WorldWideScience

Sample records for complex estimation soil

  1. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates.

    Science.gov (United States)

    Vero, S E; Ibrahim, T G; Creamer, R E; Grant, J; Healy, M G; Henry, T; Kramers, G; Richards, K G; Fenton, O

    2014-12-01

    The true efficacy of a programme of agricultural mitigation measures within a catchment to improve water quality can be determined only after a certain hydrologic time lag period (subsequent to implementation) has elapsed. As the biophysical response to policy is not synchronous, accurate estimates of total time lag (unsaturated and saturated) become critical to manage the expectations of policy makers. The estimation of the vertical unsaturated zone component of time lag is vital as it indicates early trends (initial breakthrough), bulk (centre of mass) and total (Exit) travel times. Typically, estimation of time lag through the unsaturated zone is poor, due to the lack of site specific soil physical data, or by assuming saturated conditions. Numerical models (e.g. Hydrus 1D) enable estimates of time lag with varied levels of input data. The current study examines the consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates using simulated and actual soil profiles. Results indicated that: greater temporal resolution (from daily to hourly) of meteorological data was more critical as the saturated hydraulic conductivity of the soil decreased; high clay content soils failed to converge reflecting prevalence of lateral component as a contaminant pathway; elucidation of soil hydraulic properties was influenced by the complexity of soil physical data employed (textural menu, ROSETTA, full and partial soil water characteristic curves), which consequently affected time lag ranges; as the importance of the unsaturated zone increases with respect to total travel times the requirements for high complexity/resolution input data become greater. The methodology presented herein demonstrates that decisions made regarding input data and landscape position will have consequences for the estimated range of vertical travel times. Insufficiencies or inaccuracies regarding such input data can therefore mislead policy makers regarding

  2. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  3. Soil-ecological risks for soil degradation estimation

    Science.gov (United States)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  4. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  5. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  6. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    International Nuclear Information System (INIS)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-01-01

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  7. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    Science.gov (United States)

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  8. [Influence of the earthworm Lumbricus terrestris on soil solution complexation capacity].

    Science.gov (United States)

    el Gharmali, A; Rada, A; el Meray, M; Nejmeddine, A

    2001-04-01

    Four soil samples highly contaminated with metals of urban and mine origin (SE1, SE2, SM1, SM2) and having different physico-chemical proprieties were selected to study copper complexation capacity (LT) of soil solution. The effect of Lumbricus terrestris on copper complexation capacity of soil solution was investigated on SE1 and SE2. The complexation capacity was estimated by amperometric titration of soil solution by copper. Free hydrated cation and labile complexes of copper were determined by DPASV. The results show that the copper complexation capacity variation depends on the physico-chemical characteristics of soils, particularly pH. Thus, the values of copper complexation capacity are 0; 0.6 x 10(-7); 1.8 x 10(-7) and 5.5 x 10(-7) mol l-1 respectively for SM2; SM1; SE1 and SE2 which are pH 5; 5.4; 6.5 and 7.4. Based on these results, the bioavailability levels of heavy metals show the following pool ranking: SM2 > SM1 > SE1 > SE2. The copper complexation capacity of soil solution increases with the soil disturbance by Lumbricus terrestris. This is more obvious when the time of disturbance by lumbrics is longer. Indeed, average values determined for 1 month and 3 months are 3.8 x 10(-7) and 7.8 x 10(-7) mol l-1 for SE1; 7.7 x 10(-7) and 15.2 x 10(-7) mol l-1 for SE2 respectively. It seems that the action of earthworm on soil can contribute to the decrease of bioavailability of heavy metals, particularly copper.

  9. Estimation of Soil Moisture in an Alpine Catchment with RADARSAT2 Images

    Directory of Open Access Journals (Sweden)

    L. Pasolli

    2011-01-01

    Full Text Available Soil moisture retrieval is one of the most challenging problems in the context of biophysical parameter estimation from remotely sensed data. Typically, microwave signals are used thanks to their sensitivity to variations in the water content of soil. However, especially in the Alps, the presence of vegetation and the heterogeneity of topography may significantly affect the microwave signal, thus increasing the complexity of the retrieval. In this paper, the effectiveness of RADARSAT2 SAR images for the estimation of soil moisture in an alpine catchment is investigated. We first carry out a sensitivity analysis of the SAR signal to the moisture content of soil and other target properties (e.g., topography and vegetation. Then we propose a technique for estimating soil moisture based on the Support Vector Regression algorithm and the integration of ancillary data. Preliminary results are discussed both in terms of accuracy over point measurements and effectiveness in handling spatially distributed data.

  10. Estimates of soil ingestion by wildlife

    Science.gov (United States)

    Beyer, W.N.; Connor, E.E.; Gerould, S.

    1994-01-01

    Many wildlife species ingest soil while feeding, but ingestion rates are known for only a few species. Knowing ingestion rates may be important for studies of environmental contaminants. Wildlife may ingest soil deliberately, or incidentally, when they ingest soil-laden forage or animals that contain soil. We fed white-footed mice (Peromyscus leucopus) diets containing 0-15% soil to relate the dietary soil content to the acid-insoluble ash content of scat collected from the mice. The relation was described by an equation that required estimates of the percent acid-insoluble ash content of the diet, digestibility of the diet, and mineral content of soil. We collected scat from 28 wildlife species by capturing animals, searching appropriate habitats for scat, or removing material from the intestines of animals collected for other purposes. We measured the acid-insoluble ash content of the scat and estimated the soil content of the diets by using the soil-ingestion equation. Soil ingestion estimates should be considered only approximate because they depend on estimated rather than measured digestibility values and because animals collected from local populations at one time of the year may not represent the species as a whole. Sandpipers (Calidris spp.), which probe or peck for invertebrates in mud or shallow water, consumed sediments at a rate of 7-30% of their diets. Nine-banded armadillo (Dasypus novemcinctus, soil = 17% of diet), American woodcock (Scolopax minor, 10%), and raccoon (Procyon lotor, 9%) had high rates of soil ingestion, presumably because they ate soil organisms. Bison (Bison bison, 7%), black-tailed prairie dog (Cynomys ludovicianus, 8%), and Canada geese (Branta canadensis, 8%) consumed soil at the highest rates among the herbivores studied, and various browsers studied consumed little soil. Box turtle (Terrapene carolina, 4%), opossum (Didelphis virginiana, 5%), red fox (Vulpes vulpes, 3%), and wild turkey (Meleagris gallopavo, 9%) consumed soil

  11. Complex conductivity of soils

    DEFF Research Database (Denmark)

    Revil, A.; Coperey, A.; Shao, Z.

    2017-01-01

    The complex conductivity of soil remains poorly known despite the growing importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one clean sand in the frequency range 0.1 Hertz...... to 45 kHz. The soil samples are saturated with 6 different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl, 25°C) in order to determine their intrinsic formation factor and surface conductivity. This dataset is used to test the predictions of the dynamic Stern...

  12. Quantifying Uncertainty in Soil Volume Estimates

    International Nuclear Information System (INIS)

    Roos, A.D.; Hays, D.C.; Johnson, R.L.; Durham, L.A.; Winters, M.

    2009-01-01

    Proper planning and design for remediating contaminated environmental media require an adequate understanding of the types of contaminants and the lateral and vertical extent of contamination. In the case of contaminated soils, this generally takes the form of volume estimates that are prepared as part of a Feasibility Study for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites and/or as part of the remedial design. These estimates are typically single values representing what is believed to be the most likely volume of contaminated soil present at the site. These single-value estimates, however, do not convey the level of confidence associated with the estimates. Unfortunately, the experience has been that pre-remediation soil volume estimates often significantly underestimate the actual volume of contaminated soils that are encountered during the course of remediation. This underestimation has significant implications, both technically (e.g., inappropriate remedial designs) and programmatically (e.g., establishing technically defensible budget and schedule baselines). Argonne National Laboratory (Argonne) has developed a joint Bayesian/geostatistical methodology for estimating contaminated soil volumes based on sampling results, that also provides upper and lower probabilistic bounds on those volumes. This paper evaluates the performance of this method in a retrospective study that compares volume estimates derived using this technique with actual excavated soil volumes for select Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood properties that have completed remedial action by the U.S. Army Corps of Engineers (USACE) New York District. (authors)

  13. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  14. Radiometric characterization of six soils in the microwave X-range through complex permittivity measurements

    International Nuclear Information System (INIS)

    Palme, U.W.

    1987-10-01

    Estimating and monitoring up-to-date soil moisture conditions over extensive areas through passive (or active) microwave remote sensing techniques requires the knowledge of the complex relative permittivity (ε r * ) in function of soil moisture. X-band measurements of ε r * for different moisture conditions were made in laboratory for soil samples of six important Soils (PV 2 , LV 3 , LR d , LE 1 , SAP and Sc). Using a theoretical model and computational programmes developed, these measurements allowed estimates of the emissive characteristics of the soils that would be expected with the X-Band Microwave Radiometer built at INPE. The results, new, for soils from tropical regions, showed that only the physical characteristics and properties of the soils are not sufficient to explain the behaviour of ε r * in function of soil moisture, indicating that the chemical and/or mineralogical properties of the soils do have an important contribution. The results also showed thast ε r * in function of soil moisture depends on soil class. (author) [pt

  15. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  16. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  17. Characterization for Soil Fixation by Polyelectrolyte Complex

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  18. Characterization for Soil Fixation by Polyelectrolyte Complex

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kwon, Sang Woon; Yang, Heeman; Lee, Kune Woo; Seo, Bumkyoung; Moon, Jei Kwon

    2014-01-01

    According to report, the radioactivity bulk (approx. 95%) is localized within topsoil. Therefore soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils with Cs-137 by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been also used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and make into the polyelectrolyte complex (PEC) due to electrostatic interaction of polyanion and polycation in an aqueous solution. It can be avoids using the chemical cross-linking agents, and reducing the possible toxicity and other undesirable effects of the reagents. PEC can fix soil particles by flocculation and formation of crust between soil. The method can also prevent a spread of radioactive material by floating on a soil surface. Recently, PEC used for the solidification of soil near the Fukushima nuclear power plant in Japan. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. In this study, it was investigated the fixation of the soil by PEC to avoid the spread of the contamination in addition to the separation of soil and PEC. The physicochemical properties of polyelectrolyte complex solution and the stability of fixed soil by PEC were investigated. The mode of the addition is important to prepare the polyelectrolytes complex without PAA agglomerate. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation

  19. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    Science.gov (United States)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  20. Incorporating soil variability in continental soil water modelling: a trade-off between data availability and model complexity

    Science.gov (United States)

    Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.

    2012-04-01

    Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non

  1. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  2. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  3. Mobility of organic complexes of radionuclides in soils

    International Nuclear Information System (INIS)

    Swanson, J.L.

    1983-01-01

    Results are presented to illustrate the importance of another important aspect of kinetically-inert complexes of Ni and Co to radionuclide migration; such complexes can be sorbed by some soils, while only the uncomplexed species are sorbed by others. As shown earlier, when only uncomplexed species are sorbed the kinetic inertness of the complexes can prevent significant sorption of the radionuclides by soil. Other data provide added evidence that the importance of kinetically-inert complexes varies greatly among complexants, as well as among soils. 6 references, 8 figures

  4. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  5. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  6. Estimating soil zinc concentrations using reflectance spectroscopy

    Science.gov (United States)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  7. Ecological estimation of the irrigated soils in Qarabagh plain

    International Nuclear Information System (INIS)

    Mammadov, Q.S.; Nuriyeva, K.Q.

    2009-01-01

    Contemporary agricultural science improved the known adaptive approaches in the past, for it accounting natural peccularities of the concrete region is offered with the assistance of agroecological estimation of soil. Using of collecting materials of the soil esological parameters of soil cover of the studying territory and applying the system of the private scales of the soil estimation on degree of display of their separate signs, the ecological estimation of the irrigated soils of Qarabagh steppe where the highest ecological marks have been got such as grey-brown dark (94 marks) and ordinary soils (93 marks) has been carried out

  8. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    Science.gov (United States)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  9. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  10. Empirical Soil Moisture Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2

    Science.gov (United States)

    Burgin, M. S.; van Zyl, J. J.

    2017-12-01

    Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.

  11. Daily Based Morgan–Morgan–Finney (DMMF Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Directory of Open Access Journals (Sweden)

    Kwanghun Choi

    2017-04-01

    Full Text Available In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 . Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations.

  12. Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band

    Science.gov (United States)

    Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.

    2013-12-01

    In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering

  13. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  14. Revised soil parameter estimates for the soil types of the world

    NARCIS (Netherlands)

    Batjes, N.H.

    2002-01-01

    A revised set of physical and chemical parameter estimates is presented for the soil units of the world, as described by the two FAO soil legends (version 1974 and 1988). The study is based on 9607 soil profiles, which include profiles held in version 1.0 of the WISE database. Upon a screening of

  15. Estimation of Compaction Parameters Based on Soil Classification

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  16. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  17. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  18. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Science.gov (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  19. 7 A GIS Estimation of Soil Loss

    African Journals Online (AJOL)

    Administrator

    of the river channel that is causing flooding in some parts of Accra, Ghana. ... Soil loss factors such as rainfall erosivity, soil erodibilty, .... High rainfall intensity will easily splash or remove top soil, and it can also cause mass movement. In USLE erosivity, (R) is empirically estimated as. (Burrough & McDonnell, 1998):.

  20. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Science.gov (United States)

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  1. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  2. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  3. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... silt (0.002 to 0.05 mm) percentage to estimate the soil-water content at a given soil-water .... ar and br are the intercept and slope values of the regres- .... tions use the particle size classification of the South African Soil.

  4. Use of modeled and satelite soil moisture to estimate soil erosion in central and southern Italy.

    Science.gov (United States)

    Termite, Loris Francesco; Massari, Christian; Todisco, Francesca; Brocca, Luca; Ferro, Vito; Bagarello, Vincenzo; Pampalone, Vincenzo; Wagner, Wolfgang

    2016-04-01

    This study presents an accurate comparison between two different approaches aimed to enhance accuracy of the Universal Soil Loss Equation (USLE) in estimating the soil loss at the single event time scale. Indeed it is well known that including the observed event runoff in the USLE improves its soil loss estimation ability at the event scale. In particular, the USLE-M and USLE-MM models use the observed runoff coefficient to correct the rainfall erosivity factor. In the first case, the soil loss is linearly dependent on rainfall erosivity, in the second case soil loss and erosivity are related by a power law. However, the measurement of the event runoff is not straightforward or, in some cases, possible. For this reason, the first approach used in this study is the use of Soil Moisture For Erosion (SM4E), a recent USLE-derived model in which the event runoff is replaced by the antecedent soil moisture. Three kinds of soil moisture datasets have been separately used: the ERA-Interim/Land reanalysis data of the European Centre for Medium-range Weather Forecasts (ECMWF); satellite retrievals from the European Space Agency - Climate Change Initiative (ESA-CCI); modeled data using a Soil Water Balance Model (SWBM). The second approach is the use of an estimated runoff rather than the observed. Specifically, the Simplified Continuous Rainfall-Runoff Model (SCRRM) is used to derive the runoff estimates. SCRMM requires soil moisture data as input and at this aim the same three soil moisture datasets used for the SM4E have been separately used. All the examined models have been calibrated and tested at the plot scale, using data from the experimental stations for the monitoring of the erosive processes "Masse" (Central Italy) and "Sparacia" (Southern Italy). Climatic data and runoff and soil loss measures at the event time scale are available for the period 2008-2013 at Masse and for the period 2002-2013 at Sparacia. The results show that both the approaches can provide

  5. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  6. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  7. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    Science.gov (United States)

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-valuesoil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recalcitrant soil organic matter : how useful is radiocarbon for estimating its amount and variability?

    International Nuclear Information System (INIS)

    Tate, K.; Parshotam, A.; Scott, Neal

    1997-01-01

    The role of the terrestrial biosphere in the global carbon (C) cycle is poorly understood because of the complex biology underlying C storage, the spatial variability of vegetation and soils, and the effects of land use. Little is known about the nature, amount and variability of recalcitrant C in soils, despite the importance of determining whether soils behave as sources or sinks of CO 2 . 14 C dating indicates that most soils contain this very stable C fraction, with turnover times of millennia. The amount of this fraction, named the Inert Organic Matter (IOM) in one model, is estimated indirectly using the 'bomb' 14 C content of soil. In nine New Zealand grassland and forest ecosystems, amounts of IOM-C ranged between 0.03 to 2.9 kg C m -2 (1-18% of soil C to 0.25m depth). A decomposable C fraction, considered to be more susceptible to the effects of climate and land use, was estimated by subtracting the IOM-C fraction from the total soil organic C. Turnover times ranged between 8 and 36 years, and were inversely related to mean annual temperature (R 2 0.91, P 13 C NMR and pyrolysis-mass spectrometry as alkyl C. Paradoxically, for some ecosystems, the variation in IOM-C appears to be best explained by differences in soil hydrological conditions rather than by the accumulation of a discrete C fraction. Thus characterisation of environmental factors that constrain decomposition could be most useful for explaining the differences observed in IOM across different ecosystems, climates and soils. Despite the insights the modelling approach using 'bomb' 14 C provides into mechanisms for organic matter stabilisation, on theoretical grounds the validity of using 14 C measurements to estimate a recalcitrant C fraction that by definition contains no 14 C is questionable. We conclude that more rigorous models are needed with pools that can be experimentally verified, to improve understanding of the spatial variability of soil C storage. (author)

  9. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    International Nuclear Information System (INIS)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-01-01

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions

  10. Two and Three-Phases Fractal Models Application in Soil Saturated Hydraulic Conductivity Estimation

    Directory of Open Access Journals (Sweden)

    ELNAZ Rezaei abajelu

    2017-03-01

    Full Text Available Introduction: Soil Hydraulic conductivity is considered as one of the most important hydraulic properties in water and solutionmovement in porous media. In recent years, variousmodels as pedo-transfer functions, fractal models and scaling technique are used to estimate the soil saturated hydraulic conductivity (Ks. Fractal models with two subset of two (solid and pore and three phases (solid, pore and soil fractal (PSF are used to estimate the fractal dimension of soil particles. The PSF represents a generalization of the solid and pore mass fractal models. The PSF characterizes both the solid and pore phases of the porous material. It also exhibits self-similarity to some degree, in the sense that where local structure seems to be similar to the whole structure.PSF models can estimate interface fractal dimension using soil pore size distribution data (PSD and soil moisture retention curve (SWRC. The main objective of this study was to evaluate different fractal models to estimate the Ksparameter. Materials and Methods: The Schaapetal data was used in this study. The complex consists of sixty soil samples. Soil texture, soil bulk density, soil saturated hydraulic conductivity and soil particle size distribution curve were measured by hydrometer method, undistributed soil sample, constant head method and wet sieve method, respectively for all soil samples.Soil water retention curve were determined by using pressure plates apparatus.The Ks parameter could be estimated by Ralws model as a function of fractal dimension by seven fractal models. Fractal models included Fuentes at al. (1996, Hunt and Gee (2002, Bird et al. (2000, Huang and Zhang (2005, Tyler and Wheatcraft (1990, Kutlu et al. (2008, Sepaskhah and Tafteh (2013.Therefore The Ks parameter can be estimated as a function of the DS (fractal dimension by seven fractal models (Table 2.Sensitivity analysis of Rawls model was assessed by making changes±10%, ±20% and±30%(in input parameters

  11. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  12. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  13. An Innovative Method for Estimating Soil Retention at a ...

    Science.gov (United States)

    Planning for a sustainable future should include an accounting of services currently provided by ecosystems such as erosion control. Retention of soil improves fertility, increases water retention, and decreases sedimentation in streams and rivers. Landscapes patterns that facilitate these services could help reduce costs for flood control, dredging of reservoirs and waterways, while maintaining habitat for fish and other species important to recreational and tourism industries. Landscape scale geospatial data available for the continental United States was leveraged to estimate sediment erosion (RUSLE-based, Renard, et al. 1997) employing recent geospatial techniques of sediment delivery ratio (SDR) estimation (Cavalli, et al. 2013). The approach was designed to derive a quantitative approximation of the ecological services provided by vegetative cover, management practices, and other surface features with respect to protecting soils from the erosion processes of detachment, transport, and deposition. Quantities of soil retained on the landscape and potential erosion for multiple land cover scenarios relative to current (NLCD 2011) conditions were calculated for each calendar month, and summed to yield annual estimations at a 30-meter grid cell. Continental-scale data used included MODIS NDVI data (2000-2014) to estimate monthly USLE C-factors, gridded soil survey geographic (gSSURGO) soils data (annual USLE K factor), PRISM rainfall data (monthly USLE

  14. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  15. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  16. Ecological estimation of the soils good for grape in Ganja-Gazakh zone

    International Nuclear Information System (INIS)

    Mammadov, Q.S.; Yusifova, M.M.

    2009-01-01

    Contemporary agricultural science improved the known adaptive approaches in the past, for it accounting natural peccularities of the concrete region is offered with the assistance of agroecological estimation of soil. Using of collecting materials of the soil ecological parameters of soil cover of the studing territory and applying the system of the private scales of the soil estimation on degree of display of their separate signs, the ecological estimation of the soils good for grape in Ganja-Gazakh zone where the highest ecological markshave been got mountain-grey-brown dark (97 marks) and grey-brown dark (96 marks) soils has been carried out

  17. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    Science.gov (United States)

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  18. Evapotranspiration Estimates for a Stochastic Soil-Moisture Model

    Science.gov (United States)

    Chaleeraktrakoon, Chavalit; Somsakun, Somrit

    2009-03-01

    Potential evapotranspiration is information that is necessary for applying a widely used stochastic model of soil moisture (I. Rodriguez Iturbe, A. Porporato, L. Ridolfi, V. Isham and D. R. Cox, Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. Roy. Soc. London A455 (1999) 3789-3805). An objective of the present paper is thus to find a proper estimate of the evapotranspiration for the stochastic model. This estimate is obtained by comparing the calculated soil-moisture distribution resulting from various techniques, such as Thornthwaite, Makkink, Jensen-Haise, FAO Modified Penman, and Blaney-Criddle, with an observed one. The comparison results using five sequences of daily soil-moisture for a dry season from November 2003 to April 2004 (Udornthani Province, Thailand) have indicated that all methods can be used if the weather information required is available. This is because their soil-moisture distributions are alike. In addition, the model is shown to have its ability in approximately describing the phenomenon at a weekly or biweekly time scale which is desirable for agricultural engineering applications.

  19. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  20. A PEDOTRANSFER FUNCTION FOR ESTIMATING THE SOIL ERODIBILITY FACTOR IN SICILY

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil erodibility factor, K, of the Universal Soil Loss Equation (USLE is a simple descriptor of the soil susceptibility to rill and interrill erosion. The original procedure for determining K needs a knowledge of soil particle size distribution (PSD, soil organic matter, OM, content, and soil structure and permeability characteristics. However, OM data are often missing and soil structure and permeability are not easily evaluated in regional analyses. The objective of this investigation was to develop a pedotransfer function (PTF for estimating the K factor of the USLE in Sicily (south Italy using only soil textural data. The nomograph soil erodibility factor and its associated first approximation, K’, were determined at 471 sampling points distributed throughout the island of Sicily. Two existing relationships for estimating K on the basis of the measured geometric mean particle diameter were initially tested. Then, two alternative PTFs for estimating K’ and K, respectively, on the basis of the measured PSD were derived. Testing analysis showed that the K estimate by the proposed PTF (eq.11, which was characterized by a Nash-Suttcliffe efficiency index, NSEI, varying between 0.68 and 0.76, depending on the considered data set, was appreciably more accurate than the one obtained by other existing equations, yielding NSEI values varying between 0.21 and 0.32.

  1. Determination of soil degradation from flooding for estimating ecosystem services in Slovakia

    Science.gov (United States)

    Hlavcova, Kamila; Szolgay, Jan; Karabova, Beata; Kohnova, Silvia

    2015-04-01

    Floods as natural hazards are related to soil health, land-use and land management. They not only represent threats on their own, but can also be triggered, controlled and amplified by interactions with other soil threats and soil degradation processes. Among the many direct impacts of flooding on soil health, including soil texture, structure, changes in the soil's chemical properties, deterioration of soil aggregation and water holding capacity, etc., are soil erosion, mudflows, depositions of sediment and debris. Flooding is initiated by a combination of predispositive and triggering factors and apart from climate drivers it is related to the physiographic conditions of the land, state of the soil, land use and land management. Due to the diversity and complexity of their potential interactions, diverse methodologies and approaches are needed for describing a particular type of event in a specific environment, especially in ungauged sites. In engineering studies and also in many rainfall-runoff models, the SCS-CN method has remained widely applied for soil and land use-based estimations of direct runoff and flooding potential. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. Since the method and curve numbers were derived on the basis of an empirical analysis of rainfall-runoff events from small catchments and hillslope plots monitored by the USDA, the use of the method for the conditions of Slovakia raises uncertainty and can cause inaccurate results in determining direct runoff. The objective of the study presented (also within the framework of the EU-FP7 RECARE Project) was to develop the SCS - CN methodology for the flood conditions in Slovakia (and especially for the RECARE pilot site

  2. SOTER-based soil parameter estimates for Jordan (ver. 1.0)

    NARCIS (Netherlands)

    Batjes, N.H.

    2013-01-01

    This harmonized set of soil parameter estimates has been developed using an updated 1:500 000 scale Soil and Terrain (SOTER) Database for Jordan. The associated soil analytical data were derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally

  3. Estimating Soil Bulk Density and Total Nitrogen from Catchment ...

    African Journals Online (AJOL)

    Even though data on soil bulk density (BD) and total nitrogen (TN) are essential for planning modern farming techniques, their data availability is limited for many applications in the developing word. This study is designed to estimate BD and TN from soil properties, land-use systems, soil types and landforms in the ...

  4. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  5. Soil characteristics of landslides on Mount Elgon (Uganda): implications for estimating their age

    Science.gov (United States)

    Van Eynde, Elise; Dondeyne, Stefaan; Isabirye, Moses; Deckers, Jozef; Poesen, Jean

    2017-04-01

    The slopes of Mount Elgon, a complex volcano at the border between Uganda and Kenya, are frequently affected by landslides with disastrous effects on the livelihood of its population. Since local people greatly depend on the land for crop production, we examined if and how fast physico-chemical characteristics in landslide scars recover. A chronosequence of 18 landslides covering a period of 103 years was sampled in order to explore differences between topsoil within and outside landslide scars. For each landslide, two topsoil samples were taken within the landslide and two in nearby undisturbed soils to compare their physico-chemical characteristics. No differences were found for available P, Ca2+, Mg2+ content or for the fine earth texture. Recent landslides had however lower content of soil organic carbon (OC) and K+, and higher content of rock fragments and Na+ than the adjacent soils. Soil OC content increased significantly with age and reached levels of the corresponding undisturbed soils after ca. 60 years. Older landslides had even higher OC contents than soils adjacent to the landslide. Hence landslide scars act as local carbon sink. We suggest that the occurrence of rock fragments in the topsoil is a useful indicator for mapping past landslides. Moreover, the difference in soil OC content between landslide scars and adjacent soil could be used for estimating the age of landslides in data-poor regions.

  6. Soil profile property estimation with field and laboratory VNIR spectroscopy

    Science.gov (United States)

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  7. Application of minidisk infiltrometer to estimate soil water repellency

    Science.gov (United States)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  8. Studies on the applicability of biomarkers in estimating the systematic bioavailability of polynuclear aromatic hydrocarbons from manufactured gas plant tar-contaminated soils

    International Nuclear Information System (INIS)

    Koganti, A.; Spina, D.A.; Rozett, K.; Ma, B.-L.; Weyand, E.; Taylor, B.B.; Mauro, D.M.

    1998-01-01

    The systematic bioavailability of polynuclear aromatic hydrocarbons (PAH) from ingested soils containing manufactured gas plant (MGP) tar was evaluated in mice. Soil and organic extract of each soil were incorporated into a diet and fed to mice for two weeks. 1-Hydroxypyrene levels in urine and chemical:DNA adduct levels in lungs were used as biomarkers of PAH systematic bioavailability. Estimates of PAH relative bioavailability were determined by comparing the bioavailability observed between each soil and corresponding organic extract. In all but one case, bioavailiablity estimates based on 1-hydroxypyrene levels in urine indicate that the presence of MGP tar on soil results in a considerable decrease in PAH systemic bioavailablity (9-75%). Similarly, PAH bioavailability estimates based on chemical:DNA adduct formation ranged from nondetectable to 76%. These results clearly indicate that the bioavailiablity of PAH is less than 100% when soil contaminated with MGP tar is ingested by nice. In addition, the experimental methods employed in this study appear suitable for evaluating the effects of soil on the gastrointestinal absorption and systemic bioavailability of PAH from soil containing complex organic mixtures. 44 refs., 1 fig., 5 tabs

  9. Estimation of water retention and availability in soils of Rio Grande do Sul

    OpenAIRE

    Reichert,José Miguel; Albuquerque,Jackson Adriano; Kaiser,Douglas Rodrigo; Reinert,Dalvan José; Urach,Felipe Lavarda; Carlesso,Reimar

    2009-01-01

    Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity ...

  10. Meeting on the Microbiology of Soils, Autumn 2001: Estimation of protozoan diversity in soil

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    Different methods of estimating protozoan diversity in soil are discussed in this paper, with the major emphasis on heterotrophic flagellates. Although many species of ciliates and testate amoebae seem to be unique to the soil environment, the communities of heterotrophic flagellates and naked am...

  11. Estimating unsaturated hydraulic conductivity from soil moisture-tim function

    International Nuclear Information System (INIS)

    El Gendy, R.W.

    2002-01-01

    The unsaturated hydraulic conductivity for soil can be estimated from o(t) function, and the dimensionless soil water content parameter (Se)Se (β - βr)/ (φ - θ)), where θ, is the soil water content at any time (from soil moisture depletion curve l; θ is the residual water content and θ, is the total soil porosity (equals saturation point). Se can be represented as a time function (Se = a t b ), where t, is the measurement time and (a and b) are the regression constants. The recommended equation in this method is given by

  12. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    Science.gov (United States)

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  14. A neural network model for estimating soil phosphorus using terrain analysis

    Directory of Open Access Journals (Sweden)

    Ali Keshavarzi

    2015-12-01

    Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.

  15. A novel method for estimating soil precompression stress from uniaxial confined compression tests

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Labouriau, Rodrigo

    2017-01-01

    . Stress-strain curves were obtained by performing uniaxial, confined compression tests on undisturbed soil cores for three soil types at three soil water potentials. The new method performed better than the Gompertz fitting method in estimating precompression stress. The values of precompression stress...... obtained from the new method were linearly related to the maximum stress experienced by the soil samples prior to the uniaxial, confined compression test at each soil condition with a slope close to 1. Precompression stress determined with the new method was not related to soil type or dry bulk density......The concept of precompression stress is used for estimating soil strength of relevance to fieldtraffic. It represents the maximum stress experienced by the soil. The most recently developed fitting method to estimate precompression stress (Gompertz) is based on the assumption of an S-shape stress...

  16. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  17. An exploration of spatial risk assessment for soil protection: estimating risk and establishing priority areas for soil protection.

    Science.gov (United States)

    Kibblewhite, M G; Bellamy, P H; Brewer, T R; Graves, A R; Dawson, C A; Rickson, R J; Truckell, I; Stuart, J

    2014-03-01

    Methods for the spatial estimation of risk of harm to soil by erosion by water and wind and by soil organic matter decline are explored. Rates of harm are estimated for combinations of soil type and land cover (as a proxy for hazard frequency) and used to estimate risk of soil erosion and loss of soil organic carbon (SOC) for 1 km(2)pixels. Scenarios are proposed for defining the acceptability of risk of harm to soil: the most precautionary one corresponds to no net harm after natural regeneration of soil (i.e. a 1 in 20 chance of exceeding an erosion rate of soils and a carbon stock decline of 0 tha(-1)y(-1) for organic soils). Areas at higher and lower than possible acceptable risk are mapped. The veracity of boundaries is compromised if areas of unacceptable risk are mapped to administrative boundaries. Errors in monitoring change in risk of harm to soil and inadequate information on risk reduction measures' efficacy, at landscape scales, make it impossible to use or monitor quantitative targets for risk reduction adequately. The consequences for priority area definition of expressing varying acceptable risk of harm to soil as a varying probability of exceeding a fixed level of harm, or, a varying level of harm being exceeded with a fixed probability, are discussed. Soil data and predictive models for rates of harm to soil would need considerable development and validation to implement a priority area approach robustly. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    Science.gov (United States)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  19. Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data

    Directory of Open Access Journals (Sweden)

    Arnaud Mialon

    2011-12-01

    Full Text Available The SMOS satellite mission, launched in 2009, allows global soil moisture estimations to be made using the L-band Microwave Emission of the Biosphere (L-MEB model, which simulates the L-band microwave emissions produced by the soil–vegetation layer. This model was calibrated using various sources of in situ and airborne data. In the present study, we propose to evaluate the L-MEB model on the basis of a large set of airborne data, recorded by the CAROLS radiometer during the course of 20 flights made over South West France (the SMOSMANIA site, and supported by simultaneous soil moisture measurements, made in 2009 and 2010. In terms of volumetric soil moisture, the retrieval accuracy achieved with the L-MEB model, with two default roughness parameters, ranges between 8% and 13%. Local calibrations of the roughness parameter, using data from the 2009 flights for different areas of the site, allowed an accuracy of approximately 5.3% to be achieved with the 2010 CAROLS data. Simultaneously we estimated the vegetation optical thickness (t and we showed that, when roughness is locally adjusted, MODIS NDVI values are correlated (R2 = 0.36 to t. Finally, as a consequence of the significant influence of the roughness parameter on the estimated absolute values of soil moisture, we propose to evaluate the relative variability of the soil moisture, using a default soil roughness parameter. The soil moisture variations are estimated with an uncertainty of approximately 6%.

  20. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  1. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  2. A statistical method for estimating rates of soil development and ages of geologic deposits: A design for soil-chronosequence studies

    Science.gov (United States)

    Switzer, P.; Harden, J.W.; Mark, R.K.

    1988-01-01

    A statistical method for estimating rates of soil development in a given region based on calibration from a series of dated soils is used to estimate ages of soils in the same region that are not dated directly. The method is designed specifically to account for sampling procedures and uncertainties that are inherent in soil studies. Soil variation and measurement error, uncertainties in calibration dates and their relation to the age of the soil, and the limited number of dated soils are all considered. Maximum likelihood (ML) is employed to estimate a parametric linear calibration curve, relating soil development to time or age on suitably transformed scales. Soil variation on a geomorphic surface of a certain age is characterized by replicate sampling of soils on each surface; such variation is assumed to have a Gaussian distribution. The age of a geomorphic surface is described by older and younger bounds. This technique allows age uncertainty to be characterized by either a Gaussian distribution or by a triangular distribution using minimum, best-estimate, and maximum ages. The calibration curve is taken to be linear after suitable (in certain cases logarithmic) transformations, if required, of the soil parameter and age variables. Soil variability, measurement error, and departures from linearity are described in a combined fashion using Gaussian distributions with variances particular to each sampled geomorphic surface and the number of sample replicates. Uncertainty in age of a geomorphic surface used for calibration is described using three parameters by one of two methods. In the first method, upper and lower ages are specified together with a coverage probability; this specification is converted to a Gaussian distribution with the appropriate mean and variance. In the second method, "absolute" older and younger ages are specified together with a most probable age; this specification is converted to an asymmetric triangular distribution with mode at the

  3. PEDO-TRANSFER FUNCTIONS FOR ESTIMATING SOIL BULK DENSITY IN CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Henrique Seixas Barros

    2015-04-01

    Full Text Available Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2 and Akaike information criterion (AIC and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.

  4. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    Science.gov (United States)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  5. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  6. Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape

    International Nuclear Information System (INIS)

    Khakural, B.R.; Robert, P.C.; Hugins, D.R.

    1998-01-01

    There is a growing interest in real-time estimation of soil moisture for site-specific crop management. Non-contacting electromagnetic inductive (EMI) methods have potentials to provide real-time estimate of soil profile water contents. Soil profile water contents were monitored with a neutron probe at selected sites. A Geonics LTD EM-38 terrain meter was used to record bulk soil electrical conductivity (EC(A)) readings across a soil-landscape in West central Minnesota with variable moisture regimes. The relationships among EC(A), selected soil and landscape properties were examined. Bulk soil electrical conductivity (0-1.0 and 0-0.5 m) was negatively correlated with relative elevation. It was positively correlated with soil profile (1.0 m) clay content and negatively correlated with soil profile coarse fragments (2 mm) and sand content. There was significant linear relationship between ECA (0-1.0 and 0-0.5) and soil profile water storage. Soil water storage estimated from ECA reflected changes in landscape and soil characteristics

  7. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    Science.gov (United States)

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  8. Estimation of soil water retention curve using fractal dimension ...

    African Journals Online (AJOL)

    The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate plant-available water. Since, direct measurement of SWRC is time-consuming and expensive, different models have been developed to estimate SWRC. In this study, a fractal-based model ...

  9. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  10. Soil Heavy Metal Concentrations in Green Space of Mobarake Steel Complex

    Directory of Open Access Journals (Sweden)

    vahid Moradinasab

    2017-01-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions of the world is a cause of serious concerns. The severe water scarcity urges the reuse of treated wastewater effluent and marginal water as a resource for irrigation. Mobarake Steel Complex has been using treated industrial wastewater for drip-irrigation of trees in about 1350 ha of its green space. However, wastewater may contain some amounts of toxic heavy metals, which create problems. Excessive accumulation of heavy metals in agricultural soils through wastewater irrigation may not only result in soil contamination, but also affect food quality and safety. Improper irrigation management, however, can lead to the loss of soil quality through such processes as contamination and salination. Soil quality implies its capacity to sustain biological productivity, maintain environmental quality, and enhance plants, human and animal health. Soil quality assessment is a tool that helps managers to evaluate short-term soil problems and appropriate management strategies for maintaining soil quality in the long time. Mobarakeh Steel Complex has been using treated wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short- middle, and long-term wastewater irrigation on soil heavy metal concentration in green space of Mobarake Steel complex. Materials and Methods: The impacts of wastewater irrigation on bioavailable and total heavy metal concentrations in the soils irrigated with treated wastewater for 2, 6 and 18 years as compared to those in soils irrigated with groundwater and un-irrigated soils. Soils were sampled from the wet bulb produced by under-tree sprinklers in three depths (0-20, 20-40 and 40-60 cm. Soil samples were air-dried, and crushed to pass through a 2-mm sieve. Plant-available metal concentrations were extracted from the soil with diethylenetriaminepentaacetic acid-CaCl2

  11. Assimilation of microwave brightness temperatures for soil moisture estimation using particle filter

    International Nuclear Information System (INIS)

    Bi, H Y; Ma, J W; Qin, S X; Zeng, J Y

    2014-01-01

    Soil moisture plays a significant role in global water cycles. Both model simulations and remote sensing observations have their limitations when estimating soil moisture on a large spatial scale. Data assimilation (DA) is a promising tool which can combine model dynamics and remote sensing observations to obtain more precise ground soil moisture distribution. Among various DA methods, the particle filter (PF) can be applied to non-linear and non-Gaussian systems, thus holding great potential for DA. In this study, a data assimilation scheme based on the residual resampling particle filter (RR-PF) was developed to assimilate microwave brightness temperatures into the macro-scale semi-distributed Variance Infiltration Capacity (VIC) Model to estimate surface soil moisture. A radiative transfer model (RTM) was used to link brightness temperatures with surface soil moisture. Finally, the data assimilation scheme was validated by experimental data obtained at Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the estimation accuracy of soil moisture can be improved significantly by RR-PF through assimilating microwave brightness temperatures into VIC model. Both the overall trends and specific values of the assimilation results are more consistent with ground observations compared with model simulation results

  12. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra

    2018-03-27

    Mar 27, 2018 ... of the global population (Millennium Ecosystem. Assessment 2005). Likewise, there is a .... Therefore, the main objective of this study was to develop PTFs for arid soils of India to estimate soil water content at FC and PWP.

  13. Complex Adaptive Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape.

    Science.gov (United States)

    Salvati, Luca; Mavrakis, Anastasios; Colantoni, Andrea; Mancino, Giuseppe; Ferrara, Agostino

    2015-07-15

    Degradation of soils and sensitivity of land to desertification are intensified in last decades in the Mediterranean region producing heterogeneous spatial patterns determined by the interplay of factors such as climate, land-use changes, and human pressure. The present study hypothesizes that rising levels of soil degradation and land sensitivity to desertification are reflected into increasingly complex (and non-linear) relationships between environmental and socioeconomic variables. To verify this hypothesis, the Complex Adaptive Systems (CAS) framework was used to explore the spatiotemporal dynamics of eleven indicators derived from a standard assessment of soil degradation and land sensitivity to desertification in Italy. Indicators were made available on a detailed spatial scale (773 agricultural districts) for various years (1960, 1990, 2000 and 2010) and analyzed through a multi-dimensional exploratory data analysis. Our results indicate that the number of significant pair-wise correlations observed between indicators increased with the level of soil and land degradation, although with marked differences between northern and southern Italy. 'Fast' and 'slow' factors underlying soil and land degradation, and 'rapidly-evolving' or 'locked' agricultural districts were identified according to the rapidity of change estimated for each of the indicators studied. In southern Italy, 'rapidly-evolving' districts show a high level of soil degradation and land sensitivity to desertification during the whole period of investigation. On the contrary, those districts in northern Italy are those experiencing a moderate soil degradation and land sensitivity to desertification with the highest increase in the level of sensitivity over time. The study framework contributes to the assessment of complex local systems' dynamics in affluent but divided countries. Results may inform thematic strategies for the mitigation of land and soil degradation in the framework of action

  14. [Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils].

    Science.gov (United States)

    Lukacheva, E G; Chernov, T I; Bykova, E M; Vlasenko, A N; Manucharova, N A

    2013-01-01

    With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.

  15. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2012-01-01

    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  16. Estimates of Annual Soil Loss Rates in the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Grasiela de Oliveira Rodrigues Medeiros

    Full Text Available ABSTRACT: Soil is a natural resource that has been affected by human pressures beyond its renewal capacity. For this reason, large agricultural areas that were productive have been abandoned due to soil degradation, mainly caused by the erosion process. The objective of this study was to apply the Universal Soil Loss Equation to generate more recent estimates of soil loss rates for the state of São Paulo using a database with information from medium resolution (30 m. The results showed that many areas of the state have high (critical levels of soil degradation due to the predominance of consolidated human activities, especially in growing sugarcane and pasture use. The average estimated rate of soil loss is 30 Mg ha-1 yr-1 and 59 % of the area of the state (except for water bodies and urban areas had estimated rates above 12 Mg ha-1 yr-1, considered as the average tolerance limit in the literature. The average rates of soil loss in areas with annual agricultural crops, semi-perennial agricultural crops (sugarcane, and permanent agricultural crops were 118, 78, and 38 Mg ha-1 yr-1 respectively. The state of São Paulo requires attention to conservation of soil resources, since most soils led to estimates beyond the tolerance limit.

  17. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  18. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil

    International Nuclear Information System (INIS)

    Zhang Xinbao; Long Yi; He Xiubin; Fu Jiexiong; Zhang Yunqi

    2008-01-01

    137 Cs is an artificial radionuclide with a half-life of 30.12 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period of 1950s-1970s with the maximum rate of 137 Cs fallout from atmosphere in 1963. 137 Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Its subsequent redistribution is associated with movements of the soil or sediment particles. The 137 Cs nuclide tracing technique has been used for assessment of soil losses for both undisturbed and cultivated soils. For undisturbed soils, a simple profile-shape model was developed in 1990 to describe the 137 Cs depth distribution in profile, where the maximum 137 Cs occurs in the surface horizon and it exponentially decreases with depth. The model implied that the total 137 Cs fallout amount deposited on the earth surface in 1963 and the 137 Cs profile shape has not changed with time. The model has been widely used for assessment of soil losses on undisturbed land. However, temporal variations of 137 Cs depth distribution in undisturbed soils after its deposition on the ground due to downward transport processes are not considered in the previous simple profile-shape model. Thus, the soil losses are overestimated by the model. On the base of the erosion assessment model developed by Walling, D.E., He, Q. [1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28, 611-622], we discuss the 137 Cs transport process in the eroded soil profile and make some simplification to the model, develop a method to estimate the soil erosion rate more expediently. To compare the soil erosion rates calculated by the simple profile-shape model and the simple transport model, the soil losses related to different 137 Cs loss proportions of the reference inventory at the Kaixian site of the

  19. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  20. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    Science.gov (United States)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  1. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  2. Multiscale Bayesian neural networks for soil water content estimation

    Science.gov (United States)

    Jana, Raghavendra B.; Mohanty, Binayak P.; Springer, Everett P.

    2008-08-01

    Artificial neural networks (ANN) have been used for some time now to estimate soil hydraulic parameters from other available or more easily measurable soil properties. However, most such uses of ANNs as pedotransfer functions (PTFs) have been at matching spatial scales (1:1) of inputs and outputs. This approach assumes that the outputs are only required at the same scale as the input data. Unfortunately, this is rarely true. Different hydrologic, hydroclimatic, and contaminant transport models require soil hydraulic parameter data at different spatial scales, depending upon their grid sizes. While conventional (deterministic) ANNs have been traditionally used in these studies, the use of Bayesian training of ANNs is a more recent development. In this paper, we develop a Bayesian framework to derive soil water retention function including its uncertainty at the point or local scale using PTFs trained with coarser-scale Soil Survey Geographic (SSURGO)-based soil data. The approach includes an ANN trained with Bayesian techniques as a PTF tool with training and validation data collected across spatial extents (scales) in two different regions in the United States. The two study areas include the Las Cruces Trench site in the Rio Grande basin of New Mexico, and the Southern Great Plains 1997 (SGP97) hydrology experimental region in Oklahoma. Each region-specific Bayesian ANN is trained using soil texture and bulk density data from the SSURGO database (scale 1:24,000), and predictions of the soil water contents at different pressure heads with point scale data (1:1) inputs are made. The resulting outputs are corrected for bias using both linear and nonlinear correction techniques. The results show good agreement between the soil water content values measured at the point scale and those predicted by the Bayesian ANN-based PTFs for both the study sites. Overall, Bayesian ANNs coupled with nonlinear bias correction are found to be very suitable tools for deriving soil

  3. Soil loss estimation using geographic information system in enfraz watershed for soil conservation planning in highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Gizachew Tiruneh

    2015-12-01

    Full Text Available Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. Enfraz watershed is one of the most erosion-prone watersheds in the highlands of Ethiopia, which received little attention. This study was, therefore, carried out to spatially predict the soil loss rate of the watershed with a Geographic Information System (GIS and Remote Sensing (RS. Revised Universal Soil Loss Equation (RUSLE adapted to Ethiopian conditions was used to estimate potential soil losses by utilizing information on rainfall erosivity (R using interpolation of rainfall data, soil erodibility (K using soil map, vegetation cover (C using satellite images, topography (LS using Digital Elevation Model (DEM and conservation practices (P using satellite images. Based on the analysis, about 92.31% (5914.34 ha of the watershed was categorized none to slight class which under soil loss tolerance (SLT values ranging from 5 to 11 tons ha-1 year-1. The remaining 7.68% (492.21 ha of land was classified under moderate to high class about several times the maximum tolerable soil loss. The total and an average amount of soil loss estimated by RUSLE from the watershed was 30,836.41 ton year-1 and 4.81 tons ha-1year-1, respectively.

  4. A quantitative model for estimating mean annual soil loss in cultivated land using 137Cs measurements

    International Nuclear Information System (INIS)

    Yang Hao; Zhao Qiguo; Du Mingyuan; Minami, Katsuyuki; Hatta, Tamao

    2000-01-01

    The radioisotope 137 Cs has been widely used to determine rates of cultivated soil loss, Many calibration relationships (including both empirical relationships and theoretical models) have been employed to estimate erosion rates from the amount of 137 Cs lost from the cultivated soil profile. However, there are important limitations which restrict the reliability of these models, which consider only the uniform distribution of 137 Cs in the plough layer and the depth. As a result, erosion rates they may be overestimated or underestimated. This article presents a quantitative model for the relation the amount of 137 Cs lost from the cultivate soil profile and the rate of soil erosion. According to a mass balance model, during the construction of this model we considered the following parameters: the remaining fraction of the surface enrichment layer (F R ), the thickness of the surface enrichment layer (H s ), the depth of the plough layer (H p ), input fraction of the total 137 Cs fallout deposition during a given year t (F t ), radioactive decay of 137 Cs (k), and sampling year (t). The simulation results showed that the amounts of erosion rates estimated using this model were very sensitive to changes in the values of the parameters F R , H s , and H p . We also observed that the relationship between the rate of soil loss and 137 Cs depletion is neither linear nor logarithmic, and is very complex. Although the model is an improvement over existing approaches to derive calibration relationships for cultivated soil, it requires empirical information on local soil properties and the behavior of 137 Cs in the soil profile. There is clearly still a need for more precise information on the latter aspect and, in particular, on the retention of 137 Cs fallout in the top few millimeters of the soil profile and on the enrichment and depletion effects associated with soil redistribution (i.e. for determining accurate values of F R and H s ). (author)

  5. Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia

    Science.gov (United States)

    Brocca, Luca; Pellarin, Thierry; Crow, Wade T.; Ciabatta, Luca; Massari, Christian; Ryu, Dongryeol; Su, Chun-Hsu; Rüdiger, Christoph; Kerr, Yann

    2016-10-01

    Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the Soil Moisture and Ocean Salinity (SMOS) satellite is used for improving satellite rainfall estimates obtained from the Tropical Rainfall Measuring Mission multisatellite precipitation analysis product (TMPA) using three different "bottom up" techniques: SM2RAIN, Soil Moisture Analysis Rainfall Tool, and Antecedent Precipitation Index Modification. The implementation of these techniques aims at improving the well-known "top down" rainfall estimate derived from TMPA products (version 7) available in near real time. Ground observations provided by the Australian Water Availability Project are considered as a separate validation data set. The three algorithms are calibrated against the gauge-corrected TMPA reanalysis product, 3B42, and used for adjusting the TMPA real-time product, 3B42RT, using SMOS soil moisture data. The study area covers the entire Australian continent, and the analysis period ranges from January 2010 to November 2013. Results show that all the SMOS-based rainfall products improve the performance of 3B42RT, even at daily time scale (differently from previous investigations). The major improvements are obtained in terms of estimation of accumulated rainfall with a reduction of the root-mean-square error of more than 25%. Also, in terms of temporal dynamic (correlation) and rainfall detection (categorical scores) the SMOS-based products provide slightly better results with respect to 3B42RT, even though the relative performance between the methods is not always the same. The strengths and weaknesses of each algorithm and the spatial variability of their performances are identified in order to indicate the ways forward for this promising research activity. Results show that the integration of bottom up and top down approaches

  6. Application of a mer-lux biosensor for estimating bioavailable mercury in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.; Turner, R. R.

    2000-01-01

    A previously described bioassay using a mer-lux gene fusion for detection of bioavailable mercury was applied for the estimation of the bioavailable fraction of mercury in soil. The bioavailable fraction is defined here as being part of the water leachable fraction. Due to masking of light emission...... responses. The utility of the mer-lux biosensor assay was tested by relating measurements of bioavailable and total mercury to the response of the soil microbial community to mercury exposure. Two different soil types (an agricultural and a beech forest soil) were spiked with 2.5 µg Hg(II) g-1 in microcosms...... in resistance or diversity. This study showed that the bioassay using the mer-lux biosensor is a useful and sensitive tool for estimation of bioavailable mercury in soil....

  7. A Physically—Based Geometry Model for Transport Distance Estimation of Rainfall-Eroded Soil Sediment

    Directory of Open Access Journals (Sweden)

    Qian-Gui Zhang

    2016-01-01

    Full Text Available Estimations of rainfall-induced soil erosion are mostly derived from the weight of sediment measured in natural runoff. The transport distance of eroded soil is important for evaluating landscape evolution but is difficult to estimate, mainly because it cannot be linked directly to the eroded sediment weight. The volume of eroded soil is easier to calculate visually using popular imaging tools, which can aid in estimating the transport distance of eroded soil through geometry relationships. In this study, we present a straightforward geometry model to predict the maximum sediment transport distance incurred by rainfall events of various intensity and duration. In order to verify our geometry prediction model, a series of experiments are reported in the form of a sediment volume. The results show that cumulative rainfall has a linear relationship with the total volume of eroded soil. The geometry model can accurately estimate the maximum transport distance of eroded soil by cumulative rainfall, with a low root-mean-square error (4.7–4.8 and a strong linear correlation (0.74–0.86.

  8. Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing

    Science.gov (United States)

    Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.

    2016-12-01

    Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.

  9. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  10. Estimation of the acid sensitivity of a soil

    International Nuclear Information System (INIS)

    Thimm, H.F.

    1991-01-01

    Current regulations for environmental monitoring in the sour gas industry require annual reporting of soil pH. It is well known that this procedure may produce results with wide scatter, and without a clear trend over time. An alternative method which overcomes this problem is proposed. Rather than relying on soil monitoring to indicate the beginning of an irreversible pH drop, the new method allows the time of this occurrence to be calculated if the mean sulfur dioxide or sulfur deposition rate is known or can be estimated. It is also possible, in at least some cases, to identify the minerals that govern initial pH control of the soil. The method rests on kinetic measurement of soil pH change with time after acidification in the laboratory. It is recommended for monitoring, and especially for environmental impact assessment submissions to regulatory authorities. 8 refs., 3 figs

  11. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  12. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil) by

  13. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions

    Science.gov (United States)

    Reynolds, C. A.; Jackson, T. J.; Rawls, W. J.

    2000-12-01

    Spatial soil water-holding capacities were estimated for the Food and Agriculture Organization (FAO) digital Soil Map of the World (SMW) by employing continuous pedotransfer functions (PTF) within global pedon databases and linking these results to the SMW. The procedure first estimated representative soil properties for the FAO soil units by statistical analyses and taxotransfer depth algorithms [Food and Agriculture Organization (FAO), 1996]. The representative soil properties estimated for two layers of depths (0-30 and 30-100 cm) included particle-size distribution, dominant soil texture, organic carbon content, coarse fragments, bulk density, and porosity. After representative soil properties for the FAO soil units were estimated, these values were substituted into three different pedotransfer functions (PTF) models by Rawls et al. [1982], Saxton et al. [1986], and Batjes [1996a]. The Saxton PTF model was finally selected to calculate available water content because it only required particle-size distribution data and results closely agreed with the Rawls and Batjes PTF models that used both particle-size distribution and organic matter data. Soil water-holding capacities were then estimated by multiplying the available water content by the soil layer thickness and integrating over an effective crop root depth of 1 m or less (i.e., encountered shallow impermeable layers) and another soil depth data layer of 2.5 m or less.

  14. A statistical approach to estimating soil-to-plant transfer factor of strontium in agricultural fields

    International Nuclear Information System (INIS)

    Ishikawa, Nao; Tagami, Keiko; Uchida, Shigeo

    2009-01-01

    Soil-to-plant transfer factor (TF) is one of the important parameters in radiation dose assessment models for the environmental transfer of radionuclides. Since TFs are affected by several factors, including radionuclides, plant species and soil properties, development of a method for estimation of TF using some soil and plant properties would be useful. In this study, we took a statistical approach to estimating the TF of stable strontium (TF Sr ) from selected soil properties and element concentrations in plants, which was used as an analogue of 90 Sr. We collected the plant and soil samples used for the study from 142 agricultural fields throughout Japan. We applied a multiple linear regression analysis in order to get an empirical equation to estimate TF Sr . TF Sr could be estimated from the Sr concentration in soil (C Sr soil ) and Ca concentration in crop (C Ca crop ) using the following equation: log TF Sr =-0.88·log C Sr soil +0.93·log C Ca crop -2.53. Then, we replaced our data with Ca concentrations in crops from a food composition database compiled by the Japanese government. Finally, we predicted TF Sr using Sr concentration in soil from our data and Ca concentration in crops from the database of food composition. (author)

  15. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients

    Science.gov (United States)

    Rapid and efficient quantification of plant-available soil phosphorus (P) and potassium (K) is needed to support variable-rate fertilization strategies. Two methods that have been used for estimating these soil macronutrients are diffuse reflectance spectroscopy in visible and near-infrared (VNIR) w...

  16. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  17. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  18. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  19. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  20. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    Science.gov (United States)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  1. A MATLAB program for estimation of unsaturated hydraulic soil parameters using an infiltrometer technique

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Hansen, Søren; Petersen, Carsten

    2008-01-01

    We combined an inverse routine for assessing the hydraulic soil parameters of the Campbell/Mualem model with the power series solution developed by Philip for describing one-dimensional vertical infiltration into a homogenous soil. We based the estimation routine on a proposed measurement procedure....... An independent measurement of the soil water content at saturation may reduce the uncertainty of estimated parameters. Response surfaces of the objective function were analysed. Scenarios for various soils and conditions, using numerically generated synthetic cumulative infiltration data with normally...

  2. Image Analysis to Estimate Mulch Residue in Soil

    Directory of Open Access Journals (Sweden)

    Carmen Moreno

    2014-01-01

    Full Text Available Mulching is used to improve the condition of agricultural soils by covering the soil with different materials, mainly black polyethylene (PE. However, problems derived from its use are how to remove it from the field and, in the case of it remaining in the soil, the possible effects on it. One possible solution is to use biodegradable plastic (BD or paper (PP, as mulch, which could present an alternative, reducing nonrecyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues in the ground is one of the basic requirements to estimate the potential of each material to degrade. This study has the goal of evaluating the residue of several mulch materials over a crop campaign in Central Spain through image analysis. Color images were acquired under similar lighting conditions at the experimental field. Different thresholding methods were applied to binarize the histogram values of the image saturation plane in order to show the best contrast between soil and mulch. Then the percentage of white pixels (i.e., soil area was used to calculate the mulch deterioration. A comparison of thresholding methods and the different mulch materials based on percentage of bare soil area obtained is shown.

  3. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    Science.gov (United States)

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  5. Estimating Infiltration Rates for a Loessal Silt Loam Using Soil Properties

    Science.gov (United States)

    M. Dean Knighton

    1978-01-01

    Soil properties were related to infiltration rates as measured by single-ringsteady-head infiltometers. The properties showing strong simple correlations were identified. Regression models were developed to estimate infiltration rate from several soil properties. The best model gave fair agreement to measured rates at another location.

  6. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  7. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    Science.gov (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  8. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation

    Science.gov (United States)

    Jana, Raghavendra B.; Mohanty, Binayak P.

    2011-03-01

    SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support

  9. A new approach to study cadmium complexes with oxalic acid in soil solution.

    Science.gov (United States)

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A new approach to study cadmium complexes with oxalic acid in soil solution

    International Nuclear Information System (INIS)

    Jaklova Dytrtova, Jana; Jakl, Michal; Sestakova, Ivana; Zins, Emilie-Laure; Schroeder, Detlef; Navratil, Tomas

    2011-01-01

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH 2 ) were observed. In order to verify the possible formation of complexes with OAH 2 , aqueous solutions of OAH 2 with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd n (X,Y) (2n+1) ] - , where n is the number of cadmium atoms, X = Cl - , and Y = OAH - . Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  11. A new approach to study cadmium complexes with oxalic acid in soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Jaklova Dytrtova, Jana, E-mail: dytrtova@uochb.cas.cz [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Jakl, Michal [Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16521 Prague - Suchdol (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zins, Emilie-Laure; Schroeder, Detlef [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Navratil, Tomas [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH{sub 2}) were observed. In order to verify the possible formation of complexes with OAH{sub 2}, aqueous solutions of OAH{sub 2} with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd{sub n}(X,Y){sub (2n+1)}]{sup -}, where n is the number of cadmium atoms, X = Cl{sup -}, and Y = OAH{sup -}. Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  12. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  13. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  14. Stand-scale soil respiration estimates based on chamber methods in a Bornean tropical rainforest

    Science.gov (United States)

    Kume, T.; Katayama, A.; Komatsu, H.; Ohashi, M.; Nakagawa, M.; Yamashita, M.; Otsuki, K.; Suzuki, M.; Kumagai, T.

    2009-12-01

    This study was undertaken to estimate stand-scale soil respiration in an aseasonal tropical rainforest on Borneo Island. To this aim, we identified critical and practical factors explaining spatial variations in soil respiration based on the soil respiration measurements conducted at 25 points in a 40 × 40 m subplot of a 4 ha study plot for five years in relation to soil, root, and forest structural factors. Consequently, we found significant positive correlation between the soil respiration and forest structural parameters. The most important factor was the mean DBH within 6 m of the measurement points, which had a significant linear relationship with soil respiration. Using the derived linear regression and an inventory dataset, we estimated the 4 ha-scale soil respiration. The 4 ha-scale estimation (6.0 μmol m-2 s-1) was nearly identical to the subplot scale measurements (5.7 μmol m-2 s-1), which were roughly comparable to the nocturnal CO2 fluxes calculated using the eddy covariance technique. To confirm the spatial representativeness of soil respiration estimates in the subplot, we performed variogram analysis. Semivariance of DBH(6) in the 4 ha plot showed that there was autocorrelation within the separation distance of about 20 m, and that the spatial dependence was unclear at a separation distance of greater than 20 m. This ascertained that the 40 × 40 m subplot could represent the whole forest structure in the 4 ha plot. In addition, we discuss characteristics of the stand-scale soil respiration at this site by comparing with those of other forests reported in previous literature in terms of the soil C balance. Soil respiration at our site was noticeably greater, relative to the incident litterfall amount, than soil respiration in other tropical and temperate forests probably owing to the larger total belowground C allocation by emergent trees. Overall, this study suggests the arrangement of emergent trees and their bellow ground C allocation could be

  15. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  16. Spatial Data Mining for Estimating Cover Management Factor of Universal Soil Loss Equation

    Science.gov (United States)

    Tsai, F.; Lin, T. C.; Chiang, S. H.; Chen, W. W.

    2016-12-01

    Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes long-term soil erosion processes. Among the six different soil erosion risk factors of USLE, the cover-management factor (C-factor) is related to land-cover/land-use. The value of C-factor ranges from 0.001 to 1, so it alone might cause a thousandfold difference in a soil erosion analysis using USLE. The traditional methods for the estimation of USLE C-factor include in situ experiments, soil physical parameter models, USLE look-up tables with land use maps, and regression models between vegetation indices and C-factors. However, these methods are either difficult or too expensive to implement in large areas. In addition, the values of C-factor obtained using these methods can not be updated frequently, either. To address this issue, this research developed a spatial data mining approach to estimate the values of C-factor with assorted spatial datasets for a multi-temporal (2004 to 2008) annual soil loss analysis of a reservoir watershed in northern Taiwan. The idea is to establish the relationship between the USLE C-factor and spatial data consisting of vegetation indices and texture features extracted from satellite images, soil and geology attributes, digital elevation model, road and river distribution etc. A decision tree classifier was used to rank influential conditional attributes in the preliminary data mining. Then, factor simplification and separation were considered to optimize the model and the random forest classifier was used to analyze 9 simplified factor groups. Experimental results indicate that the overall accuracy of the data mining model is about 79% with a kappa value of 0.76. The estimated soil erosion amounts in 2004-2008 according to the data mining results are about 50.39 - 74.57 ton/ha-year after applying the sediment delivery ratio and correction coefficient. Comparing with estimations calculated with C-factors from look-up tables, the soil erosion

  17. The impact of the Almalyk Industrial Complex on soil chemical and biological properties

    International Nuclear Information System (INIS)

    Shukurov, Nosir; Pen-Mouratov, Stanislav; Steinberger, Yosef

    2005-01-01

    The effect of heavy metals on soil free-living nematodes, microbial biomass (C mic ) and basal respiration (BR) was studied along a 15 km downwind deposition gradient, originating at the Almalyk Industrial Complex. Soil samples from 0-10 and 10-20 cm layers were collected at 5 km intervals. A significant decrease in heavy metal deposition was found going from the source in the downwind direction and with depth. The soil microbial biomass, basal respiration and derived microbial indices for soil samples from the Almalyk industrial area were analysed. The lowest soil microbial biomass and total number of free-living nematodes were found in soil samples near the industrial complex, with a high heavy metal and weak total organic carbon (C org ) content. The highest C mic was found in the soil samples collected 15 km from the pollution source. BR displayed similar results. The derived indices, metabolic quotient (qCO 2 ) and microbial ratio (C mic /C org ), revealed significant differences with distance, confirming environmental stress in the first and second locations. The present study elucidates the importance of soil nematode and microbial populations as suitable tools for bio-monitoring the effect of heavy metals on soil systems. - Soil nematodes and microbes are suitable biomonitors for metals in soils

  18. Estimation of soil water storage change from clay shrinkage using satellite radar interferometry

    NARCIS (Netherlands)

    Brake, te Bram

    2017-01-01

    Measurements of soil water storage are hard to obtain on scales relevant for water management and policy making. Therefore, this research develops a new measurement methodology for soil water storage estimation in clay containing soils. The proposed methodology relies on the specific property of

  19. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters

    Science.gov (United States)

    Wang, Ji-Peng; Hu, Nian; François, Bertrand; Lambert, Pierre

    2017-07-01

    This study proposed two pedotransfer functions (PTFs) to estimate sandy soil water retention curves. It is based on the van Genuchten's water retention model and from a semiphysical and semistatistical approach. Basic gradation parameters of d60 as particle size at 60% passing and the coefficient of uniformity Cu are employed in the PTFs with two idealized conditions, the monosized scenario and the extremely polydisperse condition, satisfied. Water retention tests are carried out on eight granular materials with narrow particle size distributions as supplementary data of the UNSODA database. The air entry value is expressed as inversely proportional to d60 and the parameter n, which is related to slope of water retention curve, is a function of Cu. The proposed PTFs, although have fewer parameters, have better fitness than previous PTFs for sandy soils. Furthermore, by incorporating with the suction stress definition, the proposed pedotransfer functions are imbedded in shear strength equations which provide a way to estimate capillary induced tensile strength or cohesion at a certain suction or degree of saturation from basic soil gradation parameters. The estimation shows quantitative agreement with experimental data in literature, and it also explains that the capillary-induced cohesion is generally higher for materials with finer mean particle size or higher polydispersity.

  20. Physico-Chemical Properties of Three Salt-Affected Soils in the ...

    African Journals Online (AJOL)

    komla

    but the B-horizon is between low to high. ... Excess sodium on the soil exchange complex and/or soluble salts in the soil profile has rendered an estimated ...... dispersion causes soil pore blockage resulting in the reduction of soil permeability.

  1. Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries

    Science.gov (United States)

    Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline

    2017-04-01

    The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt

  2. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  3. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  4. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-01-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  5. A Qualitative Method to Estimate HSI Display Complexity

    International Nuclear Information System (INIS)

    Hugo, Jacques; Gertman, David

    2013-01-01

    There is mounting evidence that complex computer system displays in control rooms contribute to cognitive complexity and, thus, to the probability of human error. Research shows that reaction time increases and response accuracy decreases as the number of elements in the display screen increase. However, in terms of supporting the control room operator, approaches focusing on addressing display complexity solely in terms of information density and its location and patterning, will fall short of delivering a properly designed interface. This paper argues that information complexity and semantic complexity are mandatory components when considering display complexity and that the addition of these concepts assists in understanding and resolving differences between designers and the preferences and performance of operators. This paper concludes that a number of simplified methods, when combined, can be used to estimate the impact that a particular display may have on the operator's ability to perform a function accurately and effectively. We present a mixed qualitative and quantitative approach and a method for complexity estimation

  6. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Directory of Open Access Journals (Sweden)

    M. Zribi

    2011-01-01

    Full Text Available The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness, during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed.

  7. Counting DNA: estimating the complexity of a test tube of DNA.

    Science.gov (United States)

    Faulhammer, D; Lipton, R J; Landweber, L F

    1999-10-01

    We consider the problem of estimation of the 'complexity' of a test tube of DNA. The complexity of a test tube is the number of different kinds of strands of DNA in the test tube. It is quite easy to estimate the number of total strands in a test tube, especially if the strands are all the same length. Estimation of the complexity is much less clear. We propose a simple kind of DNA computation that can estimate the complexity.

  8. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Science.gov (United States)

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  9. Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies

    Science.gov (United States)

    Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.

    2015-04-01

    Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).

  10. PRELIMINARY RESULTS OF ESTIMATING SOIL MOISTURE OVER BARE SOIL USING FULL-POLARIMETRIC ALOS-2 DATA

    Directory of Open Access Journals (Sweden)

    A. Sekertekin

    2016-10-01

    Full Text Available Synthetic Aperture Radar (SAR imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR data. Full-polarimetric (HH, HV, VV, VH ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE.

  11. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    Science.gov (United States)

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  12. Estimation of potential runoff-contributing areas in Kansas using topographic and soil information

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital topographic and soil information was used to estimate potential runoff-contributing areas throughout Kansas. The results then were used to compare 91 selected subbasins representing soil, slope, and runoff variability. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented very high, high, moderate, low, very low, and extremely low potential runoff. For infiltration-excess overland flow, various rainfall-intensity and soil-permeability values were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that very low potential-runoff conditions provided the best ability to distinguish the 91 selected subbasins as having relatively high or low potential runoff. The majority of the subbasins with relatively high potential runoff are located in the eastern half of the State where soil permeability generally is less and precipitation typically is greater. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the State.

  13. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  14. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  15. Complex evaluation of ecology situation and soil productivity of Semipalatinsk nuclear test site, perspectives of use

    International Nuclear Information System (INIS)

    Lebed', L.; Ptiskaya, L.; Lyashenko; Pisak, R.

    1996-01-01

    Objective of the Project. The goal of the project is complex evaluation of environmental resources at the former Semipalatinsk Test Site and perspectives of their cultivation with taking into account radioactive pollution. Scope of Activities. The following main works at the territory of the former Semipalatinsk Test Site: - estimate of climate, climatic resources and their changes; - organization and realization of complex visual and tool-making air survey (geo botanical, utter satellite spectrometric, radiometric); - reception and computer treatment of space information; - organization and realization of surface expedition field works (radiometric measurements and geo botanical observations); - realization of laboratory analysis for exposure of radio nucleus content in soil, plant and water; - treatment of materials of geo botanical survey, construction of plant and soil maps; - treatment of materials of aero spectrometric and space survey, calculation of vegetation cover productivity, drawing up of computer maps; - assessment of desert and steppe zone vegetation dynamic under artificial and climate impact.Expected Results. The following main investigation results will be obtained first for the territory of Semipalatinsk Test Site and area around it. 1. Objective modern characteristics of radioactive land pollution. Distribution of radio nucleus in soil and vegetation cover. 2. Modern characteristics climatic resources assessment under possible climate change. 3. New maps of vegetation and soil cover, biological and feed productivity of the lands of the polygon at the scale 1:100 000 -1:1 500 000 taking into account climatic resources of the region. 4. Dynamics of desert and steppe zone vegetation assessment under radiation impact and possible climate change. 5. Features of vegetation restoration under constant radiation influence. 6. Basis of perspectives of land cultivation in the Semipalatinsk polygon area and recommendation on rehabilitation soil and

  16. Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region

    Directory of Open Access Journals (Sweden)

    João Carlos Medeiros

    2014-06-01

    Full Text Available Knowledge of the soil water retention curve (SWRC is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs, which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972, Lal (1979, Aina & Periaswamy (1985, Arruda et al. (1987, Dijkerman (1988, Vereecken et al. (1989, Batjes (1996, van den Berg et al. (1997, Tomasella et al. (2000, Hodnett & Tomasella (2002, Oliveira et al. (2002, and Barros (2010. We used a database that includes soil texture (sand, silt, and clay, bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000 achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980 model, especially when tested in the top soil layer.

  17. Monitoring Freeze Thaw Transitions in Arctic Soils using Complex Resistivity Method

    Science.gov (United States)

    Wu, Y.; Hubbard, S. S.; Ulrich, C.; Dafflon, B.; Wullschleger, S. D.

    2012-12-01

    The Arctic region, which is a sensitive system that has emerged as a focal point for climate change studies, is characterized by a large amount of stored carbon and a rapidly changing landscape. Seasonal freeze-thaw transitions in the Arctic alter subsurface biogeochemical processes that control greenhouse gas fluxes from the subsurface. Our ability to monitor freeze thaw cycles and associated biogeochemical transformations is critical to the development of process rich ecosystem models, which are in turn important for gaining a predictive understanding of Arctic terrestrial system evolution and feedbacks with climate. In this study, we conducted both laboratory and field investigations to explore the use of the complex resistivity method to monitor freeze thaw transitions of arctic soil in Barrow, AK. In the lab studies, freeze thaw transitions were induced on soil samples having different average carbon content through exposing the arctic soil to temperature controlled environments at +4 oC and -20 oC. Complex resistivity and temperature measurements were collected using electrical and temperature sensors installed along the soil columns. During the laboratory experiments, resistivity gradually changed over two orders of magnitude as the temperature was increased or decreased between -20 oC and 0 oC. Electrical phase responses at 1 Hz showed a dramatic and immediate response to the onset of freeze and thaw. Unlike the resistivity response, the phase response was found to be exclusively related to unfrozen water in the soil matrix, suggesting that this geophysical attribute can be used as a proxy for the monitoring of the onset and progression of the freeze-thaw transitions. Spectral electrical responses contained additional information about the controls of soil grain size distribution on the freeze thaw dynamics. Based on the demonstrated sensitivity of complex resistivity signals to the freeze thaw transitions, field complex resistivity data were collected over

  18. The kinetic model of 137Cs behavior in the system 'soil - plant' accounting of agrochemical soil properties

    International Nuclear Information System (INIS)

    Prister, B.S.; Vinogradskaya, V.D.

    2011-01-01

    From data of the long-term radiological monitoring contaminated after Chernobyl accident lands of Ukraine investigated the dynamics of 137 Cs accumulation by plants in a wide range of environmental conditions. On the basis of modern concepts about the transformation of radionuclides forms in the soil created kinetic model the 137 Cs behavior in the system 'soil - plant', which uses as an argument to a complex estimation of agrochemical properties of soil, calculated according to the triad - the reaction of the soil solution, organic matter content and the amount of absorbed bases. Establish the high accuracy of the model and estimate the possibility of its use for other territories.

  19. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  20. EVALUATING SOIL EROSION PARAMETER ESTIMATES FROM DIFFERENT DATA SOURCES

    Science.gov (United States)

    Topographic factors and soil loss estimates that were derived from thee data sources (STATSGO, 30-m DEM, and 3-arc second DEM) were compared. Slope magnitudes derived from the three data sources were consistently different. Slopes from the DEMs tended to provide a flattened sur...

  1. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  2. Characterization of soils from an industrial complex contaminated with elemental mercury

    International Nuclear Information System (INIS)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-01-01

    Historical use of liquid elemental mercury (Hg(0) l ) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0) l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0) g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0) l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0) l was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0) l in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0) l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the

  3. Development of complex electrokinetic decontamination method for soil contaminated with uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Hye-Min; Kim, Wan-Suk; Moon, Jei-Kwon; Hyeon, Jay-Hyeok

    2012-01-01

    520L complex electrokinetic soil decontamination equipment was manufactured to clean up uranium contaminated soils from Korean nuclear facilities. To remove uranium at more than 95% from the radioactive soil through soil washing and electrokinetic technology, decontamination experiments were carried out. To reduce the generation of large quantities of metal oxides in cathode, a pH controller is used to control the pH of the electrolyte waste solution between 0.5 and 1 for the formation of UO 2+ . More than 80% metal oxides were removed through pre-washing, an electrolyte waste solution was circulated by a pump, and a metal oxide separator filtered the metal oxide particles. 80–85% of the uranium was removed from the soil by soil washing as part of the pre-treatment. When the initial uranium concentration of the soil was 21.7 Bq/g, the required electrokinetic decontamination time was 25 days. When the initial concentration of 238 U in the soil was higher, a longer decontamination time was needed, but the removal rate of 238 U from the soil was higher.

  4. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 µm Domain

    Directory of Open Access Journals (Sweden)

    Sophie Fabre

    2015-02-01

    Full Text Available This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC of bare soils from their spectral signatures in the reflective domain (0.4–2.5 µm in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI and Water Index SOIL (WISOIL. Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON. These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER, using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are

  5. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    Science.gov (United States)

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  6. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    Science.gov (United States)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  7. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  8. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Directory of Open Access Journals (Sweden)

    Emilie R Kirk

    Full Text Available Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM oxidation and physical compaction. Rice (Oryza sativa production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined. Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1 was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  9. Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models

    Science.gov (United States)

    Ragab, R.; Finch, J.; Harding, R.

    1997-03-01

    On the assumption that the water draining below the root zone is potentially available for groundwater recharge, two current UK methods for estimating annual groundwater recharge have been compared with a new soil model using data from four sites under permanent grass in the UK: two sites representative of the Chalk aquifer at Bridgest Farm (Hampshire) and Fleam Dyke (Cambridgeshire), and two sites on the Triassic sandstone at Bicton College (Devon) and Bacon Hall (Shropshire). A Four Root Layers Model (FRLM), the Penman-Grindley model and the UK Meteorological Office Rainfall and Evaporation Calculation System (MORECS) were used. The new soil model was run with potential evaporation as input both from the MORECS and from the Penman-Monteith equation. The models were run for the Chalk sites both with and without a bypass flow of 15% of rainfall. Bypass was not considered for the sandstone sites. The performance of the models was tested against neutron probes measurements of soil moisture deficits. In addition, the annual groundwater recharge estimated from the models was compared with the published values obtained from the 'zero flux plane' method. Generally, the Penman-Grindley model was more successful in predicting the time for soil to return to its field capacity than in predicting the magnitude of the soil moisture deficit. The annual groundwater recharge was predicted with reasonable accuracy. The MORECS relatively tended to overestimate the soil moisture deficits and to delay the time at which the soil returns to its field capacity. The consequences were underestimates of annual groundwater recharge, owing either to the higher values of potential evaporation calculated from the MORECS or tothe high available water capacity values associated with the soils under consideration. The new soil model (FRLM) predicts the soil moisture deficits successfully and hence is reliable in estimating the annual groundwater recharge. The model is capable of doing this with

  10. A Qualitative Method to Estimate HSI Display Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques; Gertman, David [Idaho National Laboratory, Idaho (United States)

    2013-04-15

    There is mounting evidence that complex computer system displays in control rooms contribute to cognitive complexity and, thus, to the probability of human error. Research shows that reaction time increases and response accuracy decreases as the number of elements in the display screen increase. However, in terms of supporting the control room operator, approaches focusing on addressing display complexity solely in terms of information density and its location and patterning, will fall short of delivering a properly designed interface. This paper argues that information complexity and semantic complexity are mandatory components when considering display complexity and that the addition of these concepts assists in understanding and resolving differences between designers and the preferences and performance of operators. This paper concludes that a number of simplified methods, when combined, can be used to estimate the impact that a particular display may have on the operator's ability to perform a function accurately and effectively. We present a mixed qualitative and quantitative approach and a method for complexity estimation.

  11. Use of radioactive fallout cesium-137 to estimate soil erosion on three farms in west central Ohio

    International Nuclear Information System (INIS)

    Bajracharya, R.M.; Lal, R.; Kimble, J.M.

    1998-01-01

    Assessment of the impact of soil erosion on productivity and environment quality requires comprehensive and credible estimates of erosion. Measuring concentration of 137 Cs fallout is a relatively simple and rapid technique for determining long-term mean annual rates of soil erosion and deposition. The purpose of this study was to evaluate the potential of the 137 Cs activity-soil depth relationship in estimating soil erosion from arable land in west central Ohio. Thus, soil samples obtained from three to four genetic horizons of four erosion phases at three farms in Clark Co., Ohio, (hereafter called Sites A, B, and C) were analyzed for 137 Cs activity. Relationships between 137 Cs activity and soil depth at undisturbed reference sites were used to calculate the depth of soil eroded and mean annual erosion rates. Cumulative 137 Cs activities ranged from 6.8 mBq g-1 for the severely eroded phase at Site C to 16.6 mBq g-1 for the deposition phase at Site A. These activities corresponded to soil erosion rates of 125.9 Mg ha-1 y-1 for severe to 26.6 Mg ha-1 y-1 for deposition phases. A general trend of increasing soil erosion (by 24 to 85%) from slightly to severely eroded phases was observed although the data were highly variable. Estimated soil erosion rates depended on the regression model used and were more than an order of magnitude higher than those determined using the Revised Universal Soil Loss Equation. Sampling rigorously at small depth increments by means of a core sampler, careful selection of reference sites, and calibration or validation of this technique with other models can improve estimation of soil erosion using 137 Cs. The 137 Cs technique is, however, limited to local scale estimates of erosion because the empirical models are site specific

  12. The effect of soil stoniness on the estimation of water retention properties of soils: A case study from central France

    OpenAIRE

    Tetegan, Marion; Richer de Forges, Anne; Verbeque, Bernard; Nicoullaud, Bernard; Desbourdes, Caroline; Bouthier, Alain; Arrouays, Dominique

    2015-01-01

    Estimation of the water retention capacity of a heterogeneous soil requires knowledge of the hydric properties of each soil phase. Nevertheless, for stony soils, the rock fragments have often been neglected. The objective of this work was then to propose a methodology to improve the calculation of the available water content (AWC) of stony soils at a regional scale. On a 36,200 ha surface area in Beauce located in the Region Centre of France, the AWC was calculated by coupling pedotransfer cl...

  13. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  14. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    Science.gov (United States)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials

  15. Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization

    Science.gov (United States)

    Coward, E.; Thompson, A.; Plante, A. F.

    2016-12-01

    Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and

  16. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  17. Estimation of p,p'-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls.

    Science.gov (United States)

    Sanka, Ondrej; Kalina, Jiri; Lin, Yan; Deutscher, Jan; Futter, Martyn; Butterfield, Dan; Melymuk, Lisa; Brabec, Karel; Nizzetto, Luca

    2018-08-01

    Despite not being used for decades in most countries, DDT remains ubiquitous in soils due to its persistence and intense past usage. Because of this it is still a pollutant of high global concern. Assessing long term dissipation of DDT from this reservoir is fundamental to understand future environmental and human exposure. Despite a large research effort, key properties controlling fate in soil (in particular, the degradation half-life (τ soil )) are far from being fully quantified. This paper describes a case study in a large central European catchment where hundreds of measurements of p,p'-DDT concentrations in air, soil, river water and sediment are available for the last two decades. The goal was to deliver an integrated estimation of τ soil by constraining a state-of-the-art hydrobiogeochemical-multimedia fate model of the catchment against the full body of empirical data available for this area. The INCA-Contaminants model was used for this scope. Good predictive performance against an (external) dataset of water and sediment concentrations was achieved with partitioning properties taken from the literature and τ soil estimates obtained from forcing the model against empirical historical data of p,p'-DDT in the catchment multicompartments. This approach allowed estimation of p,p'-DDT degradation in soil after taking adequate consideration of losses due to runoff and volatilization. Estimated τ soil ranged over 3000-3800 days. Degradation was the most important loss process, accounting on a yearly basis for more than 90% of the total dissipation. The total dissipation flux from the catchment soils was one order of magnitude higher than the total current atmospheric input estimated from atmospheric concentrations, suggesting that the bulk of p,p'-DDT currently being remobilized or lost is essentially that accumulated over two decades ago. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Interaction of plutonium with complexing substances in soils and natural waters

    International Nuclear Information System (INIS)

    Bondietti, E.A.; Reynolds, S.A.; Shanks, M.H.

    1976-01-01

    The reactions of Pu with selected organic substances found in the environment have been studied to evaluate the valence and metalcomplex behaviour of Pu. Hexavalent Pu (and by inference pentavalent Pu) was unstable in the presence of fulvic acid, polygalacturonic acid, and alginic acid. Citrate-Pu(VI) complexes, however, were relatively more stable. Plutonium (IV) was the most stable valence upon interaction with these organics. Further reduction of Pu(IV) to Pu(III) occurred by fulvic and humic acids. The reduction, under aerobic conditions, does not appear to occur above pH 3.1. The reduction mechanisms is probably similar to the Fe(III) reduction previously documented for phenolic humic substances. Data are presented that demonstrate that Pu is at least partially associated with humic materials in ORNL soil contaminated 30 years ago with trace levels of Pu. Desorption studies using solid exchange resins also showed that, while a cation exchange resin did not desorb Pu from soil after 14 weeks equilibration, chelating resin effected Pu desorption. The desorption rate was not constant, suggesting differential Pu forms. While the resin-extractable Pu was believed to originate from solid-phase organic complexes, over 80% of the Pu in this soil was not readily resin-desorbable. This indicates that more inert soil-Pu reaction products effectively immobilize soil Pu. Some of these associations also appear to be organic. (author)

  19. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  20. Magnetism of soils applied for estimation of erosion at an agricultural land

    Science.gov (United States)

    Kapicka, Ales; Dlouha, Sarka; Grison, Hana; Jaksik, Ondrej; Kodesova, Radka; Petrovsky, Eduard

    2013-04-01

    A detailed field study on small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic), followed by laboratory analyses, has been carried out in order to test the applicability of magnetic methods in soil erosion estimation. The approach is based on the well-established differentiation in magnetic signature of topsoil from subsoil horizons as a result of "in situ" formation of strongly magnetic iron oxides e.g. (Maher 1986). Introducing a simple tillage homogenization model for predicting magnetic signal after uniform mixing of soil material as a result of tillage and subsequent erosion, Royall (2001) showed that magnetic susceptibility and its frequency dependence can be used to estimate soil loss. Haplic Chernozem is an original dominant soil unit in the wider area, nowadays progressively transformed into different soil units along with intensive soil erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represented a major line of concentrated runoff emptying into a colluvial fan (Zadorova et al., 2011; Jaksik et al., 2011). Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points. Bulk soil material for laboratory investigation was gathered from all grid points. Mass specific magnetic susceptibility χ and its frequency dependence kFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin. Thermomagnetic analyses, hysteresis measurement and SEM were used in order to determine dominant ferrimagnetic carriers in top-soil and sub-soil layers. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). At the same time, no correlations were found between the values of kFD and mass specific susceptibility. Values of organic carbon

  1. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  2. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  3. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies

    International Nuclear Information System (INIS)

    Huang, Jianxiong; Chen, Yuanquan; Sui, Peng; Gao, Wansheng

    2013-01-01

    The net greenhouse gas balance (NGHGB), estimated by combining direct and indirect greenhouse gas (GHG) emissions, can reveal whether an agricultural system is a sink or source of GHGs. Currently, two types of methods, referred to here as crop-based and soil-based approaches, are widely used to estimate the NGHGB of agricultural systems on annual and seasonal crop timescales. However, the two approaches may produce contradictory results, and few studies have tested which approach is more reliable. In this study, we examined the two approaches using experimental data from an intercropping trial with straw removal and a tillage trial with straw return. The results of the two approaches provided different views of the two trials. In the intercropping trial, NGHGB estimated by the crop-based approach indicated that monocultured maize (M) was a source of GHGs (− 1315 kg CO 2 −eq ha −1 ), whereas maize–soybean intercropping (MS) was a sink (107 kg CO 2 −eq ha −1 ). When estimated by the soil-based approach, both cropping systems were sources (− 3410 for M and − 2638 kg CO 2 −eq ha −1 for MS). In the tillage trial, mouldboard ploughing (MP) and rotary tillage (RT) mitigated GHG emissions by 22,451 and 21,500 kg CO 2 −eq ha −1 , respectively, as estimated by the crop-based approach. However, by the soil-based approach, both tillage methods were sources of GHGs: − 3533 for MP and − 2241 kg CO 2 −eq ha −1 for RT. The crop-based approach calculates a GHG sink on the basis of the returned crop biomass (and other organic matter input) and estimates considerably more GHG mitigation potential than that calculated from the variations in soil organic carbon storage by the soil-based approach. These results indicate that the crop-based approach estimates higher GHG mitigation benefits compared to the soil-based approach and may overestimate the potential of GHG mitigation in agricultural systems. - Highlights: • Net greenhouse gas balance (NGHGB) of

  4. estimation of shear strength parameters of lateritic soils using

    African Journals Online (AJOL)

    user

    ... a tool to estimate the. Nigerian Journal of Technology (NIJOTECH). Vol. ... modeling tools for the prediction of shear strength parameters for lateritic ... 2.2 Geotechnical Analysis of the Soils ... The back propagation learning algorithm is the most popular and ..... [10] Alsaleh, M. I., Numerical modeling for strain localization in ...

  5. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    Science.gov (United States)

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  6. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  7. Estimation Model of Soil Freeze-Thaw Erosion in Silingco Watershed Wetland of Northern Tibet

    OpenAIRE

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in S...

  8. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...

  9. Soil Moisture Estimation in South-Eastern New Mexico Using High Resolution Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    A.K.M. Azad Hossain

    2016-01-01

    Full Text Available Soil moisture monitoring and characterization of the spatial and temporal variability of this hydrologic parameter at scales from small catchments to large river basins continues to receive much attention, reflecting its critical role in subsurface-land surface-atmospheric interactions and its importance to drought analysis, irrigation planning, crop yield forecasting, flood protection, and forest fire prevention. Synthetic Aperture Radar (SAR data acquired at different spatial resolutions have been successfully used to estimate soil moisture in different semi-arid areas of the world for many years. This research investigated the potential of linear multiple regressions and Artificial Neural Networks (ANN based models that incorporate different geophysical variables with Radarsat 1 SAR fine imagery and concurrently measured soil moisture measurements to estimate surface soil moisture in Nash Draw, NM. An artificial neural network based model with vegetation density, soil type, and elevation data as input in addition to radar backscatter values was found suitable to estimate surface soil moisture in this area with reasonable accuracy. This model was applied to a time series of SAR data acquired in 2006 to produce soil moisture data covering a normal wet season in the study site.

  10. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  11. [Estimation of soil carbon sequestration potential in typical steppe of Inner Mongolia and associated uncertainty].

    Science.gov (United States)

    Wang, Wei; Wu, Jian-Guo; Han, Xing-Guo

    2012-01-01

    Based on the measurements in the enclosure and uncontrolled grazing plots in the typical steppe of Xilinguole, Inner Mongolia, this paper studied the soil carbon storage and carbon sequestration in the grasslands dominated by Leymus chinensis, Stipa grandis, and Stipa krylovii, respectively, and estimated the regional scale soil carbon sequestration potential in the heavily degraded grassland after restoration. At local scale, the annual soil carbon sequestration in the three grasslands all decreased with increasing year of enclosure. The soil organic carbon storage was significantly higher in the grasslands dominated by L. chinensis and Stipa grandis than in that dominated by Stipa krylovii, but the latter had much higher soil carbon sequestration potential, because of the greater loss of soil organic carbon during the degradation process due to overgrazing. At regional scale, the soil carbon sequestration potential at the depth of 0-20 cm varied from -0.03 x 10(4) to 3.71 x 10(4) kg C x a(-1), and the total carbon sequestration potential was 12.1 x 10(8) kg C x a(-1). Uncertainty analysis indicated that soil gravel content had less effect on the estimated carbon sequestration potential, but the estimation errors resulted from the spatial interpolation of climate data could be about +/- 4.7 x 10(9) kg C x a(-1). In the future, if the growth season precipitation in this region had an average variation of -3.2 mm x (10 a)(-1), the soil carbon sequestration potential would be de- creased by 1.07 x 10(8) kg C x (10 a)(-1).

  12. Quantifying the uncertainty of regional and national estimates of soil carbon stocks

    Science.gov (United States)

    Papritz, Andreas

    2013-04-01

    At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the

  13. Structuring and capturing of radioactive strontium-90 from the polluted soil of Semipalatinsk nuclear test site by inter-polymer complexes

    International Nuclear Information System (INIS)

    Bimendina, L.A.; Kudaibergenov, S.E.; Orazzhanova, L.K.; Yashkarova, M.G.; Kaliaskarova, B.

    2002-01-01

    The model and experiments on application of polymer-polymer complexes stabilized by hydrogen and ionic bonds for structuring of Semipalatinsk nuclear test site soils in order to prevent the wind and water erosion of radionuclides from contaminated soil are considered. It is expected that the treatment by inter-polymer complexes (IPC) would cause the structuring of soil particle. Besides IPSs are able to form thin films on the soil particles surface, aggregate and considerably protect the migration of radionuclides. Both the water soluble polymer-polyacrylic acid (PAA), polyethylene glycol (PEG), poly-N,N,-dimethyldiallylammonium chloride (PDMDAACI) and the PAA-PEG, PAA-PDMDAACI inter-polymer complexes were used as structuring agents. The treatment of soil particles was carried out by two methods: the first method is uniform splash of polymer solution and mixing with soil; the second one is pouring of soil surface by polymer solution. The obtained results are summarized as follows: - Optimal concentration of polymer solutions are arranged between 10 -4 -10 -2 mol·l -1 . The best results corresponds to concentration 10 -2 mol·l -1 ; - Pouring of soil surface is most preferential in comparison with splash of polymer solution and mixing with soil; - Both the individual polymers (PAA, PEG and PDMDAACI) and the PAA-PEG, PAA-PDMDAACI inter-polymer complexes show the structuring effect. However the best results were observed for IPC solution. The best structuring effect has been obtained for equimolar [PAA]:[PEG]=1:1 complex solution with 10 -2 mol·l -1 and at p H=3.0 when the IPC solution is poured through the soil surface. The similar results were obtained for [PAA]:[PDMDAACI]=1:1 system. The capillary moisture capacity and water stability at optimal soil treatment conditions of soil is given. Since PAA, PEG and PAA-PEG complexes form polymer-metal complexes with Sr 2+ ions the possibility of capture of soil radionuclides by means of binding into the complex particles

  14. ESR dating of elephant teeth and radiation dose rate estimation in soil

    International Nuclear Information System (INIS)

    Taisoo Chong; Ohta, Hiroyuki; Nakashima, Yoshiyuki; Iida, Takao; Saisho, Hideo

    1989-01-01

    Chemical analysis of 238 U, 232 Th and 40 K in the dentine as well as enamel of elephant tooth fossil has been carried out in order to estimate the internal absorbed dose rate of the specimens, which was estimated to be (39±4) mrad/y on the assumption of early uptake model of radionuclides. The external radiation dose rate in the soil including the contribution from cosmic rays was also estimated to be (175±18) mrad/y with the help of γ-ray spectroscopic techniques of the soil samples in which the specimens were buried. The 60 Co γ-ray equivalent accumulated dose of (2±0.2) x 10 4 rad for the tooth enamel gave ''ESR age'' of (9±2) x 10 4 y, which falls in the geologically estimated range between 3 x 10 4 and 30 x 10 4 y before the present. (author)

  15. The complexity of computing the MCD-estimator

    DEFF Research Database (Denmark)

    Bernholt, T.; Fischer, Paul

    2004-01-01

    In modem statistics the robust estimation of parameters is a central problem, i.e., an estimation that is not or only slightly affected by outliers in the data. The minimum covariance determinant (MCD) estimator (J. Amer. Statist. Assoc. 79 (1984) 871) is probably one of the most important robust...... estimators of location and scatter. The complexity of computing the MCD, however, was unknown and generally thought to be exponential even if the dimensionality of the data is fixed. Here we present a polynomial time algorithm for MCD for fixed dimension of the data. In contrast we show that computing...... the MCD-estimator is NP-hard if the dimension varies. (C) 2004 Elsevier B.V. All rights reserved....

  16. Complexity Control of Fast Motion Estimation in H.264/MPEG-4 AVC with Rate-Distortion-Complexity optimization

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren; Aghito, Shankar Manuel

    2007-01-01

    A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the pa...... statistics and a control scheme. The algorithm also works well for scene change condition. Test results for coding interlaced video (720x576 PAL) are reported.......A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the past...

  17. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    Science.gov (United States)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  18. An improved analysis of gravity drainage experiments for estimating the unsaturated soil hydraulic functions

    Science.gov (United States)

    Sisson, James B.; van Genuchten, Martinus Th.

    1991-04-01

    The unsaturated hydraulic properties are important parameters in any quantitative description of water and solute transport in partially saturated soils. Currently, most in situ methods for estimating the unsaturated hydraulic conductivity (K) are based on analyses that require estimates of the soil water flux and the pressure head gradient. These analyses typically involve differencing of field-measured pressure head (h) and volumetric water content (θ) data, a process that can significantly amplify instrumental and measurement errors. More reliable methods result when differencing of field data can be avoided. One such method is based on estimates of the gravity drainage curve K'(θ) = dK/dθ which may be computed from observations of θ and/or h during the drainage phase of infiltration drainage experiments assuming unit gradient hydraulic conditions. The purpose of this study was to compare estimates of the unsaturated soil hydraulic functions on the basis of different combinations of field data θ, h, K, and K'. Five different data sets were used for the analysis: (1) θ-h, (2) K-θ, (3) K'-θ (4) K-θ-h, and (5) K'-θ-h. The analysis was applied to previously published data for the Norfolk, Troup, and Bethany soils. The K-θ-h and K'-θ-h data sets consistently produced nearly identical estimates of the hydraulic functions. The K-θ and K'-θ data also resulted in similar curves, although results in this case were less consistent than those produced by the K-θ-h and K'-θ-h data sets. We conclude from this study that differencing of field data can be avoided and hence that there is no need to calculate soil water fluxes and pressure head gradients from inherently noisy field-measured θ and h data. The gravity drainage analysis also provides results over a much broader range of hydraulic conductivity values than is possible with the more standard instantaneous profile analysis, especially when augmented with independently measured soil water retention data.

  19. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig

    2015-09-18

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  20. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed

    2015-01-01

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  1. 137Cs use in estimating soil erosion: 30 years of research

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1998-01-01

    Significant amounts of fallout 137 Cs from nuclear weapons tests were introduced to the landscape during the 1950s and 1960s. Once 137 Cs reaches the soil surface it is strongly and quickly adsorbed by clay particles, and is essentially nonexchangeable in most environments. Thus, 137 Cs becomes and effective tracer of the movement of soil particles across the landscape. Over the past 30 years, researchers have shown that 137 Cs can be used to study soil movement. Early work used empirical relationships between soil loss and 137 Cs loss to estimate erosion. This was followed by the development of proportional and theoretical models to relate 137 Cs movement and soil redistribution. Most of the problems related to the 137 Cs technique are the same as those encountered with other techniques (i.e., sampling, measurement). The 137 Cs technique can make actual measurements of soil loss and redeposition in fields, fostering the formulation of better plans to conserve the quality of the landscape. This paper reviews the development of the 137 Cs technique to show how it can be used to understand erosion and soil movement on the landscape. (author)

  2. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  3. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); São Paulo State University—UNESP, Analytical Chemistry Department, P.O. Box 355, 14801-970 Rua Prof. Francisco Degni, 55, CEP 14800-900 Araraquara, SP (Brazil); Ferreira, Ednaldo José, E-mail: ednaldo.ferreira@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Villas-Boas, Paulino Ribeiro, E-mail: paulino.villas-boas@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari 70126 (Italy); Carvalho, Camila Miranda, E-mail: camilamc@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Martin-Neto, Ladislau, E-mail: ladislau.martin@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); and others

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. - Highlights: • Humification degree of soil organic matter (HD) • Importance of soil organic matter HD in keeping carbon in soil • Laser induced fluorescence spectroscopy (LIFS) for HD estimation (reference method) • New LIBS application to predict HD.

  4. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji

    2012-12-01

    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  5. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  6. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah

    2015-10-05

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms is directly affected by the size of the grid: increasing the number of points will enhance the resolution of the algorithm but exponentially increase its complexity. In this work, to estimate the parameters of a target, a reduced complexity super resolution algorithm is proposed. For off-the-grid targets, it uses a low order two dimensional fast Fourier transform to determine a suboptimal solution and then an iterative algorithm to jointly estimate the spatial location and Doppler shift. Simulation results show that the mean square estimation error of the proposed estimators achieve the Cram\\'er-Rao lower bound. © 2015 IEEE.

  7. Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates

    Directory of Open Access Journals (Sweden)

    Thomas Gumbricht

    2018-04-01

    Full Text Available A soil wetness index for optical satellite images, the Transformed Wetness Index (TWI is defined and evaluated against ground sampled soil moisture. Conceptually, TWI is formulated as a non-linear normalized difference index from orthogonalized vectors representing soil and water conditions, with the vegetation signal removed. Compared to 745 ground sites with in situ measured soil moisture, TWI has a globally estimated Random Mean Square Error of 14.0 (v/v expressed as percentage, which reduces to 8.5 for unbiased data. The temporal variation in soil moisture is significantly captured at 4 out of 10 stations, but also fails for 2 to 3 out of 10 stations. TWI is biased by different soil mineral compositions, dense vegetation and shadows, with the latter two most likely also causing the failure of TWI to capture soil moisture dynamics. Compared to soil moisture products from microwave brightness temperature data, TWI performs slightly worse, but has the advantages of not requiring ancillary data, higher spatial resolution and a relatively simple application. TWI has been used for wetland and peatland mapping in previously published studies but is presented in detail in this article, and then applied for detecting changes in soil moisture for selected tropical regions between 2001 and 2016. Sites with significant changes are compared to a published map of global tropical wetlands and peatlands.

  8. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  9. Effect of organic complexants on the mobility of low-level waste radionuclides in soils: status report

    International Nuclear Information System (INIS)

    Swanson, J.L.

    1981-09-01

    The effects of some organic complexants on the sorption by soil of some elements typical of those present in low-level wastes are being evaluated and procedures are being developed to efficiently obtain valid sorption data. Data have been obtained with Hanford soil and the elements europium, nickel, cobalt, cesium, and strontium. Complexants studied to date include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and humic acid. The sorption of cesium and strontium has been found to be affected very little by EDTA or DTPA, as expected. However, these complexants have been found to greatly reduce the sorption of europium, nickel, or cobalt by the soil. The Eu/EDTA system was found to be well behaved, and the effect of the complexant on the sorption by soil was quantified. With nickel and cobalt, however, kinetic problems have been encountered, and the effects of complexants on the sorption by soil have not yet been quantified. The problems encountered in the nickel and cobalt systems have further emphasized the need for the development of methods to assure the general validity of the data obtained in the experiments. Series of experimental results that looked very good within themselves were found by additional procedures to be artifacts of the conditions used. One procedure that has been of great value in identifying invalid data is that of contacting the equilibrated solution from a soil contact with a second batch of soil. Unless the sorption coefficient in the second contact is equivalent to that in the first contact, the data are likely invalid. Efforts are continuing to develop procedures that will allow generally valid data to be obtained in an efficient manner and to employ such procedures to obtain data in a variety of systems pertinent to low-level waste disposal

  10. Selective Decontamination Effect of Metal Ions in Soil Using Supercritical CO2 and TBP Complex

    International Nuclear Information System (INIS)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung

    2014-01-01

    Decontamination of soil pollution is difficult because the type of contamination largely depends on the characteristics of the pollutant and the area. Also, existing soil decontamination methods generate large quantities of secondary waste and additional process costs. For this reason, new decontamination methods are always under active investigation. A method involving the use of supercritical carbon dioxide with excellent permeability in place of chemical solvents is currently being studied. Unlike other heavy metals in fission products, uranium is used as fuel, and must be handled carefully. Therefore, in this paper, we studied a supercritical carbon dioxide method for decontaminating heavy metal ions in soil using tri-n-butyl phosphate(TBP), which is well known as a ligand for the extraction of metal ions of actinium. We investigated the decontamination effect of heavy metal ions in the soil using TBP-HNO 3 Complex and supercritical carbon dioxide. The study results showed that when heavy metals in soil are extracted using supercritical carbon dioxide, the extraction efficiency is different according to the type of pollutant metal ions in the soil. When TBP-HNO 3 Complex is used with an extractant, uranium extraction is very effective, but lithium, strontium, and cesium extraction is not effective. Therefore, in the case of a mixture of uranium and other metals such as lithium, strontium, cesium, and so on in soil contaminated by fission product leaks from nuclear power plants, we can selectively decontaminate uranium with supercritical carbon dioxide and TBP-HNO 3 Complex

  11. Rapid prototyping of soil moisture estimates using the NASA Land Information System

    Science.gov (United States)

    Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.

    2007-12-01

    The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.

  12. Landscape analysis of soil methane flux across complex terrain

    Science.gov (United States)

    Kaiser, Kendra E.; McGlynn, Brian L.; Dore, John E.

    2018-05-01

    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May-12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4-C m-2 h-1) and uplands increased in sink strength with dry-down of the watershed (median: -22.9 µg CH4-C m-2 h-1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (-1.75 kg CH4-C ha-1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space-time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances.

  13. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  14. An evaluation of soil chemistry in human cadaver decomposition islands: Potential for estimating postmortem interval (PMI).

    Science.gov (United States)

    Fancher, J P; Aitkenhead-Peterson, J A; Farris, T; Mix, K; Schwab, A P; Wescott, D J; Hamilton, M D

    2017-10-01

    Soil samples from the Forensic Anthropology Research Facility (FARF) at Texas State University, San Marcos, TX, were analyzed for multiple soil characteristics from cadaver decomposition islands to a depth of 5centimeters (cm) from 63 human decomposition sites, as well as depths up to 15cm in a subset of 11 of the cadaver decomposition islands plus control soils. Postmortem interval (PMI) of the cadaver decomposition islands ranged from 6 to 1752 days. Some soil chemistry, including nitrate-N (NO 3 -N), ammonium-N (NH 4 -N), and dissolved inorganic carbon (DIC), peaked at early PMI values and their concentrations at 0-5cm returned to near control values over time likely due to translocation down the soil profile. Other soil chemistry, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), orthophosphate-P (PO 4 -P), sodium (Na + ), and potassium (K + ), remained higher than the control soil up to a PMI of 1752days postmortem. The body mass index (BMI) of the cadaver appeared to have some effect on the cadaver decomposition island chemistry. To estimate PMI using soil chemistry, backward, stepwise multiple regression analysis was used with PMI as the dependent variable and soil chemistry, body mass index (BMI) and physical soil characteristics such as saturated hydraulic conductivity as independent variables. Measures of soil parameters derived from predator and microbial mediated decomposition of human remains shows promise in estimating PMI to within 365days for a period up to nearly five years. This persistent change in soil chemistry extends the ability to estimate PMI beyond the traditionally utilized methods of entomology and taphonomy in support of medical-legal investigations, humanitarian recovery efforts, and criminal and civil cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    Science.gov (United States)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  16. Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community.

    Science.gov (United States)

    Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K

    2016-12-01

    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.

  17. Gap filling strategies and error in estimating annual soil respiration

    Science.gov (United States)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  18. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  19. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  20. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  1. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    Science.gov (United States)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  2. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  3. An assessment of the BEST procedure to estimate the soil water retention curve

    Science.gov (United States)

    Castellini, Mirko; Di Prima, Simone; Iovino, Massimo

    2017-04-01

    The Beerkan Estimation of Soil Transfer parameters (BEST) procedure represents a very attractive method to accurately and quickly obtain a complete hydraulic characterization of the soil (Lassabatère et al., 2006). However, further investigations are needed to check the prediction reliability of soil water retention curve (Castellini et al., 2016). Four soils with different physical properties (texture, bulk density, porosity and stoniness) were considered in this investigation. Sites of measurement were located at Palermo University (PAL site) and Villabate (VIL site) in Sicily, Arborea (ARB site) in Sardinia and in Foggia (FOG site), Apulia. For a given site, BEST procedure was applied and the water retention curve was estimated using the available BEST-algorithms (i.e., slope, intercept and steady), and the reference values of the infiltration constants (β=0.6 and γ=0.75) were considered. The water retention curves estimated by BEST were then compared with those obtained in laboratory by the evaporation method (Wind, 1968). About ten experiments were carried out with both methods. A sensitivity analysis of the constants β and γ within their feasible range of variability (0.1analysis showed that S tended to increase for increasing β values and decreasing values of γ for all the BEST-algorithms and soils. On the other hand, Ks tended to decrease for increasing β and γ values. Our results also reveal that: i) BEST-intercept and BEST-steady algorithms yield lower S and higher Ks values than BEST-slope; ii) these algorithms yield also more variable values. For the latter, a higher sensitiveness of these two alternative algorithms to β than for γ was established. The decreasing sensitiveness to γ may lead to a possible lack in the correction of the simplified theoretical description of the parabolic two-dimensional and one-dimensional wetting front along the soil profile (Smettem et al., 1994). This likely resulted in lower S and higher Ks values

  4. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  5. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  6. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  7. Mobility and leachability of zinc in two soils treated with six organic zinc complexes.

    Science.gov (United States)

    Alvarez, J M; Novillo, J; Obrador, A; López-Valdivia, L M

    2001-08-01

    A study of soil columns was conducted to evaluate Zn movement potential in two reconstructed soil profiles. Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate were applied in the upper zone of the column. The different physicochemical properties of the two soils and the micronutrient source may influence Zn leaching, the distribution of Zn among soil fractions, and the Zn available to the plant in the depth of the layers. In Aquic Haploxeralf soil, the application of six fertilizers produced little migration and very small leaching of Zn in the soil profiles. In Calcic Haploxeralf soil, Zn-EDTA migrated and was distributed throughout the soil columns. This Zn chelate produces a loss of Zn by leaching, which was 36% of the added Zn. In the latter soil, Zn leached very little with the other five fertilizer treatments. The same as for these organic Zn complexes, the retention of added Zn indicated the potential of metal accumulation in the A(p) horizons of the two soil profiles. A large portion of applied Zn was available to plants [diethylenetriaminepentaacetic acid (DTPA) and Mehlich-3 extractable Zn] in the depths reached by the different commercial formulations. The relationship between the two methods was highly significant (Mehlich-3-Zn = 1.25 + 1.13 DTPA-Zn, R(2) = 99.19%). When Zn was added as Zn-EDTA, the amounts of the most labile fractions (water-soluble plus exchangeable and organically complexed Zn) increased throughout the entire profile column in comparison with the control columns, although in the B(t) horizon of the Aquic Haploxeralf soil they increased only slightly.

  8. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    Science.gov (United States)

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    Ecosystem respiration (ER) is a key process in the global C cycle and thus, plays an important role in the climate regulation. Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). Although these ecosystems represent potentially a significant source of C under global change, they are still not taken into account accordingly in global climatic models. Therefore, ER variations have to be accounted for, especially by estimating its dependence to temperature.s The relationship between ER and temperature often relies only on one soil temperature depth and the latter is generally taken in the first 10 centimetres. Previous studies showed that the temperature dependence of ER depends on the depth at which the temperature is recorded. The depth selection for temperature measurement is thus a predominant issue. A way to deal with this is to analyse the time-delay between ER and temperature. The aim of this work is to assess whether using synchronised data in models leads to a better ER daily variation estimation than using non-synchronised data. ER measurements were undertaken in 2013 in 4 Sphagnum peatlands across France: La Guette (N 47°19'44', E 2°17'04', 154m) in July, Landemarais (N 48°26'30', E -1°10'54', 145m) in August, Frasne (N 46°49'35', E 6°10'20', 836m) in September, and Bernadouze (N 42°48'09', E 1°25'24', 1500m) in October. A closed method chamber was used to measure ER hourly during 72 hours in each of the 4 replicates installed in each site. Average ER ranged from 1.75 μmol m-2 s-1 to 6.13 μmol m-2 s-1. A weather station was used to record meteorological data and soil temperature profiles (5, 10, 20 and 30 cm). Synchronised data were determined for each depth by selecting the time-delay leading to the best correlation between ER and soil temperature. The data were used to simulate ER according to commonly used equations: linear, exponential with Q10, Arrhenius, Lloyd and Taylor. Models

  9. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    International Nuclear Information System (INIS)

    Black, Amanda; McLaren, Ronald G.; Reichman, Suzanne M.; Speir, Thomas W.; Condron, Leo M.

    2011-01-01

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids ± metals, comparing total metal, Ca(NO 3 ) 2 , EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO 3 ) 2 (r 2 = 0.72) which also provided the best estimate of Zn bioavailability (r 2 = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd. - Highlights: → A meta-analysis evaluated the efficacy of soil metal bioavailability assays. → DGT could explain 49% of shoot Cd concentration. → There is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO 3 ) 2 for Ni and Zn, and DGT for Cd.

  10. Evaluation of soil-plant transfer factors of iodine. Estimation of annual ingestion for iodine from the diet

    International Nuclear Information System (INIS)

    Saas, Arsene.

    1980-11-01

    The author presents the iodine middle contents of the soils and vegetables. A synthesis on the iodine evolution in the soils and vegetables allows to conclude that the vegetable absorption of this isotope is correlated with the isotopiquely exchangeable iodine of the soil. The soil-plant transfer-factors are calculated for the vegetables, cereals, fruits from the stable iodine quantitative analysis. The annual iodine ingestion has been estimated from the dietary of the European Communites areas. This one is a little different of the quantity estimated by CRESTA-LACOURLY-R 2979, yet the contribution by consummation unity is different [fr

  11. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    Science.gov (United States)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  12. Contribution to Estimating Bearing Capacity of Pile in Clayey Soils

    Science.gov (United States)

    Drusa, Marián; Gago, Filip; Vlček, Jozef

    2016-12-01

    The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.

  13. Contribution to Estimating Bearing Capacity of Pile in Clayey Soils

    Directory of Open Access Journals (Sweden)

    Drusa Marián

    2016-12-01

    Full Text Available The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT, standard penetration (SPT or dynamic penetration test (DP are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.

  14. Estimating soil erosion in Natura 2000 areas located on three semi-arid Mediterranean Islands.

    Science.gov (United States)

    Zaimes, George N; Emmanouloudis, Dimitris; Iakovoglou, Valasia

    2012-03-01

    A major initiative in Europe is the protection of its biodiversity. To accomplish this, specific areas from all countries of the European Union are protected by the establishment of the "Natura 2000" network. One of the major threats to these areas and in general to ecosystems is soil erosion. The objective of this study was to quantitatively estimate surface soil losses for three of these protected areas that are located on semi-arid islands of the Mediterranean. One Natura 2000 area was selected from each of the following islands: Sicily in Italy, Cyprus and Rhodes in Greece. To estimate soil losses, Gerlach troughs were used. These troughs were established on slopes that ranged from 35-40% in four different vegetation types: i) Quercus ilex and Quercus rotundifolia forests, ii) Pinus brutia forests, iii) "Phrygana" shrublands and iv) vineyards. The shrublands had the highest soil losses (270 kg ha(-1) yr(-1)) that were 5-13 times more than the other three vegetation types. Soil losses in these shrublands should be considered a major concern. However, the other vegetation types also had high soil losses (21-50 kg ha(-1) yr(-1)). Conclusively, in order to enhance and conserve the biodiversity of these Natura 2000 areas protective management measures should be taken into consideration to decrease soil losses.

  15. A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils.

    Science.gov (United States)

    Japenga, J; Koopmans, G F; Song, J; Römkens, P F A M

    2007-01-01

    The practical applicability of heavy metal (HM) phytoextraction depends heavily on its duration. Phytoextraction duration is the main cost factorfor phytoextraction, both referring to recurring economic costs during phytoextraction and to the cost of the soil having no economic value during phytoextraction. An experiment is described here, which is meant as a preliminary feasibility test before starting a phytoextraction scheme in practice, to obtain a more realistic estimate of the phytoextraction duration of a specific HM-polluted soil. In the experiment, HM-polluted soil is mixed at different ratios with unpolluted soil of comparable composition to mimic the gradual decrease of the HM content in the target HM-polluted soil during phytoextraction. After equilibrating the soil mixtures, one cropping cycle is carried out with the plant species of interest. At harvest, the adsorbed HM contents in the soil and the HM contents in the plant shoots are determined. The adsorbed HM contents in the soil are then related to the HM contents in the plant shoots by a log-log linear relationship that can then be used to estimate the phytoextraction duration of a specific HM-polluted soil. This article describes and evaluates the merits of such a feasibility experiment. Potential drawbacks regarding the accuracy of the described approach are discussed and a greenhouse-field extrapolation procedure is proposed.

  16. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    Science.gov (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  17. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI

    Science.gov (United States)

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.

    2012-12-01

    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  18. Soil Moisture Estimation Using MODIS Images (Case Study: Mashhad Plain Area

    Directory of Open Access Journals (Sweden)

    M. Fashaee

    2016-09-01

    Full Text Available Introduction: Numerous studies have been undertaken based on satellite imagery in order to estimate soil moisture using vegetation indices such as NDVI. Previous studies suffer from a restriction; these indices are not able to estimate where the vegetative coverage is low or where no vegetation exists. Hence, it is essential to develop a model which can overcome this restriction. Focus of this research is on estimation of soil moisture for low or scattered vegetative land covers. Trapezoidal temperature-vegetation (Ts~VI model is able to consider the status of soil moisture and vegetation condition. It can estimate plant water deficit for weak or no vegetation land cover. Materials and Methods: Moran proposed Water Deficit Index (WDI for evaluating field evapotranspiration rates and relative field water deficit for both full-cover and partially vegetated sites. The theoretical basis of this method is based on the energy balance equation. Penman-Monteith equation of energy balance was used to calculate the coordinates of the four vertices of the temperature-vegetation trapezoid also for four different extreme combinations of temperature and vegetation. For the (Ts−Ta~Vc trapezoid, four vertices correspond to 1 well-watered full-cover vegetation, 2 water-stressed full-cover vegetation, 3 saturated bare soil, and 4 dry bare soil. WDI is equal to 0 for well-watered conditions and equals to 1 for maximum stress conditions. As suggested by Moran et al. to draw a trapezoidal shape, some field measurements are required such as wind speed at the height of 2 meters, air pressure, mean daily temperature, vapor pressure-temperature curve slope, Psychrometrics constant, vapor pressure at mean temperature, vapor pressure deficit, external radiation, solar radiation of short wavelength, longwave radiation, net radiation, soil heat flux and air aerodynamic resistance is included. Crop vegetation and canopy resistance should be measured or estimated. The study

  19. Estimating Vertical Stress on Soil Subjected to Vehicular Loading

    Science.gov (United States)

    2009-02-01

    specified surface area of the tire . The silt and sand samples were both estimated to be 23.7-in. thick over a base of much harder soil. The pressures...study in which highway tread tires were used as opposed to the all-terrain tread currently on the vehicle. If the pressure pads are functioning...Vertical force versus time (front right CIV tire )....................................................................... 14 Tables Table 1. Testing

  20. Nonlinear estimation of weathering rate parameters for uranium in surface soil near a nuclear facility

    International Nuclear Information System (INIS)

    Killough, G.G.; Rope, S.K.; Shleien, B.; Voilleque, P.G.

    1999-01-01

    A dynamic mass-balance model has been calibrated by a nonlinear parameter estimation method, using time-series measurements of uranium in surface soil near the former Feed Materials Production Center (FMPC) near Fernald, Ohio, USA. The time-series data, taken at six locations near the site boundary since 1971, show a statistically significant downtrend of above-background uranium concentration in surface soil for all six locations. The dynamic model is based on first-order kinetics in a surface-soil compartment 10 cm in depth. Median estimates of weathering rate coefficients for insoluble uranium in this soil compartment range from about 0.065-0.14 year -1 , corresponding to mean transit times of about 7-15 years, depending on the location sampled. The model, calibrated by methods similar to those discussed in this paper, has been used to simulate surface soil kinetics of uranium for a dose reconstruction study. It was also applied, along with other data, to make confirmatory estimates of airborne releases of uranium from the FMPC between 1951 and 1988. Two soil-column models (one diffusive and one advective, the latter similar to a catenary first-order kinetic box model) were calibrated to profile data taken at one of the six locations in 1976. The temporal predictions of the advective model approximate the trend of the time series data for that location. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  2. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  3. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  4. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  5. Critical level of radionuclides pollution estimation for different soil type of Ukrainian Polessye

    International Nuclear Information System (INIS)

    Kravets, A.; Pavlenko, Y.

    1996-01-01

    The successive development and adaptation of general algorithm of calculation of doses from intake 137 Cs and 90 Sr as a function of pollution level and a type of soil as a source of the human trophycal chains and its use in solution of reverse problem, namely- estimation of the critical level of radionuclides pollution for the main type of soil of Ukrainian Polessye has been proposed. Calculation was realized as a combination of dynamic model of migration of radionuclides in soil and spreadsheet form with Quattro Pro, version 4.0. (author)

  6. Estimative of the soil amount ingested by cattle in high natural radioactive region

    International Nuclear Information System (INIS)

    Rosa, Roosevelt; Silva, Lucia H.C.; Taddei, Maria H.T.

    1997-01-01

    Considering that Pocos de Caldas is a region of high natural radioactivity, where many environmental impacts have been studied, 27 samples of cattle faeces and 24 samples of local soil were collected and analyzed for Ti concentrations, during dry and rain periods. Using this element as an indicator, the percentage of soil ingestion by cattle were estimated for three management practices: confined, semi-confined and free. The results showed the management practices influence on the cattle soil ingestion percentage, and the importance of this pathway in the environmental impact assessment. (author). 7 refs., 1 tab

  7. Interaction of natural complexing agents with soil bound heavy metals -geochemical and environmental technical aspects

    International Nuclear Information System (INIS)

    Fischer, K.

    1994-01-01

    The sanitation of heavy metal polluted soils requires the application of an adequate technology, which should be consistent in its ecological aims and methodology. Therefore a research programme has been developed at the 'Institute of Ecological Chemistry' of the 'GSF-Research Center', Neuherberg, which has its starting point in the study of influences of natural organic complexing agents on the chemical activity and dynamic of heavy metals in soils. The groundlaying idea is to elevate the concentration of complexing agents in the soil solution by additional application and possible stimulation of their microbial production to such an extent, that heavy metals will be enhanced solubilized, mobilized and removed together with the seepage water. Batch experiments in order to extract heavy metals from typical soil components (bentonite, peat) by amino acids demonstrate, that removal rates up to 95% can be obtained. (orig.) [de

  8. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Black, Amanda, E-mail: amanda.black@lincoln.ac.nz [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); McLaren, Ronald G. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand); Reichman, Suzanne M. [School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Speir, Thomas W. [Institute of Environmental Science and Research Ltd (ESR), PO Box 50348, Porirua 5240 (New Zealand); Condron, Leo M. [Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch (New Zealand)

    2011-06-15

    Few studies have quantified the accuracy of soil metal bioavailability assays using large datasets. A meta-analysis from experiments spanning 6 months to 13 years on 12 soil types, compared bioavailability estimate efficiencies for wheat and ryegrass. Treatments included biosolids {+-} metals, comparing total metal, Ca(NO{sub 3}){sub 2}, EDTA, soil solution, DGT and free ion activity. The best correlations between soil metal bioavailability and shoot concentrations were for Ni using Ca(NO{sub 3}){sub 2} (r{sup 2} = 0.72) which also provided the best estimate of Zn bioavailability (r{sup 2} = 0.64). DGT provided the best estimate of Cd bioavailability, accounting for 49% of shoot Cd concentrations. There was no reliable descriptor of Cu bioavailability, with less than 35% of shoot Cu concentrations defined. Thus interpretation of data obtained from many soil metal bioavailability assays is unreliable and probably flawed, and there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd. - Highlights: > A meta-analysis evaluated the efficacy of soil metal bioavailability assays. > DGT could explain 49% of shoot Cd concentration. > There is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn. - A meta-analysis of soil metal bioavailability estimates for 12 soil types concluded that there is little justification to look beyond Ca(NO{sub 3}){sub 2} for Ni and Zn, and DGT for Cd.

  9. SBAT: A Tool for Estimating Metal Bioaccessibility in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Heuscher, S.A.

    2004-04-21

    Heavy metals such as chromium and arsenic are widespread in the environment due to their usage in many industrial processes. These metals may pose significant health risks to humans, especially children, due to their mutagenic and carcinogenic properties. Typically, the health risks associated with the ingestion of soil-bound metals are estimated by assuming that the metals are completely absorbed through the human intestinal tract (100% bioavailable). This assumption potentially overestimates the risk since soils are known to strongly sequester metals thereby potentially lowering their bioavailability. Beginning in 2000, researchers at Oak Ridge National Laboratory, with funding from the Strategic Environmental Research and Development Program (SERDP), studied the effect of soil properties on the bioaccessibility of soil-bound arsenic and chromium. Representative A and upper-B horizons from seven major U.S. soil orders were obtained from the U.S. Department of Agriculture's National Resources Conservation Service and the U.S. Department of Energy's Oak Ridge Reservation. The soils were spiked with known concentrations of arsenic (As(III) and As(V)) and chromium (Cr(III) and Cr(VI)), and the bioaccessibility was measured using a physiologically based extraction test that mimics the gastric activity of children. Linear regression models were then developed to relate the bioaccessibility measurements to the soil properties (Yang et al. 2002; Stewart et al. 2003a). Important results from these publications and other studies include: (1) Cr(VI) and As(III) are more toxic and bioavailable than Cr(III) and As(V) respectively. (2) Several favorable processes can occur in soils that promote the oxidation of As(III) to As(V) and the reduction of Cr(VI) to Cr(III), thereby lowering bioaccessibility. Iron and manganese oxides are capable of oxidizing As(III) to As(V), whereas organic matter and Fe(II)-bearing minerals are capable of reducing Cr(VI) to Cr(III). (3

  10. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  11. Estimating soil hydrological response by combining precipitation-runoff modeling and hydro-functional soil homogeneous units

    Science.gov (United States)

    Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Diez-Herrero, Andres

    2015-04-01

    Flash floods constitute one of the natural hazards better able to generate risk, particularly with regard to Society. The complexity of this process and its dependence on various factors related to the characteristics of the basin and rainfall make flash floods are difficult to characterize in terms of their hydrological response.To do this, it is essential a proper analysis of the so called 'initial abstractions'. Among all of these processes, infiltration plays a crucial role in explaining the occurrence of floods in mountainous basins.For its characterization the Green-Ampt model , which depends on the characteristics of rainfall and physical properties of soil has been used in this work.This is a method enabling to simulate floods in mountainous basins where hydrological response is sub-daily. However, it has the disadvantage that it is based on physical properties of soil which have a high spatial variability. To address this difficulty soil mapping units have been delineated according to the geomorphological landforms and elements. They represent hydro-functional mapping units that are theoretically homogeneous from the perspective of the pedostructure parameters of the pedon. So the soil texture of each homogeneous group of landform units was studied by granulometric analyses using standarized sieves and Sedigraph devices. In addition, uncertainty associated with the parameterization of the Green-Ampt method has been estimated by implementing a Monte Carlo approach, which required assignment of the proper distribution function to each parameter.The suitability of this method was contrasted by calibrating and validating a hydrological model, in which the generation of runoff hydrograph has been simulated using the SCS unit hydrograph (HEC-GeoHMS software), while flood wave routing has been characterized using the Muskingum-Cunge method. Calibration and validation of the model was from the use of an automatic routine based on the employ of the search algorithm

  12. Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: An ecological perspective.

    Science.gov (United States)

    Adserias-Garriga, Joe; Hernández, Marta; Quijada, Narciso M; Rodríguez Lázaro, David; Steadman, Dawnie; Garcia-Gil, Jesús

    2017-09-01

    Understanding human decomposition is critical for its use in postmortem interval (PMI) estimation, having a significant impact on forensic investigations. In recognition of the need to establish the scientific basis for PMI estimation, several studies on decomposition have been carried out in the last years. The aims of the present study were: (i) to identify soil microbiota communities involved in human decomposition through high-throughput sequencing (HTS) of DNA sequences from the different bacteria, (ii) to monitor quantitatively and qualitatively the decay of such signature species, and (iii) to describe succesional changes in bacterial populations from the early putrefaction state until skeletonization. Three donated individuals to the University of Tennessee FAC were studied. Soil samples around the body were taken from the placement of the donor until advanced decay/dry remains stage. Bacterial DNA extracts were obtained from the samples, HTS techniques were applied and bioinformatic data analysis was performed. The three cadavers showed similar overall successional changes. At the beginning of the decomposition process the soil microbiome consisted of diverse indigenous soil bacterial communities. As decomposition advanced, Firmicutes community abundance increased in the soil during the bloat stage. The growth curve of Firmicutes from human remains can be used to estimate time since death during Tennessee summer conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture

    Science.gov (United States)

    Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.

    2016-06-01

    Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite soil moisture observations from the Soil Moisture and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite soil moisture that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS soil moisture observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface soil moisture and evaporation are validated against soil moisture probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite soil moisture products. Results indicate that the modelled soil moisture from GLEAM can be improved through the assimilation of SMOS soil moisture: the average correlation coefficient between in situ measurements and the modelled soil moisture over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of soil moisture data

  14. Plant-available soil water capacity: estimation methods and implications

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva

    2014-04-01

    Full Text Available The plant-available water capacity of the soil is defined as the water content between field capacity and wilting point, and has wide practical application in planning the land use. In a representative profile of the Cerrado Oxisol, methods for estimating the wilting point were studied and compared, using a WP4-T psychrometer and Richards chamber for undisturbed and disturbed samples. In addition, the field capacity was estimated by the water content at 6, 10, 33 kPa and by the inflection point of the water retention curve, calculated by the van Genuchten and cubic polynomial models. We found that the field capacity moisture determined at the inflection point was higher than by the other methods, and that even at the inflection point the estimates differed, according to the model used. By the WP4-T psychrometer, the water content was significantly lower found the estimate of the permanent wilting point. We concluded that the estimation of the available water holding capacity is markedly influenced by the estimation methods, which has to be taken into consideration because of the practical importance of this parameter.

  15. Uncertainty and validation. Effect of model complexity on uncertainty estimates

    International Nuclear Information System (INIS)

    Elert, M.

    1996-09-01

    In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root

  16. Estimating soil solution nitrate concentration from dielectric spectra using PLS analysis

    Science.gov (United States)

    Fast and reliable methods for in situ monitoring of soil nitrate-nitrogen concentration are vital for reducing nitrate-nitrogen losses to ground and surface waters from agricultural systems. While several studies have been done to indirectly estimate nitrate-nitrogen concentration from time domain s...

  17. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Directory of Open Access Journals (Sweden)

    Magali Odi-Lara

    2016-03-01

    Full Text Available The main goal of this research was to estimate the actual evapotranspiration (ETc of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO dual crop coefficient approach, in which the basal crop coefficient (Kcb was derived from the soil adjusted vegetation index (SAVI calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82·SAVI − 0.07 (R2 = 0.95. The methodology was applied during two growing seasons (2010–2011 and 2012–2013, and ETc was evaluated using latent heat fluxes (LE from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm·day−1, which mean a relative error of 25%. The index of agreement (d values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards.

  18. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing

    Science.gov (United States)

    Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei

    2014-10-01

    Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary

  19. Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS.

    Science.gov (United States)

    Markose, Vipin Joseph; Jayappa, K S

    2016-04-01

    Most of the mountainous regions in tropical humid climatic zone experience severe soil loss due to natural factors. In the absence of measured data, modeling techniques play a crucial role for quantitative estimation of soil loss in such regions. The objective of this research work is to estimate soil loss and prioritize the sub-watersheds of Kali River basin using Revised Universal Soil Loss Equation (RUSLE) model. Various thematic layers of RUSLE factors such as rainfall erosivity (R), soil erodibility (K), topographic factor (LS), crop management factor (C), and support practice factor (P) have been prepared by using multiple spatial and non-spatial data sets. These layers are integrated in geographic information system (GIS) environment and estimated the soil loss. The results show that ∼42 % of the study area falls under low erosion risk and only 6.97 % area suffer from very high erosion risk. Based on the rate of soil loss, 165 sub-watersheds have been prioritized into four categories-very high, high, moderate, and low erosion risk. Anthropogenic activities such as deforestation, construction of dams, and rapid urbanization are the main reasons for high rate of soil loss in the study area. The soil erosion rate and prioritization maps help in implementation of a proper watershed management plan for the river basin.

  20. Infiltration and redistribution of water in soils

    International Nuclear Information System (INIS)

    Stroosnijder, L.

    1976-01-01

    The flow of the liquid phase through a soil can be predicted from pressure gradients. Different ways of predicting infiltration for irrigation of a basin were compared: numerical approximation; semi-analytical and analytical. A partly empirical equation was developed for description of rate of infiltration, after examination of existing equations. Under certain conditions, infiltration was influenced by under or over pressure of the trapped gas phase and by swelling of clays. Complex models for redistribution were of little value in practice, since they could not be generalized and required too many physical data about the soil. A scheme was developed that grouped techniques for estimating physical properties of soil, according to cost and expertise required. A new experimental technique based on gamma transmission is described for estimating the physical properties of the soil. (Auth.)

  1. Estimating soil erosion losses in Korea with fallout cesium-137

    International Nuclear Information System (INIS)

    Menzel, R.G.; Pilkyun Jung; Kwanshig Ryu; Kitai Um

    1987-01-01

    The contents of fallout 137 Cs in soil profiles were used to estimate erosion losses from steeply sloping croplands in Korea. Seven undisturbed sites with no apparent erosion or deposition, and 15 cropland sites were examined to a depth of 30 cm. The cropland sites had been cultivated for periods ranging from 5 to more than 80 y (median 10 y), and their slopes ranged from 5 to 26% (median 13%). All except one of the cropland sites contained less 137 Cs than undisturbed sites in the same area. Three cropland sites contained essentially no 137 Cs, indicating erosion of the entire cultivated layer of soil in from 6 to 10 years. Other cropland sites, particularly those with sandy texture, showed little loss of 137 Cs over longer periods of cultivation. Cesium-137 measurements may be useful in identifying site characteristics that reduce the vulnerability of sloping soils to erosion damage. (author)

  2. Microbiological estimation of copper, magnesium and molybdenum in soil and plant material

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, E G

    1948-01-01

    A description is given of some microbiological assays for the estimation of copper, magnesium, and molybdenum in soils as well as in plant tissues. Some results obtained with the application of these tests are recorded.

  3. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    Science.gov (United States)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  4. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge

    Directory of Open Access Journals (Sweden)

    Tiziano Gomiero

    2016-03-01

    Full Text Available Soil health, along with water supply, is the most valuable resource for humans, as human life depends on the soil’s generosity. Soil degradation, therefore, poses a threat to food security, as it reduces yield, forces farmers to use more inputs, and may eventually lead to soil abandonment. Unfortunately, the importance of preserving soil health appears to be overlooked by policy makers. In this paper, I first briefly introduce the present situation concerning agricultural production, natural resources, soil degradation, land use and the challenge ahead, to show how these issues are strictly interwoven. Then, I define soil degradation and present a review of its typologies and estimates at a global level. I discuss the importance of preserving soil capital, and its relationship to human civilization and food security. Trends concerning the availability of arable agricultural land, different scenarios, and their limitations, are analyzed and discussed. The possible relation between an increase in a country’s GNP, population and future availability of arable land is also analyzed, using the World Bank’s database. I argue that because of the many sources of uncertainty in the data, and the high risks at stake, a precautionary approach should be adopted when drawing scenarios. The paper ends with a discussion on the key role of preserving soil organic matter, and the need to adopt more sustainable agricultural practices. I also argue that both our relation with nature and natural resources and our lifestyle need to be reconsidered.

  5. Comparison of Statistically Modeled Contaminated Soil Volume Estimates and Actual Excavation Volumes at the Maywood FUSRAP Site - 13555

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James [U.S. Army Corps of Engineers - New York District 26 Federal Plaza, New York, New York 10278 (United States); Hays, David [U.S. Army Corps of Engineers - Kansas City District 601 E. 12th Street, Kansas City, Missouri 64106 (United States); Quinn, John; Johnson, Robert; Durham, Lisa [Argonne National Laboratory, Environmental Science Division 9700 S. Cass Ave., Argonne, Illinois 60439 (United States)

    2013-07-01

    As part of the ongoing remediation process at the Maywood Formerly Utilized Sites Remedial Action Program (FUSRAP) properties, Argonne National Laboratory (Argonne) assisted the U.S. Army Corps of Engineers (USACE) New York District by providing contaminated soil volume estimates for the main site area, much of which is fully or partially remediated. As part of the volume estimation process, an initial conceptual site model (ICSM) was prepared for the entire site that captured existing information (with the exception of soil sampling results) pertinent to the possible location of surface and subsurface contamination above cleanup requirements. This ICSM was based on historical anecdotal information, aerial photographs, and the logs from several hundred soil cores that identified the depth of fill material and the depth to bedrock under the site. Specialized geostatistical software developed by Argonne was used to update the ICSM with historical sampling results and down-hole gamma survey information for hundreds of soil core locations. The updating process yielded both a best guess estimate of contamination volumes and a conservative upper bound on the volume estimate that reflected the estimate's uncertainty. Comparison of model results to actual removed soil volumes was conducted on a parcel-by-parcel basis. Where sampling data density was adequate, the actual volume matched the model's average or best guess results. Where contamination was un-characterized and unknown to the model, the actual volume exceeded the model's conservative estimate. Factors affecting volume estimation were identified to assist in planning further excavations. (authors)

  6. Estimation model of soil freeze-thaw erosion in Silingco watershed wetland of Northern Tibet.

    Science.gov (United States)

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions.

  7. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  8. SOTER-based soil parameter estimates for Central Africa - DR of Congo, Burundi and Rwanda (ver. 1.0)

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    This harmonized set of soil parameter estimates for Central Africa, comprising Burundi, the Democratic Republic of the Congo and Rwanda, was derived from the Soil and Terrain Database for Central Africa (SOTERCAF ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based

  9. Selective Decontamination Effect of Metal Ions in Soil Using Supercritical CO{sub 2} and TBP Complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-10-15

    Decontamination of soil pollution is difficult because the type of contamination largely depends on the characteristics of the pollutant and the area. Also, existing soil decontamination methods generate large quantities of secondary waste and additional process costs. For this reason, new decontamination methods are always under active investigation. A method involving the use of supercritical carbon dioxide with excellent permeability in place of chemical solvents is currently being studied. Unlike other heavy metals in fission products, uranium is used as fuel, and must be handled carefully. Therefore, in this paper, we studied a supercritical carbon dioxide method for decontaminating heavy metal ions in soil using tri-n-butyl phosphate(TBP), which is well known as a ligand for the extraction of metal ions of actinium. We investigated the decontamination effect of heavy metal ions in the soil using TBP-HNO{sub 3} Complex and supercritical carbon dioxide. The study results showed that when heavy metals in soil are extracted using supercritical carbon dioxide, the extraction efficiency is different according to the type of pollutant metal ions in the soil. When TBP-HNO{sub 3} Complex is used with an extractant, uranium extraction is very effective, but lithium, strontium, and cesium extraction is not effective. Therefore, in the case of a mixture of uranium and other metals such as lithium, strontium, cesium, and so on in soil contaminated by fission product leaks from nuclear power plants, we can selectively decontaminate uranium with supercritical carbon dioxide and TBP-HNO{sub 3} Complex.

  10. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data

    Directory of Open Access Journals (Sweden)

    Fabio Castaldi

    2015-11-01

    Full Text Available Soil moisture hampers the estimation of soil variables such as clay content from remote and proximal sensing data, reducing the strength of the relevant spectral absorption features. In the present study, two different strategies have been evaluated for their ability to minimize the influence of soil moisture on clay estimation by using soil spectra acquired in a laboratory and by simulating satellite hyperspectral data. Simulated satellite data were obtained according to the spectral characteristics of the forthcoming hyperspectral imager on board of the Italian PRISMA satellite mission. The soil datasets were split into four groups according to the water content. For each soil moisture level a prediction model was applied, using either spectral indices or partial least squares regression (PLSR. Prediction models were either specifically developed for the soil moisture level or calibrated using synthetically dry soil spectra, generated from wet soil data. Synthetically dry spectra were obtained using a new technique based on the effects caused by soil moisture on the optical spectrum from 400 to 2400 nm. The estimation of soil clay content, when using different prediction models according to soil moisture, was slightly more accurate as compared to the use of synthetically dry soil spectra, both employing clay indices and PLSR models. The results obtained in this study demonstrate that the a priori knowledge of the soil moisture class can reduce the error of clay estimation when using hyperspectral remote sensing data, such as those that will be provided by the PRISMA satellite mission in the near future.

  11. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Qinghu Jiang

    2016-09-01

    and GLSW combined with PLSR models for efficient estimation of SOC using VIS-NIR under different soil MC conditions.

  12. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  13. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    Science.gov (United States)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the

  14. Using "1"3"7Cs measurements to estimate soil erosion rates in the Pčinja and South Morava River Basins, southeastern Serbia

    International Nuclear Information System (INIS)

    Petrović, Jelena; Dragović, Snežana; Dragović, Ranko; Đorđević, Milan; Đokić, Mrđan; Zlatković, Bojan; Walling, Desmond

    2016-01-01

    The need for reliable assessments of soil erosion rates in Serbia has directed attention to the potential for using "1"3"7Cs measurements to derive estimates of soil redistribution rates. Since, to date, this approach has not been applied in southeastern Serbia, a reconnaissance study was undertaken to confirm its viability. The need to take account of the occurrence of substantial Chernobyl fallout was seen as a potential problem. Samples for "1"3"7Cs measurement were collected from a zone of uncultivated soils in the watersheds of Pčinja and South Morava Rivers, an area with known high soil erosion rates. Two theoretical conversion models, the profile distribution (PD) model and diffusion and migration (D&M) model were used to derive estimates of soil erosion and deposition rates from the "1"3"7Cs measurements. The estimates of soil redistribution rates derived by using the PD and D&M models were found to differ substantially and this difference was ascribed to the assumptions of the simpler PD model that cause it to overestimate rates of soil loss. The results provided by the D&M model were judged to more reliable. - Highlights: • The "1"3"7Cs measurements are employed to estimate the soil erosion and deposition rates in southeastern Serbia. • Estimates of annual soil loss by profile distribution (PD) and diffusion and migration (D&M) models differ significantly. • Differences were ascribed to the assumptions of the simpler PD model which cause it to overestimate rates of soil loss. • The study confirmed the potential for using "1"3"7Cs measurements to estimate soil erosion rates in Serbia.

  15. Estimation of soil texture and plant available water by correlation with the laser light-scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Haverland, R. L.; Post, D. F.; Cooper, L. R.; Shirley, E. D.

    1985-07-01

    Particle -size distribution and plant available water are basic input to studies of range, forest and cultivated land. Since the conventional laboratory procedures for determining these parameters are time consuming, an improved method for making these measurements is desirable. Weiss and Frock (1976) reported results from an instrument employing the principle of laser light scattering to measure particle -size distribution. The instrument was reported to be of high precision, and yielded reproducible results. The laser light- scattering instrument used in this study is the Microtrac Particle -size Analyzer Model 7991- 0, manufactured by Leeds and Northrup. The particle -size analysis range of this model is from 1.9 to 176 μm, which does not correspond to the entire fine earth fraction (< 2 mm) usually characterized by soil scientists. It is, therefore, desirable to develop predictive equations to estimate the soil texture of the fine earth fraction. We believe data from this instrument could be used to predict other soil properties. This paper reports on using Microtrac data to estimate the plant available water holding capacity and soil texture of Arizona soils. Two hundred and forty-seven Arizona soils were used in this study. Most of these soils (approximately 230 soils) are thermic or hyperthermic and arid or semiarid soils of dominantly mixed mineralogy, as described on the Arizona General Soils Map (Jay et al., 1975). An array of soil horizons are included, with approximately one half of the samples coming from the A or Ap surface horizons. The other half of the samples are from the subsurface B or C horizons.

  16. Erosivity factor in the Universal Soil Loss Equation estimated from Finnish rainfall data

    Directory of Open Access Journals (Sweden)

    Maximilian Posch

    1993-07-01

    Full Text Available Continuous rainfall data recorded for many years at 8 stations in Finland were used to estimate rainfall erosivity, a quantity needed for soil loss predictions with the Universal Soil Loss Equation (USLE. The obtained erosivity values were then used to determine the 2 parameters of a power-law function describing the relationship between daily precipitation and erosivity. This function is of importance in erosion modeling at locations where no breakpoint rainfall data are available. The parameters of the power-law were estimated both by linear regression of the log-transformed data and by non-linear least-square fitting of the original data. Results indicate a considerable seasonal (monthly variation of the erosivity, whereas the spatial variation over Finland is rather small.

  17. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    Science.gov (United States)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the

  18. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  19. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    Science.gov (United States)

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  20. Estimating Regional Scale Hydroclimatic Risk Conditions from the Soil Moisture Active-Passive (SMAP Satellite

    Directory of Open Access Journals (Sweden)

    Catherine Champagne

    2018-04-01

    Full Text Available Satellite soil moisture is a critical variable for identifying susceptibility to hydroclimatic risks such as drought, dryness, and excess moisture. Satellite soil moisture data from the Soil Moisture Active/Passive (SMAP mission was used to evaluate the sensitivity to hydroclimatic risk events in Canada. The SMAP soil moisture data sets in general capture relative moisture trends with the best estimates from the passive-only derived soil moisture and little difference between the data at different spatial resolutions. In general, SMAP data sets overestimated the magnitude of moisture at the wet extremes of wetting events. A soil moisture difference from average (SMDA was calculated from SMAP and historical Soil Moisture and Ocean Salinity (SMOS data showed a relatively good delineation of hydroclimatic risk events, although caution must be taken due to the large variability in the data within risk categories. Satellite soil moisture data sets are more sensitive to short term water shortages than longer term water deficits. This was not improved by adding “memory” to satellite soil moisture indices to improve the sensitivity of the data to drought, and there is a large variability in satellite soil moisture values with the same drought severity rating.

  1. Impact of Land Use Change to the Soil Erosion Estimation for Cultural Landscapes: Case Study of Paphos Disrict in Cyprus

    Science.gov (United States)

    Cuca, B.; Agapiou, A.

    2017-05-01

    In 2006 UNESCO report has identified soil loss as one of the main threats of climate change with possible impact to natural and cultural heritage. The study illustrated in this paper shows the results from geomatic perspective, applying an interdisciplinary approach undertaken in order to identify major natural hazards affecting cultural landscapes and archaeological heritage in rural areas in Cyprus. In particular, Earth Observation (EO) and ground-based methods were identified and applied for mapping, monitoring and estimation of the possible soil loss caused by soil erosion. Special attention was given to the land use/land cover factor (C) and its impact on the overall estimation of the soil-loss. Cover factor represents the effect of soil-disturbing activities, plants, crop sequence and productivity level, soil cover and subsurface bio-mass on soil erosion. Urban areas have a definite role in retarding the recharge process, leading to increased runoff and soil loss in the broader area. On the other hand, natural vegetation plays a predominant role in reducing water erosion. The land use change was estimated based on the difference of the NDVI value between Landsat 5 TM and Sentinel-2 data for the period between 1980s' until today. Cover factor was then estimated for both periods and significant land use changes were further examined in areas of significant cultural and natural landscape value. The results were then compared in order to study the impact of land use change on the soil erosion and hence on the soil loss rate in the selected areas.

  2. The forming of the complexes of soil mezofauna in the zone of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.L.

    2002-01-01

    We carried out the pedobiological research in the different biogeocenoses in the zone of radioactive contamination. Based on the obtained data we can conclude a direct correlation between the viability of the soil invertebrates and the background gamma-radiation intensity. All the facts indicate that soil animal complexes in biogeocenoses exposed to radiation for a long time impact clearly noticeable suppression

  3. Synergistic use of active and passive microwave in soil moisture estimation

    Science.gov (United States)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  4. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  5. ESTIMATION OF THE DECREASING OF 137 CS SEDIMENT IN THE SOIL DUE TO HORIZONTAL FLOWING

    Directory of Open Access Journals (Sweden)

    O. N. Prokof'ev

    2008-01-01

    Full Text Available The purpose of work is to estimate the possible decreasing of the density of  137 Cs sediment in the soil influenced by the horizontal flowing basing on the analysis of on location observations on the density of  137 Cs sediment in the soil after the Chernobyl accident.

  6. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  7. Evaluation of the 137Cs technique for estimating wind erosion losses for some sandy Western Australian soils

    International Nuclear Information System (INIS)

    Harper, R.J.; Gilkes, R.J.

    1994-01-01

    The utility of the caesium-137 technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P 137 Cs values between eroded and non-eroded sandy soils, with mean values of 243±17 and 386±13 Bq m -2 respectively. Non-eroded soils, with larger clay contents, had a mean 137 Cs content of 421±26 Bq m -2 , however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137 Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137 Cs loss. The occurrence of around 18% of the total 137 Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137 Cs occurs in the sandy soils, although there was no relationship between clay content and 137 Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137 Cs content. This relationship suggests that both organic carbon and 137 Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137 Cs content, rather than selectively winnowing fine material. 71 refs., 6 tabs., 2 fig

  8. Multimedia approach to estimating target cleanup levels for soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1990-04-01

    Contaminated soils at hazardous and nuclear waste sites pose a potential threat to human health via transport through environmental media and subsequent human intake. To minimize health risks, it is necessary to identify those risks and ensure that appropriate actions are taken to protect public health. The regulatory process may typically include identification of target cleanup levels and evaluation of the effectiveness of remedial alternatives and the corresponding reduction in risks at a site. The US Environmental Protection Agency (EPA) recommends that exposure assessments be combined with toxicity information to quantify the health risk posed by a specific site. This recommendation then forms the basis for establishing target cleanup levels. An exposure assessment must first identify the chemical concentration in a specific medium (soil, water, air, or food), estimate the exposure potential based on human intake from that media, and then combined with health criteria to estimate the upperbound health risks for noncarcinogens and carcinogens. Estimation of target cleanup levels involves the use of these same principles but can occur in reverse order. The procedure starts from establishing a permissible health effect level and ends with an estimated target cleanup level through an exposure assessment process. 17 refs

  9. Pedotransfer functions to estimate water retention parameters of soils in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo Cezar Barros

    2013-04-01

    Full Text Available Pedotransfer functions (PTF were developed to estimate the parameters (α, n, θr and θs of the van Genuchten model (1980 to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf, totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter, and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R and Willmott index (d. To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE. The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter

  10. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models

    Science.gov (United States)

    Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.

    2017-12-01

    Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be

  11. Influence of Characteristic-Soil-Property-Estimation Approach on the Response of Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Sørensen, John Dalsgaard; Kim, Sun-Bin

    2015-01-01

    Different approaches to estimation of the characteristic undrained shear strength of soil are discussed, based on 12 cone penetration tests (CPTs) carried out within a soil volume representative of an offshore monopile foundation. The paper is focused on the statistical treatment of the data, and...

  12. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy

    International Nuclear Information System (INIS)

    Porto, Paolo; Walling, Des E.

    2012-01-01

    Soil erosion represents an important threat to the long-term sustainability of agriculture and forestry in many areas of the world, including southern Italy. Numerous models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution, based on the local topography, hydrometeorology, soil type and land management. However, there remains an important need for empirical measurements to provide a basis for validating and calibrating such models and prediction procedures as well as to support specific investigations and experiments. In this context, erosion plots provide useful information on gross rates of soil loss, but are unable to document the efficiency of the onward transfer of the eroded sediment within a field and towards the stream system, and thus net rates of soil loss from larger areas. The use of environmental radionuclides, particularly caesium-137 ( 137 Cs) and excess lead-210 ( 210 Pb ex ), as a means of estimating rates of soil erosion and deposition has attracted increasing attention in recent years and the approach has now been recognised as possessing several important advantages. In order to provide further confirmation of the validity of the estimates of longer-term erosion and soil redistribution rates provided by 137 Cs and 210 Pb ex measurements, there is a need for studies aimed explicitly at validating the results obtained. In this context, the authors directed attention to the potential offered by a set of small erosion plots located near Reggio Calabria in southern Italy, for validating estimates of soil loss provided by 137 Cs and 210 Pb ex measurements. A preliminary assessment suggested that, notwithstanding the limitations and constraints involved, a worthwhile investigation aimed at validating the use of 137 Cs and 210 Pb ex measurements to estimate rates of soil loss from cultivated land could be undertaken. The results demonstrate a close consistency between the measured rates of soil loss and

  13. Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture Measurements

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Ringgaard, Rasmus; Herbst, Mathias

    2011-01-01

    limit estimate (disregarding dew evaporation) of evapotranspiration on dry days. During a period of 7 wk, the two independent measuring techniques were applied in a barley (Hordeum vulgare L.) field, and six dry periods were identified. Measurements of daily root zone soil moisture depletion were...

  14. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Science.gov (United States)

    Baisden, W. T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14C to determine residence times, by estimating the amount of ‘bomb 14C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  15. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    International Nuclear Information System (INIS)

    Baisden, W.T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14 C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14 C to determine residence times, by estimating the amount of ‘bomb 14 C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14 C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  16. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Science.gov (United States)

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  17. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. O. Cuthbert

    2013-03-01

    Full Text Available Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010 is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  18. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    Science.gov (United States)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  19. Model for prognostication of population irradiation dose at the soil way of long-living radionuclides including in food chains

    International Nuclear Information System (INIS)

    Prister, B.S.; Vinogradskaya, V.D.

    2009-01-01

    On the basis of modern pictures of cesium and strontium ion absorption mechanisms a soil taking complex was build the kinetic model of radionuclide migration from soil to plants. Model parameter association with the agricultural chemistry properties of soil, represented by complex estimation of soil properties S e f. The example of model application for prognostication of population internal irradiation dose due to consumption of milk at the soil way of long-living radionuclides including in food chains

  20. Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation

    International Nuclear Information System (INIS)

    Endo, S.; Kimura, S.; Takatsuji, T.; Nanasawa, K.; Imanaka, T.; Shizuma, K.

    2012-01-01

    Soil sampling was carried out at an early stage of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Samples were taken from areas around FDNPP, at four locations northwest of FDNPP, at four schools and in four cities, including Fukushima City. Radioactive contaminants in soil samples were identified and measured by using a Ge detector and included 129m Te, 129 Te, 131 I, 132 Te, 132 I, 134 Cs, 136 Cs, 137 Cs, 140 Ba and 140 La. The highest soil depositions were measured to the northwest of FDNPP. From this soil deposition data, variations in dose rates over time and the cumulative external doses at the locations for 3 months and 1 y after deposition were estimated. At locations northwest of FDNPP, the external dose rate at 3 months after deposition was 4.8–98 μSv/h and the cumulative dose for 1 y was 51 to 1.0 × 10 3 mSv; the highest values were at Futaba Yamada. At the four schools, which were used as evacuation shelters, and in the four urban cities, the external dose rate at 3 months after deposition ranged from 0.03 to 3.8 μSv/h and the cumulative doses for 1 y ranged from 3 to 40 mSv. The cumulative dose at Fukushima Niihama Park was estimated as the highest in the four cities. The estimated external dose rates and cumulative doses show that careful countermeasures and remediation will be needed as a result of the accident, and detailed measurements of radionuclide deposition densities in soil will be important input data to conduct these activities.

  1. A national scale estimation of soil carbon stocks of Pinus densiflora forests in Korea: a modelling approach

    Science.gov (United States)

    Yi, K.; Park, C.; Ryu, S.; Lee, K.; Yi, M.; Kim, C.; Park, G.; Kim, R.; Son, Y.

    2011-12-01

    Soil carbon (C) stocks of Pinus densiflora forests in Korea were estimated using a generic forest soil C dynamics model based on the process of dead organic matter input and decomposition. Annual input of dead organic matter to the soil was determined by stand biomass and turnover rates of tree components (stem, branch, twig, foliage, coarse root, and fine root). The model was designed to have a simplified structure consisting of three dead organic matter C (DOC) pools (aboveground woody debris (AWD), belowground woody debris (BWD), and litter (LTR) pool) and one soil organic C (SOC) pool. C flows in the model were regulated by six turnover rates of stem, branch, twig, foliage, coarse root, and fine root, and four decay rates of AWD, BWD, LTR, and SOC. To simulate the soil C stocks of P. densiflora forests, statistical data of forest land area (1,339,791 ha) and growing stock (191,896,089 m3) sorted by region (nine provinces and seven metropolitan cities) and stand age class (11 to 20- (II), 21 to 30- (III), 31 to 40- (IV), 41 to 50- (V), and 51 to 60-year-old (VI)) were used. The growing stock of each stand age class was calculated for every region and representable site index was also determined by consulting the yield table. Other model parameters related to the stand biomass, annual input of dead organic matter and decomposition were estimated from previous studies conducted on P. densiflora forests in Korea, which were also applied for model validation. As a result of simulation, total soil C stock of P. densiflora forests were estimated as 53.9 MtC and soil C stocks per unit area ranged from 28.71 to 47.81 tC ha-1 within the soil depth of 30 cm. Also, soil C stocks in the P. densiflora forests of age class II, III, IV, V, and VI were 16,780,818, 21,450,812, 12,677,872, 2,366,939, and 578,623 tC, respectively, and highly related to the distribution of age classes. Soil C stocks per unit area initially decreased with stand age class and started to increase

  2. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2017-06-16

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  3. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2017-01-01

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  4. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...

  5. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Czech Academy of Sciences Publication Activity Database

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  6. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland

    Science.gov (United States)

    Palmtag, Juri; Cable, Stefanie; Christiansen, Hanne H.; Hugelius, Gustaf; Kuhry, Peter

    2018-05-01

    Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC) and total nitrogen (TN) storage estimates for the Zackenberg area (NE Greenland) that were based on a land cover classification (LCC) approach, by using geomorphological upscaling. In addition, novel organic carbon (OC) estimates for deeper alluvial and deltaic deposits (down to 300 cm depth) are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0-100 cm soil depth is 4.8 kg C m-2, which is 42 % lower than the previous estimate of 8.3 kg C m-2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0-100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI) to 0.28 (±0.1 CI) kg TN m-2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m-2 in the 100-300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  7. Radiocarbon dating of magnetic and non magnetic soil fractions as a method to estimate the heterotrophic component of soil respiration in a primary forest of Ghana.

    Science.gov (United States)

    Chiti, T.; Certini, G.; Marzaioli, F.; Valentini, R.

    2012-04-01

    We estimated the heterotrophic component (Rh) of soil respiration in a primary forest of Ghana by radiocarbon dating, a method we already successfully applied in temperate and Mediterranean forests. In this case, given the advanced stage of alteration of tropical soils, which are thus rich in oxides, we implemented the method on soil fractions obtained by High Gradient Magnetic Separation (HGMS), hence based on different degrees of magnetic susceptibility. In particular, we separated an organic pool associated with magnetic minerals (e.g iron oxides) from an organic pool engaged with non-magnetic minerals. This non destructive method of fractionation, often applied to the finest fraction of soil (clay), is here attempted on the bulk fine earth (sieved at 2 mm and further at 0.5 mm ,so as to have two size fractions: 2 to 0.5 mm and aggregates. Surprisingly, the non magnetic fraction is not influenced at all by the bomb C (negative delta 14) already at a depth of 5-15 cm and, even, at 15-30 cm all the four fractions have pre-bomb C, which means relatively high radiocarbon age. The finest fractions are the main contributors to the Rh flux, particularly the magnetic fraction (analysis of the bulk soil alone, and only by means of a SOC fractionation the Rh flux can be estimated quite accurately. This alternative approach for estimating the Rh component of CO2 from soils of tropical areas is currently being applied in 10 tropical forest sites in western and central Africa in the context of the ERC Africa GHG project, and together with measurements of the C inputs annually entering the soil will allow determining the sink-source capacity of primary forest soils.

  8. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    Science.gov (United States)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  9. Modelling soil erosion potential in the transboundary (Kenya & Tanzania) catchment of river Umba using remotely sensed data

    NARCIS (Netherlands)

    Koedam, N.; Mutisya, B.; Kairo, J.; Resink-Ndungu, Jane Njeri; Kervyn, M.

    2017-01-01

    Soil erosion is one of the leading forms of soil degradation. Estimating soil erosion from field measurements is expensive hence the extent of soil erosion in many tropical watersheds is unknown. Erosion is a complex process; some of the eroded materials are deposited within the watershed while the

  10. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  11. Simplified Probabilistic Analysis of Settlement of Cyclically Loaded Soil Stratum by Point Estimate Method

    Science.gov (United States)

    Przewłócki, Jarosław; Górski, Jarosław; Świdziński, Waldemar

    2016-12-01

    The paper deals with the probabilistic analysis of the settlement of a non-cohesive soil layer subjected to cyclic loading. Originally, the settlement assessment is based on a deterministic compaction model, which requires integration of a set of differential equations. However, with the use of the Bessel functions, the settlement of a soil stratum can be calculated by a simplified algorithm. The compaction model parameters were determined for soil samples taken from subsoil near the Izmit Bay, Turkey. The computations were performed for various sets of random variables. The point estimate method was applied, and the results were verified by the Monte Carlo method. The outcome leads to a conclusion that can be useful in the prediction of soil settlement under seismic loading.

  12. Industrial experience feedback of a geostatistical estimation of contaminated soil volumes - 59181

    International Nuclear Information System (INIS)

    Faucheux, Claire; Jeannee, Nicolas

    2012-01-01

    Geo-statistics meets a growing interest for the remediation forecast of potentially contaminated sites, by providing adapted methods to perform both chemical and radiological pollution mapping, to estimate contaminated volumes, potentially integrating auxiliary information, and to set up adaptive sampling strategies. As part of demonstration studies carried out for GeoSiPol (Geo-statistics for Polluted Sites), geo-statistics has been applied for the detailed diagnosis of a former oil depot in France. The ability within the geo-statistical framework to generate pessimistic / probable / optimistic scenarios for the contaminated volumes allows a quantification of the risks associated to the remediation process: e.g. the financial risk to excavate clean soils, the sanitary risk to leave contaminated soils in place. After a first mapping, an iterative approach leads to collect additional samples in areas previously identified as highly uncertain. Estimated volumes are then updated and compared to the volumes actually excavated. This benchmarking therefore provides a practical feedback on the performance of the geo-statistical methodology. (authors)

  13. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  14. A METHOD USING GNSS LH-REFLECTED SIGNALS FOR SOIL ROUGHNESS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2018-04-01

    Full Text Available Global Navigation Satellite System Reflectometry (GNSS-R is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH reflected signal to the direct right-hand (RH signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  15. a Method Using Gnss Lh-Reflected Signals for Soil Roughness Estimation

    Science.gov (United States)

    Jia, Y.; Li, W.; Chen, Y.; Lv, H.; Pei, Y.

    2018-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH) reflected signal to the direct right-hand (RH) signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  16. Using (137)Cs measurements to estimate soil erosion rates in the Pčinja and South Morava River Basins, southeastern Serbia.

    Science.gov (United States)

    Petrović, Jelena; Dragović, Snežana; Dragović, Ranko; Đorđević, Milan; Đokić, Mrđan; Zlatković, Bojan; Walling, Desmond

    2016-07-01

    The need for reliable assessments of soil erosion rates in Serbia has directed attention to the potential for using (137)Cs measurements to derive estimates of soil redistribution rates. Since, to date, this approach has not been applied in southeastern Serbia, a reconnaissance study was undertaken to confirm its viability. The need to take account of the occurrence of substantial Chernobyl fallout was seen as a potential problem. Samples for (137)Cs measurement were collected from a zone of uncultivated soils in the watersheds of Pčinja and South Morava Rivers, an area with known high soil erosion rates. Two theoretical conversion models, the profile distribution (PD) model and diffusion and migration (D&M) model were used to derive estimates of soil erosion and deposition rates from the (137)Cs measurements. The estimates of soil redistribution rates derived by using the PD and D&M models were found to differ substantially and this difference was ascribed to the assumptions of the simpler PD model that cause it to overestimate rates of soil loss. The results provided by the D&M model were judged to more reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify iron-cyanide (Fe-CN) complexes in soil

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-04-01

    Contaminated sites create a significant risk to human health, by poisoning drinking water, soil, air and as a consequence food. Continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze considerable amount of samples. At the present time quantitative determination of Fe-CN concentration in soil usually requires a time consuming two step process: digestion of the sample (e.g., micro distillation system) and its analytical detection performed, e.g., by automated spectrophotometrical flow injection analysis (FIA). In order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify the Fe-CN complexes in soil matrix, 42 soil samples were collected (8 to 12.520 mg kg-1CN) indicating single symmetrical CN band in the range 2092 - 2084 cm-1. Partial least squares (PLS) calibration-validation model revealed IR response to CNtot exceeding 1268 mg kg-1 (limit of detection, LOD). Subsequently, leave-one-out cross-validation (LOO-CV) was performed on soil samples containing low CNtot (900 mg kg-1 resulted in LOD equal to 3494 mg kg-1. Our results indicate that spectroscopic data in combination with PLS statistics can efficiently be used to predict Fe-CN concentrations in soil. We conclude that the protocol applied in this study can strongly reduce the time and costs essential for the spatial and vertical screening of the site affected by complexed Fe-CN.

  18. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  19. A review of the methods available for estimating soil moisture and its implications for water resource management

    Science.gov (United States)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and

  20. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Vanclooster, Marnik

    2012-05-01

    Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Soil Erosion Estimation Using Grid-based Computation

    Directory of Open Access Journals (Sweden)

    Josef Vlasák

    2005-06-01

    Full Text Available Soil erosion estimation is an important part of a land consolidation process. Universal soil loss equation (USLE was presented by Wischmeier and Smith. USLE computation uses several factors, namely R – rainfall factor, K – soil erodability, L – slope length factor, S – slope gradient factor, C – cropping management factor, and P – erosion control management factor. L and S factors are usually combined to one LS factor – Topographic factor. The single factors are determined from several sources, such as DTM (Digital Terrain Model, BPEJ – soil type map, aerial and satellite images, etc. A conventional approach to the USLE computation, which is widely used in the Czech Republic, is based on the selection of characteristic profiles for which all above-mentioned factors must be determined. The result (G – annual soil loss of such computation is then applied for a whole area (slope of interest. Another approach to the USLE computation uses grids as a main data-structure. A prerequisite for a grid-based USLE computation is that each of the above-mentioned factors exists as a separate grid layer. The crucial step in this computation is a selection of appropriate grid resolution (grid cell size. A large cell size can cause an undesirable precision degradation. Too small cell size can noticeably slow down the whole computation. Provided that the cell size is derived from the source’s precision, the appropriate cell size for the Czech Republic varies from 30m to 50m. In some cases, especially when new surveying was done, grid computations can be performed with higher accuracy, i.e. with a smaller grid cell size. In such case, we have proposed a new method using the two-step computation. The first step computation uses a bigger cell size and is designed to identify higher erosion spots. The second step then uses a smaller cell size but it make the computation only the area identified in the previous step. This decomposition allows a

  2. Microwave remote sensing of temporal variations of brightness temperature and near-surface soil water content during a watershed-scale field experiment, and its application to the estimation of soil physical properties

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Jackson, T.J.; Ahuja, L.R.

    1998-01-01

    Passive microwave airborne remote sensing was employed to collect daily brightness temperature (T(B)) and near-surface (0-5 cm depth) soil water content (referred to as 'soil water content') data during June 10-18, 1992, in the Little Washita watershed, Oklahoma. A comparison of multitemporal data with the soils data revealed a direct correlation between changes in T(B) and soil water content, and soil texture. Regression relationships were developed for the ratio of percent sand to percent clay (RSC) and effective saturated hydraulic conductivity (K(sat)) in terms of T(B) and soil water content change. Validation of results indicated that both RSC and K(sat) can be estimated with adequate accuracy. The relationships are valid for the region with small variation of soil organic matter content, soils with fewer macropores, and limiting experimental conditions. However, the findings have potential to employ microwave remote sensing for obtaining quick estimates of soil properties over large areas

  3. Estimation of Soil Nitrate (NO3) Level Using Laser-Induced Breakdown Spectroscopy (LIBS)

    Science.gov (United States)

    Angkat, A. R.; Seminar, K. B.; Rahmat, M.; Sutandi, A.

    2018-05-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a method for measuring level of nitrogen (N) in the soil in the form of N-nitrate (NO3) rapidly without going through the process of sieving and drying. The sample soil in the form of pellets subjected to laser pulses using a wavelength of 532 nm, pulse duration 5.5 ns, repetition rate of 10 Hz, and Q-switch delay of 150 μs. Emissions are captured by the spectrometer with the wavelength range of 190-1130 nm. Spectrum characterization was processed through the second derivative in order to obtain a wavelength identity that could be rapidly used to estimate the nitrate content of the soil with a determination coefficient of (R2) 0.9254 and a coefficient of variation (CV) of 8.41%. The results of this study are very potential to be applied for rapid measurement of soil nitrate.

  4. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site

    Directory of Open Access Journals (Sweden)

    Alberto Pistocchi

    2013-10-01

    Full Text Available In this paper, the results of a comparison between the soil moisture content (SMC estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3, except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3. The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (≤5% in volume, spatial resolution (≤1 km and timeliness (3 h from observation. The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC

  5. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing

    Science.gov (United States)

    Grinand, C.; Maire, G. Le; Vieilledent, G.; Razakamanarivo, H.; Razafimbelo, T.; Bernoux, M.

    2017-02-01

    Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.

  6. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, W.T., E-mail: t.baisden@gns.cri.nz [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand); Canessa, S. [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand)

    2013-01-15

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of {sup 14}C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of {approx}500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of {sup 14}C to determine residence times, by estimating the amount of 'bomb {sup 14}C' incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point {sup 14}C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C ('passive fraction'), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  7. Studies estimating the dermal bioavailability of polynuclear aromatic hydrocarbons from manufactured plant tar-contaminated soils

    International Nuclear Information System (INIS)

    Roy, T.A.; Krueger, A.J.; Taylor, B.B.; Mauro, D.M.; Goldstein, L.S.

    1998-01-01

    In vitro percutaneous absorption studies were performed with contaminated soils or organic extracts of contaminated soils collected at manufactured gas plant (MGP) sites. The MGP tar contaminated soils were found to contain a group of targeted polynuclear aromatic hydrocarbons (PAH) at levels ranging from 10 to 2400 mg/kg. The soil extracts contained target PAH at levels ranging from 12 000 - 34 000 mg/kg. Dermal penetration rates of target PAH from the MGP tar-contaminated soils/soil extracts were determined experimentally through human skin using 3 H-benzo(a)pyrene (BaP) as a surrogate. Results from three MGP sites showed reductions of 2-3 orders of magnitude in PAH absorption through human skin from the most contaminated soils in comparison to the soil extracts. Reduction in PAH penetration can be attributed to PAH concentration and (soil) matrix properties. PAH dermal flux values are used to determine site-specific dermally absorbed dose (DAD) and chronic daily intake (CDI) which are essential terms required to estimate risk associated with human exposure to MGP tar and MGP tar-contaminated soils. 21 refs., 4 figs., 3 tabs

  8. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Science.gov (United States)

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  9. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    Directory of Open Access Journals (Sweden)

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  10. Several key issues on using 137Cs method for soil erosion estimation

    Science.gov (United States)

    This work was to examine several key issues of using the cesium-137 method to estimate soil erosion rates in order to improve and standardize the method. Based on the comprehensive review and synthesis of a large body of published literature and the author’s extensive research experience, several k...

  11. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  12. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    Science.gov (United States)

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  13. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  14. Effect of organic complexants on the mobility of low-level-waste radionuclides in soils

    International Nuclear Information System (INIS)

    Swanson, J.L.

    1982-02-01

    The effect of certain organic complexants on the distribution of some radionuclides between solution and soil has been measured. The complexants and radionuclides examined are some of those most likely to be present in low-level waste disposal sites; Cs, Sr, Ni, Co, and Eu radionuclides, and EDTA, DTPA, oxalate, and citrate complexants. The effect of complexants was found to vary widely; in some systems there was no effect and in other systems there were large effects. In some cases slow rates of reaction have not allowed equilibrium measurements to be made

  15. Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

    Directory of Open Access Journals (Sweden)

    M. Anushka S. Perera

    2015-07-01

    Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

  16. An attempt and significance of using scandium (Sc) indication for quantitative estimation of soil ingested by pastured cattle

    International Nuclear Information System (INIS)

    Koyama, Takeo; Sudo, Madoka; Miyamoto, Susumu; Kikuchi, Takeaki; Takahashi, Masayoshi; Kuma, Tadashi.

    1985-01-01

    Pastured beef cattle constantly ingest soil together with grass. Dried grass and silage used in winter also contain some soil. Sc occurs in soil in much greater amounts than in grass and is not absorbed by digestive canals, and the Sc content can be determined accuretely by the activation analysis method. In view of this, a technique is devised which uses Sc as an indication in estimating the amount of soil ingested by cattle, and this new method is found to be better than the conventional one with Ti indication. Accordingly, dung is collected from the same cattle at the end of the pastured and housed periods. The dung samples are dried, ground, activated and analysed. On the basis of results of this analysis, the amount of soil ingested at the end of the pastured and housed periods is estimated at 106 +- 120 and 129 +- 171 g/day, respectively, which broadly agree with values previously reported. An evaluation of the amounts of Se and Zn taken by cattle from soil is also carried out. (Nogami, K.)

  17. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  18. Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland

    Directory of Open Access Journals (Sweden)

    J. Palmtag

    2018-05-01

    Full Text Available Soils in the northern high latitudes are a key component in the global carbon cycle, with potential feedback on climate. This study aims to improve the previous soil organic carbon (SOC and total nitrogen (TN storage estimates for the Zackenberg area (NE Greenland that were based on a land cover classification (LCC approach, by using geomorphological upscaling. In addition, novel organic carbon (OC estimates for deeper alluvial and deltaic deposits (down to 300 cm depth are presented. We hypothesise that landforms will better represent the long-term slope and depositional processes that result in deep SOC burial in this type of mountain permafrost environments. The updated mean SOC storage for the 0–100 cm soil depth is 4.8 kg C m−2, which is 42 % lower than the previous estimate of 8.3 kg C m−2 based on land cover upscaling. Similarly, the mean soil TN storage in the 0–100 cm depth decreased with 44 % from 0.50 kg (± 0.1 CI to 0.28 (±0.1 CI kg TN m−2. We ascribe the differences to a previous areal overestimate of SOC- and TN-rich vegetated land cover classes. The landform-based approach more correctly constrains the depositional areas in alluvial fans and deltas with high SOC and TN storage. These are also areas of deep carbon storage with an additional 2.4 kg C m−2 in the 100–300 cm depth interval. This research emphasises the need to consider geomorphology when assessing SOC pools in mountain permafrost landscapes.

  19. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy.

    Science.gov (United States)

    Porto, Paolo; Walling, Des E

    2012-04-01

    Soil erosion represents an important threat to the long-term sustainability of agriculture and forestry in many areas of the world, including southern Italy. Numerous models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution, based on the local topography, hydrometeorology, soil type and land management. However, there remains an important need for empirical measurements to provide a basis for validating and calibrating such models and prediction procedures as well as to support specific investigations and experiments. In this context, erosion plots provide useful information on gross rates of soil loss, but are unable to document the efficiency of the onward transfer of the eroded sediment within a field and towards the stream system, and thus net rates of soil loss from larger areas. The use of environmental radionuclides, particularly caesium-137 ((137)Cs) and excess lead-210 ((210)Pb(ex)), as a means of estimating rates of soil erosion and deposition has attracted increasing attention in recent years and the approach has now been recognised as possessing several important advantages. In order to provide further confirmation of the validity of the estimates of longer-term erosion and soil redistribution rates provided by (137)Cs and (210)Pb(ex) measurements, there is a need for studies aimed explicitly at validating the results obtained. In this context, the authors directed attention to the potential offered by a set of small erosion plots located near Reggio Calabria in southern Italy, for validating estimates of soil loss provided by (137)Cs and (210)Pb(ex) measurements. A preliminary assessment suggested that, notwithstanding the limitations and constraints involved, a worthwhile investigation aimed at validating the use of (137)Cs and (210)Pb(ex) measurements to estimate rates of soil loss from cultivated land could be undertaken. The results demonstrate a close consistency between the measured rates of soil

  20. Error Analysis on the Estimation of Cumulative Infiltration in Soil Using Green and AMPT Model

    Directory of Open Access Journals (Sweden)

    Muhamad Askari

    2006-08-01

    Full Text Available Green and Ampt infiltration model is still useful for the infiltration process because of a clear physical basis of the model and of the existence of the model parameter values for a wide range of soil. The objective of thise study was to analyze error on the esimation of cumulative infiltration in sooil using Green and Ampt model and to design laboratory experiment in measuring cumulative infiltration. Parameter of the model was determined based on soil physical properties from laboratory experiment. Newton –Raphson method was esed to estimate wetting front during calculation using visual Basic for Application (VBA in MS Word. The result showed that  contributed the highest error in estimation of cumulative infiltration and was followed by K, H0, H1, and t respectively. It also showed that the calculated cumulative infiltration is always lower than both measured cumulative infiltration and volumetric soil water content.

  1. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    Science.gov (United States)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  2. Updated estimates of 239240Pu + 241Am inventory, spatial pattern, and soil tonnage for removal at Nuclear Site-201, NTS

    International Nuclear Information System (INIS)

    Simpson, J.C.; Gilbert, R.O.

    1982-04-01

    Updated estimates of 239 240 Pu + 241 Am inventory and spatial pattern in surface soil are given for Nuclear Site (NS)-201 in Area 18 of the Nevada Test Site (NTS). These new estimates are based on 712 241 Am soil concentrations including 185 data values not previously available. Estimates were obtained using essentially the same Kriging techniques and the estimated average 239 240 Pu to 241 Am ratio of 7.5 used by Simpson and Gilbert (1980) to obtain previous results. Estimated concentration contours, 68% confidence bands for the contours and estimated median concentrations for 50 x 50 ft blocks are given. The total Pu + Am inventory estimated to be in the top 5 cm of soil over the 109 hectare study (an area 5.2 hectares larger than used by Simpson and Gilbert, 1980) is approximately 16.3 curies. The approximate 68% confidence interval on this inventory estimate is about 6.7 to 45.6 curies. It is estimated that about 58 acres (approx. = 23 hectares) of land in the study are contaminated at levels greater than 40 pCi/g which includes about 40 acres (approx. = 16 hectares) at levels greater than 160 pCi/g. Approximately 28,000 tons of soil would need to be removed (to 15 cm depth) to clean up all areas with estimated concentrates greater than or equal to 160 pCi/g. About 41,000 tons would require removal at the 40 pCi/g level. These new estimates of inventory and spatial patterns are within the range of sampling error of previous estimates obtained by Simpson and Gilbert

  3. Inversion of soil electrical conductivity data to estimate layered soil properties

    Science.gov (United States)

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  4. Estimating soil erosion from the redistribution of fallout cesium 137 in an agricultural land of province of Camaguey

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Barreras Caballero, A.A.; Montalvan Estrada, A.; Gandarilla Benitez, J. E.; Font Vila, L.

    2000-01-01

    The redistribution of soil has a profound impact on its quality and ultimately on its productivity for crop growth. Significant amounts of fallout Cesium-137 ( Cs) from nuclear weapons tests were introduced to the landscape during the 1950s and 1960s. Once Cs reaches the soil surface it is strongly and quickly adsorbed by clay particles, and is essentially nonexchangeable in most environments. Thus, in recent years, the fallout Cs has found increasing application in investigations of soil erosion on agricultural land. By comparing Cs inventories from different points in fields with the reference inventory for the area it is possible to assemble information on the rates and patterns of soil loss. An investigation of soil erosion was undertaken in the 4 ha field of La Victoria 1 Farm. Three models for converting Cs measurements to estimates of soil redistribution rates on studied cultivated field have been used, The Proportional Model, The Gravimetric Approach and Simplified Mass Balance Model. Using the first one net soil erosion was calculated to be 9.6 t.ha .year . Estimates of soil loss using the gravimetric method and simplified mass balance model were found to be 9.5 and 14.9 t.ha .year ,respectively. Preliminary results suggest that Cs technique may be of considerable value in assembling data on the rates and spatial distribution of soil loss

  5. Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes

    Science.gov (United States)

    Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.

    2016-12-01

    Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.

  6. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  7. Release of polyaromatic hydrocarbons from coal tar contaminated soils

    International Nuclear Information System (INIS)

    Priddy, N.D.; Lee, L.S.

    1996-01-01

    A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model

  8. Tissue strain rate estimator using ultrafast IQ complex data

    OpenAIRE

    TERNIFI , Redouane; Elkateb Hachemi , Melouka; Remenieras , Jean-Pierre

    2012-01-01

    International audience; Pulsatile motion of brain parenchyma results from cardiac and breathing cycles. In this study, transient motion of brain tissue was estimated using an Aixplorer® imaging system allowing an ultrafast 2D acquisition mode. The strain was computed directly from the ultrafast IQ complex data using the extended autocorrelation strain estimator (EASE), which provides great SNRs regardless of depth. The EASE first evaluates the autocorrelation function at each depth over a set...

  9. Models for genotype by environment interaction estimation on halomorphic soil

    Directory of Open Access Journals (Sweden)

    Dimitrijević Miodrag

    2006-01-01

    Full Text Available In genotype by environment interaction estimation, as well as, in total trial variability anal­ysis several models are in use. The most often used are Analysis of variance, Eberhart and Russell model and AMMI model. Each of the models has its own specificities, in the way of sources of varia­tion comprehension and treatment. It is known that agriculturally less productive environments increase errors, dimmish reaction differences between genotypes and decrease repeatability of conditions during years. A sample consisting on six bread wheat varieties was studied in three veg­etation periods on halomorphic soil, solonetz type in Banat (vil. Kumane. Genotype by environ­ment interaction was quantified using ANOVA, Eberhart and Russell model and AMMI model. The results were compared not only on pure solonetz soil (control, but also on two level of ameliora­tion (25 and 50t/ha phosphor-gypsum.

  10. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    Science.gov (United States)

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.

  11. Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress

    Directory of Open Access Journals (Sweden)

    Filipović Vilim

    2018-06-01

    Full Text Available Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR. To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP. Sequential modeling using HYDRUS (2D/3D was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014 showed that water repellency increases surface runoff in non-structured soils at hillslopes.

  12. A Bayesian inverse modeling approach to estimate soil hydraulic properties of a toposequence in southeastern Amazonia.

    Science.gov (United States)

    Stucchi Boschi, Raquel; Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Modeling is an important tool for better understanding and assessing land use impacts on landscape processes. A key point for environmental modeling is the knowledge of soil hydraulic properties. However, direct determination of soil hydraulic properties is difficult and costly, particularly in vast and remote regions such as one constituting the Amazon Biome. One way to overcome this problem is to extrapolate accurately estimated data to pedologically similar sites. The van Genuchten (VG) parametric equation is the most commonly used for modeling SWRC. The use of a Bayesian approach in combination with the Markov chain Monte Carlo to estimate the VG parameters has several advantages compared to the widely used global optimization techniques. The Bayesian approach provides posterior distributions of parameters that are independent from the initial values and allow for uncertainty analyses. The main objectives of this study were: i) to estimate hydraulic parameters from data of pasture and forest sites by the Bayesian inverse modeling approach; and ii) to investigate the extrapolation of the estimated VG parameters to a nearby toposequence with pedologically similar soils to those used for its estimate. The parameters were estimated from volumetric water content and tension observations obtained after rainfall events during a 207-day period from pasture and forest sites located in the southeastern Amazon region. These data were used to run HYDRUS-1D under a Differential Evolution Adaptive Metropolis (DREAM) scheme 10,000 times, and only the last 2,500 times were used to calculate the posterior distributions of each hydraulic parameter along with 95% confidence intervals (CI) of volumetric water content and tension time series. Then, the posterior distributions were used to generate hydraulic parameters for two nearby toposequences composed by six soil profiles, three are under forest and three are under pasture. The parameters of the nearby site were accepted when

  13. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferreira, Edilene Cristina; Ferreira, Ednaldo José; Villas-Boas, Paulino Ribeiro; Senesi, Giorgio Saverio; Carvalho, Camila Miranda; Romano, Renan Arnon; Martin-Neto, Ladislau; Milori, Débora Marcondes Bastos Pereira

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application.

  14. Experimental and analytical studies for a BWR nuclear reactor building. Evaluation of soil-structure interaction behaviour

    International Nuclear Information System (INIS)

    Mizuno, N.; Tsushima, Y.

    1975-01-01

    This paper evaluates the spatial characteristics of dynamic properties, especially soil-structure interaction behaviour, of the BWR nuclear building by experimental and analytical studies. It is well known that the damping effects in soil-structure interaction are remarkable on the building with short periods by the dissipation of vibrational energy to the soil. The authors have previously reported an analytical method for estimating the damping effects the properties of which are characterized as follows: 1) The complex damping is used, because the so-called structural damping may be more suitable for estimating the damping effects of an elastic structure. 2) H. Tajimi's theory is used for estimating the dynamical soil-foundation stiffness with the dissipation of vibrational energy on the elastic half-space soil. In this paper, an approximate explanation is presented in regard to the more developmental mathematical method for estimating the damping effects than the above-mentioned previous method, which is 'Modes Superposition Method for Multi-Degrees of Freedom System' with the constant complex stiffness showing the structural damping effects and the dynamical soil-foundation stiffness approximated by the linear or quadratic functions of the eigenvalues. An approximate explanation is presented in regard to the experimental results of the No. 1 reactor building (BWR) of Hamaoka Nuclear Power Station, The Chubu Electric Power Co., Ltd. (Auth.)

  15. Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.

    Science.gov (United States)

    Zimmerman, Andrew R; Kang, Dong-Hee; Ahn, Mi-Youn; Hyun, Seunghun; Banks, M Katherine

    2008-01-01

    Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.

  16. Estimation of dinitrogen fixation by cowpea (Vigna unguiculata) using residual soil 15N in poppy (Papaver somniferum L) cowpea sequence

    International Nuclear Information System (INIS)

    Patra, D.D.; Chand, Sukhmal; Anwar, M.

    1994-01-01

    Estimation of dinitrogen fixation by cowpea was carried out under greenhouse conditions using pots each containing 12 kg soil. Different 15 N sources included residual soil 15 N where urea was applied to opium poppy before planting of cowpea as fixing and maize as non-fixing crop. Other N sources were labelled urea, 15 N labelled poppy straw, and labelled urea + unlabelled poppy straw. The amount of N 2 fixed varied with the source of 15 N in soil. Plant material treatment gave a higher estimate at 40 days, whereas the estimate was highest with residual 15 N at 75 days. Such variation is attributed to variation in 1 5N enrichment which can be reduced by utilizing the residual 15 N which gives a more stable enrichment of soil 15 N with time. It may also alleviate the errors resulting from the differential pattern of 15 N uptake by fixing and nonfixing plant due to temporal variation in 15 N enrichment in soil. (author). 8 refs., 3 tabs

  17. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  18. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    Lee, L.S.

    1998-04-01

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  19. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    Simple infiltration experiments carried out in the field allow an easy and inexpensive way of characterizing soil hydraulic behavior, maintaining the functional connection of the sampled soil volume with the surrounding soil. The beerkan method consists of a three-dimensional (3D) infiltration experiment at zero pressure head (Haverkamp et al., 1996). It uses a simple annular ring inserted to a depth of about 0.01 m to avoid lateral loss of the ponded water. Soil disturbance is minimized by the limited ring insertion depth. Infiltration time of small volumes of water repeatedly poured on the confined soil are measured to determine the cumulative infiltration. Different algorithms based on this methodology (the so-called BEST family of algorithms) were developed for the determination of soil hydraulic characteristic parameters (Bagarello et al., 2014a; Lassabatere et al., 2006; Yilmaz et al., 2010). Recently, Bagarello et al. (2014b) developed a Simplified method based on a Beerkan Infiltration run (SBI method) to determine saturated soil hydraulic conductivity, Ks, by only the transient phase of a beerkan infiltration run and an estimate of the α* parameter, expressing the relative importance of gravity and capillary forces during an infiltration process (Reynolds and Elrick, 1990). However, several problems yet arise with the existing BEST-algorithms and the SBI method, including (i) the need of supplementary field and laboratory measurements (Bagarello et al., 2013); (ii) the difficulty to detect a linear relationship between I / √t and √t in the early stage of the infiltration process (Bagarello et al., 2014b); (iii) estimation of negative Ks values for hydrophobic soils (Di Prima et al., 2016). In this investigation, a new Simplified method based on the analysis of the Steady-state Beerkan Infiltration run (SSBI method) was proposed and tested. In particular, analytical data were generated to simulate beerkan infiltration experiments for six contrasting

  20. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Shevnin, Vladimir; Delgado-Rodriguez, Omar; Mousatov, Aleksandr [Mexican Petroleum Institute, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Geophysical Faculty, Moscow (Russian Federation)

    2006-07-15

    The influence of clay content in sandy and clayey soils on hydraulic conductivity (filtration coefficient) is considered. A review of published experimental data on the relationship of hydraulic conductivity with soil lithology and grain size, as dependent on clay content is presented. Theoretical calculations include clay content. Experimental and calculated data agree, and several approximation formulas for filtration coefficient vs clay content are presented. Clay content in soil is estimated from electric resistivity data obtained from 2D VES interpretation. A two-step method is proposed, the first step including clay content calculating from soil resistivity and groundwater salinity, and the second step including filtration coefficient estimating from clay content. Two applications are presented. [Spanish] El contenido de arcilla en suelos areno-arcillosos influye sobre la permeabilidad hidraulica (coeficiente de filtracion). Se presenta una revision de datos experimentales publicados que relacionan el coeficiente de filtracion con el tipo litologico del suelo y el tamano de las particulas. A partir de calculos teoricos, se modifican las conocidas formulas que relacionan el coeficiente de filtracion con el contenido de arcilla. Se estima el contenido de arcilla a partir de los datos interpretados por el metodo SEV, y se propone un procedimiento para la estimacion del coeficiente de filtracion: (a) calculo del contenido de arcilla a partir de la resistividad del suelo y de la salinidad del agua subterranea, (b) estimacion del coeficiente de filtracion a partir del contenido de arcilla. Se presentan algunos ejemplos de la aplicacion de esta metodologia.

  1. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  2. ESTIMATING ANNUAL SOIL LOSS BY WATER EROSION IN THE MIDDLE PRUT PLAIN, REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    TUDOR CASTRAVEŢ

    2012-11-01

    Full Text Available Estimating annual soil loss by water erosion in the middle Prut Plain, Republic of Moldova. Modern technology has provided efficient tools such as advanced models and Geographic Information Systems to facilitate decision making for environmental management. Studies at this subject are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature. In this study the model selected (modified Universal Soil Loss Equation – USLE and the case itself is kept simple due to significant limitations in data on land processes. An effective investigation of soil loss by using GIS – USLE integration requires spatially distributed data on several parameters describing the terrain surface. Such parameters include topography, rainfall characteristics, soil types, vegetation, land use, and the similar. In Republic of Moldova data on most of these parameters are collected often on a local or individual basis, and therefore, a well-organized regional or basin-wide database is not available. In the Republic of Moldova soil erosion is often as high as 30 tons/ha/year and more than 1.4*106 ha run a potential risk of erosion (Summer & Diernhof, 2003. The model estimated an annual quantity of soil eroded ranging over the Prut River tributaries watersheds between the mean values of 6.2 and 20.4 t/ha/yr. Much of the areas are within the range 10-20 t/ha/yr. The highest values of the quantity of eroded soil is carried out on strong inclined slopes corresponding to areas with agricultural lands and herbaceous vegetation. The results have shown that GIS can be effectively used to investigate critical regions within a basin with respect to erosion.

  3. Transport of complexed cyanide in soil

    International Nuclear Information System (INIS)

    Meeussen, J.C.L.; Zee, S.E.A.T.M. van der; Bosma, W.J.P.; Keizer, M.G.

    1994-01-01

    Contamination of the soil with cyanide is common at sites of several types of industries. Risks for adverse effects of this cyanide for human health or for the environment are largely determined by the behaviour of this cyanide in soil. In acidic soils this behaviour is probably dominated by precipitation and dissolution of prussian blue, Fe 4 (Fe(CN) 6 ) 3 (s), an iron cyanide precipitate. Calculations of multi-component cyanide transport, including equilibrium with this solid phase, iron hydroxide and several redox reactions, are compared with cyanide concentrations observed in contaminated soils. The calculated cyanide concentrations, as well as the pH and redox potentials, agree well with the field situations

  4. [Fungal biomass estimation in soils from southwestern Buenos Aires province (Argentina) using calcofluor white stain].

    Science.gov (United States)

    Vázquez, María B; Amodeo, Martín R; Bianchinotti, María V

    Soil microorganisms are vital for ecosystem functioning because of the role they play in soil nutrient cycling. Agricultural practices and the intensification of land use have a negative effect on microbial activities and fungal biomass has been widely used as an indicator of soil health. The aim of this study was to analyze fungal biomass in soils from southwestern Buenos Aires province using direct fluorescent staining and to contribute to its use as an indicator of environmental changes in the ecosystem as well as to define its sensitivity to weather conditions. Soil samples were collected during two consecutive years. Soil smears were prepared and stained with two different concentrations of calcofluor, and the fungal biomass was estimated under an epifluorescence microscope. Soil fungal biomass varied between 2.23 and 26.89μg fungal C/g soil, being these values in the range expected for the studied soil type. The fungal biomass was positively related to temperature and precipitations. The methodology used was reliable, standardized and sensitive to weather conditions. The results of this study contribute information to evaluate fungal biomass in different soil types and support its use as an indicator of soil health for analyzing the impact of different agricultural practices. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Mercury content in volcanic soils across Europe and its relationship with soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, Susana; Fernandez-Calvino, David; Arias-Estevez, Manuel; Novoa-Munoz, Juan Carlos [Vigo Univ., Ourense (Spain). Area de Edafoloxia e Quimica Agricola; Pontevedra-Pombal, Xabier; Taboada, Teresa; Martinez-Cortizas, Antonio; Garcia-Rodeja, Eduardo [Universidad de Santiago, Coruna (Spain). Dept. Edafoloxia e Quimica Agricola

    2012-04-15

    Volcanoes are a natural source of Hg, whose deposition can occur in neighbouring soils. This study examines the role of soil compounds in the geochemical behaviour of total Hg (Hg{sub T}) in volcanic soils. An estimation of Hg from lithological origin is also assessed to ascertain the relevance of other sources in Hg{sub T} accumulated in volcanic soils. Twenty soil profiles developed from volcanic materials and located across European volcanic regions were selected for this study. The general characterisation of soils included total C, N and S content and Al and Fe distribution determined using traditional methods. The total content of major and trace elements was determined using X-ray fluorescence spectrometry (XRF). The total Hg content of soil samples was measured with atomic absorption spectroscopy using a solid sample Hg analyser. Lithogenic Hg was calculated in the uppermost soil considering Al, Ti and Zr as conservative reference elements. Several statistical analyses (Pearson correlations, Mann-Whitney tests, stepwise multiple regressions and analysis of variance) were carried to ascertain the role of soil parameters and characteristics in the Hg accumulation in volcanic soils. The total Hg ranged from 3.0 to 640 ng g{sup -1} and it tended to diminish with soil depth except in some soils where the lithological discontinuities resulted in high values of Hg{sub T} in the Bw horizons. More than 75% of the Hg{sub T} variance could be attributed to distinct contents of organic matter, Al- and Fe-humus complexes and inorganic non-crystalline Al and Fe compounds in ''andic'', ''vitric'' and ''non-andic'' horizons. The degree of pedogenetic soil evolution notably influenced the Hg{sub T} soil content. Lithogenic Hg (1.6-320 ng g{sup -1}) was correlated with Al-humus complexes and clay content, suggesting the relevance of pedogenetic processes, whereas exogenic Hg (1.4-180 ng g{sup -1}) was correlated

  6. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    Science.gov (United States)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field

  7. Volume estimate of radium-contaminated soil in a section of Barrows Field Park, Glen Ridge, New Jersey, November--December 1989

    International Nuclear Information System (INIS)

    Robinet, M.J.; Mosho, G.D.

    1990-04-01

    The objective of this project was to estimate the in-place volume of radium-contaminated soil in an area of Barrows Field Park, Glen Ridge, New Jersey. The information was necessary to determine whether or not there was sufficient soil with the proper radium concentration to test a new method of soil decontamination. The steps used by Argonne National Laboratory personnel to obtain the required data for estimating the volume of contaminated soil was to measure the contamination-depth profile at 118 locations in a 60 ft times 150 ft area in the park, plot the contours of depths to the specified concentration, and measure the area of the closed depth contours. 6 refs., 23 figs., 3 tabs

  8. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H. [Belgian Nuclear Research Centre, Biosphere Impact Studies, Mol (Belgium)], E-mail: hvandenh@sckcen.be; Olyslaegers, G. [Belgian Nuclear Research Centre, Biosphere Impact Studies, Mol (Belgium); Sanzharova, N.; Shubina, O. [RIAREA, Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation); Reed, E. [SENES Oak Ridge Inc., Center for Risk Analysis, Oak Ridge, TN (United States); Shang, Z. [Nuclear Safety Center of SEPA, Beijing (China); Velasco, H. [GEA- IMASL, Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2009-09-15

    There is increasing interest in radiological assessment of discharges of naturally occurring radionuclides into the terrestrial environment. Such assessments require parameter values for the pathways considered in predictive models. An important pathway for human exposure is via ingestion of food crops and animal products. One of the key parameters in environmental assessment is therefore the soil-to-plant transfer factor to food and fodder crops. The objective of this study was to compile data, based on an extensive literature survey, concerning soil-to-plant transfer factors for uranium, thorium, radium, lead, and polonium. Transfer factor estimates were presented for major crop groups (Cereals, Leafy vegetables, Non-leafy vegetables, Root crops, Tubers, Fruits, Herbs, Pastures/grasses, Fodder), and also for some compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content (Sand, Loam, Clay and Organic), and evaluation of transfer factors' dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with estimates currently in use.

  9. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.

    Science.gov (United States)

    Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily

    2016-03-01

    The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water

  10. Complex conductivity of oil-contaminated clayey soils

    Science.gov (United States)

    Deng, Y.; Revil, A.; Shi, X.

    2017-12-01

    Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0

  11. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    International Nuclear Information System (INIS)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited

  12. Literature review of models for estimating soil erosion and deposition from wind stresses on uranium-mill-tailings covers

    Energy Technology Data Exchange (ETDEWEB)

    Bander, T.J.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon-suppression cover applied to uranium-mill tailings. The mechanics of wind erosion, as well as of soil deposition, are discussed in this report. Several wind erosion models are reviewed to determine if they can be used to estimate the erosion of soil from a mill-tailings cover. One model, developed by W.S. Chepil, contains the most-important factors that describe variables that influence wind erosion. Particular features of other models are also discussed, as well as the application of Chepil's model to a particular tailings pile. For this particular tailings pile, the estimated erosion was almost one inch per year for an unprotected tailings soil surface. Wide variability in the deposition velocity and lack of adequate deposition models preclude reliable estimates of the rate at which airborne particles are deposited.

  13. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    Science.gov (United States)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  14. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  15. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER

    Directory of Open Access Journals (Sweden)

    S. G. Wang

    2011-05-01

    Full Text Available Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl and the difference in backscattering coefficient (Δσ from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  16. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    Science.gov (United States)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  17. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    KAUST Repository

    Jadoon, Khan Zaib

    2015-05-12

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract – ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  18. Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

    Directory of Open Access Journals (Sweden)

    Weijing Chen

    2017-03-01

    Full Text Available Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System brightness temperature (TB and MODIS (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (LST products, which also corrects model bias by simultaneously updating model states and parameters with a dual ensemble Kalman filter (DEnKS. Common Land Model (CoLM and a Radiative Transfer Model (RTM are adopted as model and observation operator, respectively. The assimilation experiment was conducted in Naqu on the Tibet Plateau from 31 May to 27 September 2011. The updated soil temperature at surface obtained by assimilating MODIS LST serving as inputs of RTM is to reduce the differences between the simulated and observed TB, then AMSR-E TB is assimilated to update soil moisture and model parameters. Compared with in situ measurements, the accuracy of soil moisture estimation derived from the assimilation experiment has been tremendously improved at a variety of scales. The updated parameters effectively reduce the states bias of CoLM. The results demonstrate the potential of assimilating AMSR-E TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study indicates that the developed scheme is an effective way to retrieve downscaled soil moisture when assimilating the coarse-scale microwave TB.

  19. Plutonium interactions with soil microbial metabolites: effect on plutonium sorption by soil

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Rogers, J.E.

    1987-01-01

    To develop an understanding of the mechanisms of plutonium (Pu) complexation and solubilization by soil microorganisms, a broad range of bacteria and fungi were isolated in pure cultures from soil on the basis of metal tolerance and carbon requirements. The organisms were then used in investigations to examine Pu cellular transport, Pu complexation by extracellular metabolites, and the effects of complexation on Pu valence state, chemical form, and solubility in soil. Of the 239 bacteria and 250 fungi isolated from soil, 19 bacteria and 60 fungi were selected for detailed study. Of these organisms, 15 bacteria and 18 fungi grew to form extracellular Pu complexes that increased the concentration of Pu in soil column eluates relative to controls. Elution through soil effectively removed positively charged Pu complexes. Increased Pu mobility in soil resulted from the formation of neutral and negatively charged Pu complexes, which differed with organism type. In the presence of known microbial metabolites and synthetic ligands (DTPA, EDTA, EDDHA), Pu(VI) was reduced to Pu(IV) before complexation, suggesting that Pu(IV) would be the dominant valence state associated with organic complexes in soils. Studies on selected organisms indicated that both active Pu transport and Pu sorption on the cell occurred, and these phenomena, as well as complexation by extracellular metabolites of Pu, were a function of the form of Pu supplied, the organism type and growth characteristics, and the ability of the organism to alter extracellular pH. 18 references, 6 figures, 7 tables

  20. Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity

    Science.gov (United States)

    Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...

  1. Forms of iron in soils on basement complex rocks of Kaduna state in ...

    African Journals Online (AJOL)

    The forms of iron extracted by different methods were studied in soils developed on four basement complex rocks within Northern Guinea Savanna of Nigeria namely: migmatite gneisses, older granite, quartzites and mica schists. The study shows that forms of iron generally decreased in the order of total elemental iron ...

  2. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    Science.gov (United States)

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.

  3. Pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    Science.gov (United States)

    Straub, Timothy D.; Over, Thomas M.

    2010-01-01

    This report presents the results of testing the Scour Rate In Cohesive Soils-Erosion Function Apparatus (SRICOS-EFA) method for estimating scour depth of cohesive soils at 15 bridges in Illinois. The SRICOS-EFA method for complex pier and contraction scour in cohesive soils has two primary components. The first component includes the calculation of the maximum contraction and pier scour (Zmax). The second component is an integrated approach that considers a time factor, soil properties, and continued interaction between the contraction and pier scour (SRICOS runs). The SRICOS-EFA results were compared to scour prediction results for non-cohesive soils based on Hydraulic Engineering Circular No. 18 (HEC-18). On average, the HEC-18 method predicted higher scour depths than the SRICOS-EFA method. A reduction factor was determined for each HEC-18 result to make it match the maximum of three types of SRICOS run results. The unconfined compressive strength (Qu) for the soil was then matched with the reduction factor and the results were ranked in order of increasing Qu. Reduction factors were then grouped by Qu and applied to each bridge site and soil. These results, and comparison with the SRICOS Zmax calculation, show that less than half of the reduction-factor method values were the lowest estimate of scour; whereas, the Zmax method values were the lowest estimate for over half. A tiered approach to predicting pier and contraction scour was developed. There are four levels to this approach numbered in order of complexity, with the fourth level being a full SRICOS-EFA analysis. Levels 1 and 2 involve the reduction factors and Zmax calculation, and can be completed without EFA data. Level 3 requires some surrogate EFA data. Levels 3 and 4 require streamflow for input into SRICOS. Estimation techniques for both EFA surrogate data and streamflow data were developed.

  4. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  6. Estimativa da erodibilidade pela desagregação por ultra-som e atributos de solos com horizonte B textural Estimating soil erodibility from sonication indexes and other attributes of textural B horizon soils

    Directory of Open Access Journals (Sweden)

    Marcos Aurélio Carolino de Sá

    2004-07-01

    Full Text Available A erodibilidade de solos é um fator importante na estimativa das perdas por erosão. Este fator é uma expressão da combinação de atributos do solo, os quais possibilitam sua estimativa por meio de equações. O objetivo deste trabalho foi medir atributos químicos e mineralógicos que, combinados com índices de estabilidade de agregados determinados por ultra-som, pudessem ser utilizados como variáveis em modelos na estimativa da erodibilidade de solos com horizonte B textural do Brasil. Estes atributos foram determinados em 22 solos de erodibilidade conhecida, medida diretamente em parcelas no campo. Atributos de 21 dos solos foram utilizados no ajuste dos modelos. Um dos solos (Argissolo Vermelho-Amarelo foi escolhido ao acaso para teste. De 96 variáveis, 15 foram incluídas nos modelos de estimativa da erodibilidade. A maioria delas é representada por índices de desagregação por sonificação de amostras do horizonte A. Foram obtidos quatro modelos para estimar a erodibilidade, com R² variando entre 0,83** e 0,91**. A erodibilidade pode ser estimada com base na estabilidade de agregados por ultra-som.Soil erodibility is an important factor for estimating soil erosion losses. This factor is an expression of combined soil attributes, which make possible its estimation by equations. The objective of this study was to measure some chemical and mineralogical attributes, and to combine them with aggregate stability indexes from sonication analysis, in equations in order to estimate soil erodibility of textural B horizon soils from Brazil. These attributes were measured for 22 soils that had their erodibility measured from field plots. Attributes of 21 soils were used to adjust the equations. One of the soils (Red-Yellow Argisol was used to test the equations. From 96 variables, 15 were significantly correlated to soil erodibility. Most of them are represented by the disruption indexes from sonication analysis of A horizon samples. This

  7. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    Science.gov (United States)

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R 2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R 2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  8. Using plot experiments to test the validity of mass balance models employed to estimate soil redistribution rates from 137Cs and 210Pbex measurements

    International Nuclear Information System (INIS)

    Porto, Paolo; Walling, Des E.

    2012-01-01

    Information on rates of soil loss from agricultural land is a key requirement for assessing both on-site soil degradation and potential off-site sediment problems. Many models and prediction procedures have been developed to estimate rates of soil loss and soil redistribution as a function of the local topography, hydrometeorology, soil type and land management, but empirical data remain essential for validating and calibrating such models and prediction procedures. Direct measurements using erosion plots are, however, costly and the results obtained relate to a small enclosed area, which may not be representative of the wider landscape. In recent years, the use of fallout radionuclides and more particularly caesium-137 ( 137 Cs) and excess lead-210 ( 210 Pb ex ) has been shown to provide a very effective means of documenting rates of soil loss and soil and sediment redistribution in the landscape. Several of the assumptions associated with the theoretical conversion models used with such measurements remain essentially unvalidated. This contribution describes the results of a measurement programme involving five experimental plots located in southern Italy, aimed at validating several of the basic assumptions commonly associated with the use of mass balance models for estimating rates of soil redistribution on cultivated land from 137 Cs and 210 Pb ex measurements. Overall, the results confirm the general validity of these assumptions and the importance of taking account of the fate of fresh fallout. However, further work is required to validate the conversion models employed in using fallout radionuclide measurements to document soil redistribution in the landscape and this could usefully direct attention to different environments and to the validation of the final estimates of soil redistribution rate as well as the assumptions of the models employed. - Highlights: ► Soil erosion is an important threat to the long-term sustainability of agriculture.

  9. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    Science.gov (United States)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  10. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  11. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Olesen, Jørgen E; Hansen, Elly Møller

    2011-01-01

    the active growth period. Using the smallest (−12.44‰) and the largest (−11.26‰) δ13C measured during 1988 and 2006, estimates of maize-derived C in soil after 18 years ranged from 13.2% to 14.2% of the soil total C. Despite a loss of 31% of the soil C pool under bare fallow, the increase in soil δ13C...

  12. Application of of artificial neural networks for estimation of soil-plant transfer factor for "1"3"7Cs

    International Nuclear Information System (INIS)

    Santos, Anna Karla Gomes dos

    2016-01-01

    The knowledge of radionuclide behavior in soils is fundamental to calculate the dose due to food ingestion and to evaluate the risks of radioactive exposure of the population. This knowledge associated to the socio-economic characteristics of the affected region will set the radio protective measures to be taken in case of radioactive contamination of rural areas. The soil-plant transfer factor (TF) is the specific parameter value of radiological models to numerically integrate the dynamic processes that occur within the radionuclides in the soil plant system. This measurement, specific to each radionuclide and soil type, is defined ratio between a specific radionuclide activity in the edible part of the plant and its soil activity. However, the absence of linearity between soil concentrations and the measurements in plants indicate the complexity of the transfer process of radionuclide from soil to a plant, making it difficult to forecast the TF ratio in a specific scenario. One of the main radionuclides associated to nuclear accidents impacting rural areas is "1"3"7Cs. This is one of the most worrisome radionuclides because of its physiochemical properties and its chemical similarity with potassium (K) and its extended physical mid-life (t1/2 = 30,17 years) that allows great environmental dispersion, ecological mobility and environmental endurance. Radiological studies related to "1"3"7Cs transfer factor show that pedological parameters that considerably explain the behavior of "1"3"7Cs in soil-plant system are: exchangeable K, clayed minerals, organic matter content and pH in soils. In this work, the computational method of artificial neural network (ANN) was applied to evaluate the possibility to forecast the TF of "1"3"7Cs in cereals, associated to pedological parameters considered potential indicators of its phyto availability: cationic exchange capacity (CEC), exchangeable K and pH. This study demonstrated that the ANN, having only as entry data the

  13. Comparative analysis of bones, mites, soil chemistry, nematodes and soil micro-eukaryotes from a suspected homicide to estimate the post-mortem interval.

    Science.gov (United States)

    Szelecz, Ildikó; Lösch, Sandra; Seppey, Christophe V W; Lara, Enrique; Singer, David; Sorge, Franziska; Tschui, Joelle; Perotti, M Alejandra; Mitchell, Edward A D

    2018-01-08

    Criminal investigations of suspected murder cases require estimating the post-mortem interval (PMI, or time after death) which is challenging for long PMIs. Here we present the case of human remains found in a Swiss forest. We have used a multidisciplinary approach involving the analysis of bones and soil samples collected beneath the remains of the head, upper and lower body and "control" samples taken a few meters away. We analysed soil chemical characteristics, mites and nematodes (by microscopy) and micro-eukaryotes (by Illumina high throughput sequencing). The PMI estimate on hair 14 C-data via bomb peak radiocarbon dating gave a time range of 1 to 3 years before the discovery of the remains. Cluster analyses for soil chemical constituents, nematodes, mites and micro-eukaryotes revealed two clusters 1) head and upper body and 2) lower body and controls. From mite evidence, we conclude that the body was probably brought to the site after death. However, chemical analyses, nematode community analyses and the analyses of micro-eukaryotes indicate that decomposition took place at least partly on site. This study illustrates the usefulness of combining several lines of evidence for the study of homicide cases to better calibrate PMI inference tools.

  14. Estimation of apparent soil resistivity for two-layer soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)

    2013-07-01

    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.

  15. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  16. Advancing Methods for Estimating Soil Nitrous Oxide Emissions by Incorporating Freeze-Thaw Cycles into a Tier 3 Model-Based Assessment

    Science.gov (United States)

    Ogle, S. M.; DelGrosso, S.; Parton, W. J.

    2017-12-01

    Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.

  17. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    Science.gov (United States)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    The comparative evaluation of the levels of biologically active chemical elements and their migration in the soil-plant complex of two Urov endemic locations in East Transbaikalia (Zolinsky and Uryumkansky) and background areas (Western Baikal region and the western area of the Trans-Baikal region) was conducted. The predominant soil-forming rocks in East Transbaikalia are weathering products of Proterozoic carbonated granitoids PR2. The surface rocks consist from granite, granodiorite, diorite quartz diorite, gabbro, norite, gabbro-norite and other. Soils - mountain and cryogenic meadow forests, mountain permafrost taiga podzolised, meadow alluvial, peaty meadow [2]. The paludification of narrow valleys and thermokarst phenomena are typical in Urov endemic localities. It reflects on the spotted of soil and differentiation of chemical composition of soils and plants. Most of the chemical elements in soils were determined by means of X-ray fluorescence, and trace elements in soils and plants - by atomic absorption spectrometry. The selenium content was measured by spectrofluorimetric method [3]. The research processed by methods of variation statistics. It was found that the soils of two locations of the Urov subregion of the biosphere were more enriched with iron, barium, calcium, uranium, thorium, phosphorus, and to a lesser extent strontium compared to background soils. The ratio of Ca: P was significantly higher in the soil of background areas, and Ca: Sr, on the contrary, in endemic soils. In assessing the migration of trace elements in soil-plant complex by means of the total content of trace elements and biological absorption coefficient found a marked accumulation by plants manganese, chromium, arsenic and weak plants accumulation of cobalt and nickel. Soil landscape is not much different in content of selenium, but its migration in plants was reduced in places of spread of Urov disease [1]. The concentrators of cadmium (leaves of different species of willow

  18. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  19. Soil sorption complex influence on dynamics of 239,240Pu and 241Am mobile and fixed forms in different landscapes

    International Nuclear Information System (INIS)

    Leinova, S.L.; Sokolik, G.A.; Kilchitskaya, S.L.; Ivanova, T.G.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The physico-chemical forms of 239,240 Pu and 241 Am in soil and radionuclide distribution between the main components of soil sorption complex were analyzed. The content of 'hot' particles in soils in Belarus is about 10-1.10 4 particles/m 2 . During the post accident period the 'hot' particles quantity decreased 40-200 times and 50-20000 times in mineral and organogenic soils, respectively. Their activity decreased 1.2-1.4 times per year in mineral soils and 1.3-1.5 times in organic soils. Their destruction velocity is determined by the soil media properties and the particle composition: the particles of 'condensed' nature are destroyed more quickly than those of fuel nature. The velocity of release of transuranium elements from the 'hot' particles increases with increasing soil acidity and humus content in soils. The radionuclides exhibiting different bond strength with soil sorption complex were determined by sequential selective extraction. The share of the most mobile exchange forms of 239,240 Pu is less than 10%. The quantity of potential mobile acid soluble forms of 239,240 Pu increases with time and changes in the sequence: peat soils 241 Am (85%) in comparison with 2 39,240 Pu (40%) was found. The content of 241 Am mobile forms increases with soil depth. It can be expected that in soils with high content of organic substances the accumulation of 239,240 Pu and 241 Am in surface soil layers will take place in future, but in mineral soils significant amounts of radionuclides will enter illuvial horizons as a result of vertical migration

  20. Bioavailability of contaminants estimated from uptake rates into soil invertebrates

    International Nuclear Information System (INIS)

    Straalen, N.M. van; Donker, M.H.; Vijver, M.G.; Gestel, C.A.M. van

    2005-01-01

    It is often argued that the concentration of a pollutant inside an organism is a good indicator of its bioavailability, however, we show that the rate of uptake, not the concentration itself, is the superior predictor. In a study on zinc accumulation and toxicity to isopods (Porcellio scaber) the dietary EC 50 for the effect on body growth was rather constant and reproducible, while the internal EC 50 varied depending on the accumulation history of the animals. From the data a critical value for zinc accumulation in P. scaber was estimated as 53 μg/g/wk. We review toxicokinetic models applicable to time-series measurements of concentrations in invertebrates. The initial slope of the uptake curve is proposed as an indicator of bioavailability. To apply the dynamic concept of bioavailability in risk assessment, a set of representative organisms should be chosen and standardized protocols developed for exposure assays by which suspect soils can be evaluated. - Sublethal toxicity of zinc to isopods suggests that bioavailability of soil contaminants is best measured by uptake rates, not by body burdens

  1. Estimation of the Thermophysical Properties of the Soil together with Sensors' Positions by Inverse Problem

    OpenAIRE

    Mansour , Salwa; Canot , Edouard; Delannay , Renaud; March , Ramiro J.; Cordero , José Agustin; Carlos Ferreri , Juan

    2015-01-01

    The report is basically divided into two main parts. In the first part, we introduce a numerical strategy in both 1D and 3D axisymmetric coordinate systems to estimate the thermophysical properties of the soil (volumetric heat capacity (ρC)s , thermal conductivity λs and porosity φ) of a saturated porous medium where a phase change problem (liquid/vapor) appears due to intense heating from above. Usually φ is the true porosity, however when the soil is not saturated (which should concern most...

  2. Estimate of the soil water retention curve from the sorptivity and β parameter calculated from an upward infiltration experiment

    Science.gov (United States)

    Moret-Fernández, D.; Latorre, B.

    2017-01-01

    The water retention curve (θ(h)), which defines the relationship between the volumetric water content (θ) and the matric potential (h), is of paramount importance to characterize the hydraulic behaviour of soils. Because current methods to estimate θ(h) are, in general, tedious and time consuming, alternative procedures to determine θ(h) are needed. Using an upward infiltration curve, the main objective of this work is to present a method to determine the parameters of the van Genuchten (1980) water retention curve (α and n) from the sorptivity (S) and the β parameter defined in the 1D infiltration equation proposed by Haverkamp et al. (1994). The first specific objective is to present an equation, based on the Haverkamp et al. (1994) analysis, which allows describing an upward infiltration process. Secondary, assuming a known saturated hydraulic conductivity, Ks, calculated on a finite soil column by the Darcy's law, a numerical procedure to calculate S and β by the inverse analysis of an exfiltration curve is presented. Finally, the α and n values are numerically calculated from Ks, S and β. To accomplish the first specific objective, cumulative upward infiltration curves simulated with HYDRUS-1D for sand, loam, silt and clay soils were compared to those calculated with the proposed equation, after applying the corresponding β and S calculated from the theoretical Ks, α and n. The same curves were used to: (i) study the influence of the exfiltration time on S and β estimations, (ii) evaluate the limits of the inverse analysis, and (iii) validate the feasibility of the method to estimate α and n. Next, the θ(h) parameters estimated with the numerical method on experimental soils were compared to those obtained with pressure cells. The results showed that the upward infiltration curve could be correctly described by the modified Haverkamp et al. (1994) equation. While S was only affected by early-time exfiltration data, the β parameter had a

  3. The use of a numerical mass-balance model to estimate rates of soil redistribution on uncultivated land from 137Cs measurements

    International Nuclear Information System (INIS)

    Owens, P.N.; Walling, D.E.

    1988-01-01

    A numerical mass-balance model is developed which can be used to estimate rates of soil redistribution on uncultivated land from measurements of bombderived 137 Cs inventories. The model uses a budgeting approach, which takes account of temporal variations in atmospheric fallout of 137 Cs, radioactive decay, and net gains or losses of 137 Cs due to erosion and deposition processes, combined with parameters which describe internal 137 Cs redistribution processes, to estimate the 137 Cs content of topsoil and the 137 Cs inventory at specific points, from the start of 137 Cs fallout in the 1950s to the present day. The model is also able to account for potential differences in particle size composition and organic matter content between mobilised soil particles and the original soil, and the effect that these may have on 137 Cs concentrations and inventories. By running the model for a range of soil erosion and deposition rates, a calibration relationship can be constructed which relates the 137 Cs inventory at a sampling point to the average net soil loss or gain at that location. In addition to the magnitude and temporal distribution of the 137 Cs atmospheric fallout flux, the soil redistribution rates estimated by the model are sensitive to parameters which describe the relative texture and organic matter content of the eroded or deposited material, and the ability of the soil to retain 137 Cs in the upper part of the soil profile. (Copyright (c) 1988 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  5. Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies

    DEFF Research Database (Denmark)

    Göransson, Hans; Wallander, Håkan; Ingerslev, Morten

    2006-01-01

    The distribution of fine roots and external ectomycorrhizal mycelium of three species of trees was determined down to a soil depth of 55 cm to estimate the relative nutrient uptake capacity of the trees from different soil layers. In addition, a root bioassay was performed to estimate the nutrien...

  6. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    Science.gov (United States)

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  7. The estimation of soil parameters using observations on crop biophysical variables and the crop model STICS improve the predictions of agro environmental variables.

    Science.gov (United States)

    Varella, H.-V.

    2009-04-01

    Dynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters, especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless, observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In this work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters is made, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, a Bayesian data assimilation method is chosen (because of available prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prior information and the result with the posterior information provided by the Bayesian data assimilation method. The result of the

  8. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content

    Science.gov (United States)

    Liu, Jinbao; Dong, Zhenyu; Sun, Zenghui; Ma, Hongchao; Shi, Lei

    2017-12-01

    In this study, the mercury content of 44 soil samples in Guan Zhong area of Shaanxi Province was used as the data source, and the reflectance spectrum of soil was obtained by ASD Field Spec HR (350-2500 nm) Comparing the reflection characteristics of different contents and the effect of different pre-treatment methods on the establishment of soil heavy metal spectral inversion model. The first order differential, second order differential and reflectance logarithmic transformations were carried out after the pre-treatment of NOR, MSC and SNV, and the sensitive bands of reflectance and mercury content in different mathematical transformations were selected. A hyperspectral estimation model is established by regression method. The results of chemical analysis show that there is a serious Hg pollution in the study area. The results show that: (1) the reflectivity decreases with the increase of mercury content, and the sensitive regions of mercury are located at 392 ~ 455nm, 923nm ~ 1040nm and 1806nm ~ 1969nm. (2) The combination of NOR, MSC and SNV transformations combined with differential transformations can improve the information of heavy metal elements in the soil, and the combination of high correlation band can improve the stability and prediction ability of the model. (3) The partial least squares regression model based on the logarithm of the original reflectance is better and the precision is higher, Rc2 = 0.9912, RMSEC = 0.665; Rv2 = 0.9506, RMSEP = 1.93, which can achieve the mercury content in this region Quick forecast.

  9. FEM validation of a double porosity elastic model for consolidation of structurally complex clayey soils

    Science.gov (United States)

    Callari, C.; Federico, F.

    2000-04-01

    Laboratory consolidation of structured clayey soils is analysed in this paper. The research is carried out by two different methods. The first one treats the soil as an isotropic homogeneous equivalent Double Porosity (DP) medium. The second method rests on the extensive application of the Finite Element Method (FEM) to combinations of different soils, composing 2D or fully 3D ordered structured media that schematically discretize the complex material. Two reference problems, representing typical situations of 1D laboratory consolidation of structured soils, are considered. For each problem, solution is obtained through integration of the equations governing the consolidation of the DP medium as well as via FEM applied to the ordered schemes composed of different materials. The presence of conventional experimental devices to ensure the drainage of the sample is taken into account through appropriate boundary conditions. Comparison of FEM results with theoretical results clearly points out the ability of the DP model to represent consolidation processes of structurally complex soils. Limits of applicability of the DP model may arise when the rate of fluid exchange between the two porous systems is represented through oversimplified relations. Results of computations, obtained having assigned reasonable values to the meso-structural and to the experimental apparatus parameters, point out that a partially efficient drainage apparatus strongly influences the distribution along the sample and the time evolution of the interstitial water pressure acting in both systems of pores. Data of consolidation tests in a Rowe's cell on samples of artificially fissured clays reported in the literature are compared with the analytical and numerical results showing a significant agreement.

  10. Improving Soil Moisture Estimation through the Joint Assimilation of SMOS and GRACE Satellite Observations

    Science.gov (United States)

    Girotto, Manuela

    2018-01-01

    Observations from recent soil moisture dedicated missions (e.g. SMOS or SMAP) have been used in innovative data assimilation studies to provide global high spatial (i.e., approximately10-40 km) and temporal resolution (i.e., daily) soil moisture profile estimates from microwave brightness temperature observations. These missions are only sensitive to near-surface soil moisture 0-5 cm). In contrast, the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage (TWS) column but, it is characterized by low spatial (i.e., 150,000 km2) and temporal (i.e., monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). In this presentation I will review benefits and drawbacks associated to the assimilation of both types of observations. In particular, I will illustrate the benefits and drawbacks of their joint assimilation for the purpose of improving the entire profile of soil moisture (i.e., surface and deeper water storages).

  11. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  12. Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Hassan Raza

    2018-05-01

    Full Text Available Net primary production (NPP is an important indicator of the supply of food and wood. We used a hierarchy model and real time field observations to estimate NPP using satellite imagery. Net radiation received by rice crop canopies was estimated as 27,428 Wm−2 (215.4 Wm−2 as averaged throughout the rice cultivation period (RCP, including 23,168 Wm−2 (118.3 Wm−2 as averaged as shortwave and 4260 Wm−2 (34.63 Wm−2 as averaged as longwave radiation. Soil, sensible and latent heat fluxes were approximated as 3324 Wm−2, 16,549 Wm−2, and 7554 Wm−2, respectively. Water stress on rice crops varied between 0.5838 and 0.1218 from the start until the end of the RCP. Biomass generation declined from 6.09–1.03 g/m2 in the tillering and ripening stages, respectively. We added a soil suitability constant (ħα into the Carnegie-Ames-Stanford Approach (CASA model to achieve a more precise estimate of yield. Classification results suggest that the total area under rice cultivation was 8861 km2. The spatial distribution of rice cultivation as per suitability zone was: 1674 km2 was not suitable (NS, 592 km2 was less suitable (LS, 2210 km2 was moderately suitable (MS and 4385 km2 was highly suitable (HS soil type with ħα ranges of 0.05–0.25, 0.4–0.6, 0.7–0.75 and 0.85–0.95 of the CASA based yield, respectively. We estimated net production as 1.63 million tons, as per 0.46 ton/ha, 1.2 ton/ha 1.9 ton/ha and 2.4 ton/ha from NS, LS, MS and HS soil types, respectively. The results obtained through this improved CASA model, by addition of the constant ħα, are likely to be useful for agronomists by providing more accurate estimates of NPP.

  13. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    Science.gov (United States)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  14. Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593

    Energy Technology Data Exchange (ETDEWEB)

    White, Aaron; Rigas, Michael [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States); Birchfield, Joseph W. III [1528 Paxton Drive Knoxville, TN 37918 (United States)

    2013-07-01

    An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and

  15. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India

    Science.gov (United States)

    Santra, Priyabrata; Kumar, Mahesh; Kumawat, R. N.; Painuli, D. K.; Hati, K. M.; Heuvelink, G. B. M.; Batjes, N. H.

    2018-04-01

    Characterization of soil water retention, e.g., water content at field capacity (FC) and permanent wilting point (PWP) over a landscape plays a key role in efficient utilization of available scarce water resources in dry land agriculture; however, direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ( N=370) was used to develop PTFs. The developed PTFs were tested in two independent datasets from arid regions of India ( N=36) and an arid region of USA ( N=1789). While testing these PTFs using independent data from India, root mean square error (RMSE) was found to be 2.65 and 1.08 for FC and PWP, respectively, whereas for most of the tested `established' PTFs, the RMSE was >3.41 and >1.15, respectively. Performance of the developed PTFs from the independent dataset from USA was comparable with estimates derived from `established' PTFs. For wide applicability of the developed PTFs, a user-friendly soil moisture calculator was developed. The PTFs developed in this study may be quite useful to farmers for scheduling irrigation water as per soil type.

  16. Estimating Penetration Resistance in Agricultural Soils of Ardabil Plain Using Artificial Neural Network and Regression Methods

    Directory of Open Access Journals (Sweden)

    Gholam Reza Sheykhzadeh

    2017-02-01

    Full Text Available Introduction: Penetration resistance is one of the criteria for evaluating soil compaction. It correlates with several soil properties such as vehicle trafficability, resistance to root penetration, seedling emergence, and soil compaction by farm machinery. Direct measurement of penetration resistance is time consuming and difficult because of high temporal and spatial variability. Therefore, many different regressions and artificial neural network pedotransfer functions have been proposed to estimate penetration resistance from readily available soil variables such as particle size distribution, bulk density (Db and gravimetric water content (θm. The lands of Ardabil Province are one of the main production regions of potato in Iran, thus, obtaining the soil penetration resistance in these regions help with the management of potato production. The objective of this research was to derive pedotransfer functions by using regression and artificial neural network to predict penetration resistance from some soil variations in the agricultural soils of Ardabil plain and to compare the performance of artificial neural network with regression models. Materials and methods: Disturbed and undisturbed soil samples (n= 105 were systematically taken from 0-10 cm soil depth with nearly 3000 m distance in the agricultural lands of the Ardabil plain ((lat 38°15' to 38°40' N, long 48°16' to 48°61' E. The contents of sand, silt and clay (hydrometer method, CaCO3 (titration method, bulk density (cylinder method, particle density (Dp (pychnometer method, organic carbon (wet oxidation method, total porosity(calculating from Db and Dp, saturated (θs and field soil water (θf using the gravimetric method were measured in the laboratory. Mean geometric diameter (dg and standard deviation (σg of soil particles were computed using the percentages of sand, silt and clay. Penetration resistance was measured in situ using cone penetrometer (analog model at 10

  17. Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve

    Science.gov (United States)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.

    2009-04-01

    Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.

  18. Partial least squares methods for spectrally estimating lunar soil FeO abundance: A stratified approach to revealing nonlinear effect and qualitative interpretation

    Science.gov (United States)

    Li, Lin

    2008-12-01

    Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.

  19. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    Science.gov (United States)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  20. A sampling strategy for estimating plot average annual fluxes of chemical elements from forest soils

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.; Vries, de W.

    2010-01-01

    A sampling strategy for estimating spatially averaged annual element leaching fluxes from forest soils is presented and tested in three Dutch forest monitoring plots. In this method sampling locations and times (days) are selected by probability sampling. Sampling locations were selected by

  1. Removal of radioactive cesium from surface soils solidified using polyion complex. Rapid communication for decontamination test at Iitate-mura in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Naganawa, Hirochika; Yanase, Nobuyuki; Mitamura, Hisayoshi; Nagano, Tetsushi; Yoshida, Zenko; Kumazawa, Noriyuki; Saitoh, Hiroshi; Kashima, Kaoru; Fukuda, Tatsuya; Tanaka, Shun-ichi

    2011-01-01

    We tried the decontamination of surface soils for three types of agricultural land at Nagadoro district of Iitate-mura (village) in Fukushima Prefecture, which is highly contaminated by deposits of radionuclides from the plume released from the Fukushima Daiichi nuclear power plant. The decontamination method consisted of the peeling of surface soils solidified using a polyion complex, which was formed from a salt solution of polycations and polyanions. Two types of polyion complex solution were applied to an upland field in a plastic greenhouse, a pasture, and a paddy field. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. (author)

  2. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    Science.gov (United States)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the

  3. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  4. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    Science.gov (United States)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  5. Estimation of soil hydraulic information through the assimilation of values of the surface moisture: extended approximations (unscented)

    International Nuclear Information System (INIS)

    Medina, Hanoi; Hernández, Yunay; Batista, Giovanni Chirico; Romano, Nunzio

    2008-01-01

    Effective estimation of soil hydraulic information through the assimilation of surface moisture values, demand the use of approximations necessarily related to highly nonlinear models. The Kalman Filter 'Unscented' ( UKF ) has emerged in the literature as a safe and easy technique to implement than the most rudimentary, but more widely used, Kalman Filter 'Linear' (EKF ), for these purposes. However, the efficiency of these techniques depends not only on the approach itself, but also the numerical scheme that supports it. This work is aimed to demonstrate the advantages and disadvantages encountered during implementation of the UKF and EKF in the scheme of numerical solution of the Richards equation to obtain statements and soil parameters by assimilating surface moisture values. Numerical solutions evaluated were implemented using a finite difference scheme. The results demonstrate that a Crack -Nicolson linearized scheme is much more efficient in terms of security and time that based on an explicit scheme and safer than a UKF based on a traditional implicit numerical scheme for estimating profile soil moisture. The latter approach leads to a systematic bias in the solution 'unscented' when the central state is close to saturation. In the dual estimate (state- parameter), certain physical and mathematical parameter constraints, coupled with the bias in the estimates, resulted in substantial difficulties in the practical implementation of this technique using the UKF, or a solution that combines elements of both techniques Kalman filter

  6. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges

    International Nuclear Information System (INIS)

    Mishra, U; Jastrow, J D; Matamala, R; Fan, Z; Miller, R M; Hugelius, G; Kuhry, P; Koven, C D; Riley, W J; Harden, J W; Ping, C L; Michaelson, G J; McGuire, A D; Tarnocai, C; Schaefer, K; Schuur, E A G; Jorgenson, M T; Hinzman, L D

    2013-01-01

    The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges. (letter)

  7. Soil physical property estimation from soil strength and apparent electrical conductivity sensor data

    Science.gov (United States)

    Quantification of soil physical properties through soil sampling and laboratory analyses is time-, cost-, and labor-consuming, making it difficult to obtain the spatially-dense data required for precision agriculture. Proximal soil sensing is an attractive alternative, but many currently available s...

  8. Spatial Upscaling of Soil Respiration under a Complex Canopy Structure in an Old‐Growth Deciduous Forest, Central Japan

    Directory of Open Access Journals (Sweden)

    Vilanee Suchewaboripont

    2017-01-01

    Full Text Available The structural complexity, especially canopy and gap structure, of old‐growth forests affects the spatial variation of soil respiration (Rs. Without considering this variation, the upscaling of Rs from field measurements to the forest site will be biased. The present study examined responses of Rs to soil temperature (Ts and water content (W in canopy and gap areas, developed the best fit modelof Rs and used the unique spatial patterns of Rs and crown closure to upscale chamber measurements to the site scale in an old‐growth beech‐oak forest. Rs increased with an increase in Ts in both gap and canopy areas, but the effect of W on Rs was different between the two areas. The generalized linear model (GLM analysis identified that an empirical model of Rs with thecoupling of Ts and W was better than an exponential model of Rs with only Ts. Moreover, because of different responses of Rs to W between canopy and gap areas, it was necessary to estimate Rs in these areas separately. Consequently, combining the spatial patterns of Rs and the crown closure could allow upscaling of Rs from chamber‐based measurements to the whole site in the present study.

  9. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    International Nuclear Information System (INIS)

    Camizuli, E.; Monna, F.; Bermond, A.; Manouchehri, N.; Besançon, S.; Losno, R.; Oort, F. van; Labanowski, J.; Perreira, A.; Chateau, C.; Alibert, P.

    2014-01-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km 2 zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  10. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Camizuli, E., E-mail: estelle.camizuli@u-bourgogne.fr [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Monna, F. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Bermond, A.; Manouchehri, N.; Besançon, S. [Institut des sciences et industries du vivant et de l' environnement (AgroParisTech), Laboratoire de Chimie Analytique, 16, rue Claude Bernard, 75231 Paris Cedex 05 (France); Losno, R. [UMR 7583, LISA, Universités Paris 7-Paris 12 — CNRS, 61 av. du Gal de Gaulle, 94010 Créteil Cedex (France); Oort, F. van [UR 251, Pessac, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, RD 10, 78026 Versailles Cedex (France); Labanowski, J. [UMR 7285, IC2MP, Université de Poitiers — CNRS, 4, rue Michel Brunet, 86022 Poitiers (France); Perreira, A. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Chateau, C. [UFR SVTE, Université de Bourgogne, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Alibert, P. [UMR 6282, Biogeosciences, Université de Bourgogne — CNRS, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France)

    2014-02-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km{sup 2} zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  11. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  12. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    International Nuclear Information System (INIS)

    Gu, B.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO 4 ) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO 4 - and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO 4 - from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study

  13. Simulating grazing practices in a complete livestock system model: estimating soil carbon storage and greenhouse gas emissions in grazed versus un-grazed agroecosystems using the Manure-DNDC model

    Science.gov (United States)

    Campbell, E. E.; Dorich, C.; Contosta, A.; Varner, R. K.

    2017-12-01

    In livestock agroecosystems, the combined contributions of enteric fermentation, manure management, and livestock grazing and/or feed production play an important role in agroecosystem carbon (C) storage and GHG losses, with complete livestock system models acting as important tools to evaluate the full impacts of these complex systems. The Manure-DeNitrification-DeComposition (DNDC) model is one such example, simulating impacts on C and nitrogen cycling, estimating methane, carbon dioxide, nitrous oxide, and ammonium dynamics in fields, manure storage, and enteric emissions. This allows the evaluation of differences in GHG and soil C impacts between conventional and organic dairy production systems, which differ in their use of grazed pasture versus confined feeding operations. However, Manure-DNDC has received limited testing in representing variations in grazed pasture management (i.e. intensive rotational grazing versus standard grazing practices). Using a set of forage biomass, soil C, and GHG emissions data collected at four sites across New England, we parameterized and validated Manure-DNDC estimations of GHG emissions and soil C in grazed versus un-grazed systems. Soil observations from these sites showed little effect from grazing practices, but larger soil carbon differences between farms. This may be due to spatial variation in SOC, making it difficult to measure and model, or due to controls of edaphic properties that make management moot. However, to further address these questions, model development will be needed to improve Manure-DNDC simulation of rotational grazing, as high stocking density grazing over short periods resulted in forage not re-growing sufficiently within the model. Furthermore, model simulations did not account for variation in interactions between livestock and soil given variability in field microclimates, perhaps requiring simulations that divide a single field into multiple paddocks to move towards more accurate evaluation of

  14. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    Energy Technology Data Exchange (ETDEWEB)

    Price, Oliver R., E-mail: oliver.price@unilever.co [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Oliver, Margaret A. [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Walker, Allan [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); Wood, Martin [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom)

    2009-05-15

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  15. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    International Nuclear Information System (INIS)

    Price, Oliver R.; Oliver, Margaret A.; Walker, Allan; Wood, Martin

    2009-01-01

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  16. An efficient method for estimating bioavailability of arsenic in soils: a comparison with acid leachates

    Energy Technology Data Exchange (ETDEWEB)

    Ng, J.C.; Hertle, A.; Seawright, A.A. [Queensland Univ., Brisbane (Australia). National Research Centre for Environmental Toxicology; Mcdougall, K.W. [Wollongbar Agricultural Institute (Australia)

    1997-12-31

    With the view of estimating bioavailability of metals from contaminated sites and risk assessment, a rat model is used for a comparative bioavailability test in which groups of rats were given via the oral route a slurry of arsenic contaminated soils, a solution of sodium arsenate or sodium arsenite, or calcium arsenite spiked wheat flour. Blood samples are collected 96 hours after dosing for the arsenic determination. The comparative bioavailability (CBA) is calculated from the ratio of arsenic results obtained from the soil group and arsenic control group dosed with sodium arsenate or arsenite. CBA results show a good correlation with 0.5 M HCl and 1.0 M HCl acid leachates. The rat model process to be a sensitive indicator using the blood for the study of bioavailability of arsenic in soils

  17. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd, Co, Ni, Zn, I, Se, Sb, Pu, Am, and others)

    International Nuclear Information System (INIS)

    Gil-Garcia, C.; Tagami, K.; Uchida, S.; Rigol, A.; Vidal, M.

    2009-01-01

    New best estimates for the solid-liquid distribution coefficient (K d ) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The K d best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil-radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide K d are examined to complete the information derived from the best estimates with a rough prediction of K d based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of K d best estimates for a number of radionuclides, such as selenium, antimony, and iodine.

  18. Multi-view 3D Human Pose Estimation in Complex Environment

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrila, D.M.

    2012-01-01

    We introduce a framework for unconstrained 3D human upper body pose estimation from multiple camera views in complex environment. Its main novelty lies in the integration of three components: single-frame pose recovery, temporal integration and model texture adaptation. Single-frame pose recovery

  19. Estimates of soil erosion using cesium-137 tracer models.

    Science.gov (United States)

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  20. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    Science.gov (United States)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  1. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros Selected soil-variables related to the stability of organo-minerals complexes in tropical and subtropical brazilian soils

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda Junior

    2007-10-01

    Full Text Available A estabilidade de complexos organo-minerais é uma característica importante quanto à química e física de solos tropicais e subtropicais. O objetivo deste estudo foi identificar variáveis relacionadas à estabilidade de complexos organo-minerais, avaliada pela energia de ultra-som necessária para a dispersão total do solo em partículas primárias, em seis solos das regiões Sul e Centro-Oeste do Brasil com textura e mineralogia distintas. A energia de ultra-som necessária para dispersão total dos solos variou de 239 a 2.389J mL-1, sendo diretamente relacionada aos teores de carbono orgânico (R²=0,799, PThe stability of organo-mineral complexes is an important characteristic related to the soil chemistry and physics of tropical and subtropical soils. This study was aimed at identifing the variables related to the stability of organo-mineral complexes, evaluated by ultrasonic energy necessary to complete soil dispersion, of six soils from South and West-Center regions of Brazil with distint texture and mineralogy. The ultrasonic energy to complete soil dispersion varied from 239 a 2389J mL-1, and was positively related to the soil organic carbon concentrations (R²=0.799, P<0.05. The clay mineralogy had an important role to the stability of organo-mineral complexes, which were related to the content of low cristalinity iron oxides (R²=0.586, P<0.10, but did not had relationship with the total pedogenic iron oxides. The qualitative analysis of the clay mineralogy, by X-ray diffraction, evidenced that gibbsite and goethite are the main clay minerals related to the stability of organo-mineral complexes, reinforcing the importance of these minerals on the physical protection and coloidal stability of the soil organic matter in the tropical and subtropical soils.

  2. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  3. New estimates of oxygen isotope fractionation by plants and soils - Implications for the isotopic composition of the atmosphere

    International Nuclear Information System (INIS)

    Angert, A.; Luz, B.

    2002-01-01

    Oxygen concentration and δ 18 O of O 2 have been monitored in light and heavy soils. Steep oxygen gradients were present at the heavy soil site (minimal O 2 concentration was 1% at 150cm depth) and δ 18 O values typically ranged from 0 per mille to -1.6 per mille relative to air O 2 . In the light-soil site, the O 2 concentration was 20.38% to 20.53% and δ 18 O values ranged from -0.06±0.015 per mille to 0.06±0.015 per mille relative to atmospheric O 2 . The fractionation in soil respiration was estimated from the observed [O 2 ] and δ 18 O profiles and their change with time by a five-box numerical model. Diffusion due to concentration and temperature gradients was taken into account. Good agreement was found between the model results and the measured values. The average discrimination against 18 O in the two study sites was 12±1 per mille. The current understanding of the composition of air O 2 attributes the magnitude of the fractionation in soil respiration to biochemical mechanisms alone. Thus the discrimination against 18 O is assumed to be 18 per mille in cyanide-sensitive dark respiration and 25 per mille to 30 per mille in cyanide-resistant respiration. The discrimination we report is significantly less than in dark respiration. This overall low discrimination is explained by slow diffusion in soil aggregates, and in root tissues that results in low O 2 concentration in the consumption site. Since about half of the terrestrial respiration occurs in soils, our new discrimination estimate lowers significantly the discrimination value for terrestrial uptake. Higher then currently assumed discrimination was found in experiments with illuminated plants. This high discrimination might compensate for the low discrimination found in soils. (author)

  4. Estimation of Vs30 Soil Profile Structure of Singapore from Microtremor Records

    Science.gov (United States)

    Walling, M. Y.; Megawati, K.; Zhu, C.

    2012-04-01

    Singapore lies at the southern tip of the Malay Peninsula, covering a land area of 600 km2 and with a population exceeding 5 million. Array microtremor recording were carried out in Singapore for 40 sites that encompasses the sites of all the major geological formations. The Spatial Autocorrelation (SPAC) method is employed to determine the phase velocity dispersion curves and subsequently inverted to determine the shallow shear-wave velocity (V s) and soil stratigraphy. The depth of penetration is generally about 30 m - 40 m for most of the sites. For the present study, the V s estimation is restricted to the upper 30 m of the soil (V s30), confirming with the IBC (2006). The Reclaimed Land and the young Quaternary soft soil deposit of Kallang Formation show low V s30 values ranging from 207 m/s - 247 m/s, belonging to site E and at the boundary of site E and D. The Old Alluvium formation shows higher V s30 values ranging from 362 m/s - 563 m/s and can be classified under site C. The estimated V s30 for the sedimentary sequence of Jurong Formation reveal site C classification, with the V s30 range from 317 m/s - 712 m/s. On the other hand, the Bukit Timah Granite body shows low V s30 ranging from 225 m/s - 387 m/s, with most of the sites concentrated under site D classification and few sites at the boundary of sites D and C, for the upper 30 m. This low V s30 value of the granitic body can be explained in the light of intense weathering that the granite body has undergone for the upper layer, which is also supported from borehole records. The SPAC results are compared with nearby borehole data and they show a good correlation for sites that have soft soil formation and for the weathered granite body. The correlation confirms the reliability of SPAC method that can be applied for highly populated urbanized places like Singapore. The present research finding will be useful for further studies of site response analysis, site characterization and ground motion

  5. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics.

    Science.gov (United States)

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-09-13

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

  6. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators

    International Nuclear Information System (INIS)

    Flammia, Steven T; Gross, David; Liu, Yi-Kai; Eisert, Jens

    2012-01-01

    Intuitively, if a density operator has small rank, then it should be easier to estimate from experimental data, since in this case only a few eigenvectors need to be learned. We prove two complementary results that confirm this intuition. Firstly, we show that a low-rank density matrix can be estimated using fewer copies of the state, i.e. the sample complexity of tomography decreases with the rank. Secondly, we show that unknown low-rank states can be reconstructed from an incomplete set of measurements, using techniques from compressed sensing and matrix completion. These techniques use simple Pauli measurements, and their output can be certified without making any assumptions about the unknown state. In this paper, we present a new theoretical analysis of compressed tomography, based on the restricted isometry property for low-rank matrices. Using these tools, we obtain near-optimal error bounds for the realistic situation where the data contain noise due to finite statistics, and the density matrix is full-rank with decaying eigenvalues. We also obtain upper bounds on the sample complexity of compressed tomography, and almost-matching lower bounds on the sample complexity of any procedure using adaptive sequences of Pauli measurements. Using numerical simulations, we compare the performance of two compressed sensing estimators—the matrix Dantzig selector and the matrix Lasso—with standard maximum-likelihood estimation (MLE). We find that, given comparable experimental resources, the compressed sensing estimators consistently produce higher fidelity state reconstructions than MLE. In addition, the use of an incomplete set of measurements leads to faster classical processing with no loss of accuracy. Finally, we show how to certify the accuracy of a low-rank estimate using direct fidelity estimation, and describe a method for compressed quantum process tomography that works for processes with small Kraus rank and requires only Pauli eigenstate preparations

  7. Organic components and plutonium and americium state in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2002-01-01

    The fraction composition of humus substances of different type soils and soil solutions have been studied. A distribution of Pu 239, 240 and Am 241 between humus substances fractions of different dispersity and mobility in soil-vegetation cover has been established. It was shown that humus of organic soils fixes plutonium and americium in soil medium in greater extent than humus of mineral soils. That leads to lower migration ability of radionuclides in organic soils. The lower ability of americium to form difficultly soluble organic and organic-mineral complexes and predomination of its anion complexes in soil solutions may be a reason of higher mobility and biological availability of americium in comparison to plutonium during soil-plant transfer (authors)

  8. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    Science.gov (United States)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  9. On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia

    Directory of Open Access Journals (Sweden)

    N. Tangdamrongsub

    2018-03-01

    Full Text Available An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS derived from the Gravity Recovery and Climate Experiment (GRACE into land surface models (LSMs. However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product. The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product with the results from the Community Atmosphere Biosphere Land Exchange (CABLE model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.

  10. On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia

    Science.gov (United States)

    Tangdamrongsub, Natthachet; Han, Shin-Chan; Decker, Mark; Yeo, In-Young; Kim, Hyungjun

    2018-03-01

    An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS) derived from the Gravity Recovery and Climate Experiment (GRACE) into land surface models (LSMs). However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product). The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product) with the results from the Community Atmosphere Biosphere Land Exchange (CABLE) model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC) approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.

  11. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn

    2009-01-01

    We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...

  12. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  13. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils

    Directory of Open Access Journals (Sweden)

    Alagna Vincenzo

    2017-09-01

    Full Text Available Assessment of soil water repellency (SWR was conducted in the decomposed organic floor layer (duff and in the mineral soil layer of two Mediterranean pine forests, one in Italy and the other in Spain, by the widely-used water drop penetration time (WDPT test and alternative indices derived from infiltration experiments carried out by the minidisk infiltrometer (MDI. In particular, the repellency index (RI was calculated as the adjusted ratio between ethanol and water soil sorptivities whereas the water repellency cessation time (WRCT and the specifically proposed modified repellency index (RIm were derived from the hydrophobic and wettable stages of a single water infiltration experiment. Time evolution of SWR and vegetation cover influence was also investigated at the Italian site. All indices unanimously detected severe SWR conditions in the duff of the pine forests. The mineral subsoils in the two forests showed different wettability and the clay-loam subsoil at Ciavolo forest was hydrophobic even if characterized by organic matter (OM content similar to the wettable soil of an adjacent glade. It was therefore assumed that the composition rather than the total amount of OM influenced SWR. The hydraulic conductivity of the duff differed by a factor of 3.8–5.8 between the two forested sites thus influencing the vertical extent of SWR. Indeed, the mineral subsoil of Javea showed wettable or weak hydrophobic conditions probably because leaching of hydrophobic compounds was slowed or prevented at all. Estimations of SWR according to the different indices were in general agreement even if some discrepancies were observed. In particular, at low hydrophobicity levels the SWR indices gathered from the MDI tests were able to signal sub-critical SWR conditions that were not detected by the traditional WDPT index. The WRCT and modified repellency index RIm yielded SWR estimates in reasonable agreement with those obtained with the more cumbersome RI

  14. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná - Brazil.

    Science.gov (United States)

    Graça, C H; Passig, F H; Kelniar, A R; Piza, M A; Carvalho, K Q; Arantes, E J

    2015-12-01

    The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha(-1).h(-1).year(-1)), with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

  15. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation

    Science.gov (United States)

    Hou, Lizhu; Wang, Xu-Sheng; Hu, Bill X.; Shang, Jie; Wan, Li

    2016-09-01

    Quantification of groundwater recharge from precipitation in the huge sand dunes is an issue in accounting for regional water balance in the Badain Jaran Desert (BJD) where about 100 lakes exist between dunes. In this study, field observations were conducted on a sand dune near a large saline lake in the BJD to investigate soil water movement through a thick vadose zone for groundwater estimation. The hydraulic properties of the soils at the site were determined using in situ experiments and laboratory measurements. A HYDRUS-1D model was built up for simulating the coupling processes of vertical water-vapor movement and heat transport in the desert soil. The model was well calibrated and validated using the site measurements of the soil water and temperature at various depths. Then, the model was applied to simulate the vertical flow across a 3-m-depth soil during a 53-year period under variable climate conditions. The simulated flow rate at the depth is an approximate estimation of groundwater recharge from the precipitation in the desert. It was found that the annual groundwater recharge would be 11-30 mm during 1983-2012, while the annual precipitation varied from 68 to 172 mm in the same period. The recharge rates are significantly higher than those estimated from the previous studies using chemical information. The modeling results highlight the role of the local precipitation as an essential source of groundwater in the BJD.

  16. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    Science.gov (United States)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  17. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  18. Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula

    Science.gov (United States)

    Kashulina, G. M.

    2017-07-01

    The distribution of the total Ni, Cu, Co, Cd, Pb, and Zn contents was studied in the soil profiles of six catenas in the zone subjected to emissions of the copper-nickel industrial complex, which is the largest source of SO2 and heavy metals in northern Europe. The results show that, at present, the concentrations of Ni and Cu in the upper organic soil horizons in the impact zone reach extreme levels of 9000 and 6000 mg/kg, respectively. Under conditions of the long-term intense multi-element industrial emissions, the modern levels of the accumulation of polluting substances in soils greatly depend on the indirect factors, such as the degree of the technogenic degradation of soils with the loss of a significant part of soil organic matter, the reaching of threshold saturation of the topsoil with polluting metals, and competitive relationships between chemical elements. The state of the ecosystems in the impact zone varied greatly and did not always agree with the contents of the main metals-pollutants in the soils. The moisture conditions determined by the landscape position affected significantly the resistance of the ecosystems to emissions.

  19. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  20. Plant Uptake of Organic Pollutants from Soil: A Critical Review ofBioconcentration Estimates Based on Modelsand Experiments

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Maddalena, Randy L.

    2007-01-01

    The role of terrestrial vegetation in transferring chemicals from soil and air into specific plant tissues (stems, leaves, roots, etc.) is still not well characterized. We provide here a critical review of plant-to-soil bioconcentration ratio (BCR) estimates based on models and experimental data. This review includes the conceptual and theoretical formulations of the bioconcentration ratio, constructing and calibrating empirical and mathematical algorithms to describe this ratio and the experimental data used to quantify BCRs and calibrate the model performance. We first evaluate the theoretical basis for the BCR concept and BCR models and consider how lack of knowledge and data limits reliability and consistency of BCR estimates. We next consider alternate modeling strategies for BCR. A key focus of this evaluation is the relative contributions to overall uncertainty from model uncertainty versus variability in the experimental data used to develop and test the models. As a case study, we consider a single chemical, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and focus on variability of bioconcentration measurements obtained from 81 experiments with different plant species, different plant tissues, different experimental conditions, and different methods for reporting concentrations in the soil and plant tissues. We use these observations to evaluate both the magnitude of experimental variability in plant bioconcentration and compare this to model uncertainty. Among these 81 measurements, the variation of the plant/soil BCR has a geometric standard deviation (GSD) of 3.5 and a coefficient of variability (CV-ratio of arithmetic standard deviation to mean) of 1.7. These variations are significant but low relative to model uncertainties--which have an estimated GSD of 10 with a corresponding CV of 14.

  1. SOILSOLN: A Program for Teaching Equilibria Modeling of Soil Solution Composition.

    Science.gov (United States)

    Wolt, Jeffrey D.

    1989-01-01

    Presents a computer program for use in teaching ion speciation in soil solutions. Provides information on the structure of the program, execution, and software specifications. The program estimates concentrations of ion pairs, hydrolytic species, metal-organic complexes, and free ions in solutions. (Author/RT)

  2. The Bio-accessibility of Synthetic Fe-Organo Complexes in Subsurface Soil with Elevated Temperature: a Proxy for the Vulnerability of Mineral Associated Carbon to Warming Rachel C. Porras, Peter S. Nico, and Margaret Torn Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Science.gov (United States)

    Porras, R. C.; Hicks Pries, C.

    2015-12-01

    Globally, subsurface soils (>30 cm) represent an important reservoir of soil organic carbon (SOC). However, the vulnerability of this deep SOC and, in particular mineral-associated SOC, to warming, and its potential to amplify the effects of climate change is highly uncertain. To gain insight into the bio-accessibility and temperature sensitivity of mineral-associated organic C, we conducted a series of incubations using soils collected from three depths (0-10, 50-60, and 80-90 cm) under coniferous forest. The soils are moderately acidic (mean pH=6.5) sandy, mixed, mesic Ultic Haploxeralfs. To understand how mechanisms controlling SOC bio-accessibilty or temperature sensitivity differ with depth and with the properties of Fe-organo complexes (i.e.,degree of crystallinity, amount of reactive surface area, or surface saturation), we used a 13C labeled glucose substrate to prepare synthetic Fe-organo complexes spanning a range of crystallinity and mineral surface saturation. The synthetic Fe-organo complexes were then added to soil from three depths. The soils containing the 13C labeled Fe-organo adduct were incubated at two temperatures (ambient and +4°C) and respired 13CO2 was measured and used to estimate flux rates. Differences in measured 13CO2 fluxes as a function of depth, surface loading, and mineral properties are discussed in terms of their implications for the temperature sensitivity of mineral protected organic carbon in subsurface soils.

  3. Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network

    Science.gov (United States)

    Ghazi, Farah F.

    2018-05-01

    The aim of this paper is to estimate the heavy metals Contamination in soils which can be used to determine the rate of environmental contamination by using new technique depend on design feedback neural network as an alternative accurate technique. The network simulates to estimate the concentration of Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn) and Copper (Cu). Then to show the accuracy and efficiency of suggested design we applied the technique in Al- Zafaraniyah in Baghdad city. The results of this paper show that the suggested networks can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals.

  4. Decontamination of Uranium-Contaminated Soil Sand Using Supercritical CO2 with a TBP–HNO3 Complex

    Directory of Open Access Journals (Sweden)

    Kwangheon Park

    2015-09-01

    Full Text Available An environmentally friendly decontamination process for uranium-contaminated soil sand is proposed. The process uses supercritical CO2 as the cleaning solvent and a TBP–HNO3 complex as the reagent. Four types of samples (sea sand and coarse, medium, and fine soil sand were artificially contaminated with uranium. The effects of the amount of the reagent, sand type, and elapsed time after the preparation of the samples on decontamination were examined. The extraction ratios of uranium in all of the four types of sand samples were very high when the time that elapsed after preparation was less than a few days. The extraction ratio of uranium decreased in the soil sand with a higher surface area as the elapsed time increased, indicating the possible formation of chemisorbed uranium on the surface of the samples. The solvent of supercritical CO2 seemed to be very effective in the decontamination of soil sand. However, the extraction of chemisorbed uranium in soil sand may need additional processes, such as the application of mechanical vibration and the addition of bond-breaking reagents.

  5. Estimation of Soil Water Retention Curve Using Fractal Dimension ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-01

    Dec 1, 2017 ... ABSTRACT: The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate ... suitable to model the heterogeneous soil structure with tortuous pore space (Rieu ... so, soil texture determined according to the USDA texture classification.

  6. Image Analysis to Estimate Mulch Residual on Soil

    Science.gov (United States)

    Moreno Valencia, Carmen; Moreno Valencia, Marta; Tarquis, Ana M.

    2014-05-01

    Organic farmers are currently allowed to use conventional polyethylene mulch, provided it is removed from the field at the end of the growing or harvest season. To some, such use represents a contradiction between the resource conservation goals of sustainable, organic agriculture and the waste generated from the use of polyethylene mulch. One possible solution is to use biodegradable plastic or paper as mulch, which could present an alternative to polyethylene in reducing non-recyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues on the ground is one of the basic requisites to estimate the potential of each material to degrade. Determination the extent of mulch residue on the field is an exhausting job while there is not a distinct and accurate criterion for its measurement. There are several indices for estimation the residue covers while most of them are not only laborious and time consuming but also impressed by human errors. Human vision system is fast and accurate enough in this case but the problem is that the magnitude must be stated numerically to be reported and to be used for comparison between several mulches or mulches in different times. Interpretation of the extent perceived by vision system to numerals is possible by simulation of human vision system. Machine vision comprising image processing system can afford these jobs. This study aimed to evaluate the residue of mulch materials over a crop campaign in a processing tomato (Solanum lycopersicon L.) crop in Central Spain through image analysis. The mulch materials used were standard black polyethylene (PE), two biodegradable plastic mulches (BD1 and BD2), and one paper (PP1) were compared. Meanwhile the initial appearance of most of the mulches was sort of black PE, at the end of the experiment the materials appeared somewhat discoloured, soil and/or crop residue was impregnated being very difficult to completely remove them. A digital camera

  7. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    Science.gov (United States)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the

  8. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    Science.gov (United States)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  9. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil

    Science.gov (United States)

    Karlsson, Torbjörn; Elgh-Dalgren, Kristin; Björn, Erik; Skyllberg, Ulf

    2007-02-01

    Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g -1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd 2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g -1), the Cd 2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS -) was used to describe the complexation (Cd 2+ + RS - ⇆ CdSR +; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg -1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (p Ka for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g -1, a model consisting of one thiolate and one carboxylate (RCOO -) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd 2+ + RCOO - ⇆ CdOOCR +; log KCdOOCR; p Ka for RCOOH = 4.5) is in accordance with stability constants determined for the association between

  10. DO3SE modelling of soil moisture to determine ozone flux to forest trees

    Directory of Open Access Journals (Sweden)

    M. Schaub

    2012-06-01

    Full Text Available The DO3SE (Deposition of O3 for Stomatal Exchange model is an established tool for estimating ozone (O3 deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto, and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies, Scots pine (Pinus sylvestris, birch (Betula pendula, aspen (Populus tremuloides, beech (Fagus sylvatica and holm oak (Quercus ilex collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and

  11. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    NARCIS (Netherlands)

    Moreira, Paulo H S; Van Genuchten, Martinus Th; Orlande, Helcio R B; Cotta, Renato M.

    2016-01-01

    In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical

  12. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  13. Reduced-Complexity Direction of Arrival Estimation Using Real-Valued Computation with Arbitrary Array Configurations

    Directory of Open Access Journals (Sweden)

    Feng-Gang Yan

    2018-01-01

    Full Text Available A low-complexity algorithm is presented to dramatically reduce the complexity of the multiple signal classification (MUSIC algorithm for direction of arrival (DOA estimation, in which both tasks of eigenvalue decomposition (EVD and spectral search are implemented with efficient real-valued computations, leading to about 75% complexity reduction as compared to the standard MUSIC. Furthermore, the proposed technique has no dependence on array configurations and is hence suitable for arbitrary array geometries, which shows a significant implementation advantage over most state-of-the-art unitary estimators including unitary MUSIC (U-MUSIC. Numerical simulations over a wide range of scenarios are conducted to show the performance of the new technique, which demonstrates that with a significantly reduced computational complexity, the new approach is able to provide a close accuracy to the standard MUSIC.

  14. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    Science.gov (United States)

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  15. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Perepelyatnikova, L.; Ivanova, T.; Vynograds'ka, V.

    2006-01-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time

  16. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    Science.gov (United States)

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  17. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Science.gov (United States)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  18. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    Science.gov (United States)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  19. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    Science.gov (United States)

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  20. An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment

    International Nuclear Information System (INIS)

    Pourgol-Mohamad, Mohammad; Modarres, Mohammad; Mosleh, Ali

    2013-01-01

    This paper discusses an approach called Integrated Methodology for Thermal-Hydraulics Uncertainty Analysis (IMTHUA) to characterize and integrate a wide range of uncertainties associated with the best estimate models and complex system codes used for nuclear power plant safety analyses. Examples of applications include complex thermal hydraulic and fire analysis codes. In identifying and assessing uncertainties, the proposed methodology treats the complex code as a 'white box', thus explicitly treating internal sub-model uncertainties in addition to the uncertainties related to the inputs to the code. The methodology accounts for uncertainties related to experimental data used to develop such sub-models, and efficiently propagates all uncertainties during best estimate calculations. Uncertainties are formally analyzed and probabilistically treated using a Bayesian inference framework. This comprehensive approach presents the results in a form usable in most other safety analyses such as the probabilistic safety assessment. The code output results are further updated through additional Bayesian inference using any available experimental data, for example from thermal hydraulic integral test facilities. The approach includes provisions to account for uncertainties associated with user-specified options, for example for choices among alternative sub-models, or among several different correlations. Complex time-dependent best-estimate calculations are computationally intense. The paper presents approaches to minimize computational intensity during the uncertainty propagation. Finally, the paper will report effectiveness and practicality of the methodology with two applications to a complex thermal-hydraulics system code as well as a complex fire simulation code. In case of multiple alternative models, several techniques, including dynamic model switching, user-controlled model selection, and model mixing, are discussed. (authors)

  1. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  2. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  3. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas

    Directory of Open Access Journals (Sweden)

    Narayan Kayet

    2018-03-01

    Full Text Available Mining operations result in the generation of barren land and spoil heaps which are subject to high erosion rate during the rainy season. The present study uses the Revised Universal Soil Loss Equation (RUSLE and SCS-CN (Soil Conservation Service - Curve Number process to estimate in Kiruburu and Meghahatuburu mining sites areas. The geospatial model of annual average soil loss rate was determined by integrating environmental variables parameters in a raster pixels-based GIS framework. GIS layers with, rainfall passivity and runoff erosivity (R, soil erodibility (K, slope length and steepness (LS, cover management(C and conservation practice (P factors were calculated to determine their effects on annual soil erosion in the study area. The coefficient of determination (r2 was 0.834, which indicates a strong correlation of soil loss with runoff and rainfall. Sub -watersheds 5,9,10 and 2 experienced high level of highly runoff. Average annual soil loss was calculated (30*30 m raster grid cell to determine the critical soil loss areas (Sub-watershed 9 and 5. Total soil erosion area was classified into five class, slight (10,025 ha, moderate (3125 ha, high (973 ha, very high (260 ha and severe (53 ha. The resulting map shows greatest soil erosion of >40 t h-1 y-1 (severe through connection to grassland, degraded and open forestry on the erect mining side-escutcheon. The Landsat pan sharpening image and DGPS survey field data were used in the verification of soil erosion results.

  4. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  5. Gross mineralization of nitrogen in fertile soils. Effects of the tillage system and soil depths

    International Nuclear Information System (INIS)

    Videla, C.; Echeverria, H.; Studdert, G.

    2002-01-01

    A greenhouse experiment was carried out with the aim of determining the effect of different tillage systems and soil depths on gross mineralization rates (TMB). The studied soil was a Typic Argiudoll Petrocalcic Paleudoll complex, under: conventional tillage for 23 yr. (PC treatment); no tillage for 6 yr. (PD treatment), and pasture for 4 yr. (P treatment) and 0-10 and 10-20 sampling depths. TMB were estimated through 15 N dilution technique, by addition of labelled (NH 4 ) 2 SO 4 (10% 15 N at. exc.) at days 0, 7, 21 and 35. Twenty-four and 72 h after each addition, N inorganic content and 15 N enrichment of inorganic were determined on 2M KCl extracts in order to estimate the TMB. At 0-10 cm depth, TMB increase until day 21 and decreased afterwards. There were no significant differences between tillage treatments. At 10-20 cm soil depth PC and PD TMB were constant during the whole analysed period. P treatment had a quadratic adjust, with negative linear component. P TMB was lower than PC and PD until day 21 but afterwards it was significantly higher. These results suggest the presence in the pasture of an organic matter fraction, which mineralizes lately but with a high rate. (author)

  6. Sensitivity Analysis of Different Infiltration Equations and Their Coefficients under Various Initial Soil Moisture and Ponding Depth

    OpenAIRE

    ali javadi; M. Mashal; M.H. Ebrahimian

    2015-01-01

    Infiltration is a complex process that changed by initial moisture and water head on the soil surface. The main objective of this study was to estimate the coefficients of infiltration equations, Kostiakov-Lewis, Philip and Horton, and evaluate the sensitivity of these equations and their coefficients under various initial conditions (initial moisture soil) and boundary (water head on soil surface). Therefore, one-and two-dimensional infiltration for basin (or border) irrigation were simulate...

  7. Reduced complexity FFT-based DOA and DOD estimation for moving target in bistatic MIMO radar

    KAUST Repository

    Ali, Hussain

    2016-06-24

    In this paper, we consider a bistatic multiple-input multiple-output (MIMO) radar. We propose a reduced complexity algorithm to estimate the direction-of-arrival (DOA) and direction-of-departure (DOD) for moving target. We show that the calculation of parameter estimation can be expressed in terms of one-dimensional fast-Fourier-transforms which drastically reduces the complexity of the optimization algorithm. The performance of the proposed algorithm is compared with the two-dimension multiple signal classification (2D-MUSIC) and reduced-dimension MUSIC (RD-MUSIC) algorithms. It is shown by simulations, our proposed algorithm has better estimation performance and lower computational complexity compared to the 2D-MUSIC and RD-MUSIC algorithms. Moreover, simulation results also show that the proposed algorithm achieves the Cramer-Rao lower bound. © 2016 IEEE.

  8. Estimation and comparison of potential runoff-contributing areas in Kansas using topographic, soil, and land-use information

    Science.gov (United States)

    Juracek, Kyle E.

    2000-01-01

    Digital topographic, soil, and land-use information was used to estimate potential runoff-contributing areas in Kansas. The results were used to compare 91 selected subbasins representing slope, soil, land-use, and runoff variability across the State. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented, in relative terms, very high, high, moderate, low, very low, and extremely low potential for runoff. Various rainfall-intensity and soil-permeability values were used to represent the threshold conditions at which infiltration-excess overland flow may occur. Antecedent soil-moisture conditions and a topographic wetness index (TWI) were used to represent the threshold conditions at which saturation-excess overland flow may occur. Land-use patterns were superimposed over the potential runoff-contributing areas for each set of environmental conditions. Results indicated that the very low potential-runoff conditions (soil permeability less than or equal to 1.14 inches per hour and TWI greater than or equal to 14.4) provided the best statewide ability to quantitatively distinguish subbasins as having relatively high, moderate, or low potential for runoff on the basis of the percentage of potential runoff-contributing areas within each subbasin. The very low and (or) extremely low potential-runoff conditions (soil permeability less than or equal to 0.57 inch per hour and TWI greater than or equal to 16.3) provided the best ability to qualitatively compare potential for runoff among areas within individual subbasins. The majority of subbasins with relatively high potential for runoff are located in the eastern half of the State where soil permeability is generally less and precipitation is typically greater. The ability to distinguish subbasins as having relatively high, moderate, or low potential for runoff was possible mostly

  9. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    Science.gov (United States)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  10. Speciation and isotopic exchangeability of nickel in soil solution.

    Science.gov (United States)

    Nolan, Annette L; Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J

    2009-01-01

    Knowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. In this study, free Ni(2+) activities were determined in pore waters of long-term Ni-contaminated soils using a Donnan dialysis membrane technique. The pore water free Ni(2+) concentration as a percentage of total soluble Ni ranged from 21 to 80% (average 53%), and the average amount of Ni bound to dissolved organic matter estimated by Windermere Humic Aqueous Model VI was < or = 17%. These data indicate that complexed forms of Ni can constitute a significant fraction of total Ni in solution. Windermere Humic Aqueous Model VI provided reasonable estimates of free Ni(2+) fractions in comparison to the measured fractions (R(2) = 0.83 with a slope of 1.0). Also, the isotopically exchangeable pools (E value) of soil Ni were measured by an isotope dilution technique using water extraction, with and without resin purification, and 0.1 mol L(-1) CaCl(2) extraction, and the isotopic exchangeability of Ni species in soil water extracts was investigated. The concentrations of isotopically non-exchangeable Ni in water extracts were <9% of total water soluble Ni concentrations for all soils. The resin E values expressed as a percentage of the total Ni concentrations in soil showed that the labile Ni pool ranged from 0.9 to 32.4% (average 12.4%) of total soil Ni. Therefore the labile Ni pool in these well-equilibrated contaminated soils appears to be relatively small in relation to total Ni concentrations.

  11. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    Science.gov (United States)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  12. Using global sensitivity analysis to understand higher order interactions in complex models: an application of GSA on the Revised Universal Soil Loss Equation (RUSLE) to quantify model sensitivity and implications for ecosystem services management in Costa Rica

    Science.gov (United States)

    Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.

    2011-12-01

    Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch

  13. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    Science.gov (United States)

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly

  14. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  15. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  16. Soil moisture estimation using multi linear regression with terraSAR-X data

    Directory of Open Access Journals (Sweden)

    G. García

    2016-06-01

    Full Text Available The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil’s parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR offer the opportunity to monitor soil moisture (HS at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R2  of about 0.6

  17. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States

    Science.gov (United States)

    Steven G. McNulty; Erika C. Cohen; Jennifer A. Moore Myers; Timothy J. Sullivan; Harbin Li

    2007-01-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A...

  18. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    Science.gov (United States)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  19. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes......Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils...

  20. Distribution functions to estimate radionuclide solid-liquid distribution coefficients in soils: the case of Cs

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Mart i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    In the frame of the revision of the IAEA TRS 364 (Handbook of parameter values for the prediction of radionuclide transfer in temperate environments), a database of radionuclide solid-liquid distribution coefficients (K{sub d}) in soils was compiled with data coming from field and laboratory experiments, from references mostly from 1990 onwards, including data from reports, reviewed papers, and grey literature. The K{sub d} values were grouped for each radionuclide according to two criteria. The first criterion was based on the sand and clay mineral percentages referred to the mineral matter, and the organic matter (OM) content in the soil. This defined the 'texture/OM' criterion. The second criterion was to group soils regarding specific soil factors governing the radionuclide-soil interaction ('cofactor' criterion). The cofactors depended on the radionuclide considered. An advantage of using cofactors was that the variability of K{sub d} ranges for a given soil group decreased considerably compared with that observed when the classification was based solely on sand, clay and organic matter contents. The K{sub d} best estimates were defined as the calculated GM values assuming that K{sub d} values were always log-normally distributed. Risk assessment models may require as input data for a given parameter either a single value (a best estimate) or a continuous function from which not only individual best estimates but also confidence ranges and data variability can be derived. In the case of the K{sub d} parameter, a suitable continuous function which contains the statistical parameters (e.g. arithmetical/geometric mean, arithmetical/geometric standard deviation, mode, etc.) that better explain the distribution among the K{sub d} values of a dataset is the Cumulative Distribution Function (CDF). To our knowledge, appropriate CDFs has not been proposed for radionuclide K{sub d} in soils yet. Therefore, the aim of this works is to create CDFs for