Si-O 1 H-Al band 3638 cm -1 and in increase of ammonium ions band (upon ammonia adsorption). The new sites were formed by hydrolysis of Ce 3+ ions with water introduced in a pulse, or produced by dehydration of cyclohexanol catalyzed by acid sites. Formation of new Broensted acid sites resulted in an increase of catalytic activity of NaCeY in cyclohexane reaction as observed in this study and also in cyclohexanol reactions. (author)

  14. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  15. Study of complex formation between C18H36N2O6 and UO22+ cation in some binary mixed non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    G.H. Rounaghi

    2017-02-01

    Full Text Available The complexation reaction between UO22+ cation and the macrobicyclic ligand C18H36N2O6 was studied in acetonitrile–dimethylformamide (AN–DMF, acetonitrile–tetrahydrofuran (AN–THF, acetonitrile–dichloromethane (AN–DCM binary solvent solutions at different temperatures using the coductometric method. In most cases, C18H36N2O6 forms a 1:1 [M:L] complex with the UO22+ cation. But in some of the studied solvent systems, in addition to formation of a 1:1 complex, a 1:2 [M:L2] complex is formed in solution. A non-linear behavior was observed for changes of logKf of the (C18H36N2O6·UO22+ complex versus the composition of the binary mixed solvents. The sequence of the stability of the (C18H36N2O6·UO22+ complex in pure solvent systems at 25 °C decreases in the order: AN > THF > DMF. In the case of binary solvent solutions, the stability constant of the complex at 25 °C was found to be: AN–DCM > AN–THF > AN–DMF. The values of thermodynamic quantities (ΔSc°,ΔHc°, for the formation of the complex were obtained from temperature dependence of the stability constant of the complex using the van't Hoff plots. The results show that in all cases, the complex is both entropy and enthalpy stabilized and both of these parameters are affected by the nature and composition of the mixed solvent systems.

  16. Spectrophotometric study of the complexation reaction between niobium(V) and 5-sulpho-3-nitro-salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, D S; Shivahare, G C [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1975-04-01

    5-sulpho-3 nitro-salicylic acid forms a yellow complex with niobium(V) at pH 8.5 and the reaction has been successfully studied spectrophotometrically. The results of the Job's continuous variation method and the molar ratio method indicate a composition of 1:2 for the complex. Stability constant of the complex has also been determined. (auth)

  17. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  18. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    International Nuclear Information System (INIS)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-01-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

  19. Theoretical investigation of elementary reaction of complexing LiH+BeH2 → LiBeH3

    International Nuclear Information System (INIS)

    Charkin, O.P.; Boldyrev, A.I.; Sukhanov, L.P.

    1979-01-01

    In the framework of non-empiric Hartree-Fock-Roothaan method on the basis of gauss functions of Roos and Siegbahn made are calculations of different sections of potential surface elementary reaction of complexing LiH+BeH 2 → LiBeH 3 . Charts of potential surface are presented. Questions of the elementary mechanism of elementary processes of complexing and effect of mutual orientation of the reagents upon the reaction mechanism are considered. Stability of LiBeH 3 molecule to different dissociation channels and different aspects of structural non-rigidity of the L[MXsub(k+1)] complexes at super barrier excitation are discussed

  20. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  1. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    International Nuclear Information System (INIS)

    Medvedev, J J; Nikolaev, V A

    2015-01-01

    Multicomponent reactions of diazo compounds catalyzed by Rh II complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O–ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references

  2. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr. [Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (United States)

    2017-07-24

    Ceric ammonium nitrate (CAN) or Ce{sup IV}(NH{sub 4}){sub 2}(NO{sub 3}){sub 6} is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe{sup III}-O-Ce{sup IV}(OH{sub 2})(NO{sub 3}){sub 4}]{sup +} (3), a complex obtained from the reaction of [(N4Py)Fe{sup II}(NCMe)]{sup 2+} with 2 equiv CAN or [(N4Py)Fe{sup IV}=O]{sup 2+} (2) with Ce{sup III}(NO{sub 3}){sub 3} in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe{sup IV} and Ce{sup IV} centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe{sup IV} in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe{sup IV}=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Effect of Ag additions on the β phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T., E-mail: atadorno@iq.unesp.br [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Carvalho, T.M. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Silva, R.A.G. [Departamento de Ciências Exatas e da Terra, UNIFESP, 09972-270 Diadema, SP (Brazil); Santos, C.M.A.; Magdalena, A.G. [Departamento de Físico-Química, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2015-09-15

    Highlights: • The results suggest a multi-step process involving reversible reactions. • Ag solubilizes preferably at the Cu matrix. • Ag additions decrease the activation energy for the process. - Abstract: The influence of 4 and 5 wt.%Ag additions on the kinetics of β [T{sub 7}-(CuMn){sub 3}Al] phase formation reaction in the Cu–9 wt.%Al–6 wt.%Mn alloy was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that the conversion dependence of the activation energy has a descending shape, suggesting a multi-step process involving reversible reactions. The presence of Ag facilitates the formation of the β phase. The results also showed that the Ag precipitates formation includes the dissolution of Mn and Al atoms, thus decreasing the partial fraction of these elements available to react.

  4. Reactions of green and black teas with Cu(II).

    Science.gov (United States)

    Goodman, B A; Ferreira Severino, J; Pirker, K F

    2012-04-01

    Electron paramagnetic resonance (EPR) measurements of the products of reactions between Cu(II) and samples of green and black teas showed spectral components from at least six different Cu(II) complexes with both tea types. Several of these complexes were common to both teas in spite of major differences in their polyphenol compositions. The pH range observed for complex formation, and the total signal intensity in the pH range 4-8, were greatly different from those for the reactions of Cu(II) with (-)-epigallocatechin gallate and gallic acid, the main polyphenols responsible for the free radical signals observed during oxidation of these beverages. Components with spectral parameters similar to those of Cu(II) complexes with theanine, the major amino acid in tea, may contribute to two of the spectra recorded under acidic conditions. However, the initial complexes formed at the lowest pH values investigated are still unidentified. EPR spectra with parameters consistent with Cu(II) polyphenol complexes were only observed under alkaline conditions, thus suggesting that components of tea other than polyphenols might be more important in reactions with copper, and possibly other transition metals, in solutions under physiological conditions. This journal is © The Royal Society of Chemistry 2012

  5. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  6. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas

    2010-11-01

    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  7. Study on the formation of fission isomer via 232Th + α reaction

    International Nuclear Information System (INIS)

    Vianna, D.M.

    1982-01-01

    The formation of fission isomer through 232 Th+α reaction is studied using the distance-recoil method, employing policarbonate MAKROFOL detector. The total isomeric half-life measured has the value T 1/2 = 0.23 ± 0.03 ns and an ratio of formation of isomeric fission relative to prompt fission(σ i /σ p =0.75x10 -5 ). According to the energy of incident particle (Eα = 28 MeV), the cross-sections presented in the literature and the low value found for the total isomeric half-life, we attribute these half-life value to the 234 U isomer (even-even nucleus). The results were compared with those existent in the literature (La69, E170, Re70, Wo70, Po70, Br71) for this isomer. (author) [pt

  8. Indirect Voltammetric Sensing Platforms For Fluoride Detection on Boron-Doped Diamond Electrode Mediated via [FeF6]3− and [CeF6]2− Complexes Formation

    International Nuclear Information System (INIS)

    Culková, Eva; Tomčík, Peter; Švorc, Ľubomír; Cinková, Kristína; Chomisteková, Zuzana; Durdiak, Jaroslav; Rievaj, Miroslav; Bustin, Dušan

    2014-01-01

    Very simple and sensitive electroanalytical technique based on synergistic combination of reaction electrochemistry (specificity) and bare boron-doped diamond electrode (sensitivity) for the detection of fluorides in drinking water was developed as variant based on dynamic electrochemistry to ISE analysis. It is based on the formation of electroinactive fluoride complexes with Fe(III) and Ce(IV) ions decreasing such diffusion current of free metal on boron-doped diamond electrode. Due to low background signal of boron-doped diamond electrode reasonably low detection limits of the order of 10 −6 mol L −1 for linear sweep voltammetric method using formation of [FeF 6 ] 3− and 10 −7 mol L −1 in a square-wave variant of this technique have been achieved. This is approximately 1–2 orders lower than in the case of platinum comb-shaped interdigitated microelectrode array. Linear sweep voltammetric method based on [CeF 6 ] 2− complex formation has lower sensitivity and may be suitable for samples with higher content of fluoride and not to analysis of drinking water

  9. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reactions of adducts of phosphorus pentachloride and 1-alkenes with arsenic trifluoride

    International Nuclear Information System (INIS)

    Fridland, S.V.; Miftakhov, M.N.; Dmitrieva, N.V.

    1986-01-01

    As a result of NMR investigations of models of σ and π nu complexes of 1-heptene (or 1-hexene) and phosphorus pentachloride in reactions with arsenic trifluoride it was shown that the formation of the phosphorus-containing arylated product by the Friedel-Crafts scheme is possible only with the participation of the σ complex, but in the case of the π nu complex the arylation of the olefin occurs

  11. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  12. Computational Investigation of the Competition between the Concerted Diels-Alder Reaction and Formation of Diradicals in Reactions of Acrylonitrile with Non-Polar Dienes

    Science.gov (United States)

    James, Natalie C.; Um, Joann M.; Padias, Anne B.; Hall, H. K.; Houk, K. N.

    2013-01-01

    The energetics of the Diels-Alder cycloaddition reactions of several 1,3-dienes with acrylonitrile, and the energetics of formation of diradicals, were investigated with density functional theory (B3LYP and M06-2X) and compared to experimental data. For the reaction of 2,3-dimethyl-1,3-butadiene with acrylonitrile, the concerted reaction is favored over the diradical pathway by 2.5 kcal/mol using B3LYP/6-31G(d); experimentally this reaction gives both cycloadduct and copolymer. The concerted cycloaddition of cyclopentadiene with acrylonitrile is preferred computationally over the stepwise pathway by 5.9 kcal/mol; experimentally, only the Diels-Alder adduct is formed. For the reactions of (E)-1,3-pentadiene and acrylonitrile, both cycloaddition and copolymerization were observed experimentally; these trends were mimicked by the computational results, which showed only a 1.2 kcal/mol preference for the concerted pathway. For the reactions of (Z)-1,3-pentadiene and acrylonitrile, the stepwise pathway is preferred by 3.9 kcal/mol, in agreement with previous experimental findings that only polymerization occurs. M06-2X is known to give more accurate activation and reaction energetics but the energies of diradicals are too high. PMID:23758325

  13. Determination of microgramme amounts of osmium and ruthenium based on inhibition of the iodine-azide reaction by their complexes with 6-mercaptopurine

    International Nuclear Information System (INIS)

    Matusiewicz, H.; Kurzawa, Z.

    1976-01-01

    A new kinetic method of the determination of microamounts of osmium and ruthenium has been developed. The reaction between sodum azide and iodine induced by 6-mercaptopurine (6-MP) was used for this purpose. Under suitable experimental conditions the induction coefficient of 6-MP amounts to 1750+-40. The formed complexes of the metals are stable in the medium containing an excess of azide ions and do not induce the iodine-azide reaction. The method consists in the determination of the 6-MP not bound to the metal. The amount of osmium or ruthenium is then determined from linear relations. Before the determination osmium and ruthenium must be separated from other cations and from each other by distillation as volatile tetroxides. The iodine-azide method is simple, sensitive and does not require any apparatus. The range of the determination is 0.1-5.0 μg in 5 cm 3 of the solution of Os(8) and 0.5-5.0 μg for Ru(8). The error of the determination is +-6.4% and +- 6.1% for osmium and ruthenium, respectively. The time of the determination is 30 minutes not taking into account 2-hour waiting time necessary for the formation of the complexes. (author)

  14. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Spectrophotometric studies on complex formation of 5-nitro-3-sulpho-salicylic acid with niobium(V)

    International Nuclear Information System (INIS)

    Parmar, D.S.; Shivahare, G.C.

    1975-01-01

    5-nitro-3-sulpho-salicylic acid forms a yellow complex witn niobium(V) at pH 9.9 and the reaction has been successfully studied spectrophotometrically. The results of the Job's continuous variation method and the mole ratio method indicate a composition of 1:2 for the complex. Stability constant of the complex has also been determined. (author)

  16. Spectrophotometric studies on complex formation of 5-nitro-3-sulpho-salicylic acid with niobium(V)

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, D S; Shivahare, G C [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1975-11-01

    5-nitro-3-sulpho-salicylic acid forms a yellow complex witn niobium(V) at pH 9.9 and the reaction has been successfully studied spectrophotometrically. The results of the Job's continuous variation method and the mole ratio method indicate a composition of 1:2 for the complex. Stability constant of the complex has also been determined.

  17. OH+ Formation in the Low-temperature O+(4S) + H2 Reaction

    Science.gov (United States)

    Kovalenko, Artem; Dung Tran, Thuy; Rednyk, Serhiy; Roučka, Štěpán; Dohnal, Petr; Plašil, Radek; Gerlich, Dieter; Glosík, Juraj

    2018-04-01

    Formation of OH+ in collisions of ground-state O+(4S) ions with normal H2 has been studied using a variable temperature 22-pole RF ion trap. From 300 to 30 K the measured reaction rate coefficient is temperature-independent, with a small decrease toward 15 K. The recent wave packet calculation predicts a slightly steeper temperature dependence. The rate coefficients at 300 and 15 K are almost the same, (1.4 ± 0.3) × 10‑9 cm3 s‑1 and (1.3 ± 0.3) × 10‑9 cm3 s‑1, respectively. The influence of traces of the two metastable ions, O+(2D) and O+(2P), has been examined by monitoring the H+ products of their reactions with H2, as well as by chemically probing them with N2 reactant gas.

  18. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  19. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    Science.gov (United States)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  20. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    International Nuclear Information System (INIS)

    Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L.

    2003-01-01

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  1. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.

    Science.gov (United States)

    Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun

    2018-01-10

    This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.

  2. Gamma radiolysis of Cu(II) complex of metronidazole

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1990-01-01

    Aqueous solutions of Cu(II)Metronidazole (Cu(II)M) at neutral pH were irradiated with 60 Co γ-rays under different conditions of radiolysis. The radiolytic formation of HNO 2 and Cu(I) was followed. The radiolytic yields of chromophore loss of Cu(II)M were also determined under different conditions. The OH radicals attack the metal complex to give the OH adducts of the ligand at C 2 , C 4 , and C 5 either directly or through the formation of Cu(III) species. The C 5 -OH adduct, however, undergoes oxidative denitration and as a result the metal complex is decomposed. The OH adducts also undergo electron transfer to Cu(II) ion to give reduced complex. No denitration was observed due to the reaction of e eq - with the metal complex. On the other hand, the nitro group of the ligand in the complex undergoes successive 4-electron reduction to give hydroxylamino derivative. From the competition kinetics using t-butyl alcohol as the scavenger of OH in N 2 O saturated solution of the metal complex, the rate constant for the reaction of OH with complex was evaluated to be ca. 2.1x10 9 dm 3 mol -1 s -1 which is of the same order as that observed in the case of free metronidazole. (author)

  3. On effect of surfactants on formation of metal trihydroxyfluoronates

    International Nuclear Information System (INIS)

    Antonovich, V.P.; Novoselova, M.M.; Nazarenko, V.A.

    1984-01-01

    Literary data on the practical application and properties of metal complexes with different trihydroxyfluorone derivatives being formed in the presence of surfactants, on the effect of detergents on acidic-Uasic cOaracteristics of reagents, on the mechanism of formation of coloured metal complexes with 2,3,7- and 3,4,5-trihydroxyfluorons, are systematized. Characteristics (formation conditions, properties) of complexes of Mo(6), Zr(4), Nb(5), W(6), V(4), Te(4), U(6), rare earths, Ta(5), Se(3), Hf(4), In(3) and other metals, are considered. Special attention is paid to the analysis of different approaches to the mechanism of surfactant effect on metal reaction with chromophore organic analytic reagents

  4. Formation of simple nitrogen hydrides NH and NH2 at cryogenic temperatures through N + NH3→ NH + NH2 reaction: dark cloud chemistry of nitrogen.

    Science.gov (United States)

    Nourry, Sendres; Krim, Lahouari

    2016-07-21

    Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.

  5. MOLECULAR COMPLEXES OF SULPHUR DIOXIDE WITH N,O-CONTAINING ORGANIC BASES (REVIEW

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2016-10-01

    Full Text Available The literature data on the synthesis, stoichiometry, structure and relative stability of molecular  complexes of sulphur dioxide with N,O-containing organic bases have been systematized and  generalized. It was shown that the yield of the reaction product of sulfur dioxide with organic  bases (such as amines are strongly influenced by the conditions of synthesis: the nature of  the solvent (basicity, polarity, the temperature and SO2:L ratio in the reaction medium. The stoichiometry of SO2*nL molecular complexes depends on ligand denticity, as well as its  ability to H-bonding. The reaction of the sulfur oxide (IV with organic bases can give S←N and S←O complexes. With the increase of the value of base proton affinity the decrease ΔrSN values has been marked. Characteristic parameter Δr SN = r SN – a1(rS+ rN (where rSNis the S←N donor-acceptor bond length has been determined by microwave spectroscopy and X-ray analysis, rSand rNwere the tabulated values of the homopolar covalent radii of sulphur and nitrogen heteroatoms. The dependence of formation enthalpy of molecular complexes of basic amines and spectral characteristics has been noted; enthalpy-entropy compensation for S←N and S←O complex-es has been stated. Despite the limited experimental data on the thermodynamics of complex formation and the lengths of donor-acceptor bonds for the same compounds it has been found bond S←N strength in SO2 molecular complexes to depend on the intrinsic value of ΔrSN. The contribution of van der Waals forces and charge transfer forces to the formation of molecular complexes of sulphur dioxide has been stated.

  6. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  7. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  8. The History and Rate of Star Formation within the G305 Complex

    Science.gov (United States)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour

  9. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  10. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  11. Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.

    Science.gov (United States)

    Chen, Qianjin; Luo, Long

    2018-04-17

    We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.

  12. Novel heterometallic metal–azido complex synthesized by “one-step” reaction: synthetic strategy and magnetic properties

    International Nuclear Information System (INIS)

    Jiao, Yong-Kun; Li, Xiu-Ping; Zhao, Cui; Wang, Hai-Chao; Xue, Min; Zhao, Jiong-Peng; Liu, Fu-Chen

    2013-01-01

    A novel heterometallic complex, [Ni 2 Mn(N 3 ) 2 (nic) 4 ·(H 2 O) 2 ] n (1) (nic=nicotinate), was obtained by assembling MnCl 2 ·4H 2 O, Ni(NO 3 ) 2 ·6H 2 O, NaN 3 and nicotinic acid with a “one step” synthetic strategy—hydrothermal reaction. The 3D structure of the complex can be described as end-on (EO) azido and syn,syn carboxylates mixed bridged by alternate Ni–Mn–Ni trimers linked by the nicotinate. Dominant ferromagnetic interactions were observed between the Ni II and Mn II ions in the trimer. - Graphical abstract: A novel heterometallic 3D complex [Ni 2 Mn(N 3 ) 2 (nic) 4 ·(H 2 O) 2 ] n (1) (nic=nicotinate) was synthesized by hydrothermal reaction. This complex exhibits interesting structural and magnetic properties. - Highlights: • It is difficult to construct simple coordination complexes with azide as “ligands” to obtain heterometallic metal–azido compounds. • A “one-step” method—hydrothermal reaction— was introduced to avoid the disadvantages of azide mentioned above. • The magnetic property is different with the isostructural homometal–azido complex due to the changed metal center

  13. Conductance Studies on Complex Formation between c-Methylcalix[4]resorcinarene and Titanium (III in Acetonitrile-H2O Binary Solutions

    Directory of Open Access Journals (Sweden)

    Naghmeh Saadati

    2013-09-01

    Full Text Available Calixresorcinarenes have proved to be unique molecules for molecular recognition via hydrogen bonding, hydrophobic and ionic interactions with suitable substrates such as cations. The study of the interactions involved in the complexation of different cations with calixresorcinarenes in solvent mixtures is important for a better understanding of the mechanism of biological transport, molecular recognition, and other analytical applications. This article summarizes different aspects of the complexes of the Ti3+ metal cation with c-methylcalix[4]resorcinarene (CMCR as studied by conductometry in acetonitrile (AN–water (H2O binary mixtures at different temperatures. Conductance data show that the metal cation/ligand (ML stoichiometry of the complexes in solution is 1:1 in all cases. Non-linear behaviour was observed for the variation of logKf of the complexes vs. the composition of the binary solvent mixtures. Selectivity of CMCR for the Ti3+ cation is sensitive to solvent composition; in some cases and at certain compositions of the mixed solvent systems, the selectivity order is changed. Values of thermodynamic parameters (, for formation of the CMCR–Ti3+ complexes in AN–H2O binary systems were obtained from the temperature dependence of stability constants, and the results show that the thermodynamics of complexation reactions are affected by the nature and composition of the mixed solvents.

  14. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    -complex formation occurs downstream from trans-SNARE pairing, and depends on both the Rab-GTPase Ypt7 and calmodulin. The maintenance of existing complexes and completion of fusion are independent of trans-SNARE pairs. Reconstituted proteolipids form sealed channels, which can expand to form aqueous pores in a Ca2...

  15. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, P.T.

    1991-11-01

    The divalent lanthanide complex, (Me{sub 5}C{sub 5}){sub 2}Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me{sub 5}C{sub 5}){sub 2}YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}, displays similar chemistry to (Me{sub 5}C{sub 5}){sub 2}YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}. Copper and silver halide salts react with (Me{sub 5}C{sub 5}){sub 2}V to produce the trivalent halide derivatives, (Me{sub 5}C{sub 5}){sub 2}VX (X + F, Cl, Br, I). The chloride complex, (Me{sub 5}C{sub 5}){sub 2}VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me{sub 5}C{sub 5}){sub 2}V producing the vanadium-oxo complex, (Me{sub 5}Ce{sub 5}){sub 2}VO. The trivalent titanium species, (Me{sub 5}C{sub 5}){sub 2}TiX (X = Cl, Br, Me, BH{sub 4}), form bimetallic coordination complexes with (Me{sub 5}C{sub 5}){sub 2}Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  16. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  17. Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the in Situ Formation of Stabilized Ylides

    Science.gov (United States)

    Kelly, Michael J. B.; Fallot, Lucas B.; Gustafson, Jeffrey L.; Bergdahl, B. Mikael

    2016-01-01

    The synthesis of alkenes using the Wittig reaction is a traditional part of many undergraduate organic chemistry teaching laboratory curricula. The aqueous medium version of the Wittig reaction presented is a reliable adaptation of this alkene formation reaction as a very safe alternative in the introductory organic chemistry laboratory. The…

  18. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2008-01-01

    The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit...... hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote...... NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction...

  19. N-BUTYL SUBSTITUTED N-HETEROCYCLIC CARBENE-PD(II-PYRIDINE (PEPPSI COMPLEXES: SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY IN THE SUZUKI-MIYAURA REACTION

    Directory of Open Access Journals (Sweden)

    Rukiye Fırıncı

    2016-08-01

    Full Text Available A series of N-butyl substituted imidazolium salts, (1a-c and their pyridine enhanced precatalyst preparation stabilization and initiation (PEPPSI themed palladium N-heterocyclic carbene complexes (2a-c were synthesized and characterized. Pd-NHC complexes were fully determined by elemental analysis and spectroscopic. The synthesized complexes were tested in Suzuki-Miyaura cross-coupling reaction. These complexes were found to be efficient catalysts for the Suzuki-Miyaura reaction of phenylboronic acid with aryl bromides.

  20. Thermodynamic study on salt effects on complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Chibunova, E.S.; Kumeev, R.S.; Terekhova, I.V.

    2015-01-01

    Highlights: • Thermodynamic study on salt effects in CD/pABA complex formation was performed. • Effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant and nonspecific. • Specific influence of KBr is caused by the ability of Br − to penetrate into CD cavity. • Coexistence of two complexation equilibria is accompanied by solvent reorganization. - Abstract: The aim of this work was to gain a deeper understanding of salt effects in the inclusion complex formation of cyclodextrins. For this purpose, thermodynamic study of complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid was carried out in water and solutions of KCl, KBr, KH 2 PO 4 and K 2 SO 4 (0.2 mol/kg). Stability constants were calculated from the binding isotherms obtained on the basis of 1 H NMR measurements. Enthalpy and entropy of complex formation were estimated from the van’t Hoff plots. It was found that effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant, while the influence of KBr on complex formation of cyclodextrins with p-aminobenzoic acid is more pronounced and results in a decrease of the stability constants. Specific action of Br − is caused by the ability of these anions to penetrate into macrocyclic cavity. Coexistence of two complexation equilibria in KBr solution is accompanied by significant solvent reorganization originated from more intensive dehydration of the interacting species. This results in an increase of the enthalpy and entropy of complex formation. Manifestation of Br − effect was found to be the same in the binding of p-aminobenzoic acid with α-, β- and γ-cyclodextrins.

  1. A pulse radiolysis study of the formation and reactions of reduced metal EDTA complexes

    International Nuclear Information System (INIS)

    Buitenhuis, R.

    1977-01-01

    The construction of a computerized pulse radiolysis system with available means appropriate for the wavelength interval between 300 and 1000 nm is described. The investigation of the radiolysis of aqueous solutions of EDTA complexes in the presence of alcohols is discussed

  2. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  3. Charge-transfer complexes between p-toluidine and iodine in solution: a kinetic study

    International Nuclear Information System (INIS)

    Beggiato, G.; Casalbore, G.; Marconi, G.; Baraldi, C.

    1985-01-01

    The kinetics of charge-transfer interaction between p-toluidine and iodine in methylene chloride was investigated in depth. The thermal process of formation of the 'inner' complex was found to proceed to an equilibrium. The photochemical process follows a different reaction coordinate, going through the formation of an exciplex between the excited 'outer' complex and the amine ground state. In both cases the same ionic complex (Am 2 I + I - 3 , where Am stands for p-toluidine) was detected as the final product. (Author)

  4. Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level

    Science.gov (United States)

    Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.

    2017-02-01

    Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.

  5. Determination of clemastine hydrogen fumarate, desloratadine, losartan potassium and moxepril HCl through binary complex formation with eosin

    Directory of Open Access Journals (Sweden)

    Soad S. Abd El-Hay

    2016-09-01

    Full Text Available A simple and sensitive spectrophotometric method has been established for the determination of clemastine hydrogen fumarate (I, desloratadine (II, losartan potassium(III and moxepril HCl(IV based on binary complex formation with eosin. The method does not involve solvent extraction through the use of a non-ionic surfactant (methylcellulose. The color of the produced complex was measured at 552, 549 nm for (I, (II while was measured at 540 nm for (III and (IV. Appropriate conditions were established for the color reaction between eosin and the studied drugs to obtain maximum sensitivity. Under the proposed conditions, the method is applicable over concentration range of 1.25–11.25, 0.31–2.81, 2.5–20 and 1.25–15 μg/ml for (I, (II, (III and (IV, respectively. The molar absorptivity (ε, sandell sensitivity, detection (LOD and quantitation limits (LOQ are calculated. Unlike other reported ion-pair techniques, the suggested methods have the advantage of being applicable for the determination of the four drugs in their pharmaceutical dosage forms without prior extraction with excellent recoveries.

  6. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  7. Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.

    Science.gov (United States)

    Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C

    2005-09-21

    The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.

  8. The rate of the reaction between C2H and C2H2 at interstellar temperatures

    Science.gov (United States)

    Herbst, E.; Woon, D. E.

    1997-01-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  9. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    Science.gov (United States)

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  10. Theoretical investigation of elementary reaction of complexing LiH+BeH/sub 2/. -->. LiBeH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, O P; Boldyrev, A I; Sukhanov, L P [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1979-01-01

    In the framework of non-empirical Hartree-Fock-Roothaan method on the basis of gauss functions of Roos and Siegbahn made are calculations of different sections of potential surface elementary reaction of complexing LiH+BeH/sub 2/ ..-->.. LiBeH/sub 3/. Charts of potential surface are presented. Questions of the elementary mechanism of elementary processes of complexing and effect of mutual orientation of the reagents upon the reaction mechanism are considered. Stability of LiBeH/sub 3/ molecule to different dissociation channels and different aspects of structural non-rigidity of the L(MXsub(k+1)) complexes at super barrier excitation are discussed.

  11. Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation.

    Science.gov (United States)

    Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J

    2017-10-25

    Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.

  12. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  13. Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol.

    Science.gov (United States)

    Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong

    2012-02-07

    Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.

  14. Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study

    Science.gov (United States)

    2017-01-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane–propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate of hydride transfer in comparison to the competitive oligomerization and deprotonation reactions resulting in catalyst deactivation. Our calculations reveal that hydride transfer from isobutane to a carbenium ion occurs via a concerted C–C bond formation between a tert-butyl fragment and an additional olefin, or via deprotonation of the tert-butyl fragment to generate isobutene. A combination of high isobutane concentration and low propene concentration at the reaction center favor the selective alkylation. The key reaction step that has to be suppressed to increase the catalyst lifetime is the deprotonation of carbenium intermediates that are part of the hydride transfer reaction cycle. PMID:29226012

  15. Hydride Transfer versus Deprotonation Kinetics in the Isobutane-Propene Alkylation Reaction: A Computational Study.

    Science.gov (United States)

    Liu, Chong; van Santen, Rutger A; Poursaeidesfahani, Ali; Vlugt, Thijs J H; Pidko, Evgeny A; Hensen, Emiel J M

    2017-12-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane-propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate of hydride transfer in comparison to the competitive oligomerization and deprotonation reactions resulting in catalyst deactivation. Our calculations reveal that hydride transfer from isobutane to a carbenium ion occurs via a concerted C-C bond formation between a tert -butyl fragment and an additional olefin, or via deprotonation of the tert -butyl fragment to generate isobutene. A combination of high isobutane concentration and low propene concentration at the reaction center favor the selective alkylation. The key reaction step that has to be suppressed to increase the catalyst lifetime is the deprotonation of carbenium intermediates that are part of the hydride transfer reaction cycle.

  16. Kinetics and mechanism of Prussian blue formation

    Directory of Open Access Journals (Sweden)

    R.K. Adhikamsetty

    2009-04-01

    Full Text Available The kinetics of reaction between ferrocyanide and ferric ions under acidic conditions was studied at fixed ionic strength (0.1 M and (25 plus or minus 0.1 oC by using the stopped flow technique, under limiting conditions of [ferrocyanide] and with other reactants in excess. The reaction had first-order dependence on ferrocyanide, Fe(III and H+ ion concentrations and had negative salt effect. On the basis of the experimental findings, a plausible mechanism for the formation of soluble form of Prussian blue (KFe{Fe(CN6}x H2O and rate law are proposed. The activation parameters for the title reaction are estimated. A relatively low energy of activation (23 kJ mol-1 and high negative entropy of activation (-231 J K-1 mol-1 agree well with the proposed mechanism and configuration of complex ion leading to the formation of insoluble Prussian blue, Fe4{Fe(CN6}3 y H2O.

  17. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    Science.gov (United States)

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at

  18. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  19. Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling

    NARCIS (Netherlands)

    Knol, J.J.; Linssen, J.P.H.; Boekel, van M.A.J.S.

    2010-01-01

    A kinetic model for the formation of acrylamide in a fructose–asparagine reaction system at initial pH 5.5 is proposed, based on an approach called multiresponse kinetic modelling. The formation of acetic acid and formic acid from the degradation of fructose and its isomer glucose was included in

  20. Reaction of carbon dioxide with a palladium–alkyl complex supported by a bis–NHC framework†

    Science.gov (United States)

    Ariyananda, Piyal W. G.; Yap, Glenn P. A.

    2012-01-01

    The reactivity of a dimethyl palladium complex supported by a dicarbene chelate (MDCMes)PdMe2 towards CO2 has been investigated. In the presence of trace H2O, this reaction yields the corresponding methyl bicarbonate complex (MDCMes)PdMe(O2COH), which goes on to give the corresponding κ2-carbonato complex upon crystallization (MDCMes)Pd(CO3). This chemistry, as well as related protonolysis by acetic acid was monitored by a combination of techniques including React-IR spectroscopy. PMID:22643651

  1. Reaction of carbon dioxide with a palladium-alkyl complex supported by a bis-NHC framework.

    Science.gov (United States)

    Ariyananda, Piyal W G; Yap, Glenn P A; Rosenthal, Joel

    2012-07-14

    The reactivity of a dimethyl palladium complex supported by a dicarbene chelate (MDC(Mes))PdMe(2) towards CO(2) has been investigated. In the presence of trace H(2)O, this reaction yields the corresponding methyl bicarbonate complex (MDC(Mes))PdMe(O(2)COH), which goes on to give the corresponding κ(2)-carbonato complex upon crystallization (MDC(Mes))Pd(CO(3)). This chemistry, as well as related protonolysis by acetic acid was monitored by a combination of techniques including React-IR spectroscopy.

  2. Synthesis and molecular structure of YbI(bipy)(DME)2 complex

    International Nuclear Information System (INIS)

    Petrovskaya, T.V.; Fedyushkin, I.L.; Nevodchikov, V.I.; Bochkarev, M.N.; Borodina, N.V.; Eremenko, I.L.; Nefedov, S.E.

    1998-01-01

    The reaction of the ytterbium naphthaline complex [Yb(DME) 2 ] 2 (μ-C 10 H 8 ) with 2,2 ' -bipyridine in DME is found to lead to the formation of the complex with the Yb 2+ atom, YbI(bipy)(DME) 2 (1) containing 2,2 ' -bipyridine radical anion. Complex 1 is characterized by IR and UV spectroscopy, magnetic methods and X-ray analysis [ru

  3. Studies on cluster, salt and molecular complex of zinc-quinolinate

    Indian Academy of Sciences (India)

    Reactions of zinc halides with 8-hydroxyquinoline (hydroxQ) in equimolar ratio were carried out in different solvents. ... determination of surface area. We prepared a ..... resulted in the formation of de-solvated complex, which on standing at ...

  4. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide.

    Science.gov (United States)

    Jarwal, Nisha; Thankachan, Pompozhi Protasis

    2015-04-01

    The Wittig reaction of cyclopropanone, cyclobutanone and cyclopentanone with phosphorus ylide (Me3P = CH2) in gas phase was investigated computationally at B3LYP/6-31G** level of theory. In the Wittig reaction of cyclic ketones, two transition states (TS1 and TS2), corresponding to formation and decomposition of oxaphosphetane (OP) were located and investigated. Two loosely bound intermediates, a reactant complex (RC) and a product complex (PC) were also found. In the reaction of cyclopropanone, cyclobutanone and cyclopentanone, two oxaphosphetanes (OP1 and OP2) were predicted. OP1 initially formed was converted into OP2 by pseudorotation. In contrast to the reactions with cyclobutanone and cyclopentanone, an early TS1 was found in the reaction of cyclopropanone. The order of first activation energy barrier relative to reactant total energy was found to be cyclopropanone (-4.97 kcal mol(-1)) < cyclobutanone (0.30 kcal mol(-1)) < cyclopentanone (3.60 kcal mol(-1)).

  5. Kinetic Modeling of Complex Catalytic Reactions Modélisation cinétique des réactions catalytiques complexes

    Directory of Open Access Journals (Sweden)

    Froment G. F.

    2006-11-01

    Full Text Available The paper deals with hydrocracking on metal-loaded zeolites. A fundamental approach is presented in which the detailed reaction network of the feed components of a complex feedstock is retained to a maximum extent. The kinetics are developed in terms of the elementary steps and single events involved in the reactions. Plausible assumptions and thermodynamic constraints limit the number of kinetic parameters. These do not depend on the chain length of the hydrocarbons and are not affected by the feed composition. Certainly, chemical analysis still imposes a certain degree of lumping of components and reaction networks, but not to the extent reflected by present day models. L'article traite de l'hydrocraquage sur des zéolites chargés en métaux. Dans l'approche fondamentale qui est présentée, le réseau de réaction des composants d'une charge complexe est retenu au maximum. La cinétique est établie en suivant pas à pas le déroulement et les étapes élémentaires des réactions. Des hypothèses plausibles et des contraintes thermodynamiques limitent le nombre de paramètres cinétiques. Ceux-ci ne dépendent pas de la longueur de la chaîne des hydrocarbures et ne sont pas affectés par la composition de la charge. L'analyse chimique impose bien sûr encore un certain agrégat des composants et des réseaux de réaction, mais moins que ne reflètent les modèles actuels.

  6. Positive/negative liquid secondary ion mass spectrometry of Ln-EDTA (1:1) complexes. Formation of molecular ion adducts with neutral species of the matrix or Ln-EDTA

    International Nuclear Information System (INIS)

    Plaziak, A.S.; Lis, S.; Elbanowski, M.

    1992-01-01

    The mass spectra of 1:1 complexes of EDTA with lanthanide cations (Ln=Sm, Eu, Gd, Tb or Dy) upon positive/negative LSIMS are presented. In glycerol used as a matrix, adduct-ions such as [M+H] + , [M+H+nGly] + , [2M+H] + , [2M+H+Gly] + (positive LSIMS) or [M-H] - , [M-H+nGly] - , [2M-H] - , [2M-H+Gly] - (negative LSIMS), where n=1-3, are formed. Reactions leading to the formation of adduct-ions are suggested. (authors)

  7. The ribosome-associated complex antagonizes prion formation in yeast.

    Science.gov (United States)

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  8. Palladium-catalyzed cyclization reactions of 2-vinylthiiranes with heterocumulenes. Regioselective and enantioselective formation of thiazolidine, oxathiolane, and dithiolane derivatives.

    Science.gov (United States)

    Larksarp, C; Sellier, O; Alper, H

    2001-05-18

    The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.

  9. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju; Samantaray, Manoja; Callens, Emmanuel; Hamieh, Ali Imad Ali; Emwas, Abdul-Hamid M.; Abou-Hamad, Edy; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2016-01-01

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  10. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  11. The gas phase reaction of ozone with 1,3-butadiene: formation yields of some toxic products

    Science.gov (United States)

    Kramp, Franz; Paulson, Suzanne E.

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separate experiments, small quantities of 1,3,5-trimethyl benzene were added as a tracer for OH. Formation yields of acrolein of (52±7)%, 1,2-epoxy-3-butene of (3.1±0.5)% and OH radicals of (13±3)% were observed. In addition, the rate coefficient of the gas-phase reaction of ozone with 1,2-epoxy-3-butene was measured both directly and relative to propene, finding an average of (1.6±0.4)×10 -18 cm 3 molecule -1 s -1, respectively, at 296±2 K. The results are briefly discussed in terms of the effect of atmospheric processing on the toxicity of 1,3-butadiene.

  12. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  13. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, Cé sar A.; Poater, Albert; Lé bl, Tomá š; Manzini, Simone; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  14. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  15. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    Science.gov (United States)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along

  16. Diastereoselective synthesis of tetrahydropyrans via Prins-Ritter and Prins-arylthiolation cyclization reactions.

    Science.gov (United States)

    Hazarika, Nabajyoti; Sarmah, Barnali; Bordoloi, Manobjyoti; Phukan, Prodeep; Baishya, Gakul

    2017-03-01

    An efficient method has been developed for the synthesis of two new classes of tetrahydropyran derivatives comprising amide, tetrazole or benzothiazole moieties via a three-component reaction of 6-methylhept-5-en-2-ol, arylaldehydes and nitriles/thiols in the presence of a tetrafluoroboric acid diethyl ether complex. The reaction proceeds via the formation of an oxocarbenium ion. This protocol is highly diastereoselective and only single diastereomer has been isolated in each case.

  17. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Phillip Thomas [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The divalent lanthanide complex, (Me5C5)2Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me5C5)2YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me5C5)2YbCH(SiMe3)2, displays similar chemistry to (Me5C5)2YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me5C5)3YbCH(SiMe5)2. Copper and silver halide salts react with (Me5C5)2V to produce the trivalent halide derivatives, (Me5C5)2VX (X + F, Cl, Br, I). The chloride complex, (Me5C5)2VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me5C5)2V producing the vanadium-oxo complex, (Me5Ce5)2VO. The trivalent titanium species, (Me5C5)2TiX (X = Cl, Br, Me, BH4), form bimetallic coordination complexes with (Me5C5)2Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  18. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  19. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways.

    Science.gov (United States)

    Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong

    2017-12-01

    The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    DEFF Research Database (Denmark)

    Giacometti, Simone; Benbahouche, Nour El Houda; Domanski, Michal

    2017-01-01

    The nuclear cap-binding complex (CBC) stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main C...

  1. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  2. Synthesis of naphthalenes through three-component coupling of alkynes, Fischer carbene complexes, and benzaldehyde hydrazones via isoindole intermediates.

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K; Herndon, James W

    2008-04-17

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels-Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  3. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    OpenAIRE

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  4. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach.

    Science.gov (United States)

    Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M

    2017-01-20

    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Heating-induced inner-sphere substitution and reduction-oxidation reactions of the solid phenanthroline containing cobalt (2) and cobalt (3) complexes

    International Nuclear Information System (INIS)

    Palade, D.M.

    1996-01-01

    The results of the differential thermal and thermogravimetric analyses of solid phenanthroline-containing complexes of cobalt (2) and cobalt (3) in the atmosphere of the air have been analyzed. Mechanism of redox reactions occurring when cobalt (3) complexes are heated has been discussed. It is shown that some of gaseous products of the redox processes appear as a result of secondary reactions and not the processes of the ligands oxidation by Co 3+ . The influence of certain inner-sphere and coordinated anions (of I, inclusively) on cobalt (3) complexes behaviour during heating has been considered

  6. Fuel-sodium reaction product formation in breached mixed-oxide fuel

    International Nuclear Information System (INIS)

    Bottcher, J.H.; Lambert, J.D.B.; Strain, R.V.; Ukai, S.; Shibahara, S.

    1988-01-01

    The run-beyond-cladding-breach (RBCB) operation of mixed-oxide LMR fuel pins has been studied for six years in the Experimental Breeder Reactor-II (EBR-II) as part of a joint program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The formation of fuel-sodium reaction product (FSRP), Na 3 MO 4 , where M = U/sub 1-y/Pu/sub y/, in the outer fuel regions is the major phenomenon governing RBCB behavior. It increases fuel volume, decreases fuel stoichiometry, modifies fission-product distributions, and alters thermal performance of a pin. This paper describes the morphology of Na 3 MO 4 observed in 5.84-mm diameter pins covering a variety of conditions and RBCB times up to 150 EFPD's. 8 refs., 1 fig

  7. Theoretical study of the nucleophilic addition of oximes to the nitrile complexes trans-/cis-[ReCl4(NCCH3)2

    International Nuclear Information System (INIS)

    Klestova-Nadeeva, E. A.; Kuznetsov, M. L.; Dement'ev, A. I.

    2005-01-01

    The reaction of nucleophilic addition of oximes (HON=CRR 1 ) to organic nitriles coordinated in the rhenium complexes trans-/cis-[ReCl 4 (NCCH 3 ) 2 ] was theoretically studied by the Hartree-Fock and density functional theory (B3LYP) methods. The reaction mechanism involves (I) the initial change of the oxime conformation; (II) the formation of the orientation complex with the coordinated nitrile molecule, which transforms into a four-membered transition state; (III) the formation of the addition product in a less stable conformation; and (IV) the formation of the ultimate addition product. The calculations make it possible to interpret the activation of nitriles in terms of the activated complex theory as a result of stabilization of the transition state in going from the free to the coordinated nitrile [ru

  8. [Mechanism of reaction catalyzed by RNA-ligase from bacteriophage T4].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1987-01-01

    The dissociation constants of the complexes of RNA-ligase with acceptors, donors and the adenylylated donor A(5')ppAp have been determined on the basis of the inhibition of ATP-pyrophosphate exchange reaction. The dissociation constants of the complexes of the enzyme with "poor" acceptors (oligouridilates) have been shown to be slightly different from those with "good" acceptors (oligoadenylates). The dependence of the reaction velocity of the formation of ligation products on the concentration of acceptors (pA)4, (pU)4 and the adenylylated donor A(5)ppAp has been studied. On the basis of the data obtained the conclusion about the random addition mechanism has been drawn. The reaction takes place in the steady-state conditions in the case of (pA)4 and in the equilibrium conditions--in the case of (pU)4.

  9. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  10. Studies on the ruthenium complexes. IX. Kinetic studies on the deaquation-anation reaction of aquapentaammineruthenium(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ohyoshi, A; Hiraki, S I; Odate, T; Kohata, S; Oda, J [Kumamoto Univ. (Japan). Faculty of Engineering

    1975-01-01

    The deaquation-anation reaction of (Ru(OH/sub 2/)(NH/sub 3/)/sub 5/)X/sub 3/-type complexes in the solid state, as shown by the (Ru(OH/sub 2/)(NH/sub 3/)/sub 5/)X/sub 3/(s)..-->..(RuX(NH/sub 3/)/sub 5/)X/sub 2/(s)+H/sub 2/O(g) equation, where X is Cl, Br, I, and NO/sub 3/ respectively, was kinetically studied by means of thermogravimetry (TG) along with differential thermal analysis (DTA). The activation energy and entropy in the reaction process (Esub(a) kcal/mol, ..delta..S c.u.) are, respectively, found by isothermal kinetic study to be (22.7, - 7.1) for the chloride, (23.4, - 5.2) for the bromide, (26.7, 5.8) for the iodide, and (19.3 - 15.9) for the nitrate. The reaction seems to proceed through the following two steps, except in the case of the iodide: (Ru(OH/sub 2/)(NH/sub 3/)/sub 5/)X/sub 3/..-->..(RuX(OH/sub 2/)(NH/sub 3/)/sub 5/)X/sub 2/..-->..(RuX(NH/sub 3/)/sub 5/)X/sub 2/+H/sub 2/O. The first step is regarded as the rate-determining one.

  11. A combined crossed molecular beam and theoretical investigation of the reaction of the meta-tolyl radical with vinylacetylene--toward the formation of methylnaphthalenes.

    Science.gov (United States)

    Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji

    2015-09-07

    Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.

  12. Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions

    Science.gov (United States)

    Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.

    2017-06-01

    Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.

  13. Characterization of the complex between native and reduced bovine serum albumin with aquacobalamin and evidence of dual tetrapyrrole binding.

    Science.gov (United States)

    Dereven'kov, Ilia A; Hannibal, Luciana; Makarov, Sergei V; Makarova, Anna S; Molodtsov, Pavel A; Koifman, Oskar I

    2018-05-02

    Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H 2 OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H 2 OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H 2 OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H 2 OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.

  14. Novel heterometallic metal–azido complex synthesized by “one-step” reaction: synthetic strategy and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yong-Kun [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Xiu-Ping [Technical center for safety of industrial products of Tianjin entry-exit inspection and quarantine bureau, Tianjin 300201 (China); Zhao, Cui; Wang, Hai-Chao; Xue, Min [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Jiong-Peng, E-mail: horryzhao@yahoo.com [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu, Fu-Chen, E-mail: fuchenliutj@yahoo.com [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060 (China)

    2013-06-15

    A novel heterometallic complex, [Ni{sub 2}Mn(N{sub 3}){sub 2}(nic){sub 4}·(H{sub 2}O){sub 2}]{sub n} (1) (nic=nicotinate), was obtained by assembling MnCl{sub 2}·4H{sub 2}O, Ni(NO{sub 3}){sub 2}·6H{sub 2}O, NaN{sub 3} and nicotinic acid with a “one step” synthetic strategy—hydrothermal reaction. The 3D structure of the complex can be described as end-on (EO) azido and syn,syn carboxylates mixed bridged by alternate Ni–Mn–Ni trimers linked by the nicotinate. Dominant ferromagnetic interactions were observed between the Ni{sup II} and Mn{sup II} ions in the trimer. - Graphical abstract: A novel heterometallic 3D complex [Ni{sub 2}Mn(N{sub 3}){sub 2}(nic){sub 4}·(H{sub 2}O){sub 2}]{sub n} (1) (nic=nicotinate) was synthesized by hydrothermal reaction. This complex exhibits interesting structural and magnetic properties. - Highlights: • It is difficult to construct simple coordination complexes with azide as “ligands” to obtain heterometallic metal–azido compounds. • A “one-step” method—hydrothermal reaction— was introduced to avoid the disadvantages of azide mentioned above. • The magnetic property is different with the isostructural homometal–azido complex due to the changed metal center.

  15. Complexation des groupes oxoet nitruotechnetium par les dithioetherdithiols

    International Nuclear Information System (INIS)

    Drouillard, S.; Apparu, M.; Vidal, M.; Alagui, A.

    1992-01-01

    Complexation of the core 99m TcO 3+ by 2,10-dimethyl-4,8-dithiaundecane-2,10-dithiol (1) was achieved using a tin salt as reducing agent, and led to the formation of a stable neutral species I. With 5-butyl-3,7-dithianonane-1,9-dithiol (2) the same reaction leads to the formation of an unstable complex II which is difficult to isolate. Biological studies on the Swiss mouse have shown that only I is of interest (myocardial fixation greater than that of RP 30). In the case of complexes with a TcN core, two neutral species are always obtained, one from [ 99m TcNCL 4 ] - and one from 99m TcNCL 2 [P(CH 2 CH 2 CN) 3 ] 2 ; depending on the operating conditions it is possible to favour the formation of one or other species and to isolate them by purification. The biological results have proved rather disappointing. (Author)

  16. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  17. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  18. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes. PMID:18351767

  19. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  20. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    Science.gov (United States)

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metal halide-phosphorus halide-alkyl halide complexes: reaction with niobium and tantalum pentachlorides

    International Nuclear Information System (INIS)

    Puri, D.M.; Saini, M.S.

    1978-01-01

    The reactions of niobium and tantalum pentachlorides with trichlorophosphine and phenyldichlorophosphine have been studied in presence of alkylating agents such as sec-butyl chloride, iso-butyl chloride, tert-butyl chloride, tert-anylchloride, cyclohexyl chloride and triphenylmethyl chloride. Solid products have been isolated and characterised by vibrational spectroscopy as ionic complexes of alkyl- and/or aryl-phosphonium cations with hexachloroniobate and hexachlorotantalate anions. (author)

  2. Visible lights induced polymerization reactions: interactions between rose bengal and iron aren complex

    International Nuclear Information System (INIS)

    Burget, D.; Grotzinger, C.; Jacques, P.; Fouassier, J.P.

    1999-01-01

    The present paper is devoted to an investigation of the interactions between Rose Bengal (RB) and an Iron aren (Irg(+)) complex that are usable in visible light induced polymerization reactions. Steady state and flash photolysis experiments were performed in order to elucidate the nature of the intermediates formed after light excitation. A complete scheme of evolution of the excited states is discussed

  3. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  4. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  5. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Directory of Open Access Journals (Sweden)

    Jan Lüddecke

    Full Text Available The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.

  6. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  7. Formation of potential antigens from radiographic contrast media

    International Nuclear Information System (INIS)

    Nilsson, R.; Ehrenberg, L.; Fedorcsak, I.

    1987-01-01

    The use of radiographic contrast media is occasionally accompanied by more or less serious adverse effects, evidently of complex etiology, following intravascular administration. Some of these reactions are suspected of having an allergic basis. The in vitro and in vivo formation of iodinated serum proteins following gamma irradiation in the presence of two commonly used radiographic contrast media is demonstrated. Non-toxic concentrations of ascorbate present during the irradiation is shown to prevent the formation of such iodo-proteins in vitro as well as in vivo. The amounts of potentially antigenic iodoprotein formed during radiographic procedures will certainly be very small, but this quantity may be sufficient to elicit a hypersensitivity reaction in cases when an individual has been previously sensitized to immunologically similar iodo-proteins, a mechanism that could account for certain rare and unpredictable reations. The radiation induced formation of iodo-proteins may also serve as a model for the formation of iodine containing antigens mediated by a free radical mechanism, i.e. in the metabolism of iodinated compounds like erythrosine, a widely used colouring agent for certain foods. (orig.)

  8. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  9. Assessment of the potential for ammonium nitrate formation and reaction in Tank 241-SY-101

    International Nuclear Information System (INIS)

    Pederson, L.R.; Bryan, S.A.

    1994-08-01

    Two principal scenarios by which ammonium nitrate may be formed were considered: (a) precipitation of ammonium nitrate in the waste, and (b) ammonium nitrate formation via the gas phase reaction of ammonia and nitrogen dioxide. The first of these can be dismissed because ammonium ions, which are necessary for ammonium nitrate precipitation, can exist only in negligibly small concentrations in strongly alkaline solutions. Gas phase reactions between ammonia, nitrogen dioxide, and water vapor in the gas phase represent the most likely means by which ammonium nitrate aerosols could be formed in Tank 241-SY-101. Predicted ammonium nitrate formation rates are largely controlled by the concentration of nitrogen dioxide. This gas has not been detected among those gases vented from the wastes using Fourier Transform Infrared Spectrometry (FTIR) or mass spectrometry. While detection limits for nitrogen dioxide have not been established experimentally, the maximum concentration of nitrogen dioxide in the gas phase in Tank 241-SY-101 was estimated at 0.1 ppm based on calculations using the HITRAN data base and on FTIR spectra of gases vented from the wastes. At 50 C and with 100 ppm ammonia also present, less than one gram of ammonium nitrate per year is estimated to be formed in the tank. To date, ammonium nitrate has not been detected on HEPA filters in the ventilation system, so any quantity that has been formed in the tank must be quite small, in good agreement with rate calculations. The potential for runaway exothermic reactions involving ammonium nitrate in Tank 241-SY-101 is minimal. Dilution by non-reacting waste components, particularly water, would prevent hazardous exothermic reactions from occurring within the waste slurry, even if ammonium nitrate were present. 41 refs

  10. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    Science.gov (United States)

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  11. Formation constants of lanthanide(III)- aminopolycarboxylate- ATP mixed ligand complexes and their systematics

    International Nuclear Information System (INIS)

    Verma, Sangeeta; Limaye, S.N.; Saxena, M.C.

    1993-01-01

    Formation constants (log Ksub(MAL)sup(MA), log Ksub(ML)sup(M) and log Ksub(ML)sup(ML) of mixed ligand lanthanide(III) complexes of the type [Ln(III).A.ATP[ 2 , where LN(III)=La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ or Dy 3+ ' A=NTA(nitrilotriacetate) or HEDTA (2-hydroxyethylethylenediamine triacetate) and ATP=adenosine 5'-triphosphate (L), and of the binary [Ln(III).ATP[ and [Ln(III).(ATP) 2 [ complexes have been determined by potentiometric pH titrations using the Irving-Rossotti approach at three temperatures 20, 30 and 40 degC and at a fixed ionic strength, I=0.2 mol dm -3 (NAclO 4 ). The solution stabilities (log Ksub(MAL)sup(MA) values) are influenced by the electrostatic effect involved in ternary complexation and increase with temperature. The enthalpy factor (ΔH) has been found to be small but unfavourable and the entropy factor (ΔS) large and favourable. The log Ksub(MAL)sup(MA) values lie in the order NTA>HEDTA with respect to A and La 3+ 3+ 3+ 3+ 3+ 3+ >Gd 3+ 3+ 3+ with respect to lanthanides. Tetrad effect is present in the formation constant values; its magnitude has been found to lie in the sequence f 7 >f 3 -f 4 ≅ f 10 -f 11 for the Ln(III) ions. Systematics in the formation constant values has been further studied by evaluating changes in the inter-electronic repulsion Racah parameters, extra stabilisation of specific 4f 9 -configurations and nephelauxetic ratio using experimental values of the formation constants. (author). 24 refs., 2 figs., 3 tabs

  12. Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions† †Electronic supplementary information (ESI) available: Detailed experimental and computational results, procedures, characterization data, copies of NMR charts, and crystallographic data. CCDC 1572238. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04675h

    Science.gov (United States)

    Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi

    2018-01-01

    We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward

  13. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  14. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  15. Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

    Science.gov (United States)

    Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred

    2018-06-21

    The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3  L mol -1  s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A kinetic study of the redox reactions of complex cyanides of iron, molybdenum and tungsten with compounds of the group VI A elements

    International Nuclear Information System (INIS)

    Dennis, C.R.

    1981-01-01

    The kinetic study arises out of the fact that few is known about redox kinetics of complex cyanides of molybdenum and tungsten. The redox kinetics of the complex cyanides of iron with organic and inorganic compounds are well known in organic chemistry. This comparitive study is done to obtain more information on redox reactions of complex cyanides of molybdenum and tungsten considering its greater applicability in organic and inorganic chemistry because of the propitious reduction potential of this complex cyanide in acidic and alkaline mediums. Various redox systems are kinetically investigated regarding the influence of the oxidising agent, reducing agent hydrogen ions and alkaline-metal ions on the reaction rate. A reaction mechanism is proposed for every system

  17. THE FORMATION OF DESIGN AND ORGANIZATIONAL AND TECHNOLOGICAL DECISIONS OF THE CONSTRUCTION OF HIGH-RISE MULTIPURPOSE COMPLEXES

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Purpose. The formation of the many ways the construction of high-rise multipurpose complexes. Methodology. The formation of system implementation variants of creation and functioning of high-rise multipurpose complexes using combinatorial morphological analysis and synthesis. Findings. Many life cycle options of high-rise multipurpose complexes. Originality. The developed method of formation of organizational and technological solutions adapted to the conditions of the construction of high-rise multipurpose complexes, which provides the opportunity for multi-variant conditions, taking into account regulatory requirements for fire safety, insolation of buildings and premises, protection against noise and vibration, energy efficiency, infrastructure and population density of a residential district with a full range of institutions and enterprises of local significance, within existing resource constraints, to ensure the commissioning of objects with specified technical and economic characteristics. Practical value. The proposed model and the methodology allow to determine a rational variant of high-rise building according to specified criteria and constraints.

  18. Reaction-Diffusion Automata Phenomenology, Localisations, Computation

    CERN Document Server

    Adamatzky, Andrew

    2013-01-01

    Reaction-diffusion and excitable media are amongst most intriguing substrates. Despite apparent simplicity of the physical processes involved the media exhibit a wide range of amazing patterns: from target and spiral waves to travelling localisations and stationary breathing patterns. These media are at the heart of most natural processes, including morphogenesis of living beings, geological formations, nervous and muscular activity, and socio-economic developments.   This book explores a minimalist paradigm of studying reaction-diffusion and excitable media using locally-connected networks of finite-state machines: cellular automata and automata on proximity graphs. Cellular automata are marvellous objects per se because they show us how to generate and manage complexity using very simple rules of dynamical transitions. When combined with the reaction-diffusion paradigm the cellular automata become an essential user-friendly tool for modelling natural systems and designing future and emergent computing arch...

  19. The complex reaction kinetics of neptunium including redox and extraction process in 30% TBP-nitric acid system

    International Nuclear Information System (INIS)

    Hu Zhang; Zhan-yuan Liu; Xian-ming Zhou; Li Li

    2017-01-01

    In order to understand the complex and dynamic neptunium process chemistry in the TBP-HNO_3 system, the kinetics involved reversible redox reaction and extraction mass transfer was investigated. The results indicates that the mass transfer rate of Np(VI) is much faster than the redox reaction in aqueous solution. The concentrations of nitric acid and nitrous acid not only can change the Np(V) oxidation reaction and Np(VI) reduction reaction rate, but also can ultimately determine the distribution of neptunium extraction equilibrium. The variety of temperature can only influence the extraction equilibrium time, but cannot alter the equilibrium state of neptunium. (author)

  20. THE RESPIRATORY SUBSTRATE RHODOQUINOL INDUCES Q-CYCLE BYPASS REACTIONS IN THE YEAST CYTOCHROME bc1 COMPLEX - MECHANISTIC AND PHYSIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Cape, Jonathan L.; Strahan, Jeff R.; Lenaeus, Michael J.; Yuknis, Brook A.; Le, Trieu T.; Shepherd, Jennifer; Bowman, Michael K.; Kramer, David M.

    2005-01-01

    The mitochondrial cytochrome bc1 complex catalyzes the transfer of electrons from ubiquinol to cyt c, while generating a proton motive force for ATP synthesis, via the ''Qcycle'' mechanism. Under certain conditions, electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in ''bypass reactions'', some of which lead to superoxide production. Using analogs of the respiratory substrates, ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc1 complex are highly dependent, by a factor of up to one hundred-fold, on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials, with respect to the quinol substrate, to allow normal turnover of the complex while preventing potentially damaging bypass reactions

  1. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  2. Quantum statistical vibrational entropy and enthalpy of formation of helium-vacancy complex in BCC W

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua [Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, 519082, Zhuhai (China); Woo, C.H., E-mail: chung.woo@polyu.edu.hk [ME Department, The Hong Kong Polytechnic University, Hong Kong SAR (China)

    2016-12-15

    High-temperature advance-reactor design and operation require knowledge of in-reactor materials properties far from the thermal ground state. Temperature-dependence due to the effects of lattice vibrations is important to the understanding and formulation of atomic processes involved in irradiation-damage accumulation. In this paper, we concentrate on the formation of He-V complex. The free-energy change in this regard is derived via thermodynamic integration from the phase-space trajectories generated from MD simulations based on the quantum fluctuation-dissipation relation. The change of frequency distribution of vibration modes during the complex formation is properly accounted for, and the corresponding entropy change avoids the classical ln(T) divergence that violates the third law. The vibrational enthalpy and entropy of formation calculated this way have significant effects on the He kinetics during irradiation.

  3. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  4. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  5. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex

    DEFF Research Database (Denmark)

    Yao, Xiao Jie; Vélez Ruiz, Gisselle; Whorton, Matthew R

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate the majority of physiologic responses to hormones and neurotransmitters. However, many GPCRs exhibit varying degrees of agonist-independent G protein activation. This phenomenon is referred to as basal or constitutive activity. For many of these GPCRs...... of an agonist, the beta(2)AR and Gs can be trapped in a complex by enzymatic depletion of guanine nucleotides. Formation of the complex is enhanced by the agonist isoproterenol, and it rapidly dissociates on exposure to concentrations of GTP and GDP found in the cytoplasm. The inverse agonist ICI prevents...... formation of the beta(2)AR-Gs complex, but has little effect on preformed complexes. These results provide insights into G protein-induced conformational changes in the beta(2)AR and the structural basis for ligand efficacy....

  6. Characterization of reaction products of iron and iron salts and aqueous plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J.A. [Universidad de Panama, Centro de Investigaciones con Tecnicas Nucleares/Depto. de Quimica (Panama); Garcia de Saldana, E.; Hernandez, C. [Universidad de Panama, Maestria en Ciencias Quimicas (Panama)

    1999-11-15

    The complexes formed in aqueous solution as a result of a reaction of iron and iron salts (Fe{sup 2+} and Fe{sup 3+}) and some plant extracts were analyzed using Moessbauer spectroscopy and Fourier transform infrared. The extracts were obtained from Opuntia elatior mill., Acanthocereus pentagonus (L.) Britton, Mimosa tenuiflora, Caesalpinia coriaria (Jacq.) Willd., Bumbacopsis quinata (Jacq.) Dugand and Acacia mangium Willd., plants growing wildly in different zones of the Isthmus of Panama. Results suggest the formation of mono- and bis-type complexes, and in some cases, the occurrence of a redox reaction. The feasibility of application of the studied extracts as atmospheric corrosion inhibitors is discussed.

  7. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    OpenAIRE

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and concentration profiles for a wide range of processes and conditions, for both film and penetration model. With the aid of this mass transfer model it is demonstrated that the absorption rates in syst...

  8. Study of formation constant of molybdophosphate and it's application in the product of xenotime sand, tooth and bone

    International Nuclear Information System (INIS)

    Samin; Lahagu, F.; Basuki, K. T.; Ernawati, F.

    1996-01-01

    The formation constant of molybdophosphate complex and it's application in the product of xenotime sand, tooth and bone have been studied by spectrophotometric method. The molybdophosphate complex were formed from reaction between phosphate and molybdate on several of pH in the strong acid condition (pH = 0.45 - 0.71) and several of phosphate mole fraction (0.01 - 0.08). The several of complex formation reactions were determined by matrix disintegration technique. Molybdophosphate complex were founded three forms i.e. (P 2 Mo 18 O 62 ) 6- or 9 MPA, (PMo 11 O 39 ) 7- or 11 MPA and (PMo 12 O 40 ) 3- or 12 MPA. The formation constant of (PMo 12 O 40 ) 3- complex was found β = 10 46.95 ± 10 3.7 , while for (P 2 Mo 18 O 62 ) 6- and (PMo 11 O 39 ) 7- were not detected. The application in samples were found the concentration of P in product of xenotime sand : 5.37±0.08 μg/ml, in canine-tooth: 10.40 - 19.49 % in cutting-tooth : 11.08 - 18.05 % and in bone 10.94 - 14.29 %. (author)

  9. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark; Vermathen, Martina; Alder, Adrian; Wü st, Florian; Schaub, Patrick; van der Steen, Rob; Beyer, Peter; Ghisla, Sandro; Al-Babili, Salim

    2017-01-01

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  10. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark

    2017-02-10

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  11. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans.

    Science.gov (United States)

    Sung, Wen-Chieh; Chang, Yu-Wei; Chou, Yu-Hao; Hsiao, Hsin-I

    2018-03-15

    This research aims to clarify the interactions that occur in a food model system consisting of glucose, asparagine and chitosans. Low molecular weight chitosan exerted a potent inhibitory effect (46.8%) on acrylamide and Maillard reaction products (MRPs) (>52.6%), respectively. Compared to a previous study conducted using the fructose system, the novel findings of this research demonstrate that the formation of acrylamide and Maillard reaction products was lower with glucose than with fructose when they were used as reducing sugars in food model systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  13. Ternary uranium(VI) carbonato humate complex studied by cryo-TRLFS

    International Nuclear Information System (INIS)

    Steudtner, R.; Sachs, S.; Schmeide, K.; Brendler, V.; Bernhard, G.

    2011-01-01

    The complex formation of U(VI) with humic acid (HA) in the presence of carbonate was studied by time-resolved laser-induced fluorescence spectroscopy at low temperature (cryo-TRLFS) at pH 8.5. In the presence of HA, a decrease of the luminescence intensity of U(VI) and no shift of the emission band maxima in comparison to the luminescence spectrum of the UO 2 (CO 3 ) 3 4- complex, the dominating U(VI) species under the applied experimental conditions in the absence of HA, was observed. The formation of a ternary U(VI) carbonato humate complex of the type UO 2 (CO 3 ) 2 HA(II) 4- starting from UO 2 (CO 3 ) 3 4- was concluded from the luminescence data. For this complex a complex stability constant of log K=2.83 ± 0.17 was determined. Slope analysis resulted in a slope of 1.12 ± 0.11, which verifies the postulated complexation reaction. The results agree very well with literature data. Speciation calculations show that the formation of the ternary U(VI) carbonato humate complex can significantly influence the U(VI) speciation under environmental conditions. (orig.)

  14. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  15. Turing Patterns in a Reaction-Diffusion System

    International Nuclear Information System (INIS)

    Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang

    2006-01-01

    We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.

  16. Synthesis of cis - and trans-diisothiocyanato-bis(NHC) complexes of nickel(II) and applications in the Kumada-Corriu reaction

    KAUST Repository

    Jothibasu, Ramasamy

    2010-09-13

    Metathetical reaction of AgSCN with a series of trans-dihalido-bis(carbene) nickel(II) complexes in CH3CN readily afforded the novel diisothiocyanato-bis(carbene) complexes [Ni(NCS)2(NHC)2] (trans-2a, NHC = 1,3-diisopropylbenzimidazolin-2-ylidene; trans-2b, NHC = 1,3-diisobutylbenzimidazolin-2-ylidene; trans-2c, NHC = 1,3- dibenzylbenzimidazolin-2-ylidene; cis-2d, NHC = 1,3-di(2-propenyl) benzimidazolin-2-ylidene; cis-2e, NHC = 1-propyl-3-methylbenzimidazolin-2- ylidene) as greenish-yellow powders in moderate to good yields. While dihalido-bis(carbene) Ni(II) complexes exclusively form trans-complexes, a trans-cis isomerization occurs upon halido-isothiocyanato exchange with complexes bearing less bulky carbene ligands, i.e., cis-2d/e. DFT calculations indicated that this isomerization can be attributed to a reduced energy difference between trans- and cis-isomers of diisothiocyanato complexes. All complexes have been characterized by multinuclear NMR spectroscopy, ESI mass spectrometry, and X-ray diffraction analysis. A catalytic study revealed that cis-complexes generally exhibit greater activities in the Kumada-Corriu coupling reaction. © 2010 American Chemical Society.

  17. Computer analysis of potentiometric data of complexes formation in the solution

    Science.gov (United States)

    Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira

    2018-02-01

    The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.

  18. Thermodynamics of axial substitution and kinetics of reactions with amino acids for the paddlewheel complex tetrakis(acetato)chloridodiruthenium(II,III).

    Science.gov (United States)

    Santos, Rodrigo L S R; van Eldik, Rudi; de Oliveira Silva, Denise

    2012-06-18

    The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru(2)(CH(3)COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters ΔH°, ΔS°, and ΔV° were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru(2) substituted species. The results revealed that the [Ru(2)(CH(3)COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.

  19. Oxo-group-14-element bond formation in binuclear uranium(V) pacman complexes

    International Nuclear Information System (INIS)

    Jones, Guy M.; Arnold, Polly L.; Love, Jason B.

    2013-01-01

    Simple and versatile routes to the functionalization of uranyl-derived U"V-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)_3LiOUO}_2(L)] and [{(py)_3LiOUO}(OUOSiMe_3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide ''ate'' complex [Li(py)_2][(OUO)(N'')_3](N''=N(SiMe_3)_2) with the polypyrrolic macrocycle H_4L or the mononuclear uranyl (VI) Pacman complex [UO_2(py)(H_2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R_3Sn)OUO}_2(L)] (R=nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)_3] to form U-O-C bonds [{(py)_3LiOUO}(OUOiPr)(L)] and [(iPrOUO)_2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Making the invisible visible: improved electrospray ion formation of metalloporphyrins/-phthalocyanines by attachment of the formate anion (HCOO(-)).

    Science.gov (United States)

    Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas

    2016-02-21

    A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.