Sample records for complex crack shapes

  1. Crack shape developments and leak rates for circumferential complex-cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)


    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  2. Development of crack shape: LBB methodology for cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.; Chapuliot, S.; Drubay, B. [Commissariat a l Energie Atomique, Gif sur Yvette (France)


    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  3. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  4. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian


    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  5. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo


    to 10−10, which means that the metal undergoes huge strains before coalescence. This is accounted for in the present analyses by using remeshing techniques. The evolution of the void shape during the large deformations is a natural outcome of the numerical analysis. Also the effect of different initial...... second phase particle. As the particle deforms relatively little the void growth is here dominated by strong blunting of the metal at the tip of the initial penny-shaped crack. These analyses are used to estimate how well the void shape evolution would be approximated by assuming that the presence...... void shapes is considered, as well as the effect of different spacings between the voids in the axial and transverse directions. While these first analyses are carried out for voids in a homogeneous metal, a second set of cell model studies are carried out for voids that initiate from a crack in a hard...

  6. On the approximation of crack shapes found during inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others


    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  7. Fatigue Crack Growth Fundamentals in Shape Memory Alloys (United States)

    Wu, Y.; Ojha, A.; Patriarca, L.; Sehitoglu, H.


    In this study, based on a regression of the crack tip displacements, the stress intensity range in fatigue is quantitatively determined for the shape memory alloy Ni2FeGa. The results are compared to the calculated stress intensity ranges with a micro-mechanical analysis accounting for the transformation-induced tractions. The effective stress intensity ranges obtained with both methods are in close agreement. Also, the fatigue crack closure levels were measured as 30 % of the maximum load using virtual extensometers along the crack flanks. This result is also in close agreement with the regression and micro-mechanical modeling findings. The current work pointed to the importance of elastic moduli changes and the residual transformation strains playing a role in the fatigue crack growth behavior. Additional simulations are conducted for two other important shape memory alloys, NiTi and CuZnAl, where the reductions in stress intensity range were found to be lower than Ni2FeGa.

  8. Fully plastic crack opening analyses of complex-cracked pipes for Ramberg-Osgood materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Uk; Choi, Jae Boong [Sungkyunkwan University, Suwon (Korea, Republic of); Huh, Nam Su [Seoul National University, Seoul (Korea, Republic of); Kim, Yun Jae [Korea University, Seoul (Korea, Republic of)


    The plastic influence functions for calculating fully plastic Crack opening displacement (COD) of complex-cracked pipes were newly proposed based on systematic 3-dimensional (3-D) elastic-plastic Finite element (FE) analyses using Ramberg-Osgood (R-O) relation, where global bending moment, axial tension and internal pressure are considered separately as a loading condition. Then, crack opening analyses were performed based on GE/EPRI concept by using the new plastic influence functions for complex-cracked pipes made of SA376 TP304 stainless steel, and the predicted CODs were compared with FE results based on deformation plasticity theory of tensile material behavior. From the comparison, the confidence of the proposed fully plastic crack opening solutions for complex-cracked pipes was gained. Therefore, the proposed engineering scheme for COD estimation using the new plastic influence functions can be utilized to estimate leak rate of a complex-cracked pipe for R-O material.

  9. Role of particle shape anisotropy on crack formation in drying of colloidal suspension. (United States)

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K; Basavaraj, Madivala G


    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

  10. Use of Marker Bands for Determination of Fatigue Crack Growth Rates and Crack Front Shapes in Pre-Corroded Coupons (United States)

    Willard, S. A.


    Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.

  11. Design study of hole positions and hole shapes for crack tip stress releasing

    DEFF Research Database (Denmark)

    Pedersen, Pauli


    The method of hole drilling near or at the crack tip is often used in fatigue damage repair. From a design optimization point of view, two questions are posed: Where should the hole(s) be drilled? And is there a better shape of the hole than a circular one? For the first question, we extend earlier...... results for isotropic material and in general study the influence of having orthotropic material. Optimal shapes are by no means circular, and we focus on the shape of a single hole centered at (or in front of) the crack tip. It is shown that the stress field at the crack boundary can be significantly...

  12. Monitoring of fatigue crack under complex environment using guided waves (United States)

    Tang, Jianfei; Yan, Gang; Xu, Xiwu


    This paper presents an experimental study on monitoring of fatigue crack under complex environment using guided waves. An experimental set-up consisting of an electrical oven, a MTS testing machine and a monitoring system is established to perform the study. First, the combined effects of temperature, load and vibration on the propagation of guided waves in metallic structure is studied. Then, a statistical approach is proposed to detect fatigue crack under these combined effects. Damage feature is extracted after the guided wave signals are processed by Fourier transform. A Monte Carlo procedure is employed to estimate the probability density functions of the feature before and after cracking, respectively. By comparing the probability density functions, the probability of existence of fatigue crack is determined. Experimental study on a fatigue coupon under combined effects of temperature, load and vibration is conducted to demonstrate the effectiveness of the proposed method.

  13. Predicting the crack response for a pipe with a complex crack (United States)

    Lukes, Robert G.

    Traditional flaw evaluation in the nuclear field uses conservative methods to predict maximum load carrying capacity for flaws in a given pipe. There is a need in the nuclear industry for more accurate estimates of the load carrying capacity of nuclear piping such that probabilistic tools can be used to predict the time to failure for various types of cracks. These more accurate estimates will allow the nuclear industry to repair flaws at a more appropriate time considering external factors such as costs and man-rem planning along with the flaw repair. Analysis of the maximum load carrying capacity of a pipe with a complex crack (CC) has gained increased importance due to the recent identification of long CC's that have appeared in dissimilar metal (DM) welds thought to be caused by primary water stress corrosion cracking (PWSCC). A coded solution for a single material with a weld was developed that gives an accurate maximum load and crack driving force prediction for a pipe with a through wall crack (TWC), called LBBEng. To support the analysis of a CC, traditionally, an assumption is used that the CC performs similar to that of a TWC of a reduced thickness (TWCr). This modification gives a conservative prediction of the maximum load carrying capacity for a CC in a single material but was never verified for a CC in a DM weld. From the evaluation of the DM weld test data, along with finite element analysis, it can be demonstrated that the crack response of a CC can be predicted by a TWC model when modifications are made to the reduced thickness method.

  14. Process Optimization for Suppressing Cracks in Laser Engineered Net Shaping of Al2O3 Ceramics (United States)

    Niu, F. Y.; Wu, D. J.; Yan, S.; Ma, G. Y.; Zhang, B.


    Direct additive manufacturing of ceramics (DAMC) without binders is a promising technique for rapidly fabricating high-purity components with good performance. Nevertheless, cracks are easily generated during fabrication as a result of the high intrinsic brittleness of ceramics and the great temperature gradients. Therefore, optimizing the DAMC process is a challenge. In this study, direct fabrication of Al2O3 single-bead wall structures are conducted with a laser engineered net shaping (LENS) system. A new process optimization method for suppressing cracks is proposed based on analytical models, and then the influence of process parameters on crack number is discussed experimentally. The results indicate that the crack number decreases obviously with the increase of scanning speed. Single-bead wall specimens without cracks are successfully fabricated by the optimized process.

  15. Fatigue crack shape prediction based on the stress singularity exponent

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Knésl, Zdeněk

    488-489, č. 1 (2012), s. 178-181 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GA101/09/0867 Grant - others:GA AV ČR(CZ) M100420901 Institutional research plan: CEZ:AV0Z2041904 Keywords : stress singularity exponent * crack front curvature * vertex singularity * free surface effect Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Corrosion cracking propagation and fatigue strength of complex technical systems


    A.R. Arutyunyan; R.A. Arutyunyan


    The reliability problem of complex mechanical systems composed of some number of elements with the crack type defects, which growth rate is essentially governed by the processes of corrosion fatigue, was considered. Among these systems there are different engineering constructions: energetic, transport, chemical and others. Taking into account that the reliability of a system as a whole depends on the reliability of individual elements and the way of their connection, the systems with the...

  17. Crack (United States)

    ... make people edgy and irritable. They may have panic attacks and full-blown psychosis where they hear ... die. It's extremely hard to kick a crack addiction. Even after people have been off the drug ...

  18. The comparative psychophysics of complex shape perception. (United States)

    Smith, J David; Redford, Joshua S; Haas, Sarah M


    The authors compared the complex shape perception of humans and monkeys. Members of both species participated in a Same-Different paradigm in which they judged the similarity of shape pairs that could be variations of the same underlying prototype. For both species, similarity gradients were found to be steep going out from the transformational center of psychological space. In contrast, similarity gradients were found to be flat going from the periphery in toward the center of psychological space. These results show that there are important common principles in the shape-perception and shape-comparison processes of humans and monkeys. The same general organization of psychological space is obtained. The same quantifiable metric of psychological distance is applied. Established methods for creating controlled shape variation have the same effect on both species' similarity judgments. The member of the to-be-judged pair of shapes that is peripheral in psychological space controls the strength of the perceived similarity of the pair. The results have broader implications for the comparative study of perception and categorization.

  19. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure (United States)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane


    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  20. Aerodynamic performances of complex shape wings

    Directory of Open Access Journals (Sweden)

    О.О. Кім


    Full Text Available  The task of calculation of optimum circulation distribution along wingspan of complex shape wings is considered. For solving this problem Glauert-Trefts’s equation and its modifications are used. Calculations are carried out for both sweptback and forward-swept wings. It is shown that optimum circulation distribution depends on the sweep angle χ and  on the chord b(z distribution along wingspan. Some aerodynamic coefficients such as induced drag coefficient CDi and pitching moment coefficient CmZ are calculated for wings of different shape. The comparison of wings performances is done. In order to obtain the minimum wing induced drag with the given lift force it is very important to determine how the circulation should change along the wingspan. Results obtained by E. K. Karafoli G.F. Burago and others are used. A set of theoretical generalizations and modifications of formulas for aerodynamic coefficients are obtained. These results permit to compare aerodynamic performances of sweptback and forward-swept wings. Modified Glauert-Trefts’s integral-differential equation is formulated for wings of complex shape.

  1. Effect of strain wave shape on low-cycle fatigue crack propagation of SUS 304 stainless steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, M.; Hattori, I.; Koizwmi, T.; Shiraiwa, F.


    Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700/sup 0/C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, /SUB f/, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, /SUB c/ / /SUB T/. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.

  2. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium (United States)

    Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.


    This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.

  3. Modeling and Correspondence of Topologically Complex 3D Shapes


    Alhashim, Ibraheem


    3D shape creation and modeling remains a challenging task especially for novice users. Many methods in the field of computer graphics have been proposed to automate the often repetitive and precise operations needed during the modeling of detailed shapes. This report surveys different approaches of shape modeling and correspondence especially for shapes exhibiting topological complexity. We focus on methods designed to help generate or process shapes with large number of interconnected compon...


    Directory of Open Access Journals (Sweden)



    Full Text Available A shape intensified Meso-SAPO-34 catalyst was designed and used to improve the yield and selectivity of propene from 1-hexene cracking. The propene was produced with an optimal selectivity of 73.9 wt.% with high feed conversion 98.2 wt.% at 14 per hour WHSV. Robust exponential control of the stereochemistry was observed over the Meso-SAPO-34 shape selective catalyst’s cracking. The influence of the operating parameters on 1-hexene catalytic cracking, such as reaction temperature, time-on-stream effect on product distribution and conversion variations were systematically studied. The yield of propene and conversion rapidly increased with the reaction temperature, until 575oC. Shape intensification and topological integration of SAPO-34 increases the diffusion opportunities for feed, and this phenomenon was found to be responsible for drastic increase in 1-hexene conversion and propene yield. One other reason for this increase is the suppression of surface reactions (isomerization and hydride transfer owing to better diffusion opportunities. About 55 wt.% propene yield and higher total olefins content was achieved over Meso-SAPO-34.

  5. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He


    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  6. The development of complex tooth shape in reptiles

    Directory of Open Access Journals (Sweden)

    Oldrich eZahradnicek


    Full Text Available Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development.

  7. Typical cracks in deck of ship-shaped structures and ways to modify and improve the design

    Directory of Open Access Journals (Sweden)

    Özgür Özgüç


    Full Text Available Cracks occurred in main deck structure around openings due to pipe penetrations, deckhouses and supports for various equipments have created a major problem and mainly related to the vessels with made of high strength steel material in deck and most frequently found on oil tankers used by buoy loading. This paper will show typical cracks and give guidance on modifications of existing details and examples of good design, where the examples of defects are used from Classification Societies’ feedbacks in hull in operation phase. Any discontinuity or opening in deck as well as attachments to deck has been a problem for years and experience shows that it is difficult to find 100% solutions. The purpose of this paper is therefore not to guarantee perfect solutions but is a selection of good solutions that has proved to be better than most. To avoid cracks in deck completely is not guaranteed and is probably not possible.This paper aims to address with a particular attention on oil tankers but will also be relevant to other vessel types including ship-shaped floating offshore structures such as FSO (Floating Storage Offloading, FPSO (Floating Production Storage Offloading, FLNG (Floating Liquefied Natural Gas and drill-ships.

  8. Visual recognition of complex medical lesions using 2D shape (United States)

    Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf


    Different shape representation and classification methods for complex medical lesions were compared using oral lesions as a case study. The problem studied was the discrimination between potentially cancerous lesions, called leukoplakia, and other usually harmless lesions, called lichenoid reactions, which can appear in human oral cavities. The classification problem is difficult because these lesions vary in shape within classes and there are no easily recognizable characteristics. The representations evaluated were the centroidal profile function, the curvature function, and polar and complex coordinate functions. From these representations, translation, scale and rotation independent features were derived using Fourier transformations, auto-regressive modeling, and Zernike moments. A nonparametric kNN classifier with the leave-one-out cross-validation method was used as a classifier. An overall classification accuracy of about 84% was achieved using only the shape properties of the lesions, compared with a human visual classification rate of 65%. The best results were obtained using complex representation and Fourier/Zernike methods. In clinical practice, the preliminary diagnosis is based mainly on the visual inspection of the oral cavity, using both color, shape and texture as differentiating parameters. This study showed that machine analysis of shape could also play an important part in diagnosis and decisions regarding future treatment.

  9. Particle-based shape analysis of multi-object complexes. (United States)

    Cates, Joshua; Fletcher, P Thomas; Styner, Martin; Hazlett, Heather Cody; Whitaker, Ross


    This paper presents a new method for optimizing surface point correspondences for shape modeling of multiobject anatomy, or shape complexes. The proposed method is novel in that it optimizes correspondence positions in the full, joint shape space of the object complex. Researchers have previously only considered the correspondence problem separately for each structure, thus ignoring the interstructural shape correlations that are increasingly of interest in many clinical contexts, such as the study of the effects of disease on groups of neuroanatomical structures. The proposed method uses a nonparametric, dynamic particle system to simultaneously sample object surfaces and optimize correspondence point positions. This paper also suggests a principled approach to hypothesis testing using the Hotelling T2 test in the PCA space of the correspondence model, with a simulation-based choice of the number of PCA modes. We also consider statistical analysis of object poses. The modeling and analysis methods are illustrated on brain structure complexes from an ongoing clinical study of pediatric autism.

  10. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole

    Directory of Open Access Journals (Sweden)

    Benjamin Steven Vien


    Full Text Available Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1. Two-dimensional fast Fourier transformation (2D FFT is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole’s edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a, (compared to the wavelength λ of the incident wave is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ, whereas the scattered wave pattern is independent of crack length for small cracks a << λ. This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  11. Facilitating complex shape drawing in Williams syndrome and typical development. (United States)

    Hudson, Kerry D; Farran, Emily K


    Individuals with Williams syndrome (WS) produce drawings that are disorganised, likely due to an inability to replicate numerous spatial relations between parts. This study attempted to circumvent these drawing deficits in WS when copying complex combinations of one, two and three shapes. Drawing decisions were reduced by introducing a number of facilitators, for example, by using distinct colours and including facilitatory cues on the response sheet. Overall, facilitation improved drawing in the WS group to a comparable level of accuracy as typically developing participants (matched for non-verbal ability). Drawing accuracy was greatest in both groups when planning demands (e.g. starting location, line lengths and changes in direction) were reduced by use of coloured figures and providing easily distinguished and clearly grouped facilitatory cues to form each shape. This study provides the first encouraging evidence to suggest that drawing of complex shapes in WS can be facilitated; individuals with WS might be receptive to remediation programmes for drawing and handwriting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Calculation of Added Mass for Submerged Reactor with Complex Shape

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jong-Oh; Kim, Gyeongho; Choo, Yeon-Seok; Yoo, Yeon-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Kijang Research Reactor (KJRR) is currently under construction. Its reactor is located on the bottom of a reactor pool which is filled with water to a depth of 12m. Some components are installed on or inside the reactor and their structural integrity and safety performance need to be verified under seismic situations. For the verification, time history data or Floor Response Spectrum (FRS) on their support location, which is the reactor, should be obtained. A Finite Element (FE) model with fluid elements can give very accurate results for the matter; however, it costs too many resources and takes too much time for the transient analyses. In order to make the model more efficient and simple, added masses are often used to simulate the effect of water instead of the fluid elements. Many literatures introduce methods to calculate the added mass according to the exterior shape of structures. In this paper, how to calculate added masses for complex shaped structure was suggested. The proposed method was applied to RSA for KJRR and its accuracy was verified through comparison of the natural frequencies of RSA with fluid elements and the added masses. They showed the differences less than 1.5% between two models. Finally, it is concluded that the proposed method is quite useful to obtain added masses for complex shaped structure.

  13. Machine-vision-based roadway health monitoring and assessment : development of a shape-based pavement-crack-detection approach. (United States)


    State highway agencies (SHAs) routinely employ semi-automated and automated image-based methods for network-level : pavement-cracking data collection, and there are different types of pavement-cracking data collected by SHAs for reporting and : manag...

  14. Analysis of a complex shape chain plate using Transmission Photoelasticity

    Directory of Open Access Journals (Sweden)

    Dasari N.


    Full Text Available Most chains are an assembly [1] of five parts namely, outer plate, inner plate, bush, pin and roller. Two inner plates are press fitted with two bushes to form an inner block assembly. The outer plates are press fitted with pins after keeping the pins through the assembled bushes of the inner block. Roller is a rotating member and placed over the bush during inner block assembly. Inner block assembly is the load transfer member from sprocket tooth. The outer block assembly helps in holding and also to pull the inner block over the sprocket teeth. If a chain length is in odd number of pitches, it requires an offset plate as shown in Figure 1 to connect two ends of the chain together to make chain endless. When the chain is assembled with an offset plate, the chain fatigue life was observed only 20 to 25% of the total life of a chain, assembled without an offset plate. The holes in the offset plate are of the same size as in the outer and inner plates respectively and it is a complex in shape chain plate. A inbuilt thinning zone at the centre of the chain plate as shown in Figure 1 is unavoidable. The stresses and its distribution in this complex shape chain plate geometry play a critical role in the fatigue life performance of a chain assembly. However, it is difficult identify the stress distribution and stress concentration zones precisely using only the conventional industrial friendly tools such as routine quality control test, breaking load test and numerical computations. In this context the transmission photoelastic technique has made it possible to identify the stress distribution, its concentration and also to quantify the stress and strain [2-3] at any point in the chain plate. This paper explains how transmission photoelastic technique is used to estimate the stress distribution and its concentration zones in a complex chain plate when it isloaded. An epoxy chain plate model was made through the casting method using a Perspex mould [2

  15. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)



    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  16. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)


    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  17. Increased cancer incidence of Changhua residents living in Taisi Village north to the No. 6 Naphtha Cracking Complex. (United States)

    Chen, Chen-Fang; Chio, Chia-Pin; Yuan, Tzu-Hsuen; Yeh, Yen-Po; Chan, Chang-Chuan


    Cancer risks of residents living north to the No. 6 Naphtha Cracking Complex has not been studied before. Our study subjects were recruited in 2014-16 from three zones north to the No. 6 Naphtha Cracking Complex, which included 229 participants from the Taisi Village (average 5.5 km from the complex), 1333 participants from the other 14 villages in Dacheng Township (9.2 km), and 372 participants from the Zhutang Township (19.9 km). Their occurrence of cancer in years-post-complex-operation (YPO) was defined by having a new cancer recorded (ICD-9: 140-208) in National Health Insurance Research Database since 1999. Poisson regression was conducted to compare incidence rate ratio among three zones in 10-16 YPO. We found that all-cause cancer incidence of 10-16 YPO (per 1,000 person-years) in Taisi Village (8.44) was higher than that in Dacheng (3.42) and Zhutang (2.72). Taisi residents had significantly higher concentrations of V, Cr, Mn, Ni, Cu, As, Cd, and Tl than Dacheng and Zhutang residents. The all-cause cancer incidence rate ratio between 10-16 and 0-9 YPO was 8.44 for Taisi residents. All-cause cancer incidence rate of Taisi residents was 2.55 times higher than Dacheng residents (95% CI: 1.89-3.45) and 2.43 times higher than Zhutang residents (95% CI: 1.54-3.84) in 10-16 YPO. We conclude that all-cause cancer risk was significantly increased for Taisi residents living near the No. 6 Naphtha Cracking Complex for 10-16 years after the complex began operating. Copyright © 2018. Published by Elsevier B.V.

  18. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading (United States)

    Cheng, Ron-Bin; Hsu, Su-Yuen


    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  19. Bifurcation Study of Thin Plate with an All-Over Breathing Crack

    Directory of Open Access Journals (Sweden)

    Lihua Chen


    Full Text Available An all-over breathing crack on the plate surface having arbitrary depth and location is assumed to be nonpropagating and parallel to one side of the plate. Based on a piecewise model, the nonlinear dynamic behaviors of thin plate with the all-over breathing crack are studied to analyze the effect of external excitation amplitudes and frequencies on cracked plate with different crack parameters (crack depth and crack location. Firstly, the mode shape functions of cracked thin plate are obtained by using the simply supported boundary conditions and the boundary conditions along the crack line. Then, natural frequencies and mode functions of the cracked plate are calculated, which are assessed with FEM results. The stress functions of thin plate with large deflection are obtained by the equations of compatibility in the status of opening and closing of crack, respectively. To compare with the effect of breathing crack on the plate, the nonlinear dynamic responses of open-crack plate and intact plate are analyzed too. Lastly, the waveforms, bifurcation diagrams, and phase portraits of the model are gained by the Runge-Kutta method. It is found that complex nonlinear dynamic behaviors, such as quasi-periodic motion, bifurcation, and chaotic motion, appear in the breathing crack plate.

  20. The role of shape complexity in the detection of closed contours. (United States)

    Wilder, John; Feldman, Jacob; Singh, Manish


    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cracking complex taxonomy of Costa Rican moths: Anacrusis Zeller (Lepidoptera: Tortricidae) (United States)

    Remarkably similar forewing patterns, striking sexual dimorphism, and rampant sympatry all combine to present a taxonomically and morphologically bewildering complex of five species of Anacrusis tortricid moths in Central America: Anacrusis turrialbae Razowski, Anacrusis piriferana (Zeller), Anacrus...

  2. Analysis of Mode I Periodic Parallel Cracks-Tip Stress Field in an Infinite Orthotropic Plate

    Directory of Open Access Journals (Sweden)

    Wenbin Zhao


    Full Text Available The mechanical behavior near crack tip for periodic parallel cracks in an orthotropic composite plate subjected to the uniformly distributed load within the cracks surface is studied. The mechanical problem is turned into the boundary value problem of partial differential equation. By using the periodicity of the hyperbolic function in the complex domain and constructing proper Westergaard stress function, the periodicity of parallel cracks can be removed. Using the complex variable function method and the undetermined coefficients method, the boundary value problem of partial differential equation can be solved with the help of boundary conditions. The analytic expressions for stress intensity factor, stress, and displacement near the crack tip of periodical parallel cracks are obtained. When the vertical distance of cracks tends to infinity, the stress intensity factor degenerates into a single central crack situation. The stress intensity factor around the crack tip of periodic parallel cracks in an orthotropic composite plate depends on the shape factor. The interaction happens between the cracks. Finally, a numerical analysis of the stress and displacement changed with the polar angle is done.

  3. Cracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands

    Directory of Open Access Journals (Sweden)

    Eamor M. Woo


    Full Text Available This article reviews possible mechanisms of various crack forms and their likely correlations with interior crystal lamellae and discontinuous interfaces in spherulites. Complex yet periodically repetitive patterns of cracks in spherulites are beyond attributions via differences in thermal expansion coefficients, which would cause random and irregular cracks in the contract direction only. Cracks in brittle polymers such as poly(l-lactic acid (PLLA, or poly(4-hydroxyl butyrate (PHB, or more ductile polymers such as poly(trimethylene terephthalate (PTT are examined and illustrated, although for focus and demonstration, more discussions are spent on PLLA. The cracks can take many shapes that bear extremely striking similarity to the ring-band or lamellar patterns in the same spherulites. Crack patterns may differ significantly between the ring-banded and ringless spherulites, suggesting that the cracks may be partially shaped and governed by interfaces of lamellae and how the lamellar crystals assemble themselves in spherulites. Similarly, with some exceptions, most of the cracks patterns in PHB or PTT are also highly guided by the lamellar assembly in either ring-banded spherulites or ringless spherulites. Some exceptions of cracks in spherulites deviating from the apparent crystal birefringence patterns do exist; nevertheless, discontinuous interfaces in the initial lamellae neat the nuclei center might be hidden by top crystal over-layers of the spherulites, which might govern crack propagation.

  4. Development of X-ray Computed Tomography (CT) Imaging Method for the Measurement of Complex 3D Ice Shapes Project (United States)

    National Aeronautics and Space Administration — When ice accretes on a wing or other aerodynamic surface, it can produce extremely complex shapes. These are comprised of well-known shapes such as horns and...

  5. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto


    enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...... XFEM results applying fully cracked XFEM elements, with computational results achieved using standard cohesive interface elements in a commercial code, and with experimental results. The suggested element performed well in the tests....

  6. Initiation and propagation of small corner cracks (United States)

    Ellyin, Ferdnand; Kujawski, Daniel; Craig, David F.


    The behaviour of small corner cracks, inclined or perpendicular to loading direction, is presented. There are two aspects to this investigation: initiation of small cracks and monitoring their subsequent growth. An initial pre-cracking procedure under cyclic compression is adopted to minimize the residual damage at the tip of the growing and self-arresting crack under cyclic compression. A final fatigue specimen, cut from the larger pre-cracked specimen, has two corner flaws. The opening load of corner flaw is monitored using a novel strain gauge approach. The behaviour of small corner cracks is described in terms of growth rate relative to the size of the crack and its shape.

  7. Knuckle Cracking (United States)

    ... people realize that cracking knuckles produces a funny noise and may repeat cracking just to produce the ... main areas of exercise are aerobic exercise and resistance News Categories Ankylosing Spondylitis News Fibromyalgia News Gout ...

  8. Characterisation of crack tip fields under non-uniform fatigue loading

    Directory of Open Access Journals (Sweden)

    D. Nowell, M.E. Kartal


    Full Text Available The paper analyses previously reported work, which uses digital image correlation to measure fatigue crack closure. As well as determining crack opening loads, the information on crack shape may be used to estimate the stress intensity factor, as well as other parameters in more complex models of crack tip fields. A number of specimens were subjected to single overload cycles, which produced a significant retardation in crack growth rate. The method previously applied to the analysis of constant amplitude loading is here used to analyse the single overload case. The stress intensity factor history is found to be very different in the two cases and the consequences of this observation for analysis of fatigue crack propagation are discussed.

  9. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium. (United States)

    Hatua, Kaushik; Nandi, Prasanta K


    Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of 'f-type' type polarization function for heavy metal (Mg, Ca) and 'd-type' polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability.

  10. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media. (United States)

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei


    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  11. Fast laser systems for measuring the geometry of complex-shaped objects (United States)

    Galiulin, Ravil M.; Galiulin, Rishat M.; Bakirov, J. M.; Vorontsov, A. V.; Ponomarenko, I. V.


    The technical characteristics, advantages and applications of an automated optoelectronic measuring system designed by 'Optel' company, State Aviation University of Ufa, are presented in this paper. The measuring apparatus can be applied for industrial development and research, for example, in rapid prototyping, and for obtaining geometrical parameters in medicine and criminalistics. It essentially is a non-contact and rapid scanning system, allowing measurements of complex shaped objects like metal and plastic workpieces or parts of human body.

  12. Tomography of indentation cracks in feldspathic dental porcelain on zirconia. (United States)

    Rueda, Astrid O; Seuba, Jordi; Anglada, Marc; Jiménez-Piqué, Emilio


    The objective of this work is to study the crack produced by spherical and sharp indentation on veneering feldspathic dental porcelain in order to understand the morphology of the cracks in the surface and beneath the indentation using a tomographic technique. The geometry of cracks produced under contact loading are directly related to the structural integrity and reliability of dental prosthesis. Monotonic Hertzian contact loading and nanoindentation tests were performed on feldspathic porcelain (VITA-VM9) coatings. Residual imprints and the cracks produced by the indentations were characterized by 3-dimensional reconstruction using focused ion beam tomography. Under nanoindentation, the propagating crack deflects due to the interaction with the leucite particles resulting in a crack with a complex morphology. Under spherical contact loading, multiple ring cracks were observed at the surface, with a conical shape beneath the residual imprint. These results will help to improve the mechanical performance of these materials by detecting potential causes of failure for the long term structural integrity and reliability of the prosthesis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Simulation of Chloride Diffusion in Cracked Concrete with Different Crack Patterns

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang


    Full Text Available Chloride-induced corrosion of steel rebar is one of the primary durability problems for reinforced concrete structures in marine environment. Furthermore, if the surfaces of concrete structures have cracks, additional chloride can penetrate into concrete through cracked zone. For chloride ingression into cracked concrete, former researches mainly focus on influence of crack width on chloride diffusion coefficients. Other crack characteristics, such as chloride depth, crack shape (equal-width crack or tapered crack, crack density, and spacing, are not studied in detail. To fill this gap, this paper presents a numerical procedure to simulate chloride ingression into cracked concrete with different crack geometry characteristics. Cracked concrete is divided into two parts, sound zone and cracked zone. For stress-free concrete, the diffusion coefficient of sound zone is approximately assumed to be the same as sound concrete, and the diffusion coefficient of cracked zone is expressed as a piecewise function of crack width. Two-dimensional finite element method is used to determine chloride concentration. It is found that, with the increasing of crack width, crack depth, and crack amount, chloride ingression will aggravate. The analysis results generally agree with experimental results.

  14. Toward assessing the effects of crack front curvature /CFC/. (United States)

    Swedlow, J. L.; Ritter, M. A.


    Consideration of the effect of crack front curvature (CFC) on the K calibration of five special geometries in which CFC occurs. The five cases considered include an elliptical crack in an infinite medium, an internal annular crack in a thick-walled cylinder, a through crack in a flat plate, a part-through crack in a plate, and an irregularly shaped crack in a solid. It is shown that K depends on CFC differently in each case.

  15. Corrosion of steel in cracked concrete: a microscale study

    NARCIS (Netherlands)

    Pacheco, J.; Savija, B.; Schlangen, E.; Polder, R.B.


    The influence of concrete cracking upon reinforcement corrosion is complex. Cracks allow fast penetration of chlorides, potentially leading to a shorter initiation period of reinforcement corrosion. Structural regulations control acceptable crack width values based on the exposure class of the

  16. Concurrent determination of nanocrystal shape and amorphous phases in complex materials by diffraction scattering computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Birkbak, Mie Elholm; Nielsen, Ida Gjerlevsen; Frølich, Simon; Stock, Stuart R.; Kenesei, Peter; Almer, Jonathan D.; Birkedal, Henrik


    Advanced functional materials often contain multiple phases which are (nano)crystalline and/or amorphous. The spatial distribution of these phases and their properties, including nanocrystallite size and shape, often drives material function yet is difficult to obtain with current experimental techniques. This article describes the use of diffraction scattering computed tomography, which maps wide-angle scattering information onto sample space, to address this challenge. The wide-angle scattering signal contains information on both (nano)crystalline and amorphous phases. Rietveld refinement of reconstructed diffraction patterns is employed to determine anisotropic nanocrystal shapes. The background signal from refinements is used to identify contributing amorphous phases through multivariate curve resolution. Thus it is demonstrated that reciprocal space analysis in combination with diffraction scattering computed tomography is a very powerful tool for the complete analysis of complex multiphase materials such as energy devices.

  17. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography. (United States)

    He, Jianfeng; Wang, Jiabin; Hu, Jun; Sun, Jielin; Czajkowsky, Daniel Mark; Shao, Zhifeng


    Aerolysin is the paradigmatic member of a large family of toxins that convert from a water-soluble monomer/dimer into a membrane-spanning oligomeric pore. While there is x-ray crystallographic data of its water-soluble conformation, the most recent structural model of the membrane-inserted pore is based primarily on data of water-soluble tetradecamers of mutant protein, together with computational modeling ultimately performed in vacuum. Here we examine this pore model with atomic force microscopy (AFM) of membrane-associated wild-type complexes and all-atom molecular dynamics (MD) simulations in water. In striking contrast to a disc-shaped cap region predicted by the present model, the AFM images reveal a star-shaped complex, with a central ring surrounded by seven radial projections. Further, the MD simulations suggest that the locations of the receptor-binding (D1) domains in the present model are not correct. However, a modified model in which the D1 domains, rather than localized at fixed positions, adopt a wide range of configurations through fluctuations of an intervening linker is compatible with existing data. Thus our work not only demonstrates the importance of directly resolving such complexes in their native environment but also points to a dynamic receptor binding region, which may be critical for toxin assembly on the cell surface. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre


    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based...... for propagation and the angle of intersection of the crack front with the free edge....

  19. Comparative Study on Prediction Effects of Short Fatigue Crack Propagation Rate by Two Different Calculation Methods (United States)

    Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao


    To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.

  20. Epistasis and natural selection shape the mutational architecture of complex traits. (United States)

    Jones, Adam G; Bürger, Reinhard; Arnold, Stevan J


    The evolutionary trajectories of complex traits are constrained by levels of genetic variation as well as genetic correlations among traits. As the ultimate source of all genetic variation is mutation, the distribution of mutations entering populations profoundly affects standing variation and genetic correlations. Here we use an individual-based simulation model to investigate how natural selection and gene interactions (that is, epistasis) shape the evolution of mutational processes affecting complex traits. We find that the presence of epistasis allows natural selection to mould the distribution of mutations, such that mutational effects align with the selection surface. Consequently, novel mutations tend to be more compatible with the current forces of selection acting on the population. These results suggest that in many cases mutational effects should be seen as an outcome of natural selection rather than as an unbiased source of genetic variation that is independent of other evolutionary processes.

  1. Anisotropic Cracking of Nanocrystal Superlattices. (United States)

    Diroll, Benjamin T; Ma, Xuedan; Wu, Yaoting; Murray, Christopher B


    The synthesis colloidal nanocrystals in nonpolar organic solvents has led to exceptional size- and shape-control, enabling the formation of nanocrystal superlattices isostructural to atomic lattices built with nanocrystals rather than atoms. The long aliphatic ligands (e.g., oleic acid) used to achieve this control separate nanocrystals too far in the solid state for most charge-transporting devices. Solid-state ligand exchange, which brings particles closer together and enhances conductivity, necessitates large changes in the total volume of the solid (compressive stress), which leads to film cracking. In this work, truncate octahedral lead selenide nanocrystals are shown to self-assemble into body-centered cubic superlattices in which the atomic axes of the individual nanocrystals are coaligned with the crystal axes of the superlattice. Due to this coalignment, upon ligand exchange of the superlattices, cracking is preferentially observed on ⟨011⟩ superlattice directions. This observation is related to differences in the ligand binding to exposed {100} and {111} planes of the PbSe nanocrystal surfaces. This result has implications for binary and more complex structures in which differential reactivity of the constituent elements can lead to disruption of the desired structure. In addition, cracks in PbSe superlattices occur in a semiregular spacings inversely related to the superlattice domain size and strongly influenced by the presence of twin boundaries, which serve as both emission centers and propagation barriers for fractures. This work shows that defects, similar to behavior in nanotwinned metals, could be used to engineer enhanced mechanical strength and electrical conductivity in nanocrystal superlattices.

  2. 3D printing of composite tissue with complex shape applied to ear regeneration. (United States)

    Lee, Jung-Seob; Hong, Jung Min; Jung, Jin Woo; Shim, Jin-Hyung; Oh, Jeong-Hoon; Cho, Dong-Woo


    In the ear reconstruction field, tissue engineering enabling the regeneration of the ear's own tissue has been considered to be a promising technology. However, the ear is known to be difficult to regenerate using traditional methods due to its complex shape and composition. In this study, we used three-dimensional (3D) printing technology including a sacrificial layer process to regenerate both the auricular cartilage and fat tissue. The main part was printed with poly-caprolactone (PCL) and cell-laden hydrogel. At the same time, poly-ethylene-glycol (PEG) was also deposited as a sacrificial layer to support the main structure. After complete fabrication, PEG can be easily removed in aqueous solutions, and the procedure for removing PEG has no effect on the cell viability. For fabricating composite tissue, chondrocytes and adipocytes differentiated from adipose-derived stromal cells were encapsulated in hydrogel to dispense into the cartilage and fat regions, respectively, of ear-shaped structures. Finally, we fabricated the composite structure for feasibility testing, satisfying expectations for both the geometry and anatomy of the native ear. We also carried out in vitro assays for evaluating the chondrogenesis and adipogenesis of the cell-printed structure. As a result, the possibility of ear regeneration using 3D printing technology which allowed tissue formation from the separately printed chondrocytes and adipocytes was demonstrated.

  3. Ring-shaped Re(I) multinuclear complexes with unique photofunctional properties. (United States)

    Morimoto, Tatsuki; Nishiura, Chiaki; Tanaka, Marina; Rohacova, Jana; Nakagawa, Yuki; Funada, Yusuke; Koike, Kazuhide; Yamamoto, Youhei; Shishido, Sayaka; Kojima, Tatsuhiro; Saeki, Takuro; Ozeki, Tomoji; Ishitani, Osamu


    We synthesized for the first time a series of emissive ring-shaped Re(I) complexes (Re-rings) with various numbers of Re(I) units and various lengths of bridge ligands. The photophysical properties of the Re-rings could be varied widely through changes in the size of the central cavity. A smaller central cavity of the Re-rings induced intramolecular π-π interactions between the ligands and consequently caused a stronger emission and a longer lifetime of the excited state. The Re-rings can function as efficient and durable photosensitizers. The combination of a trinuclear Re-ring photosensitizer with fac-[Re(bpy)(CO)3(MeCN)](+) (bpy = 2,2'-bipyridine) as a catalyst photocatalyzed CO2 reduction with the highest quantum yield of 82%.

  4. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Directory of Open Access Journals (Sweden)

    Katarina Monkova


    Full Text Available The paper deals with the process of 3D digitization as a tool for increasing production efficiency of complex shaped parts. Utilizes the concept of reverse engineering and new the model of NC program generation STEP-NC, for the of templates production for winding the stator coil of electromotors that is for electric household appliances. The manual production of prototype was substituted by manufacturing with NC machines. A 3D scanner was used for data digitizing, CAD/CAM system Pro/Engineering was used for NC program generation, and 3D measuring equipment was used for verification of new produced parts. The company estimated that only due to the implementation of STEP NC standard into production process it was allowed to read the 3D geometry of the product without problems. It helps the workshop to shorten the time needed for part production by about 30%.

  5. Delamination monitoring in CFRP laminated plates under noisy conditions using complex-wavelet 2D curvature mode shapes (United States)

    Xu, Wei; Cao, Maosen; Li, Ximing; Radzieński, Maciej; Ostachowicz, Wiesław; Bai, Runbo


    Delamination monitoring in carbon fiber reinforced polymer (CFRP) laminated plates is crucial to ensure the integrity and safety of the structures that accommodate the plates. To identify delaminations in CFRP laminated plates, the two-dimensional (2D) curvature mode shape method is a prevailing method that features instant and simultaneous determination of the presence and location of the delamination. However, this method has two noticeable deficiencies in characterizing incipient small-sized delaminations, namely lack of damage sensitivity and inadequate noise robustness. To this end, this study proposes a new dynamics feature of the complex-wavelet 2D curvature mode shape to discriminate small-sized delaminations. This feature is delicately formulated based on the integration of the 2D curvature mode shape with the complex wavelet. The complex-wavelet 2D curvature mode shape is superior to the 2D curvature mode shape by virtue of its stronger damage sensitivity and noise robustness. These merits can be attributed to the adjustable localization and the multi-scale properties of the second-order Gabor wavelet, respectively. Proof of concept of the complex-wavelet 2D curvature mode shape is numerically undertaken in a finite-element laminated CFRP plate with a small-sized delamination, with emphasis on sensitivity to damage and robustness against noise. The applicability of the feature is experimentally validated on a CFRP laminated plate with a small-sized delamination, whose mode shapes are acquired via the non-contact measurement using a scanning laser vibrometer. The numerical and experimental results show that the complex-wavelet 2D curvature mode shape can effectively designate the presence and location of the delaminations in CFRP laminated plates under noisy conditions.

  6. Influence of crystallite size and shape of zeolite ZSM-22 on its activity and selectivity in the catalytic cracking of n-octane

    Energy Technology Data Exchange (ETDEWEB)

    Bager, F.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology


    Light olefins belong to the major building blocks for the petrochemical industry, particularly for the production of polymers. It has become necessary to increase the production of light olefins specifically in the case for propene with so called 'on-purpose propene' technologies. One possible route is to increase the amount of propene that can be obtained from Fluid Catalytic Cracking (FCC) by optimizing the catalyst through introducing new additives, which offer a high selectivity to propene. Zeolite ZSM-22 samples with different crystallite sizes and morphologies have been synthesized via hydrothermal syntheses and characterized by powder X-Ray diffraction, nitrogen physisorption, atomic absorption spectroscopy, scanning electron microscopy and solid-state NMR spectroscopy. The zeolites in the Broensted-acid form have been tested as catalysts in the catalytic cracking of n-octane as a model hydrocarbon. Clear influences of the crystallite size on the deactivation behavior have been observed. Larger crystals of zeolite ZSM-22 produce an increased amount of coke deposits resulting in a faster deactivation of the catalyst. The experimental results suggest that there is probably some influence of pore diffusion on the catalytic activity of the ZSM-22 sample with the large crystallite size. However a noticeable influence on the general product distribution could not be observed. (orig.)

  7. Safety of endovascular treatment of intracranial aneurysms with a new, complex shaped Guglielmi detachable coil

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, Christian A. [University Hospital Lille, Department of Neuroradiology, Hopital Roger Salengro, Lille (France); Hopital Roger Salengro, C.H.R.U., Lille, Service de Neuroradiologie, Lille Cedex (France); Leclerc, Xavier; Gauvrit, Jean-Yves; Kerkeni, Anis; El-Mahdy, Mohamed; Pruvo, Jean-Pierre [University Hospital Lille, Department of Neuroradiology, Hopital Roger Salengro, Lille (France); Lejeune, Jean-Paul [University Hospital Lille, Department of Neurosurgery, Hopital Roger Salengro, Lille (France)


    The Guglielmi detachable coil (GDC) 360 , a new complex shaped bare platinum coil, became available in Europe for aneurysm treatment in September 2005. The purpose of this study was to assess the feasibility and safety of selective embolization of intracranial aneurysms with the GDC 360 in 52 consecutive patients. All patients included in this study were registered in a prospectively maintained database. We assessed the patient clinical history, aneurysm shape and dimensions, technical details and complications of the procedures, degree of aneurysm occlusion, and clinical findings upon discharge. In all patients, the first coil deployed was a GDC 360 . Over a 6-month period, we intended to treat 52 aneurysms with the GDC 360 in 52 patients. Of these 52 patients, 42 (81%) were treated in the context of subarachnoid haemorrhage. In 51 of 52 patients, the underlying aneurysm was successfully treated by coil embolization. Six procedures (11.5%) were complicated by the formation of thrombus in the parent artery during the intervention. One patient suffered a stroke related to the procedure. Angiograms obtained immediately after the procedure showed complete occlusion of the aneurysmal sac in 38 of 51 procedures (74.5%), a neck remnant in 11 (21.6%), and a residual aneurysm in 2 (3.9%). In 43 of 51 patients (84.3%), clinical assessment demonstrated independent clinical status, whereas 7 patients (13.7%) required assistance in the activities of daily living upon hospital discharge. One patient (2.0%) died after development of a severe vasospasm 10 days after the endovascular procedure. The GDC 360 can be safely used for the endovascular occlusion of intracranial aneurysms. (orig.)

  8. Dancing your moves away: How memory retrieval shapes complex motor action. (United States)

    Tempel, Tobias; Loran, Igor; Frings, Christian


    Human memory is subject to continuous change. Besides the accumulation of contents as a consequence of encoding new information, the accessing of memory influences later accessibility. The authors investigated how retrieval-related memory-shaping processes affect intentionally acquired complex motion patterns. Dance figures served as the material to be learned. The authors found that selectively retrieving a subset of dance moves facilitated later recall of the retrieved dance figures, whereas figures that were related to these but that did not receive selective practice suffered from forgetting. These opposing effects were shown in experiments with different designs involving either the learning of only 1 set of body movements or 2 sets of movements categorized into 2 dances. A 3rd experiment showed that selective restudy also entailed a recall benefit for restudied dance figures but did not induce forgetting for related nonrestudied dance figures. The results suggest that motor programs representing the motion patterns in a format closely corresponding to parameters of movement execution were affected. The reported experiments demonstrate how retrieval determines motor memory plasticity and emphasize the importance of separating restudy and retrieval practice when teaching people new movements. (c) 2015 APA, all rights reserved).

  9. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Olya Grove

    Full Text Available Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity and intratumor density variation (feature 2: entropy ratio in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47 of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92. Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04 in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8. In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma.

  10. Investigation about crack propagation paths in thin rim gears

    Directory of Open Access Journals (Sweden)

    F. Curà


    Full Text Available Crack propagation in gears is a problem related not only to the life of the components, but also to the concept of failsafe design. Fail safe design means to design a component in order that, if a failure occurs, this may cause a “safe failure”. This aspect is very important above all in aerospace industry. As a matter of fact, in aerospace application, the need of reducing weight brings to produce gears with very thick rim and web. Considering thin rim gears, when a crack is nucleated near the tooth root, it may propagate through the tooth (causing the loss of the entire tooth or a portion of it or the propagation may follow a path across the wheel diameter (causing the projection of big parts of the gear that may break the gearbox and may cause serious damage to the aircraft. The first failure mode is define as “failsafe failure” and the second one as “catastrophic failure” and of course has to be avoided. Designers need to have robust design criteria in order to predict crack propagation paths and to avoid catastrophic failures. In literature, few works are present concerning this topic, in particular related to the effect of geometrical parameters that may affect the crack propagation. In this work a numerical analysis about crack propagation in gears with respect to the backup ratio (ratio between tooth height and rim thickness, initial crack position and shape has been done by means of the Extended FEM (XFEM technique, realizing 3D models. XFEM 3D is a relatively new technique consisting in enriching traditional finite elements with more complex shape functions; in this way it is possible to propagate crack also between mesh nodes and to have mesh independent results. Aim of this paper is to highlight the crack propagation path in order to give to designers an high confident design criterion, related to the gear geometry. In particular, the effect of both rim thickness and orientation of the initial crack have been considered

  11. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox. (United States)

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M


    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.

  12. On the use of marker loads and replicas for measuring growth rates for small cracks (United States)

    Swain, M. H.; Newman, J. C., Jr.


    The initiation and growth of small cracks (5-500 microns) from edge notches in 2024-T3 aluminum alloy sheets were studied under constant-amplitude loading. Two methods were used to measure crack shape and size. In the first method, striation marker bands were periodically formed along the crack front by interrupting the constant-amplitude loading by either an elevated R-ratio load sequence, or by an overload sequence. In each case the marker loading was selected so as to have minimal influence on the growth rate under the primary loading. In the second method, the surface crack length was monitored by taking surface replicas at regular intervals. The marker band techniques did not provide reliable crack length and crack shape information for cracks smaller than 2 mm. The replica technique provided accurate information for surface crack length at all crack lengths, and fracture tests on specimens with small cracks provided crack-shape information.

  13. Costs of storing colour and complex shape in visual working memory: Insights from pupil size and slow waves. (United States)

    Kursawe, Michael A; Zimmer, Hubert D


    We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang


    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  15. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri


    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  16. Extreme climatic phenomena and their impact in the shaping the current relief in the Bucegi-Leaota mountain complex

    Directory of Open Access Journals (Sweden)

    Ovidiu MURĂRESCU


    Full Text Available The shaping of the current relief represents an important direction of study concerning the mountain areas, as these areas are some of the most dynamic relief units in Romania. A series of major relief changes are related to the spatial-temporal evolution and variability of the meteorological parameters that generate the climate features. A special impact in the shaping of the current high mountain areas is generated by the extreme climate phenomena (freezing, extreme precipitations, strong winds, the action of the snow, heat waves and cold waves, generated by the dynamics of the atmospheric circulation. The mountain complex Leaota-Bucegi is characterized, from this perspective, by a great variability of the climate parameters, and at present it includes three major tiers of relief that are being shaped: periglacial, fluvio-torrential and transitional.

  17. Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Khaji, N. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mehrjoo, M. [Islamic Azad University, Tehran (Iran, Islamic Republic of)


    In this paper, a crack detection approach is presented for detecting depth and location of cracks in beam-like structures. For this purpose, a new beam element with an arbitrary number of embedded transverse edge cracks, in arbitrary positions of beam element with any depth, is derived. The components of the stiffness matrix for the cracked element are computed using the conjugate beam concept and Betti's theorem, and finally represented in closed-form expressions. The proposed beam element is efficiently employed for solving forward problem (i.e., to gain precise natural frequencies and mode shapes of the beam knowing the cracks' characteristics). To validate the proposed element, results obtained by new element are compared with two-dimensional (2D) finite element results and available experimental measurements. Moreover, by knowing the natural frequencies and mode shapes, an inverse problem is established in which the location and depth of cracks are determined. In the inverse approach, an optimization problem based on the new finite element and genetic algorithms (GAs) is solved to search the solution. It is shown that the present algorithm is able to identify various crack configurations in a cracked beam. The proposed approach is verified through a cracked beam containing various cracks with different depths.

  18. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). (United States)

    Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L


    Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, John T.


    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model

  20. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre


    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...... for the calculation of fracture mechanical properties has been validated with threedimensional models for varying crack front shapes. A custom quantitative approach was formulated based on the finite element method with iterative adjustment of the crack front to estimate the critical delaminatio stress as a function...

  1. Influence of the complex-shape light signal on the neural network (United States)

    Melnikov, Leonid A.; Novosselova, Anna V.; Blinova, Nadejda V.


    The effect of external signals of different shapes (constant, serrated and others) on the ring neural network modeling the visual perception is investigated numerically. New specific features in the dynamics of the neural network, such as the excitation, the swapping and the depression, were observed. The cooperative amplication of the external signal and the memory effect have been observed.

  2. On the use of marker loads and replicas for measuring growth rates for small cracks (United States)

    Swain, M. H.; Newman, J. C., Jr.


    The initiation and growth of small cracks (5-500 microns m) from edge notches in 2024-T3 aluminum alloy sheets were studied under constant amplitude loading. Two methods were used to measure crack shape and size. In the first method, striation marker bands were periodically formed along the crack front by interrupting the constant amplitude loading by either an elevated R-ratio load sequence, or by an overload sequence. In the second method, the surface crack length was monitored by taking surface replicas at regular intervals. The marker band techniques did not provide reliable crack length and crack shape information for cracks smaller than 2 mm. The replica technique provided accurate information for surface crack length at all crack lengths, and fracture tests on specimens with small cracks provided crack-shape information. Crack growth rates were plotted against the stress intensity factor ranges. The results exhibited the small crack effect, in that the small cracks grew faster than large cracks at the same stress-intensity factor range. A crack closure model was also used to analyze the growth of small cracks from small (inclusion) defects at the notch surface.

  3. Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking (United States)

    Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.


    This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.

  4. [Desiccation cracking of soil body: a review]. (United States)

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming


    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  5. A Low-Complexity Method for Two-Dimensional Direction-of-Arrival Estimation Using an L-Shaped Array

    Directory of Open Access Journals (Sweden)

    Qing Wang


    Full Text Available In this paper, a new low-complexity method for two-dimensional (2D direction-of-arrival (DOA estimation is proposed. Based on a cross-correlation matrix formed from the L-shaped array, the proposed algorithm obtains the automatic pairing elevation and azimuth angles without eigendecomposition, which can avoid high computational cost. In addition, the cross-correlation matrix eliminates the effect of noise, which can achieve better DOA performance. Then, the theoretical error of the algorithm is analyzed and the Cramer–Rao bound (CRB for the direction of arrival estimation is derived . Simulation results demonstrate that, at low signal-to-noise ratios (SNRs and with a small number of snapshots, in contrast to Tayem’s algorithm and Kikuchi’s algorithm, the proposed algorithm achieves better DOA performance with lower complexity, while, for Gu’s algorithm, the proposed algorithm has slightly inferior DOA performance but with significantly lower complexity.

  6. A Low-Complexity Method for Two-Dimensional Direction-of-Arrival Estimation Using an L-Shaped Array. (United States)

    Wang, Qing; Yang, Hang; Chen, Hua; Dong, Yangyang; Wang, Laihua


    In this paper, a new low-complexity method for two-dimensional (2D) direction-of-arrival (DOA) estimation is proposed. Based on a cross-correlation matrix formed from the L-shaped array, the proposed algorithm obtains the automatic pairing elevation and azimuth angles without eigendecomposition, which can avoid high computational cost. In addition, the cross-correlation matrix eliminates the effect of noise, which can achieve better DOA performance. Then, the theoretical error of the algorithm is analyzed and the Cramer-Rao bound (CRB) for the direction of arrival estimation is derived . Simulation results demonstrate that, at low signal-to-noise ratios (SNRs) and with a small number of snapshots, in contrast to Tayem's algorithm and Kikuchi's algorithm, the proposed algorithm achieves better DOA performance with lower complexity, while, for Gu's algorithm, the proposed algorithm has slightly inferior DOA performance but with significantly lower complexity.

  7. The Impact of Complexity on Shaping Logistics Strategies in Global Supply Chains

    Directory of Open Access Journals (Sweden)

    Agnieszka Szmelter


    Full Text Available Aim/purpose - The paper aims to summarize approaches to complexity management by implementing particular logistics concepts within logistics strategies in global supply chains and to highlight a research gap in this regard. Additionally, complexity management concepts are presented. Design/methodology/approach - To achieve the research objective, a systematic literature review was used. 11 research paper were analyzed with use of review protocol. Findings - Approaches to mentioned research problem are heterogeneous in current literature and there is a research gap in complexity studies in logistics, precluding further research, for example, on complexity measurement systems. Research implications/limitations - Identified research gap will require further studies. Studied area requires more empirical research, especially in the field of complexity measurement and management techniques in particular global supply chains. Originality/value/contribution - The paper summarizes current knowledge about logistics concepts helping to manage complexity in global supply chains and defines research gaps. There are no available literature summary of that kind. The article contains a full review of logistics complexity management concepts presented in scientific literature until the end of 2016.

  8. Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. (United States)

    Aouar, Leila; Chebli, Youssef; Geitmann, Anja


    Cellulose is the principal component of the load-bearing system in primary plant cell walls. The great resistance to tensile forces of this polysaccharide and its embedding in matrix components make the cell wall a material similar to a fiber composite. In the rapidly growing pollen tube, the amount of cellulose in the cell wall is untypically low. Therefore, we want to investigate whether the load-bearing function of cellulose is nevertheless important for the architecture of this cell. Enzymatic digestion with cellulase and inhibition of cellulose crystal formation with CGA (1-cyclohexyl-5-(2,3,4,5,6-pentafluorophenoxy)-1lambda4,2,4,6-thiatriazin-3-amine) resulted in the formation of tubes with increased diameter in Solanum chacoense and Lilium orientalis when present during germination. In pre-germinated tubes, application of both agents resulted in the transient arrest of growth accompanied by the formation of an apical swelling indicating a role in the mechanical stabilization of this cellular region. Once growth resumed in the presence of cellulase, however, the cell wall in the newly formed tube showed increased amounts of pectins, possibly to compensate for the reduced amount of cellulose. Scanning electron microscopy of pollen tubes subjected to digestion of matrix polysaccharides revealed the mechanical anisotropy of the cell wall. In both Lilium and Solanum, the angle of highest stability revealed by crack formation was significantly below 45 degrees , an indication that in the mature part of the cell cellulose may not the main stress-bearing component against turgor pressure induced tensile stress in circumferential direction.

  9. A Complex Story: Universal Preference vs. Individual Differences Shaping Aesthetic Response to Fractals Patterns

    Directory of Open Access Journals (Sweden)

    Nichola eStreet


    Full Text Available Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011 suggests that the fractal patterns with mid-range fractal dimensions have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011 and curvilinear (Berlyne, 1970 relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This 2-study paper aims to test preference responses to fractal dimension and visual complexity, using a large cohort (N=443 of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between fractal dimension and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images and the second a mid-range fractal dimension model (likelihood of selecting an image within mid-range. Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This paper supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying


    Directory of Open Access Journals (Sweden)

    A. V. Gorevoy


    Full Text Available The problem of non-contact surface defect area measurement at complex-shape objects under videoendoscopic control is considered. Major factors contributing to the measurement uncertainty are analyzed for the first time. The proposed method of accuracy analysis is based on the evaluation of 3D coordinates of surface points from 2D projections under assumption of projective camera model and Mahalanobis distance minimization in the image plane. Expressions for area measurement error caused by sum-of-triangles approximation are obtained analytically for practically important cases of cylindrical and spherical surfaces. It is shown that the magnitude of this error component for a single triangle does not exceed 1% for the real values of parameters of the endoscopic imaging system. Expressions are derived for area measurement uncertainty evaluation on arbitrary shape surfaces, caused by measurement errors of 3D coordinates of individual points with and without a priori information about surface shape. Verification of the obtained expressions with real experiment data showed that area measurement error for a complex figure, given by a set of points, is mainly caused by ignoring the fact that these points belong to the surface. It is proved that the use of a priori information about investigated surface shape, which is often available from the design documentation, in many cases would radically improve the accuracy of surface defects area measurement. The presented results are valid for stereoscopic, shadow and phase methods of video endoscopic measurements and can be effectively used in development of new non-contact measuring endoscopic systems and modernization of existing ones.

  11. Wet-chemical preparation of copper foam monoliths with tunable densities and complex macroscopic shapes. (United States)

    Kränzlin, Niklaus; Niederberger, Markus


    Macroscopic monoliths of copper foams have been prepared by a template-assisted wet-chemical process. The method offers subtle control over the pore size and size distribution, density and macroscopic size and shape of the metal foam. Uniaxial compression tests revealed different deformation behavior depending on the relative density. Non-vacuum-based and low-temperature routes are attractive for the cost-effective production of metal foams. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multivariate high-dimensional cortical folding analysis, combining complexity and shape, in neonates with congenital heart disease. (United States)

    Awate, Suyash P; Yushkevich, Paul; Song, Zhuang; Licht, Daniel; Gee, James C


    The paper presents a novel statistical framework for cortical folding pattern analysis that relies on a rich multivariate descriptor of folding patterns in a region of interest (ROI). The ROI-based approach avoids problems faced by spatial-normalization-based approaches stemming from the severe deficiency of homologous features between typical human cerebral cortices. Unlike typical ROI-based methods that summarize folding complexity or shape by a single number, the proposed descriptor unifies complexity and shape of the surface in a high-dimensional space. In this way, the proposed framework couples the reliability of ROI-based analysis with the richness of the novel cortical folding pattern descriptor. Furthermore, the descriptor can easily incorporate additional variables, e.g. cortical thickness. The paper proposes a novel application of a nonparametric permutation-based approach for statistical hypothesis testing for any multivariate high-dimensional descriptor. While the proposed framework has a rigorous theoretical underpinning, it is straightforward to implement. The framework is validated via simulated and clinical data. The paper is the first to quantitatively evaluate cortical folding in neonates with complex congenital heart disease.


    Directory of Open Access Journals (Sweden)

    Estelle Parra-Denis


    Full Text Available The studied material is a 5xxx aluminium alloys containing 2 types of intermetallic particles : Alx(Fe;Mn and Mg2Si. It is usually used in car industry as reinforcement pieces or in packaging industry, such as bottle liquid box lid. Scanning electronic microscope coupled with EDX analysis shows complex shapes of intermetallic particles. The particle shape is obtained during the solidification of alloys. Particles fill vacant spaces between aluminium grains. Therefore final sheet properties depend on intermetallic particles shapes and notably on the matrix-particle interface properties. The goal of the present study is to classify intermetallic particles versus their shapes using local curvature information. The aluminium alloys sample is observed by X ray micro tomography performed at the ESRF. Three dimensional images are segmented, and intermetallic particles are identified in a data base. Each particle is stored as a set of voxels. The surface of each particle is meshed by a marching cubes triangular meshing with the software Amira©. A simplification of the surface is performed by an algorithm contracting the edges. Finally, principal curvatures: kmin and kmax are estimated by Amira© on each facet centre of the mesh. From the full intermetallic population, the bivariate distribution of kmin and kmax is estimated. The obtained graph kmin ¡kmax shows geometrical properties of interface portions of the surface of particles. A factorial correspondence analysis is performed to summarize the information on all intermetallic particles. In the obtained subspace, particles are classified into five shape families, in relation with their interface geometrical properties.

  14. Computation of scattering matrix elements of large and complex shaped absorbing particles with multilevel fast multipole algorithm (United States)

    Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang


    Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.

  15. Characterization of Novel Gel Casting System to Make Complex Shaped Aluminum Oxide (Al2O3) Parts (United States)


    been successfully cast into silicone candy molds , as shown in Fig. 9. Fig. 9 Complex-shaped cast green body using the ISOBAM gelling system and...of bulk ceramic parts including both dense 6,8–11,17 and porous16 alumina, porous silicon nitride,2,13 both porous12 and dense5 mullite, dense AlN...allowed to mix for 30 min before casting into a lubricated, polyurethane (PU) mold . The mold was Approved for public release; distribution is

  16. Hybridization of phase retrieval and off-axis digital holography for high resolution imaging of complex shape objects (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie


    In this paper, a hybrid method of phase retrieval and off-axis digital holography is proposed for imaging of the complex shape objects. Off-axis digital hologram and in-line hologram are recorded. The approximate phase distributions in the recording plane and object plane are obtained by constrained optimization approach from the off-axis hologram, and they are used as the initial value and the constraints in the phase retrieval for eliminating the twin image of in-line holography. Numerical simulations and optical experiments were carried out to validate the proposed method.

  17. Biogenic Cracks in Porous Rock (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.


    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  18. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's (United States)

    Morscher, Gregory N.


    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  19. Hetero-metallic trigonal cage-shaped dimeric Ni 3 K core complex of ...

    Indian Academy of Sciences (India)

    ... of the reducing agent hydrogen peroxide involving hydroxyl radical (°OH) species. As evidenced from the control experiment, DNA cleavage in the presence of °OH radical was inhibited by quenchers, viz. DMSO and KI. The complex showed in vitro antimicrobial activity against four bacteria and two fungi and the activity is ...

  20. Researchers and stakeholders shape advances in management of tree and vine trunk-disease complexes (United States)

    The grapevine trunk-disease complex limits grape production and vineyard longevity worldwide. Every vineyard in California eventually is infected by one or more trunk diseases. The causal fungi, which are taxonomically unrelated Ascomycetes, infect and then degrade the permanent woody structure of t...

  1. Hetero-metallic trigonal cage-shaped dimeric Ni3K core complex of ...

    Indian Academy of Sciences (India)

    ence of the reducing agent hydrogen peroxide involving hydroxyl radical (. ◦. OH) species. As evidenced from the control experiment, DNA cleavage in the presence of. ◦. OH radical was inhibited by quenchers, viz. DMSO and KI. The complex showed in vitro antimicrobial activity against four bacteria and two fungi and the ...

  2. Variations in task constraints shape emergent performance outcomes and complexity levels in balancing. (United States)

    Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J


    This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance.

  3. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes

    DEFF Research Database (Denmark)

    Kraft, Dirk; Pugeault, Nicolas; Baseski, Emre


    by the robot. This also leads to the concept of an "object" as a set of features that change predictably over different frames. The system is equipped with a certain degree of generic prior knowledge about the world in terms of a sophisticated visual feature extraction process in an early cognitive vision...... system, knowledge about its own embodiment as well as knowledge about geometric relationships such as rigid body motion. This prior knowledge allows the extraction of representations that are semantically richer compared to many other approaches.......We describe a process in which the segmentation of objects as well as the extraction of the object shape becomes realized through active exploration of a robot vision system. In the exploration process, two behavioral modules that link robot actions to the visual and haptic perception of objects...

  4. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang


    A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  5. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  6. Ring-Shaped Phosphinoamido-Magnesium-Hydride Complexes: Syntheses, Structures, Reactivity, and Catalysis. (United States)

    Fohlmeister, Lea; Stasch, Andreas


    A series of magnesium(II) complexes bearing the sterically demanding phosphinoamide ligand, L(-) =Ph2 PNDip(-) , Dip=2,6-diisopropylphenyl, including heteroleptic magnesium alkyl and hydride complexes are described. The ligand geometry enforces various novel ring and cluster geometries for the heteroleptic compounds. We have studied the stoichiometric reactivity of [(LMgH)4 ] towards unsaturated substrates, and investigated catalytic hydroborations and hydrosilylations of ketones and pyridines. We found that hydroborations of two ketones with pinacolborane using various Mg precatalysts is very rapid at room temperature with very low catalyst loadings, and ketone hydrosilylation using phenylsilane is rapid at 70 °C. Our studies point to an insertion/σ-bond metathesis catalytic cycle of an in situ formed "MgH2 " active species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Visual learning shapes the processing of complex movement stimuli in the human brain. (United States)

    Jastorff, Jan; Kourtzi, Zoe; Giese, Martin A


    Recognition of actions and complex movements is fundamental for social interactions and action understanding. While the relationship between motor expertise and visual recognition of body movements has received a vast amount of interest, the role of visual learning remains largely unexplored. Combining psychophysics and functional magnetic resonance imaging (fMRI) experiments, we investigated neural correlates of visual learning of complex movements. Subjects were trained to visually discriminate between very similar complex movement stimuli generated by motion morphing that were either compatible (experiments 1 and 2) or incompatible (experiment 3) with human movement execution. Employing an fMRI adaptation paradigm as index of discriminability, we scanned human subjects before and after discrimination training. The results of experiment 1 revealed three different effects as a consequence of training: (1) Emerging fMRI-selective adaptation in general motion-related areas (hMT/V5+, KO/V3b) for the differences between human-like movements. (2) Enhanced of fMRI-selective adaptation already present before training in biological motion-related areas (pSTS, FBA). (3) Changes covarying with task difficulty in frontal areas. Moreover, the observed activity changes were specific to the trained movement patterns (experiment 2). The results of experiment 3, testing artificial movement stimuli, were strikingly similar to the results obtained for human movements. General and biological motion-related areas showed movement-specific changes in fMRI-selective adaptation for the differences between the stimuli after training. These results support the existence of a powerful visual machinery for the learning of complex motion patterns that is independent of motor execution. We thus propose a key role of visual learning in action recognition.

  8. A 3D potential field model of the Pilanesberg Complex shape and structure

    CSIR Research Space (South Africa)

    Lee, SA


    Full Text Available for Mining Innovation 3. Geological Survey of Norway (NGU) ABSTRACT INTRODUCTION The Pilanesberg Complex, with a diameter of 28 km, is the world’s largest alkaline intrusion (Figure 1). The intrusion is located on the Kaapvaal Craton within... the Mesoproterozoic era during an intraplate extension event. The Pilanesberg pyroclastic and lava flow sequences resulted in an inward dipping structure around a preserved central core and plug (Olivo and Williams-Jones, 1999; Michell and Liferovich, 2006...

  9. Shaping the midwifery profession in Nepal - Uncovering actors' connections using a Complex Adaptive Systems framework. (United States)

    Bogren, Malin Upper; Berg, Marie; Edgren, Lars; van Teijlingen, Edwin; Wigert, Helena


    To explore how actors connect in a system aiming at promoting the establishment of a midwifery profession in Nepal. A qualitative explorative study based on the framework of Complex Adaptive Systems. Semi-structured interviews were conducted with 17 key people representing eight different organisations (actors) promoting the development of the midwifery profession. The actors' connections can be described with a complex set of facilitators for and barriers to promoting the establishment of a midwifery profession. The identified facilitators for this establishment in Nepal are (1) a common goal and (2) a desire to collaborate, whilst the barriers are (1) different political interests and priorities, (2) competing interests of the nursing profession and societal views, (3) divergent academic opinions on a midwifery profession, and (4) insufficient communication. The results also showed that Nepalese society cannot distinguish between nursing and midwifery and that the public support for a midwifery profession was hence minimal. The move of midwifery from an occupation to a profession in Nepal is an on-going, challenging process. The study indicates the importance of understanding the motivations of, and barriers perceived by, actors that can promote or obstruct the establishment of the midwifery profession. It also points to the importance of informing the wider public about the role and responsibility of an autonomous midwifery profession. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cocaine (Coke, Crack) Facts (United States)

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." © Marjot Stacey is ...

  11. Crack sealer fill characteristics. (United States)


    Laboratory testing was conducted to determine the extent of crack fill for crack sealers composed of methyl methacrylate, : epoxy, urethane, and high molecular weight methacrylate. The test specimens consisted of eight-inch long concrete : cylinders ...

  12. Simulation of Interfacial Corner Cracks in Bimaterial Systems

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre


    . In the semiconductor and microelectronics industry, characterizing interconnect reliability is through either component or system-level accelerated tests. A phenomenological model focused on modeling the shape of such interface cracks and calculating the critical stress for steady-state propagation has been developed....... The crack propagation is investigated by estimating the fracture mechanics parameters that include the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the crack front. A numerical approach is then applied for coupling the far field solutions utilizing...... the capability of the Finite Element Method to the near field (crack tip) solutions based on the J-integral. The developed two-dimensional numerical approach for the calculation of fracture mechanical properties has been validated with three-dimensional models for varying crack front shapes. In this study...

  13. Crack Width Analysis of Steel Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Darius Ulbinas


    Full Text Available The article investigates the effectiveness of steel fiber reinforcement in RC concrete members in regard to ordinary reinforcement. The advantages and disadvantages of different shapes of steel fibers are discussed. The algorithm for calculating crack width based on EC2 and Rilem methodologies is presented. A comparison of theoretical and experimental crack widths has been performed. The relative errors of crack width predictions at different load levels were defined.Article in Lithuanian

  14. Producing Zirconium Diboride Components with Complex, Near-Net Shape Geometries by Aqueous Room-Temperature Injection Molding (United States)

    Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney


    Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.

  15. Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior. (United States)

    Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal


    The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.

  16. Eliminating cracking during drying. (United States)

    Jin, Qiu; Tan, Peng; Schofield, Andrew B; Xu, Lei


    When colloidal suspensions dry, stresses build up and cracks often occur -a phenomenon undesirable for important industries such as paint and ceramics. We demonstrate an effective method which can completely eliminate cracking during drying: by adding emulsion droplets into colloidal suspensions, we can systematically decrease the amount of cracking, and eliminate it completely above a critical droplet concentration. Since the emulsion droplets eventually also evaporate, our technique achieves an effective function while making little changes to the component of final product, and may therefore serve as a promising approach for cracking elimination. Furthermore, adding droplets also varies the speed of air invasion and provides a powerful method to adjust drying rate. With the effective control over cracking and drying rate, our study may find important applications in many drying- and cracking-related industrial processes.

  17. Improved extended digital image correlation for crack tip deformation measurement (United States)

    Chen, Jinlong; Zhan, Nan; Zhang, Xiaochuan; Wang, Jixiao


    The objective is to find an appropriate shape function which can enhance the performance of Extended Digital Image Correlation (X-DIC). This paper presents an improved X-DIC methodology to measure the discontinuous deformation across the crack. After simplifying the shape function of crack tip element based on the linear elastic fracture mechanics, non-rectangular subset is proposed to eliminate the effect of the crack width on the measurement accuracy. Then, the work verifies the performance of improved X-DIC by measuring the deformation of a specimen with a mode I crack. Experimental results show that the proposed method is effective at improving the measurement accuracy and enhancing the computational efficiency of X-DIC. In the end, the thesis provides a practical application of improved X-DIC to crack tip deformation measurement.

  18. Thermal drying of wastewater sludge with crack formation. (United States)

    Chen, J B; Peng, X F; Tao, T; Lee, D J


    We examined in this work the drying characteristics of wastewater sludge. The drying flux of the constant-rate period for sludge cake could be up to 40% higher than that from a sand bed. Owing to the considerable volume shrinkage of cake, cracks would form and develop on the crack surface, which yielded three-dimensional but rather than the one-dimensional cake structure assumed in conventional drying theories. The crack length was fully developed in the first 30 min of drying, while the width of crack increased linearly with time. Using these data the drying flux from the cracks was estimated. Enhanced drying flux was noticeable which depended on the crack shape and the crossflow velocity.

  19. Dosimetric impact assessment using a general algorithm in geant4 simulations for a complex-shaped multileaf collimator. (United States)

    Perales, Á; Cortés-Giraldo, M A; Miras, H; Arráns, R; Gallardo, M I


    We have developed an inhouse algorithm for the multileaf collimator (MLC) geometry model construction with an appropriate accuracy for dosimetric tests. Our purpose is to build a complex type of MLC and analyze the influence of the modeling parameters on the dose calculation. Using radiochromic films as detector the following tests were done: (I) Density test field: to compare measured and calculated dose distributions in order to determine the tungsten alloy physical density value. (II) Leaf ends test field: to verify the penumbra shape sensitivity against the discretization level set to simulate the curved leaf ends. (III) MLC-closed field: to obtain the value of the air gap between opposite leaves for a closed configuration which completes the modeling of the MLC leakage radiation. (IV) Picket-fence field: to fit the leaf tilt angle with respect of the divergent ray emerging from the source. For a 18.5g/cm(3) density value we have obtained a maximum, minimum and mean leakage values of 0.43%, 0.36% and 0.38%, similar to the experimental ones. The best discretization level in the leaf ends field shows a 5.51mm FWHM, very close to the measured value (5.49mm). An air gap of 370μm has been used in the simulation for the separation between opposite leaves. Using a 0.44° tilt angle, we found the same pattern as the experimental values. Our code can reproduce complex MLC designs with a submilimetric dosimetric accuracy which implies the necessary background for dose calculation of high clinical interest small fields. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Nondestructive testing of objects of complex shape using infrared thermography: Determination of the spatiotemporal distribution of the irradiation heat flux (United States)

    Djupkep Dizeu, F. B.; Bendada, A.; Laurendeau, D.


    The existing inverse methods used to determine the heat flux density require that the forward problem and the problem domain (geometry) be known. In this paper, in order to determine the spatiotemporal heat flux density without knowing the real problem domain, we propose an approach based on temporal tracking of the thermal front. The proposed approach is particularly relevant when a three-dimensional formulation is adopted for nondestructive testing using infrared thermography. For such a formulation, heat flux density resulting from the external thermal stimulus is needed and must be determined to accurately characterize the defects and reconstruct the internal geometry of the inspected objects. The proposed approach uses only two inputs: the time-dependent temperature of the frontal surface recorded by an infrared camera and the 3D point cloud of the frontal surface collected by a 3D scanner. The method is evaluated numerically on an object of complex shape. We consider the case of pulsed thermal stimulus as well as the cases of unit step and modulated thermal stimuli. An experimental validation is performed on a cylindrical object submitted to a pulsed thermal stimulus and a modulated thermal stimulus. The results show the accuracy of the method which can easily be implemented as the initial step of the three-dimensional quantitative nondestructive testing of objects using infrared thermography.

  1. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist


    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  2. Crack and Kids. (United States)

    Besharov, Douglas J.


    Reviews problems of crack-addicted babies. Suggests the following areas for grant support: (1) results of fetal exposure; (2) medical treatment and foster care for newborns; (3) research on behavioral changes resulting from crack use; (4) public awareness materials; (5) education for addicted mothers who keep their babies; and (6) removing babies…

  3. Updating a cracked database

    NARCIS (Netherlands)

    S. Idreos (Stratos); M.L. Kersten (Martin); S. Manegold (Stefan)


    textabstractA cracked database is a datastore continuously reorganized based on operations being executed. For each query, the data of interest is physically reclustered to speed-up future access to the same, overlapping or even disjoint data. This way, a cracking DBMS self-organizes and adapts

  4. Crack tip strain evolution and crack closure during overload of a growing fatigue crack

    Directory of Open Access Journals (Sweden)

    De-Qiang Wang


    Full Text Available It is generally accepted that fatigue crack growth is retarded after an overload, which has been explained either by plasticity-induced crack closure or near-tip residual stress. However, any interpretation of overload effect is insufficient if strain evolution in front of crack tip is not properly considered. The current understanding of overload-induced retardation lacks the clarification of the relationship between crack closure at crack wake and strain evolution at crack tip. In this work, a material with low work hardening coefficient was used to study the effect of overload on crack tip strain evolution and crack closure by in-situ SEM observation and digital image correlation technique. Crack opening displacement (COD and crack tip strain were measured before and after the overload. It was observed that the evolution of crack tip strain follows the crack opening behaviour behind the crack tip, indicating a smaller influence of overload on micro-mechanical behaviour of fatigue crack growth. After the overload, plastic strain accumulation was responsible for crack growth. The strain at a certain distance to crack tip was mapped, and it was found that the crack tip plastic zone size correlated well with crack growth rate during post-overload fatigue crack propagation.

  5. Aerodynamic Shape Optimization Using the Discrete Adjoint of the Navier-Stokes Equations : Applications towards Complex 3D Configurations

    NARCIS (Netherlands)

    Brezillon, J.; Dwight, R.P.


    Within the next few years, numerical shape optimization based on high fidelity methods is likely to play a strategic role in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimization problems, and the adjoint approach - which allows fast

  6. Bell-shaped and ultrasensitive dose-response in phosphorylation-dephosphorylation cycles: the role of kinase-phosphatase complex formation

    Directory of Open Access Journals (Sweden)

    Szomolay Barbara


    Full Text Available Abstract Background Phosphorylation-dephosphorylation cycles (PDCs mediated by kinases and phosphatases are common in cellular signalling. Kinetic modelling of PDCs has shown that these systems can exhibit a variety of input-output (dose-response behaviors including graded response, ultrasensitivity and bistability. In addition to proteins, there are a class of lipids known as phosphoinositides (PIs that can be phosphorylated. Experimental studies have revealed the formation of an antagonistic kinase-phosphatase complex in regulation of phosphorylation of PIs. However, the functional significance of this type of complex formation is not clear. Results We first revisit the basic PDC and show that partial asymptotic phosphorylation of substrate limits ultrasensitivity. Also, substrate levels are changed one can obtain non-monotonic bell-shaped dose-response curves over a narrow range of parameters. Then we extend the PDC to include kinase-phosphatase complex formation. We report the possibility of robust bell-shaped dose-response for a specific class of the model with complex formation. Also, we show that complex formation can produce ultrasensitivity outside the Goldbeter-Koshland zero-order ultrasensitivity regime through a mechanism similar to competitive inhibition between an enzyme and its inhibitor. Conclusions We conclude that the novel PDC module studied here exhibits new dose-response behaviour. In particular, we show that the bell-shaped response could result in transient phosphorylation of substrate. We discuss the relevance of this result in the context of experimental observations on PI regulation in endosomal trafficking.


    Directory of Open Access Journals (Sweden)



    Full Text Available Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC. The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

  8. The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth (United States)


    Vorst, L. A., Giessler, F. J., Moritz , T., “Stress Analysis Manual”, AFFDL-TR-69-42, Air Force Flight Dynamics Laboratory, August 1969 251. Bruhn, E...Newman, J. C., “An Improved Method of Collocation for the Stress Analysis of Cracked Plates With Various Shaped Boundaries”, NASA TN D-6376, August

  9. Fatigue crack propagation and cyclic deformation at a crack tip (United States)

    Kang, T. S.; Liu, H. W.


    The fatigue crack propagation relation da/dN = f(R) Delta K squared can be derived with three assumptions: small-scale yielding, material homogeneity, and that crack tip stresses and strains are not strongly affected by plate thickness. The function f(R) is a constant at a given stress ratio, R. The effects of plate thickness and stress ratio on crack tip deformation and fatigue crack growth in 2024-T351 aluminum alloy were studied. High Delta K level in a thin specimen causes crack tip necking. Necking is more pronounced at high stress ratio. Necking causes high maximum strain near a crack tip and fast crack growth rate.

  10. Reconstruction of semielliptical and epicyclic cracks by eddy-current inversion (United States)

    Sabbagh, Harold A.; Sabbagh, Elias H.; Kim Murphy, R.


    We describe the application of VIC-3D©, a proprietary volume-integral code, to the inversion of benchmark eddy-current data, and the reconstruction of semielliptical and epicyclic cracks. These are modeled as relatively thin surface-breaking slots, whose depth into the workpiece is described by either a semiellipse, or a linear combination of semiellipses. The latter curves, called epicyclic, have a rather complex, double-peaked shape, and are well suited to model a crack with multiple initiation sites. VIC-3Dis used to provide model data for the probe-flaw interaction, which are then fitted to the measured data. The process is quite efficient, and provides accurate reconstructions.

  11. Shape similarity of charge-transfer (CT) excitation energy curves in a series of donor-acceptor complexes and its description with a transferable energy of CT orbital (United States)

    Gritsenko, O. V.


    A simple nature of charge-transfer (CT) in the prototype complexes Dp -F2 (Dp =NH3 , H2O) manifests itself in a very close shape of their CT excitation energy curves ωCT (R) along the donor-acceptor separation R. It affords a simple orbital description in terms of the CT orbitals (CTOs) obtained with a transformation of the virtual orbitals of the standard local density approximation (LDA). The transferable energy of the relevant CTO as a function of R closely approximates the common shape of ωCT (R) , while the height of the individual curve is determined with the ionization potential of Dp .

  12. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology. (United States)

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing


    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  13. Life and death of a single catalytic cracking particle

    NARCIS (Netherlands)

    Meirer, Florian; Kalirai, Samanbir; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C; Weckhuysen, Bert M

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for

  14. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  15. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces (United States)

    Seghir, Rian; Arscott, Steve


    Exploiting pattern formation – such as that observed in nature – in the context of micro/nanotechnology could have great benefits if coupled with the traditional top-down lithographic approach. Here, we demonstrate an original and simple method to produce unique, localized and controllable self-organised patterns on elastomeric films. A thin, brittle silica-like crust is formed on the surface of polydimethylsiloxane (PDMS) using oxygen plasma. This crust is subsequently cracked via the deposition of a thin metal film – having residual tensile stress. The density of the mud-crack patterns depends on the plasma dose and on the metal thickness. The mud-crack patterning can be controlled depending on the thickness and shape of the metallization – ultimately leading to regularly spaced cracks and/or metal mesa structures. Such patterning of the cracks indicates a level of self-organization in the structuring and layout of the features – arrived at simply by imposing metallization boundaries in proximity to each other, separated by a distance of the order of the critical dimension of the pattern size apparent in the large surface mud-crack patterns. PMID:26437880

  16. SSRI Facilitated Crack Dancing. (United States)

    Doobay, Ravi; Sun, Lili; Shah, Amish; Masuta, Pardeep; Shepherd, Zachary


    Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as "crack dancing." It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI) for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never "crack danced" before this episode. The authors have conducted a thorough literature review and cited studies that suggest "crack dancing" is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with "crack dancing." The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for "crack dancing." There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the "crack dance."

  17. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay


    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  18. Phenomena and mechanisms of crack propagation in glass-ceramics. (United States)

    Apel, E; Deubener, J; Bernard, A; Höland, M; Müller, R; Kappert, H; Rheinberger, V; Höland, W


    Lithium disilicate, leucite and apatite glass-ceramics have become state-of-the-art framework materials in the fabrication of all-ceramic dental restorative materials. The goal of this study was to examine the crack propagation behaviour of these three known glass-ceramic materials after they have been subjected to Vickers indentation and to characterize their crack opening profiles (delta(meas) vs. (a-r)). For this purpose, various methods of optical examination were employed. Optical microscopy investigations were performed to examine the crack phenomena at a macroscopic level, while high-resolution techniques, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to investigate the crack phenomena at a microscopic level. The crack patterns of the three glass-ceramics vary from fairly straightforward to more complex, depending on the amount of residual glass matrix present in the material. The high-strength lithium disilicate crystals feature a high degree of crosslinking, thereby preventing crack propagation. In this material, the crack propagates only through the residual glass phase, which constitutes 30%-40% by volume. Having a high glass content of more than 65% by volume, the leucite and apatite glass-ceramics show far more complex crack patterns. Cracks in the leucite glass-ceramic propagate through both the glass and crystal phase. The apatite glass-ceramic shows a similar crack behaviour as an inorganic-organic composite material containing nanoscale fillers, which are pulled out in the surroundings of the crack tip. The observed crack behaviour and the calculated K(tip) values of the three types of glass-ceramics were compared to the K(IC) values determined according to the SEVNB method.

  19. Short-Crack Growth Behaviour in an Aluminum Alloy: An AGARD Cooperative Test Programme (United States)

    Newman, J. C., Jr.; Edwards, P. R.


    An AGARD test program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories and to evaluate an existing analytical model to predict the growth of such cracks. The first phase of this program, the Core Program was aimed at test procedure and specimen standardization and calibration of the various laboratories. A detailed working document has been prepared and is included in this report. It describes the testing fundamentals and procedures and includes the analysis procedures used for handling the test data. The results from the test program showed good agreement among the participants on short-crack growth rates, on fatigue life to various crack sizes and breakthrough (surface- or corner-crack became a through crack), and on crack shapes.

  20. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.


    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  1. Helical crack-front instability in mixed-mode fracture. (United States)

    Pons, Antonio J; Karma, Alain


    Planar crack propagation under pure tension loading (mode I) is generally stable. However, it becomes universally unstable with the superposition of a shear stress parallel to the crack front (mode III). Under this mixed-mode (I + III) loading configuration, an initially flat parent crack segments into an array of daughter cracks that rotate towards a direction of maximum tensile stress. This segmentation produces stepped fracture surfaces with characteristic 'lance-shaped' markings observed in a wide range of engineering and geological materials. The origin of this instability remains poorly understood and a theory with which to predict the surface roughness scale is lacking. Here we perform large-scale simulations of mixed-mode I + III brittle fracture using a continuum phase-field method that describes the complete three-dimensional crack-front evolution. The simulations reveal that planar crack propagation is linearly unstable against helical deformations of the crack front, which evolve nonlinearly into a segmented array of finger-shaped daughter cracks. Furthermore, during their evolution, facets gradually coarsen owing to the growth competition of daughter cracks in striking analogy with the coarsening of finger patterns observed in nonequilibrium growth phenomena. We show that the dynamically preferred unstable wavelength is governed by the balance of the destabilizing effect of far-field stresses and the stabilizing effect of cohesive forces on the process zone scale, and we derive a theoretical estimate for this scale using a new propagation law for curved cracks in three dimensions. The rotation angles of coarsened facets are also compared to theoretical predictions and available experimental data.

  2. Acute unstable complex radial head and neck fractures fixed with a mini T-shaped plate in a 20-year-old man: a case report

    Directory of Open Access Journals (Sweden)

    Yu W


    Full Text Available Weiguang Yu,1,* Jun Hu,1,* Xinchao Zhang,2 Xingfei Zhu,2 Yinfeng Xu,1 Jianhua Yi,1 Yunjiang Liu1 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 2Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Acute unstable complex radial head and neck fractures in adults are seldom reported in the literature. Early recognition and appropriate management are essential to prevent long-term consequences of the loss of elbow function, forearm rotation, and chronic pain. Here, we describe an unusual case of a 20-year-old man who exhibited acute unstable complex fractures of the head and neck of the right radius without other injuries or comorbidity. An open reduction and mini T-shaped plate fixation were performed within 3 hours after injury, and the results were satisfactory. A long plaster fixation was continued for 3 weeks. A gradual mobilization was started after the removal of the plaster under the supervision of a physiotherapist. At the 12-month follow-up, no complications associated with the use of the mini T-shaped plate were noted, and the Mayo Elbow Performance Score was 97 (excellent. To our knowledge, acute unstable complex radial head and neck fractures in adults can be successfully treated with a mini T-shaped plate reconstruction technique. Keywords: unstable complex fractures, mini T-shaped plate, radial head, internal fixation, radial head replacement

  3. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.


    Full Text Available For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr. After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking, a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

  4. The shape of dementia: new measures of morphological complexity in event-related potentials (ERP) and its application to the detection of Alzheimer's disease. (United States)

    Jimenez-Rodríguez, A; Rodríguez-Sotelo, J L; Osorio-Forero, A; Medina, J M; de Mejía, F Restrepo


    In this paper, we address the problem of quantifying the commonly observed disorganization of the stereotyped wave form of the ERP associated with the P300 component in patients with Alzheimer's disease. To that extent, we propose two new measures of complexity which relate the spectral content of the signal with its temporal waveform: the spectral matching coefficient and the spectral matching entropy. We show by means of experiments that those measures effectively measure complexity and are related to the shape in an intuitive way. Those indexes are compared with commonly used measures of complexity when comparing AD patients against age-matched healthy controls. The results indicate that AD ERP signals are, indeed, more complex in the shape than that of controls, and this result is evidenced mainly by means of our new measures which have a better performance compared to similar ones. Finally, we try to explain this increase in complexity in light of the communication through coherence hypothesis framework, relating commonly found changes in the EEG with our own results.

  5. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki


    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  6. Morphometric analysis of polygonal cracking patterns in desiccated starch slurries. (United States)

    Akiba, Yuri; Magome, Jun; Kobayashi, Hiroshi; Shima, Hiroyuki


    We investigate the geometry of two-dimensional polygonal cracking that forms on the air-exposed surface of dried starch slurries. Two different kinds of starches, made from potato and corn, exhibited distinguished crack evolution, and there were contrasting effects of slurry thickness on the probability distribution of the polygonal cell area. The experimental findings are believed to result from the difference in the shape and size of starch grains, which strongly influence the capillary transport of water and tensile stress field that drives the polygonal cracking.

  7. Evolution of crack paths and compliance in round bars under cyclic tension and bending

    Directory of Open Access Journals (Sweden)

    J. Toribio


    Full Text Available The aim of this paper is to calculate how the surface crack front and the dimensionless compliance evolve in cracked cylindrical bars subjected to cyclic tension or bending with different initial crack geometries (crack depths and aspect ratios. To this end, a computer application (in the Java programming language that calculates the crack front’s geometric evolution and the dimensionless compliance was made by discretizing the crack front (characterized with elliptical shape and assuming that every point advances perpendicularly to the crack front according to the Paris law, and using a three-parameter stress intensity factor (SIF. The results show that in fatigue crack propagation, relative crack depth influences more on dimensionless compliance than the aspect ratio, because the crack front tends to converge when the crack propagates from different initial geometries, showing greater values for tension than for bending. Furthermore, during fatigue crack growth, materials with higher values of the exponent of the Paris law produce slightly greater dimensionless compliance and a better convergence between the results for straight-fronted and circular initial cracks.

  8. Numerical investigation on stress corrosion cracking behavior of dissimilar weld joints in pressurized water reactor plants

    Directory of Open Access Journals (Sweden)

    Lingyan Zhao


    Full Text Available There have been incidents recently where stress corrosion cracking (SCC observed in the dissimilar metal weld (DMW joints connecting the reactor pressure vessel (RPV nozzle with the hot leg pipe. Due to the complex microstructure and mechanical heterogeneity in the weld region, dissimilar metal weld joints are more susceptible to SCC than the bulk steels in the simulated high temperature water environment of pressurized water reactor (PWR. Tensile residual stress (RS, in addition to operating loads, has a great contribution to SCC crack growth. Limited experimental conditions, varied influence factors and diverging experimental data make it difficult to accurately predict the SCC behavior of DMW joints with complex geometry, material configuration, operating loads and crack shape. Based on the film slip/dissolution oxidation model and elastic-plastic finite element method (EPFEM, an approach is developed to quantitatively predict the SCC growth rate of a RPV outlet nozzle DMW joint. Moreover, this approach is expected to be a pre-analytical tool for SCC experiment of DMW joints in PWR primary water environment.

  9. Brief communication: Contributions of enamel-dentine junction shape and enamel deposition to primate molar crown complexity. (United States)

    Skinner, Matthew M; Evans, Alistair; Smith, Tanya; Jernvall, Jukka; Tafforeau, Paul; Kupczik, Kornelius; Olejniczak, Anthony J; Rosas, Antonio; Radovcić, Jakov; Thackeray, J Francis; Toussaint, Michel; Hublin, Jean-Jacques


    Molar crown morphology varies among primates from relatively simple in some taxa to more complex in others, with such variability having both functional and taxonomic significance. In addition to the primary cusps, crown surface complexity derives from the presence of crests, cuspules, and crenulations. Developmentally, this complexity results from the deposition of an enamel cap over a basement membrane (the morphology of which is preserved as the enamel-dentine junction, or EDJ, in fully formed teeth). However, the relative contribution of the enamel cap and the EDJ to molar crown complexity is poorly characterized. In this study we examine the complexity of the EDJ and enamel surface of a broad sample of primate (including fossil hominin) lower molars through the application of micro-computed tomography and dental topographic analysis. Surface complexity of the EDJ and outer enamel surface (OES) is quantified by first mapping, and then summing, the total number of discrete surface orientation patches. We investigate the relative contribution of the EDJ and enamel cap to crown complexity by assessing the correlation in patch counts between the EDJ and OES within taxa and within individual teeth. We identify three patterns of EDJ/OES complexity which demonstrate that both crown patterning early in development and the subsequent deposition of the enamel cap contribute to overall crown complexity in primates.

  10. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen


    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  11. Effects of pre-cracks on both initiation and propagation of re-bar corrosion in pure carbon dioxide


    L’Hostis Valérie; Hiep Dang Vu; François Raoul


    This paper deals with effects of pre-cracks on both initiation and propagation of reinforcement steel corrosion due to carbonation. The ring shaped mortar samples with 8 mm steel bar inside were cracked with different crack widths ranging from 12 micrometers to 600 micrometers and then subjected to carbon dioxide environment for different terms to assess the carbonation profile in cracks and along the interface between steel and concrete, damaged by the internal pressure applied to the ring s...

  12. Development of under-cut shape sprocket forming by CNC press; CNC press ni yoru jidosha engine yo sprocket no under cut seikei

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, T.; Fujiki, A.; Saito, M.; Umegaki, S. [Nissan Motor Co. Ltd., Tokyo (Japan); Katagiri, T. [Yoshizuka Seiki Co. Ltd., Kawasaki (Japan)


    In standard P/M (Press-Sinter) technique, it is difficult to make under-cut shape parts. In this development, under-cut shape sprocket of whole circumference is made by CNC press and new designed die and tools. This paper describes the details of this development. 1) Features of CNC press and new designed die and tools for under-cut shape compacting. 2) How to eliminate cracks and barm of this under-cut shape parts. 3) How to achieve the even density of this complex parts. 4) How to keep the dimensional tolerance of this parts. (author)

  13. Vibration of Cracked Circular Plates at Resonance Frequencies (United States)



    It is well known that the presence of cracks will affect the dynamic characteristics of the vibrating plate. Such a problem is complicated because it combines the field of vibration analysis and fracture mechanics. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate the vibration characteristics of a free circular plate with a radial crack emanating from the edge. The boundary conditions along the circular edge are free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Numerical finite element calculations are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. The vibrating mode shapes obtained in this study can be classified into two types, symmetric and antisymmetric modes with respect to the crack line. The influence of crack length on resonant frequencies is also investigated in terms of the dimensionless frequency parameter (λ2) versus crack length ratio (a/D). We find that if the crack face displacement is out of phase, i.e., the antisymmetric type, a large value of stress intensity factor may be induced and the cracked circular plate will be dangerous, from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, i.e., the symmetric type, which yields a zero stress intensity factor and the cracked plate will be safe.

  14. Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Punit, E-mail: [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Pukazhendhi, D.M.; Gandhi, P.; Raghava, G. [Structural Engineering Research Centre, Chennai 600 113 (India)


    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of the austenitic stainless steel pipes/pipes welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K{sub RMS}) at deepest and surface points. Crack growth and the crack shape with loading cycles have been evaluated. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K{sub RMS}) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. Fatigue crack growth in pipe weld (Gas Tungsten Arc Welding) can be predicted well using Paris constants of base material but prediction is non-conservative for pipe weld (Shielded Metal Arc Welding). Further, predictions using fatigue crack growth rate curve of ASME produces conservative results for pipe and GTAW pipe welds and comparable results for SMAW pipe welds. - Highlights: > Predicting fatigue crack growth of Austenitic Stainless Steel pipes and pipe welds. > Use of RMS-SIF and

  15. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F


    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  16. An empirical stress-intensity factor equation for the surface crack (United States)

    Newman, J. C., Jr.; Raju, I. S.


    This paper presents an empirical stress-intensity factor equation for a surface crack as a function of parametric angle, crack depth, crack length, plate thickness and plate width for tension and bending loads. The stress-intensity factors used to develop the equation were obtained from a previous three-dimensional, finite-element analysis of semielliptical surface cracks in finite elastic plates subjected to tension or bending loads. A wide range of configuration parameters was included in the equation. The ratios of crack length to plate thickness and the ratios of crack depth to crack length ranged from 0 to 1.0. The effects of plate width on stress-intensity variations along the crack front were also included. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. The equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  17. Cracking the Credit Hour (United States)

    Laitinen, Amy


    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit…

  18. Cracking the Codes (United States)

    Heathcote, Dorothy


    Prescribes an attitude that teachers can take to help students "crack the code" of a dramatic work, combining a flexible teaching strategy, the suspension of beliefs or preconceived notions about the work, focusing on the drams's text, and choosing a reading strategy appropriate to the dramatic work. (RL)

  19. Topological defects govern crack front motion and facet formation on broken surfaces (United States)

    Kolvin, Itamar; Cohen, Gil; Fineberg, Jay


    Cracks develop intricate patterns on the surfaces that they create. As faceted fracture surfaces are commonly formed by slow tensile cracks in both crystalline and amorphous materials, facet formation and structure cannot reflect microscopic order. Although fracture mechanics predict that slow crack fronts should be straight and form mirror-like surfaces, facet-forming fronts propagate simultaneously within different planes separated by steps. Here we show that these steps are topological defects of crack fronts and that crack front separation into disconnected overlapping segments provides the condition for step stability. Real-time imaging of propagating crack fronts combined with surface measurements shows that crack dynamics are governed by localized steps that drift at a constant angle to the local front propagation direction while their increased dissipation couples to long-ranged elasticity to determine front shapes. We study how three-dimensional topology couples to two-dimensional fracture dynamics to provide a fundamental picture of how patterned surfaces are generated.

  20. Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. (United States)

    Briefer, Elodie; Osiejuk, Tomasz S; Rybak, Fanny; Aubin, Thierry


    In songbirds, song complexity and song sharing are features of prime importance for territorial defence and mate attraction. These aspects of song may be strongly influenced by changes in social environment caused by habitat fragmentation. We tested the hypothesis that habitat fragmentation induced by human activities influences song complexity and song sharing in the skylark, a songbird with a very large repertoire and whose population recently underwent a large decline. We applied powerful mathematical and statistical tools to assess and compare song complexity and song sharing patterns of syllables and sequences of syllables in two populations: a declining population in a fragmented habitat, in which breeding areas are separated from each other by unsuitable surroundings, and a stable population in a continuous habitat. Our results show that the structure of the habitat influences song sharing, but not song complexity. Neighbouring birds shared more syllables and sequences of syllables in the fragmented habitat than in the continuous one. Habitat fragmentation seems thus to have an effect on the composition of elements in songs, but not on the number and complexity of these elements, which may be a fixed feature of song peculiar to skylarks.

  1. Dynamic interaction of cracks in piezoelectric and anisotropic solids: A non-hypersingular BIEM approach

    Directory of Open Access Journals (Sweden)

    Dineva Petia


    Full Text Available A non-hypersingular traction boundary integral equation method (BIEM is proposed for the treatment of crack systems in piezoelectric or anisotropic plane domains loaded by time-harmonic waves. The solution is based on the frequency dependent fundamental solution obtained by Radon transform. The proposed method is flexible, numerically efficient and has virtually no limitations regarding the material type, crack geometry and type of wave loading. The accuracy and convergence of the BIEM solution for stress intensity factors is validated by comparison with existing results from the literature. Simulations for different crack configurations such as coplanar collinear or cracks in arbitrary position to each other are presented and discussed. They demonstrate among others the strong effect of electromechanical coupling, show the frequency dependent shielding and amplification resulting from crack interaction and reveal the sensitivity of the K-factors on the complex influence of both wave-crack and crack-crack interaction.

  2. Application of Small Crack Growth Law to Different Types of Loading


    皮籠石, 紀雄; 王, 習術; 西谷, 弘信; 後藤, 真宏; "田中, 秀穂


    Fatigue strength is influenced by type of loading and the shape of a cross section of the specimen. In this work, the effect of the loading type on the crack growth rate was investigated in cases of push-pull, rotating bending and plane bending loadings. The crack growth rates were almost uniquenly determined by the term ε^_pl for evaluating crack growth rates for three different types of loading was confirmed using three kinds of metals.

  3. Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth


    S. Lecheb; A. Nour; A. Chellil; H. Mechakra; N. Hamad; H. Kebir


    This study concerned the dynamic behavior of the wind turbine rotor. Before all we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue, also studied the rotor with longitudinal crack in order to determine stress, strain and displacement. Firstly we compared the first six modes shapes between cracking and uncracking of HAWT rotor. Secondly we show show evolution of first six natural frequencies with longitudinal crack propaga...

  4. Response function simulation of the anti-coincidence detector based on NaI crystal with a complex shape in registration systems for the experiments SAGE and BEST (United States)

    Kazalov, V. V.; Gavrin, V. N.; Gorbachev, V. V.; Gavriljuk, Yu M.; Ibragimova, T. V.; Kalikhov, A. V.; Shikhin, A. A.


    Response function simulation using Geant 4 for the detector based on NaI crystal of complex shape in registration systems for the SAGE and BEST experiments is presented. Cylindric NaI crystal has a large well for placing up to eight proportional counters. The detector is using as anti-coincidence shield for counters and an instrument for analysis of different γ-rays sources. The result of detector response function simulation for different background sources and their registration efficiency are given.


    Directory of Open Access Journals (Sweden)

    Jana Strnková


    Full Text Available The influence of cracks on the dynamical frequency response of eggshells was studied. The non-destructive impact tests of the intact and cracked eggs were performed. Record of impact force time history was enabled by experimental device. Response of eggshell to the impact was described by the surface displacement of the eggshell. This response was measured by the laser interferometry. The force and response were also expressed in the frequency domain using of the fast Fourier transform. Both time and frequency response were affected by the presence of cracks. It was shown that the influence of cracks on the eggshell response was more effectively described in the frequency domain. The frequency response was relatively very sensitive to the position and orientation of cracks. The frequency response function was characterized by many peaks. Five excitation resonant frequency characteristic of signals were extracted based on the difference of frequency domain response signals. Distinction between intact and cracked eggs was enabled by these parameters. Even if some main problems were solved some of them remained unsolved. One of them was the effect of the impacting body r shape. This problem could be effectively solved namely using of numerical methods. In order to describe the response of eggshell response to the non-destructive impact using of the numerical simulation exact description of eggshell shape was performed. This numerical simulation will be subject of forthcoming paper.

  6. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J.; Croce, Roberta; Morosinotto, Tomas


    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the

  7. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J.; Croce, Roberta; Morosinotto, Tomas

    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the

  8. DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. (United States)

    Hancock, Stephen P; Stella, Stefano; Cascio, Duilio; Johnson, Reid C


    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.

  9. Investigation on cracking mechanism of austenite stainless steel during in situ tension in transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng; Hu Hongyan; Liu Yuanyuan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang Yue [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Fang, Yuan [Advanced Technology Institute, Technology Center of Baoshan Iron and Steel company, Shanghai 201900 (China); Ren Xuejun [School of Engineering, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Liao Bo [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang Qingxiang, E-mail: [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)


    Research highlights: {yields} During the initial stage of loading process, at the crack tip, the dislocations slip from center to around zone and the density of dislocation is increased at local zone. With the increase of load, around center, an oval-shaped dislocation free zone (DFZ) forms. When the displacement keeps constant, the dislocations continue moving. The DFZ become thinner and the nano-cracks initiate gradually, then, propagate abruptly along the direction vertical to the tensile force. {yields} The cracks may propagate in continuous propagation way. The micro-cracks initiate ahead of the main crack firstly, then propagate, grow and connect with the main crack finally, which results in that the main crack propagates too. The initiation direction of micro-crack has a certain angle with the tensile force direction. However, the direction of the main crack propagation is always along the direction vertical to the tensile force. {yields} The cracks may propagate in discontinuous way too. The dislocations pile up inversely in front of the crack tip. The propagation process of crack is that the crack tip is blunt at first. Then, with the increase of load, the new crack tip forms in the blunt crack firstly, then propagates and is blunt again. So back and forth, the cracks propagate forward continuously. - Abstract: Twin-roll strip casting technology is a new one to produce austenite stainless steel strip directly. However, during this process, the cracking occurs usually on the surface of the steel strip. The technique of in situ tension in transmission electron microscope was used to observe and analyze the crack initiation and propagation in austenite stainless steel produced by twin-roll strip casting technology in this work. The results show that the crack initiates in dislocation free-zone firstly and then propagates along the direction vertical to the tensile force. The crack may propagate in continuous propagation way and discontinuous one respectively

  10. Reinforced Concrete Finite Element Modeling based on the Discrete Crack Approach

    Directory of Open Access Journals (Sweden)

    Sri Tudjono


    Full Text Available The behavior of reinforced concrete elements is complex due to the nature of the concrete that is weak in tension. Among these complex issues are the initial cracking and crack propagation of concrete, and the bond-slip phenomenon between the concrete and reinforcing steel. Laboratory tested specimens are not only costly, but are limited in number. Therefore a finite element analysis is favored in combination to experimental data. The finite element technique involving the cracks inserting is one of the approaches to study the behavior of reinforced concrete structures through numerical simulation. In finite element modeling, the cracks can be represented by either smeared or discrete crack. The discrete crack method has its potential to include strain discontinuity within the structure. A finite element model (FEM including the concrete cracking and the bond-slip was developed to simulate the nonlinear response of reinforced concrete structures.

  11. Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games


    Silva, Pedro; Vilar, Luís; Davids, Keith; Araújo, Duarte; Garganta, Júlio


    Small-sided and conditioned games (SSCGs) in sport have been modelled as complex adaptive systems. Research has shown that the relative space per player (RSP) formulated in SSCGs can impact on emergent tactical behaviours. In this study we adopted a systems orientation to analyse how different RSP values, obtained through manipulations of player numbers, influenced four measures of interpersonal coordination observed during performance in SSCGs. For this purpose we calculated positional data ...

  12. Quantitative study on crack of meso-damage and fracture concrete ...

    Indian Academy of Sciences (India)

    demonstrate that the quantitative analysis of the internal meso-crack of concrete can be taken as a ... realize the quantitative analysis of micro cracks of concrete material (Ammouche et al 2000). The whole CT images ..... Garboczi E J 2002 Three-dimensional mathematical analysis of particle shape using X-ray tomography.

  13. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. (United States)

    Alboresi, Alessandro; Le Quiniou, Clotilde; Yadav, Sathish K N; Scholz, Martin; Meneghesso, Andrea; Gerotto, Caterina; Simionato, Diana; Hippler, Michael; Boekema, Egbert J; Croce, Roberta; Morosinotto, Tomas


    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Creep and crack growth of zircon and mullite base materials

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMPPM


    The creep and crack propagation properties of mullite and zircon ceramics were compared. In the investigated temperature range, mullite presents a simple crack propagation of a unique macrocracks, although a change of mechanism is observed at 1200 C. The zircon material present a rather more complex crack propagation, with multicracking and branching, due to a significant crack healing. The creep behaviours also appeared as different for both materials. The mullite creep curves present only two stages, even when fracture occurs, while a tertiary regime is observed in the case of zircon. The results show that grain boundary sliding is the main deformation mechanism for the two different materials. In fact, they exhibit similar overall real behaviours with a different characteristic temperature. At low stress, the minimum creep rate can be considered as a stationary creep, but at a higher stress, generalised or localised damage interfere, leading to a higher apparent stationary creep exponent. Sub-critical crack growth and deformation act as parallel mechanisms for mullite, while the interaction is more complex in zircon where crack healing induce multi-cracking. (orig.) 9 refs.

  15. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena


    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  16. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites (United States)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.


    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  17. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi


    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  18. Detection of crack-like indications in digital radiography by global optimisation of a probabilistic estimation function

    Energy Technology Data Exchange (ETDEWEB)

    Alekseychuk, O.


    A new algorithm for detection of longitudinal crack-like indications in radiographic images is developed in this work. Conventional local detection techniques give unsatisfactory results for this task due to the low signal to noise ratio (SNR {proportional_to} 1) of crack-like indications in radiographic images. The usage of global features of crack-like indications provides the necessary noise resistance, but this is connected with prohibitive computational complexities of detection and difficulties in a formal description of the indication shape. Conventionally, the excessive computational complexity of the solution is reduced by usage of heuristics. The heuristics to be used, are selected on a trial and error basis, are problem dependent and do not guarantee the optimal solution. Not following this way is a distinctive feature of the algorithm developed here. Instead, a global characteristic of crack-like indication (the estimation function) is used, whose maximum in the space of all possible positions, lengths and shapes can be found exactly, i.e. without any heuristics. The proposed estimation function is defined as a sum of a posteriori information gains about hypothesis of indication presence in each point along the whole hypothetical indication. The gain in the information about hypothesis of indication presence results from the analysis of the underlying image in the local area. Such an estimation function is theoretically justified and exhibits a desirable behaviour on changing signals. The developed algorithm is implemented in the C++ programming language and tested on synthetic as well as on real images. It delivers good results (high correct detection rate by given false alarm rate) which are comparable to the performance of trained human inspectors.

  19. Looking around houses: attention to a model when drawing complex shapes in Williams syndrome and typical development. (United States)

    Hudson, Kerry D; Farran, Emily K


    Drawings by individuals with Williams syndrome (WS) typically lack cohesion. The popular hypothesis is that this is a result of excessive focus on local-level detail at the expense of global configuration. In this study, we explored a novel hypothesis that inadequate attention might underpin drawing in WS. WS and typically developing (TD) non-verbal ability matched groups copied and traced a house figure comprised of geometric shapes. The house was presented on a computer screen for 5-s periods and participants pressed a key to re-view the model. Frequency of key-presses indexed the looks to the model. The order that elements were replicated was recorded to assess hierarchisation of elements. If a lack of attention to the model explained poor drawing performance, we expected participants with WS to look less frequently to the model than TD children when copying. If a local-processing preference underpins drawing in WS, more local than global elements would be produced. Results supported the first, but not second hypothesis. The WS group looked to the model infrequently, but global, not local, parts were drawn first, scaffolding local-level details. Both groups adopted a similar order of drawing and tracing of parts, suggesting typical, although delayed strategy-use in the WS group. Additionally both groups drew larger elements of the model before smaller elements, suggested a size-bias when drawing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products (United States)

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren


    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  1. Measuring unintended effects in peacebuilding: What the field of international cooperation can learn from innovative approaches shaped by complex contexts. (United States)

    Lemon, Adrienne; Pinet, Mélanie


    Capturing unintended impacts has been a persistent struggle in all fields of international development, and the field of peacebuilding is no exception. However, because peacebuilding focuses on relationships in complex contexts, the field of peacebuilding has, by necessity, made efforts towards finding practical ways to reflect upon both the intended and unintended effects of this work. To explore what lessons can be learned from the peacebuilding field, this study examines the evaluations of Search for Common Ground, a peacebuilding organisation working in over 35 countries across the world. Analysis focuses on 96 evaluations completed between 2013 and 2016 in 24 countries across Africa, Asia, and the MENA regions that found unintended effects. Programmes focusing on women, youth, and radio were most effective at identifying and explaining unintended effects, likely because the project design guided broader lines of questioning from the beginning. The paper argues that OECD-DAC guidelines are not enough on their own to guide evaluators into exploration of unintended effects, and teams instead need to work together to decide where, when and how they will look for them. Different approaches were also used to capture positive and negative outcomes, suggesting that evaluators need to decide at what level they are evaluating and how to tie effects back to the project's contribution. This study explores evaluation techniques and approaches used to understand impact in complex contexts in the peacebuilding field, and draws on lessons learned for the benefit of other fields dealing with similar complexities in international development and cooperation among actors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games. (United States)

    Silva, Pedro; Vilar, Luís; Davids, Keith; Araújo, Duarte; Garganta, Júlio


    Small-sided and conditioned games (SSCGs) in sport have been modelled as complex adaptive systems. Research has shown that the relative space per player (RSP) formulated in SSCGs can impact on emergent tactical behaviours. In this study we adopted a systems orientation to analyse how different RSP values, obtained through manipulations of player numbers, influenced four measures of interpersonal coordination observed during performance in SSCGs. For this purpose we calculated positional data (GPS 15 Hz) from ten U-15 football players performing in three SSCGs varying in player numbers (3v3, 4v4 and 5v5). Key measures of SSCG system behaviours included values of (1) players' dispersion, (2) teams' separateness, (3) coupling strength and time delays between participants' emerging movements, respectively. Results showed that values of participants' dispersion increased, but the teams' separateness remained identical across treatments. Coupling strength and time delay also showed consistent values across SSCGs. These results exemplified how complex adaptive systems, like football teams, can harness inherent degeneracy to maintain similar team spatial-temporal relations with opponents through changes in inter-individual coordination modes (i.e., players' dispersion). The results imply that different team behaviours might emerge at different ratios of field dimension/player numbers. Therefore, sport pedagogists should carefully evaluate the effects of changing RSP in SSCGs as a way of promoting increased or decreased pressure on players.

  3. Mechanisms of dwell fatigue crack growth in an advanced nickel disc alloy RR1000

    Directory of Open Access Journals (Sweden)

    Yu S.Y.


    Full Text Available RR1000 is one of an advanced class of nickel-based superalloys developed for disc applications. Under one hour dwell fatigue loading, complex crack growth behaviour has been observed especially in a coarse grained version of this alloy. At a temperature of 700 ∘C in air an increase of nearly two orders of magnitude in crack growth rates compared to baseline fatigue crack growth rates may be seen. However for certain microstructural conditions, cracks can also demonstrate retardation following initial acceleration. When using a direct current potential difference (d.c.p.d technique for monitoring crack growth, a damage zone of a few hundred microns is often measured ahead of a fast growing crack. Advanced characterisation techniques including SEM, ECCI and X-ray tomography have been adopted in the current study to understand the observed damage zone and retardation phenomenon. It is found that damage zones measured by d.c.p.d reflect brittle and non-uniform advance of the crack resulting from continuous dynamic or quasi-dynamic fracture of an oxide intrusion ahead of the crack tip during the dwell period. In contrast, cracking of the oxide intrusion is less frequent or even prevented during dwell periods associated with a retarded and slow growing crack. Crack tip stress relaxation plays an important role in dictating whether or not dynamic cracking of the oxide intrusion can be avoided.

  4. Applying Bim to Built Heritage with Complex Shapes: the Ice House of Filarete's Ospedale Maggiore in Milan, Italy (United States)

    Oreni, D.; Karimi, G.; Barazzetti, L.


    This paper presents the development of a BIM model for a stratified historic structure characterized by a complex geometry: Filarete's Ospedale Maggiore ice house, one of the few remaining historic ice houses in Milan (Fig. 1). Filarete, a well-known Renaissance architect and theorist, planned the hospital in the 15th century, but the ice house was built two centuries later with a double-storey irregular octagonal brick structure, half under and half above ground, that enclosed another circular structure called the ice room. The purpose of the double-walled structure was to store ice in the middle and store and preserve perishable food and medicine at the outer side of the ice room. During World War II, major portions of the hospital and the above-ground section of the ice house was bombed and heavily damaged. Later, in 1962, the hospital was restored and rehabilitated into a university, with the plan to conceal the ice house's remaining structure in the courtyard, which ultimately was excavated and incorporated into a new library for the university. A team of engineers, architects, and students from Politecnico di Milano and Carleton University conducted two heritage recording surveys in 2015 and 2016 to fully document the existing condition of the ice house, resulting in an inclusive laser scanner and photogrammetric point cloud dataset. The point cloud data was consolidated and imported into two leading parametric modelling software, Autodesk Revitand Graphisoft ArchiCAD©, with the goal to develop two BIMs in parallel in order to study and compare the software BIM workflow, parametric capabilities, attributes to capture the complex geometry with high accuracy, and the duration for parametric modelling. The comparison study of the two software revealed their workflow limitations, leading to integration of the BIM generative process with other pure modelling software such as Rhinoceros©. The integrative BIM process led to the production of a comprehensive BIM


    Directory of Open Access Journals (Sweden)

    D. Oreni


    Full Text Available This paper presents the development of a BIM model for a stratified historic structure characterized by a complex geometry: Filarete’s Ospedale Maggiore ice house, one of the few remaining historic ice houses in Milan (Fig. 1. Filarete, a well-known Renaissance architect and theorist, planned the hospital in the 15th century, but the ice house was built two centuries later with a double-storey irregular octagonal brick structure, half under and half above ground, that enclosed another circular structure called the ice room. The purpose of the double-walled structure was to store ice in the middle and store and preserve perishable food and medicine at the outer side of the ice room. During World War II, major portions of the hospital and the above-ground section of the ice house was bombed and heavily damaged. Later, in 1962, the hospital was restored and rehabilitated into a university, with the plan to conceal the ice house’s remaining structure in the courtyard, which ultimately was excavated and incorporated into a new library for the university. A team of engineers, architects, and students from Politecnico di Milano and Carleton University conducted two heritage recording surveys in 2015 and 2016 to fully document the existing condition of the ice house, resulting in an inclusive laser scanner and photogrammetric point cloud dataset. The point cloud data was consolidated and imported into two leading parametric modelling software, Autodesk Revit© and Graphisoft ArchiCAD©, with the goal to develop two BIMs in parallel in order to study and compare the software BIM workflow, parametric capabilities, attributes to capture the complex geometry with high accuracy, and the duration for parametric modelling. The comparison study of the two software revealed their workflow limitations, leading to integration of the BIM generative process with other pure modelling software such as Rhinoceros©. The integrative BIM process led to the production

  6. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)


    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  7. The stressed cytoskeleton: How actin dynamics can shape stress-related consequences on synaptic plasticity and complex behavior. (United States)

    van der Kooij, Michael A; Masana, Mercè; Rust, Marco B; Müller, Marianne B


    Stress alters synaptic plasticity but the molecular and cellular mechanisms through which environmental stimuli modulate synaptic function remain to be elucidated. Actin filaments are the major structural component of synapses and their rearrangements by actin-binding proteins (ABPs) are critical for fine-tuning synaptic plasticity. Accumulating evidence suggests that some ABPs are specifically regulated by stress and stress-related effectors such as glucocorticoids and corticotropin releasing hormone. ABPs may thus be central in stress-induced perturbations at the level of synaptic plasticity, leading to impairments in behavioral domains including cognitive performance and social behavior. Identified stress-responsive ABPs include: tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1), ADF/cofilin, LIMK1, caldesmon and myosin VI. Here we discuss how stress may impact synaptic plasticity through specific effects on these ABPs and how these adaptations might modulate complex behavior, predisposing individuals at genetic risk for the development of mental dysfunctions. We argue that a precise understanding of the mechanisms underlying stress-associated changes in synaptic function could stimulate the development of innovative treatment strategies against stress-related mental disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Camera image processing for automated crack detection of pressed panel products (Conference Presentation) (United States)

    Moon, Hoyeon; Jung, Hwee Kwon; Lee, Changwon; Park, Gyuhae


    Crack detection on pressed panel during the press forming process is an important step to ensure the quality of panel products. Traditional crack detection technique has been generally performed by experienced human inspectors, which is subjective and expensive. Therefore, the implementation of automated and accurate crack detection is necessary during the press forming process. In this study, we performed an optimal camera positioning and automated crack detection using two image processing techniques with multi-view-camera system. The first technique is based on evaluation of the panel edge lines which are extracted from a percolated object image. This technique does not require a reference image for crack detection. Another technique is based on the comparison between a reference and a test image using the local image amplitude mapping. Before crack detection, multi-view images of a panel product are captured using multiple cameras and 3D shape information is reconstructed. Optimal camera positions are then determined based on the shape information. Afterwards, cracks are automatically detected using two crack detection techniques based on image processing. In order to demonstrate the capability of the proposed technique, experiments were performed in the laboratory and the actual manufacturing lines with the real panel products. Experimental results show that proposed techniques could effectively improve the crack detection rate with improved speed.

  9. Catalytic cracking with deasphalted oil

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, W.I.; Taylor, J.L.; Peck, L.B.; Mosby, J.F.


    This patent describes a catalytic cracking process. It comprises: hydrotreating resid; thereafter deasphalting the hydrotreated resid to produce substantially deasphalted oil; catalytically cracking the hydrotreated oil in a catalytic cracking unit in the presence of a cracking catalyst to produce upgraded oil leaving coked catalyst; and regenerating the coked catalyst in the presence of a combustion-supporting gas comprising excess molecular oxygen in an amount greater than the stoichiometric amount required for substantially completely combusting the coke on the catalyst to carbon dioxide.

  10. Polygon-Cracked Plain (United States)


    21 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygon-cracked plain in the south polar region of Mars. When this picture was acquired in April 2005, the surface was covered with seasonal carbon dioxide frost. Dark spots and streaks indicate areas where the frost had begun to change and sublime away. Location near: 86.8oS, 300.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. Cryptography cracking codes

    CERN Document Server


    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  12. Fatigue Crack Topography. (United States)


    possibilities. 2. EXPERIMENTAL PROGRAM The materials under investigation were typical commetial aircraft alloys as the titanium alloy Ti6Al4V , aluminium alloys...the macroscopic crack growth rate da/dN is plotted vs. the stress intensity range K as a straight 15e for constant amplitude loading with the Ti6Al4V ...cyc- le, and the units on the ordinate give the amount of striation spacing r mm. For Ti6Al4V striations were detectable for stress intensity ranges

  13. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. (United States)

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd


    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  14. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Directory of Open Access Journals (Sweden)

    David Peris


    Full Text Available Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197 lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275 that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354 and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  15. Shape and Size Complexity of Deep Seafloor Mounds on the Canary Basin (West to Canary Islands, Eastern Atlantic: A DEM-Based Geomorphometric Analysis of Domes and Volcanoes

    Directory of Open Access Journals (Sweden)

    Olga Sánchez-Guillamón


    Full Text Available Derived digital elevation models (DEMs are high-resolution acoustic technology that has proven to be a crucial morphometric data source for research into submarine environments. We present a morphometric analysis of forty deep seafloor edifices located to the west of Canary Islands, using a 150 m resolution bathymetric DEM. These seafloor structures are characterized as hydrothermal domes and volcanic edifices, based on a previous study, and they are also morphostructurally categorized into five types of edifice following an earlier classification. Edifice outline contours were manually delineated and the morphometric variables quantifying slope, size and shape of the edifices were then calculated using ArcGIS Analyst tools. In addition, we performed a principal component analysis (PCA where ten morphometric variables explain 84% of the total variance in edifice morphology. Most variables show a large spread and some overlap, with clear separations between the types of mounds. Based on these analyses, a morphometric growth model is proposed for both the hydrothermal domes and volcanic edifices. The model takes into account both the size and shape complexity of these seafloor structures. Grow occurs via two distinct pathways: the volcanoes predominantly grow upwards, becoming large cones, while the domes preferentially increase in volume through enlargement of the basal area.

  16. Stress corrosion cracking of NiTi in artificial saliva. (United States)

    Wang, Jianqiu; Li, Nianxing; Rao, Guangbin; Han, En-Hou; Ke, Wei


    This paper aimed to study the mechanism of the cracking of orthodontic NiTi wire. Two orthodontic NiTi wires were subjected: (1) optical and scanning electron microscopy (SEM) to observe the fracture surface; (2) energy dispersive X-ray spectroscopy to determine the composition of the surface product; (3) anodic polarization to remove the surface product. Samples of NiTi alloy were subjected to the constant loading test to study the stress corrosion cracking (SCC) behavior of NiTi shape memory alloy in artificial saliva. The results showed that there were three typical areas at the fracture surface of NiTi orthodontic wire. Area '1' was a tool-made notch. Crack initiated from the root of this notch and propagated to form Area '2', which was perpendicular to the wire axis and covered by surface film. This film consisted of Na, K, Cl, P, S and O except Ni and Ti. The cracking process of NiTi alloy under the constant loading test depended on the pH of saliva and applied stress. The crack length was about 262microm, the longest at 300MPa and pH 3.0. A tool-made notch in orthodontic NiTi wires can cause SCC. At high stress and low pH, this NiTi alloy was most sensitive to cracking.

  17. Some Aspects of Formation of Cracks in FRC with Main Reinforcement

    DEFF Research Database (Denmark)

    Brincker, Rune; Simonsen, J.; Hansen, W.

    In this paper the response of fibre reinforced concrete with main reinforcement in pure tension is considered. Test results are presented showing three distinct regimes: a regime of linear elasticity, a regime of yielding at approximately constant stress, and finally, a regime of strain hardening....... A simple model of the response of a tension member with main reinforcement and a partially opened crack is presented, and the influence of different shapes of the crack opening relation is studied. The case of a parabolic crack opening relation defines a brittleness number that describes the transition...... from discrete cracking to multiple cracking. It is shown, that if the crack opening relation is assumed to consist of a brittle contribution from the cement paste, and a more ductile contribution from the pull-out of the fibres, a plastic regime will be present in the tensile response. The fracture...

  18. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture (United States)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain


    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  19. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires

    Directory of Open Access Journals (Sweden)

    Jesús Toribio


    Full Text Available This paper deals with the effect of several residual stress profiles on the fatigue crack propagation in prestressing steel wires subjected to tension loading or bending moment. To this end, a computer program was developed to evaluate the crack front evolution on the basis of the Walker law. Results demonstrate that the absence of residual stresses makes the crack propagate towards a preferential crack path. When surface residual stresses are tensile and, correspondingly, core residual stresses are compressive, the fatigue crack fronts rapidly converge towards a quasi-straight shape. When surface residual stresses are compressive, with their corresponding tensile stresses in the core area, a preferential crack path also appears.

  20. Top-down, Bottom-up and Sideways: The Multilayered Complexities of Multi-level Actors Shaping Forest Governance and REDD+ Arrangements in Madre de Dios, Peru. (United States)

    Rodriguez-Ward, Dawn; Larson, Anne M; Ruesta, Harold Gordillo


    This study examines the role multilevel governance plays in the adoption of sustainable landscape management initiatives in emerging arrangements aimed at reducing emissions from deforestation and forest degradation (REDD+). It sheds light on the challenges these multiple layers of actors and interests encounter around such alternatives in a subnational jurisdiction. Through transcript analysis of 93 interviews with institutional actors in the region of Madre de Dios, Peru, particularly with regard to five sites of land-use change, we identified the multiple actors who are included and excluded in the decision-making process and uncovered their complex interactions in forest and landscape governance and REDD+ arrangements. Madre de Dios is a useful case for studying complex land-use dynamics, as it is home to multiple natural resources, a large mix of actors and interests, and a regional government that has recently experienced the reverberations of decentralization. Findings indicate that multiple actors shaped REDD+ to some extent, but REDD+ and its advocates were unable to shape land-use dynamics or landscape governance, at least in the short term. In the absence of strong and effective regional regulation for sustainable land use alternatives and the high value of gold on the international market, illegal gold mining proved to be a more profitable land-use choice. Although REDD+ created a new space for multilevel actor interaction and communication and new alliances to emerge, the study questions the prevailing REDD+ discourse suggesting that better coordination and cooperation will lead to integrated landscape solutions. For REDD+ to be able to play a role in integrated landscape governance, greater attention needs to be paid to grassroots actors, power and authority over territory and underlying interests and incentives for land-use change.

  1. Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean (United States)

    Boudinar, A. S.; Chaoui, L.; Quignard, J. P.; Aurelle, D.; Kara, M. H.


    Atherina boyeri is a common euryhaline teleost fish in the Mediterranean and adjacent areas, which inhabits coastal and estuarine waters, including coastal lagoons and more rarely inland waters. Several recent studies have pointed the possible existence of three distinct groups or species, one lagoon/freshwater group and two 'punctuated and unpunctuated on the flanks' marine groups, within an A. boyeri species complex. This study is a combined approach using otolith shape and molecular markers to better define the structure of the species in the western Mediterranean. Genetic differentiation and species delimitation among nine Atherina boyeri populations from several marine and lagoon/brakish habitat sites in Algeria, Tunisia and France were investigated using three mitochondrial (control region, Cyt b and 16S) and one nuclear markers (2nd intron of S7). For further phylogenetic and phylogeographic study, we added sequences from Genbank covering more areas (Ionian Sea, Adriatic Sea, Tyrrhenian Sea, Black Sea, Atlantic). Five groups were found. Two of them perfectly corresponded to two species already recognized Atherina presbyter and Atherina hepsetus, both living in marine waters; and three additional, including Atherina boyeri (brackish and freshwater environments) and two independent groups of marine punctated and unpunctated individuals. Those findings are corroborated by the study of the otolith contour shape of 362 individuals of seven populations from different habitats using Fourier analysis. Individuals could be discriminated into five groups based on the first two functions (Wilk's lambda = 0.07, p < 0.001). Samples from Ziama inlet, marine punctuated individuals and unpunctuated marine specimens from Annaba's Gulf formed three well separated groups. Specimens from Mellah and Mauguio lagoons formed another group. The last one includes individuals from Bizerte and Thau lagoons. The divergences between them strongly support the potential species within the

  2. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady


    Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (˜ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (˜ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  3. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios

    Directory of Open Access Journals (Sweden)

    V. Y. Zaitsev


    Full Text Available Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 % of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks. Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 % portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  4. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)


    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  5. Three-dimensional observations of magnetic flux density around fatigue crack tips of bearing steels (United States)

    Kida, Katsuyuki; Santos, Edson C.; Honda, Takashi; Tanabe, Hirotaka


    Fatigue failure of steel occurs when small cracks form in a component and then continue to grow to a size large enough to cause failure. In order to understand the strength of steel components it is important to find these cracks. However, at present, it is not easy to distinguish the cracks that will grow fast and cause failure. We developed a three-dimensional scanning Hall probe microscope (3D-SHPM) and observed fatigue cracks at room temperature while they were growing. Four-point-bending fatigue tests were carried out using pre-cracked specimens (JIS-SUJ2, bearing steel). We observed the two-dimensional magnetic flux density distributions around the crack tips and found that there is a strong correlation between the changes in the magnetic flux densities and the crack growth. In order to understand this, we looked into all the three components of the magnetic flux densities, and found that they shape an arched bridge around a crack. We also found that the magnetic flux density moves in front of the crack tip along the crack growth direction.

  6. Numerical modelling of desiccation cracking of clayey soil

    Directory of Open Access Journals (Sweden)

    Vo Thi Dong


    Full Text Available The formation and propagation of desiccation cracks in soil is an extremely complex phenomenon because of the coupling between hydraulic and mechanical behaviour of soil, which are constituted here by the presence of capillary forces and discontinuities. The formation of a cracks network strongly influences the mechanical and hydraulic properties of soil. The main objective of this research is to study the evolution of suction and strain fields, the initiation and propagation of cracks under the effect of drying, using the finite element method. A simulation of a soil sample with four cohesive joints shows the results similar to experimental data. In addition, a simulation of multijoints shows that cracks does not open in all potentials positions and it gives similar spacing.

  7. Biological Dimensions of Crack Morphology in Dryland Soils (United States)

    DeCarlo, K. F.; Spiegel, M.; Caylor, K. K.


    Macropores and cracks have an integral role in soil hydrology, and the physicochemical factors that induce them have been the subject of much laboratory research. How these processes translate to field soils, however, is often obfuscated by the biological elements present that complicate its formation and dynamics. In this study, we investigated the biological influence of herbivores and vegetation on 3D crack morphology in a dryland swelling soil (black cotton/vertisol). Fieldwork was conducted at and near the Kenya Long-Term Exclosure Experiment (KLEE) plots in Mpala, central Kenya, where three different soil regions were identified: highly vegetated areas, animal trails, and termite mounds. Crack networks were physically characterized by pouring liquid resin into the soil and excavating them when dry, after which they were imaged and quantified using medical magnetic resonance imaging (MRI). Cracking intensity of each cast was corrected via soil moisture and bulk density measurements at 5 cm intervals over 30 cm. 3D characterization of the soil system shows that mechanical compaction is a major influence in the formation of extensive and deep cracks in animal trails, with megaherbivores (e.g. elephants) inducing the most extreme cracks. Bioturbation is seen as a major influence in the formation of shallower cracks in termite mounds, as termites loosen and aerate the soil and reduce the soil's cohesive properties. Highly vegetated soils show a large degree of variability: small, disconnected soil patches induced by vegetative cover and a larger root network results in smaller and shallower cracks, but full vegetative cover induces deep and irregular cracks, possibly due to diverted rainfall. Our results highlight the intricate connections between the biology and physics that dictate soil processes in a complex soil system at the field scale.

  8. Experiences on IGSCC crack manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Veron, P. [Equipos Nucleares, S.A., Maliano (Spain)


    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  9. Complexity

    Indian Academy of Sciences (India)

    Rahul Pandit


    Oct 31, 2008 ... ”The more complex a thing is, the more you can talk about it.” - attributed to Giorgio Parisi. ▻ ”C'est magnifique, mais ce n'est pas de la science.” (It is magnificent, but not all of it is science.) - attributed ... Earliest examples: theoretical computer science, algorithmic complexity, etc. ▻ Rapid progress after the ...

  10. The Role of Structural Dynamics and Testing in the Shuttle Flowliner Crack Investigation (United States)

    Frady, Gregory P.


    During a normal inspection of the main propulsion system at Kennedy Space Center, small cracks were noticed near a slotted region of a gimbal joint flowliner located just upstream from one of the Space Shuttle Main Engines (SSME). These small cracks sparked an investigation of the entire Space Shuttle fleet main propulsion feedlines. The investigation was initiated to determine the cause of the small cracks and a repair method that would be needed to return the Shuttle fleet back to operation safely. The cracks were found to be initiated by structural resonance caused by flow fluctuations from the SSME low pressure fuel turbopump interacting with the flowliner. The pump induced backward traveling wakes that excited the liner and duct acoustics which also caused the liner to vibrate in complex mode shapes. The investigation involved an extensive effort by a team of engineers from the NASA civil servant and contractor workforce with the goal to characterize the root cause of the cracking behavior of the fuel side gimbal joint flowliners. In addition to working to identify the root cause, a parallel path was taken to characterize the material properties and fatigue capabilities of the liner material such that the life of the liners could be ascertained. As the characterization of the material and the most probable cause matured, the combination of the two with pump speed restrictions provided a means to return the Shuttle to flight in a safe manner. This paper traces the flowliner investigation results with respect to the structural dynamics analysis, component level testing and hot-fire flow testing on a static testbed. The paper will address the unique aspects of a very complex problem involving backflow from a high performance pump that has never been characterized nor understood to such detail. In addition, the paper will briefly address the flow phenomena that excited the liners, the unique structural dynamic modal characteristics and the variability of SSME

  11. On crack initiation in notched, cross-plied polymer matrix composites (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.


    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  12. Simulating the effect of slab features on vapor intrusion of crack entry. (United States)

    Yao, Yijun; Pennell, Kelly G; Suuberg, Eric M


    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this.

  13. Probabilistic Analysis of Crack Width

    Directory of Open Access Journals (Sweden)

    J. Marková


    Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.

  14. GPR application to investigate soil crack persistence in Cianjur landslide (United States)

    Irawan, S.; Aly, R. R.; Syahputra, R.; Kristyanto, T. H. W.; Tempesy, A. S.


    Cianjur region, located in West Java, is one of regions in Indonesia with high intensity of rain, where medium land movement may be inevitable. The presence of joints on sandstone outcrops conducts as water access and accelerates weathering process. The survey aims to study the continuity of the soil cracks that develop in the body of slope its density. This survey used Ground Penetrating Radar method to study landslides in both favorable and unfavorable light. Ground Penetrating Radar, GPR, is the method that adopts electromagnetic wave propagation to map subsurface properties. GPR is one of the effective methods to delineate subsurface with the highest resolution in the shallow depth, even it has highly variation results corresponded to complex of geological features and clay-rich materials. The result section showed soil crack continuation into deeper part of the layer with GPR's frequency 40MHz, most of section then showed the crack occurrence is dominated in the upper 200 ns. Crack density could be affected by mineral composition and other factors. This study resulted two lines GPR data which has different altitude. Line A which is lower than Line B has loose crack density rather than B, about approximately 40%. The area was approximately affected by landslides that usually exhibited dramatic spatial and temporal variations of lithological and hydrogeological conditions. It will need further survey to know the effect of soil crack toward the sliding surface of the landslide from other surveys.

  15. Air-steam leakage through cracks in concrete walls

    Energy Technology Data Exchange (ETDEWEB)

    Simon, H. [CEA Saclay, DM2S/SFME, Laboratoire d' Etudes des Transferts et de Mecanique des Fluides, F-91 191 Gif sur Yvette Cedex (France)]. E-mail:; Nahas, G. [IRSN, DSR/SAMS, Bureau d' Analyse du Genie Civil et des Structures, F-92 265 Fontenay-aux-Roses Cedex (France); Coulon, N. [CEA Saclay, DM2S/SFME, Laboratoire d' Etudes des Transferts et de Mecanique des Fluides, F-91 191 Gif sur Yvette Cedex (France)


    In the context of a severe accident in a PWR nuclear plant, the evaluation of the leakage through the containment wall remains a key point of the safety analysis. Here we calculate the leakage of an air steam mixture through a traversing crack taking into account condensation. A 40 h test has been performed on a representative concrete slab with measurements of crack openings and flow rates. The CAST3M code enables us to simulate this test by making thermo-mechanical calculations and calculation of the leakage flow rate. Thermo-mechanical calculations provide data needed by the leakage calculations which are not measurable in the experiment. These are the internal crack profiles (variation of the opening with the curvilinear coordinate of the crack inside the concrete slab). Thermo-mechanical calculations are difficult to perform because boundary conditions of the test are complicated. Leakage calculations are performed with various hypotheses for the internal cracks profiles. A coefficient is applied on the friction factor to take into account additional complexity of the crack geometry.

  16. Stress intensity and crack displacement for small edge cracks (United States)

    Orange, Thomas W.


    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  17. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test. (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie


    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of variation in signal amplitude and transit time on reliability analysis of ultrasonic time of flight diffraction characterization of vertical and inclined cracks. (United States)

    Nath, S K


    The variation of amplitude and transit time of the diffracted signal from the crack-tip in complex geometry components and their resulting effect on the probability of detection (POD) and probability of sizing (POS) was studied. The diffracted signal amplitude has been evaluated from the standard expressions for diffraction coefficient, spatial attenuation and the transit time from the respective mathematical models for both vertical and inclined cracks. The same parameters namely the signal amplitude and the transit time have been measured through experiments conducted on simulated test specimens. It has been observed that the analytical and experimental results compare well with each other. Based on this result the trend and shape (width of the transition zone) of the POD/POS curves can be predicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy


    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  20. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures (United States)

    Anyasodor, Gerald; Koroschetz, Christian


    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  1. Predictive Crack Growth Technique for Laser Peening Process Development

    Directory of Open Access Journals (Sweden)

    Thomas J. Spradlin


    Full Text Available Laser peening (LP has shown excellent fatigue life extension in numerous tests with typical treatments garnering 2-4 times the fatigue performance of an untreated component. Initially, large test programs were implemented to determine the best LP parameters for a given scenario, eventually being augmented by physics-based modeling due to the large design space available to the LP process. Approval for these processes continues to be on a case-by-case basis, contingent on multiple factors: cost, applicability, time, % fatigue life extension, and ability to track crack growth. Because LP induces compressive residual stresses in the near surface region, the compensatory tensile residual stresses are shifted sub-surface. While an axial tensile load would be mitigated by surface compressive stresses, sub-surface a crack can propagate rapidly via tensile stresses. Current predictive methods lack the ability to track this sub-surface behavior, limiting the accuracy of fatigue crack growth predictions throughout the various design stages of an LP treatment. This work demonstrates a framework that incorporates user-defined geometry, material data, crack growth data, mechanical loading, and residual stresses to predict the crack front shape evolution in 3D solids. A baseline case with no residual stresses is simulated and compared with a closed form solution.

  2. Mussel adhesive protein coating: A potential therapeutic method for self-healing of cracked teeth

    Directory of Open Access Journals (Sweden)

    Li Bo-Lin


    Full Text Available Introduction: Nowadays, cracked tooth syndrome is the third main cause of tooth extraction, following caries and periodontal diseases, done in almost all the dental clinics. Nevertheless, the diagnosis and treatment of this condition remain controversial. All candidate therapeutics, such as occlusal adjustment, preventive filling, root canal therapy (RCT, and crown restoration, provide unpredictable outcomes. As such, methods to prevent further crack development and to induce crack self-healing must be developed. The Hypothesis: Mussels secreting adhesive foot protein (Mafp can attach to various surfaces under aqueous conditions. In nature, mussels adhere to stones and deposit layer by layer through mineralization, thereby forming mussel-stone composites with excellent mechanical property. Given the natural process of mussel-stone complex formation, we hypothesize that application of Mafp coating at the crack interface may mineralize the cracks by capturing calcium and phosphate ions from the saliva. This process consequently leads to crack self-healing and complete restoration of the tooth structure. Evaluation of the Hypothesis: To test our hypothesis, we need to develop a model in vivo. Cracked teeth disks are adhered together using Mafp solution. Then, the tooth disks are sutured on the interior side of the cheeks. After regular intervals, the disks are removed and characterized. Scanning electron microscopy is performed to evaluate the morphology of the crack interface. Microhardness and shear bond strength are used to evaluate the mechanical property of the healing cracked zone. Transmission electron microscopy is also conducted to evaluate the crystallinity of the crack interface.

  3. Propagation of cohesive crack in unsaturated porous media by use of XFEM method

    Directory of Open Access Journals (Sweden)

    Mokhtari Alireza


    Full Text Available Various damage models have been presented to model the cracks. These models don’t simulate the discontinuity in displacement field; just see its effect on an upper level on stress field through damage parameter. Damage parameter is used to modify other fields like pressure. This paper tries to model crack itself through fracture mechanics. The opening of the crack is modeled and is connected to stress field by use of cohesive crack model that relates plasticity of crack tip to its opening. When crack opens, there exists discharge of water and gas through crack that are calculated by use of multiscale methods and incorporated in weak form of governing equations.Due to complexity of proposed model, it can’t be solved analytically and extended finite element method (XFEM is used to solve it. Xfem method which is based on partition of unity property of FEM adds some terms to conventional interpolation functions to model discontinuity of fields adjacent to the crack. This method simulates crack in ordinary mesh of FEM and doesn’t need remeshing around the crack when it propagates.

  4. Evaluation of variables affecting crack propagation by Delayed Hydride Cracking in Zr-2.5Nb with different heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mieza, J.I., E-mail: [CNEA, Centro Atomico Constituyentes, Dano por Hidrogeno, Av. Gral. Paz 1499, San Martin (B1650KNA), Bs. As. (Argentina); Instituto Sabato, UNSAM-CNEA, Av. Gral. Paz 1499, San Martin (B1650KNA), Bs. As. (Argentina); Vigna, G.L.; Domizzi, G. [CNEA, Centro Atomico Constituyentes, Dano por Hidrogeno, Av. Gral. Paz 1499, San Martin (B1650KNA), Bs. As. (Argentina)


    Delayed Hydride Cracking (DHC) is a failure mechanism that may occur in zirconium alloys used in nuclear reactor core components. The knowledge of the direct effects of the variables affecting the cracking velocity could be used to minimize the risk of crack propagation. In practice, most of these variables - as for example the alloy yield stress and hydrogen diffusion coefficient - are coupled and vary during reactor operation, leading to a complex variable dependence of the cracking mechanism. In order to get an insight into the relative effect of these variables, experimental data and a theoretical approach using a generally accepted DHC model were used in this work. A series of DHC velocity measurements were made in Zr-2.5Nb tube with different heat treatments. The yield stress, the Nb concentration in {beta} phase, and hydrogen solvus of the alloy were measured for different heat treatments. Niobium concentration in {beta} phase gave an indirect indication of {beta}-phase continuity and, with a proper correlation, of the hydrogen diffusion coefficient. The obtained values were used as inputs in a theoretical calculation of cracking velocity. Good agreement between experimental data and predicted values was obtained, showing that hydrogen diffusion coefficient was the most relevant variable affecting DHC velocity cracking. Furthermore, this approach has been demonstrated to be useful in estimating DHC velocity in irradiated materials.

  5. Crackscope : automatic pavement cracking inspection system. (United States)


    The CrackScope system is an automated pavement crack rating system consisting of a : digital line scan camera, laser-line illuminator, and proprietary crack detection and classification : software. CrackScope is able to perform real-time pavement ins...

  6. Uncontrolled concrete bridge parapet cracking. (United States)


    The Ohio Department of Transportation has recently identified the problem of wide-spread premature cracking of concrete bridge : parapets throughout its District 12 region (Northeast Ohio). Many of the bridge decks that contain these prematurely crac...

  7. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)


    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  8. Premature asphalt concrete pavement cracking. (United States)


    Recently, the Oregon Department of Transportation (ODOT) has identified hot mix asphalt concrete : (HMAC) pavements that have displayed top-down cracking within three years of construction. The objective of : the study was to evaluate the top-down cr...

  9. Detection of a fatigue crack in a rotor system using full-spectrum ...

    Indian Academy of Sciences (India)

    (dWD) in order to study non-stationary rotor vibration. They proposed the Shape and Directivity Index (SDI) to quantify the shape and direction of instantaneous whirl orbits during the rotor run-up. Patel & Darpe [21] used the full spectrum to investigate the directional nature of higher harmonics for detection of rub in cracked ...

  10. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation. (United States)

    Liu, Tianshu; Long, Rong; Hui, Chung-Yuen


    In this paper we present a theoretical study on how surface tension affects fracture of soft solids. In classical fracture theory, the resistance to fracture is partly attributed to the energy required to create new surfaces. Thus, the energy released to the crack tip must overcome the surface energy in order to propagate a crack. In soft materials, however, surface tension can cause significant deformation and can reduce the energy release rate for crack propagation by resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical difficulty caused by singular fields near the crack tip, we derived an expression for the energy release rate which depends on the applied pressure, the surface tension, the inflated crack volume and the deformed crack area. This expression is evaluated using a newly developed finite element method with surface tension elements. Our calculation shows that, when the elasto-capillary number ω ≡ σ/Ea is sufficiently large, where σ is the isotropic surface tension, E is the small strain Young's modulus and a is the initial crack radius, both the energy release rate and the crack opening displacement of an incompressible neo-Hookean solid are significantly reduced by surface tension. For a sufficiently high elasto-capillary number, the energy release rate can be negative for applied pressure less than a critical amount, suggesting that surface tension can cause crack healing in soft elastic materials.

  11. Influência da forma e do processo de obtenção do entalhe na carga máxima e na energia de fratura de argamassas utilizando o método da cunha para propagação estável de trinca Influence of notch shape and preparation on the maximum load and fracture energy of mortars evaluated by the wedge splitting method for stable crack propagation

    Directory of Open Access Journals (Sweden)

    S. Ribeiro


    Full Text Available Este trabalho mostra a influência da forma e do processo de obtenção do entalhe na estabilidade da propagação de trinca em materiais cerâmicos de microestrutura heterogênea e conseqüentemente, na carga máxima e energia de fratura quando esses materiais são submetidos ao carregamento utilizando o método da cunha. Foram preparadas argamassas com cimento Portland, areia e água, que foram moldadas, curadas a 25 ºC por 7 dias e secadas a 50 ºC por 48 h. Foram estudadas duas proporções (dosagens ou traços de areia:cimento de 3:1 e 2:1. Foram testados dois tipos de entalhe: um com perfil quadrado da ponta e outro em "V" com ângulo de 60º. Os entalhes de formato quadrado foram obtidos de duas formas: produzidos mecanicamente a partir de disco diamantado e outro na própria moldagem das amostras. Para produzir as amostras entalhadas e ranhuradas já na moldagem, foi desenvolvido um molde de PVC munido de lâminas de aço internas. A partir dos testes preliminares foram estabelecidas as condições de propagação estável da trinca. A trinca percorre um plano imaginário definido pelas ranhuras laterais da amostra. Os resultados mostraram que o entalhe que proporciona melhores condições de estabilidade de propagação de trinca é o de forma em "V", obtido durante o processo de moldagem das amostras.This paper discusses how the shape and preparation of the notch affect crack propagation in ceramic materials with heterogeneous microstructures and, as a result, the maximum load and fracture energy when these materials are subjected to loads using the wedge splitting test. Mortars were prepared with Portland cement, sand and water, which were mixed, molded, and cured at 25 ºC for seven days. After curing, the samples were dried at 55 ºC for 48 h. Two mortar compositions were prepared with proportions of sand:cement of 3:1 and 2:1. Two types of notches were tested: one with a square-tipped profile and the other V-shaped with a 60º

  12. S-shaped decanuclear heterometallic [Ni8Ln2] complexes [Ln(III) = Gd, Tb, Dy and Ho]: theoretical modeling of the magnetic properties of the gadolinium analogue. (United States)

    Hossain, Sakiat; Das, Sourav; Chakraborty, Amit; Lloret, Francesc; Cano, Joan; Pardo, Emilio; Chandrasekhar, Vadapalli


    The reaction of 8-quinolinol-2-carboaldoxime (LH2) with Ni(II) and Ln(III) salts afforded the heterometallic decanuclear compounds [Ni8Dy2(μ3-OH)2(L)8(LH)2(H2O)6](ClO4)2·16H2O (1), [Ni8Gd2(μ3-OH)2(L)8(LH)2(H2O)4(MeOH)2](NO3)2·12H2O (2), [Ni8Ho2(μ3-OH)2(L)8(LH)2(H2O)4(MeOH)2](ClO4)2·2MeOH·12H2O (3) and [Ni8Tb2 (μ3-OH)2(L)8(LH)2(MeOH)4(OMe)2]·2CH2Cl2·8H2O (4). While compounds 1-3 are dicationic, compound 4 is neutral. These compounds possess an S-shaped architecture and comprise a long chain of metal ions bound to each other. In all the complexes, the eight Ni(II) and two Ln(III) ions of the multimetallic ensemble are hold together by two μ3-OH, eight dianionic (L(2-)) and two monoanionic oxime ligands (LH(-)) whereas compound 4 has two μ3-OH, eight dianionic (L(2-)), two monoanionic oxime ligands (LH(-)) and two terminal methoxy (MeO(-)) ligands. The central portion of the S-shaped molecular wire is made up of an octanuclear Ni(II) ensemble which has at its two ends the Ln(III) caps. Magnetic studies on 1-4 reveal that the magnetic interactions between neighboring metal ions are negligible at room temperature. On the other hand, at lower temperatures in all the compounds anti-ferromagnetic interactions seem to be dominated. Analysis of the magnetic data for the Gd(III) derivative indicates Ni(II)-Ni(II) anti-ferromagnetic interactions and Gd(III)-Ni(II) ferromagnetic interactions at low temperatures. A theoretical density functional study on the magnetic behavior of the Gd(III) derivative suggests that while the weak ferromagnetic interaction between Gd(III) and Ni(II) is in line with the expectation of the magnetic interactions between orthogonal d and f orbitals, antiferromagnetic Ni(II)-Ni(II) interactions are related to the wide Ni-O-Ni angles (∼102°) and quasi-planar conformation of the Ni2O2 core.

  13. Image-based method for monitoring of crack opening on masonry and concrete using Mobile Platform

    Directory of Open Access Journals (Sweden)

    A. P. Martins

    Full Text Available This paper proposes an automatic method based on the computing vision, implemented in a mobile platform, to inspect cracks in masonry and concrete. The developed algorithm for image processing performs this task from images of the cracks evolution. The contribution of this paper is the development of a mobile tool with quick response aiming to assist technicians in periodic visits when monitoring the crack opening in masonry and concrete. The obtained results show, successfully, the dimensional alterations of cracks detected by mobile phone in a faster and accurate way compared with the conventional measurement technique. Regardless the irregular shape of the cracks, the proposed method has the advantage of producing results statistically significant in measurement repetition by decreasing the subjectivity inherent to manual measurement technique.

  14. Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens (United States)

    Alam, J.; Mendelson, A.


    The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.

  15. Propagation of a Dugdale crack at the edge of a half plane (United States)

    Ferdjani, Hicheme; Abdelmoula, Radhi


    This work deals with the propagation of a Dugdale crack at the edge of a half plane. The corresponding singular integral equation is solved semi-analytically. The expressions of the stress intensity factor and of the crack gap are deduced. A propagation criterion deduced from the revisited Griffith theory (Ferdjani and Marigo in Eur J Mech A Solids 53:1-9, 2015) is applied. The length of the process zone is calculated and compared with the literature results. The presented results show the evolution of the applied load with the crack length for different values of the ratio of the critical length of the Dugdale model to the initial crack length. The shape of the crack gap is also presented. Finally, a comparison between the Griffith and Dugdale models is performed.

  16. Midpoint Shapes. (United States)

    Welchman, Rosamond; Urso, Josephine


    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  17. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking. (United States)

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing


    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young's modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC.

  18. A Relationship Between Constraint and the Critical Crack Tip Opening Angle (United States)

    Johnston, William M.; James, Mark A.


    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  19. Flexural Cracks Development in Reinforced Concrete Beams Under ...

    African Journals Online (AJOL)

    The width of cracks is treated as closely related not only with appearance and corrosion of reinforcement but also with deflection and ultimate limit state of beams. Due to the complex nature of this phenomenon the existing test results are very frequently contradicting each other, and up till now there are very few general ...

  20. Acoustic Modeling and Analysis for the Space Shuttle Main Propulsion System Liner Crack Investigation (United States)

    Casiano, Matthew J.; Zoladz, Tom F.


    Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.

  1. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen (United States)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.


    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  2. A study on quantitative analysis of inside crack of pressure vessel using ESPI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hak; Kim, Koung Suk; Jung, Hun Chul [Chosun University, Kwangju (Korea, Republic of); Yang, Seung Pil [Dong A Injea College, Youngam (Korea, Republic of)


    Electronic Speckle Pattern Interferometry for non-destructive inspection is described. Generally, shearography is used widely for non-destructive inspection because of high sensitivity and simple interferometer. However, it is difficult to determine the defect size quantitatively because there are so many factors-shearing distance, load, depth of crack, material property and etc. With ESPI, 3D-deformation call be measured and analyzed to strain or stress through the simple processing. The strain distribution related to strain concentration implies information of crack size and shape. So, this paper presents the possibility of quantitative analysis of inside crack more easily using ESPI.

  3. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. (United States)

    King, A; Johnson, G; Engelberg, D; Ludwig, W; Marrow, J


    Nondestructive three-dimensional mapping of grain shape, crystallographic orientation, and grain boundary geometry by diffraction contrast tomography (DCT) provides opportunities for the study of the interaction between intergranular stress corrosion cracking and microstructure. A stress corrosion crack was grown through a volume of sensitized austenitic stainless steel mapped with DCT and observed in situ by synchrotron tomography. Several sensitization-resistant crack-bridging boundaries were identified, and although they have special geometric properties, they are not the twin variant boundaries usually maximized during grain boundary engineering.

  4. Fractal Two-Level Finite Element Method For Free Vibration of Cracked Beams

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung


    Full Text Available The fractal two-level finite element method is extended to the free vibration behavior of cracked beams for various end boundary conditions. A cracked beam is separated into its singular and regular regions. Within the singular region, infinite number of finite elements are virturally generated by fractal geometry to model the singular behavior of the crack tip. The corresponding numerous degrees of freedom are reduced to a small set of generalized displacements by fractal transformation technique. The solution time and computer storage can be remarkably reduced without sacrifying accuracy. The resonant frequencies and mode shapes computed compared well with the results from a commercial program.

  5. Corrosion fatigue crack propagation in metals (United States)

    Gangloff, Richard P.


    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  6. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German


    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  7. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    Directory of Open Access Journals (Sweden)

    Wei Xu


    Full Text Available Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates.

  8. Mechanism of Surrounding Rock Failure and Crack Evolution Rules in Branched Pillar Recovery

    Directory of Open Access Journals (Sweden)

    Gaojian Hu


    Full Text Available To study the mechanism of surface collapse and crack evolution in a roadway chain failure process in the pillar recovery of Hongling lead zinc ore in Inner Mongolia Province, China, microseismic monitoring technology, moment tensor theory, and numerical simulation are used for the inversion of rock mass fracturing, the destruction type classification of crack, and the mechanism of surrounding rock. Research shows the following: (1 the rock mass fracturing is first produced within the +955 m level, before extending through the hanging wall to the ground surface. Then, many shear failures occur in the ground surface of the footwall, extending downwards in an arc-shaped path to the +905 m level. Finally, the surface gradually collapses with large-scale shear failures. (2 The mechanism of surface collapse is as follows: after the recovery of pillars in the +905 m level, tensile cracks generated in the top of orebody #2 extend upwards and obliquely. Analogously, shear cracks are generated in the top of orebody #1, extending upwards. After the recovery of pillars in the +855 m level, the marble interlayer is destroyed and sinks, and many tensile cracks and shear cracks exist and incise in the ground surface, which cause the ground surface to collapse. (3 The mechanism of crack evolution is as follows: after the recovery of 5107 pillars, the footwall haul road in the +905 m level was damaged and collapsed by the cut-through cracks. Those cracks then continue to extend upwards and converge with the slanting shear cracks in the +905 m level, which form a triangular failure in the footwall rock. Finally, the failure causes the tensile and shearing cracks in the haulage way of the +955 m level to extend and connect, which forms the haulage way chain failure.

  9. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys (United States)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those

  10. An energy analysis of crack-initiation and arrest in epoxy (United States)

    Chudnovsky, A.; Kim, A.; Bosnyak, C. P.


    The objective of this work is to study fracture processes such as crack initiation and arrest in epoxy. A compact tension specimen with displacement-controlled loading is employed to observe multiple crack initiations and arrests. The energy release rate at crack initiation is significantly higher than that at crack arrest, as has been observed elsewhere. In this study, the difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in strength theory, is conventionally attributed to the statistics of defects which control the fracture process. Triangular shaped ripples, deltoids, are formed on the fracture surface of the epoxy during the slow sub-critical crack growth, prior to the smooth mirrorlike surface characteristic of fast cracks. The deltoids are complimentary on the two crack faces which excludes any inelastic deformation from consideration. The deltoids are analogous to the ripples created on a river surface downstream from a small obstacle. However, in spite of the expectation based on this analogy and the observed scale effect, there are no 'defects' at the apex of the deltoids detectable down to the 0.1 micron level. This suggests that the formation of deltoids during the slow process of subcritical crack growth is an intrinsic feature of the fracture process itself, triggered by inhomogeneity of material on a submicron scale. This inhomogeneity may be related to a fluctuation in the cross-link density of the epoxy.

  11. Development of eddy current testing probe for thick-walled metal plate and quantitative evaluation of cracks

    CERN Document Server

    Sato, K; Uchimoto, T; Takagi, T


    This paper demonstrates the crack detection of thick-walled non-magnetic metal plates by eddy current testing, which is difficult because of Kelvin skin effect generally. The purpose of this research is the development of an new eddy current testing probe for cracks in thick-walled plates and crack shapes quantitative evaluation. The probe was designed, based on the numerical computation using 3D fast eddy current code. The advantages of this new probe are strong eddy current on the back of specimens and gentle decrement of eddy current in the thickness direction. Through experiments, we confirmed that this probe can detect the back artificial defect with 0.5 mm thickness on IN-CONEL 718 specimen with 7.0 mm thickness. Reconstruction of crack shapes was performed based on the experimental results with the inverse problem code developed by authors. The length and depth of reconstructed defects approximately agree with those of real crack. (author)

  12. Fatigue crack growth in additive manufactured products

    Directory of Open Access Journals (Sweden)

    A. Riemer


    Full Text Available Additive Manufacturing (AM is a new innovative technique that allows the direct fabrication of complex, individual, delicate and high-strength products, based on their 3D data. Selective Laser Melting (SLM is one of the AM processes that generates metallic components layer by layer using powder-bed technique. The irradiation and consequent melting of metallic powder is realised by the laser source. Employing SLM, especially complex and individual products, such as implants or aerospace parts, are well suited for economic production in small batches. The first important issue in this work was to analyse the fatigue crack growth (FCG in titanium alloy Ti-6-4 and stainless steel 316L processed by SLM. As a first step, stress intensity range decreasing tests were performed on SLM samples in their “as-built” condition. The next step was to adopt measures for optimisation of fatigue crack growth performance of SLM parts. For this purpose various heat treatments such as stress relief annealing and hot isostatic pressing (HIP were applied to the CT specimens. Finally, the strong impact of heat treatment on the residual lifetime was demonstrated by numerical fatigue crack growth simulations. For this purpose, the hip joint implant consisting of Ti-6-4 and processed by SLM was taken into account. It was found that residual stresses have a strong influence on the crack growth in Ti-6-4, while the influence of the micro-pores on the threshold values remains low. In contrast the results for 316L show that its fracturemechanical behaviour is not affected by residual stresses, whereas the microstructural features lead to modification in the da/dN-K-data. The second fundamental aim of this work was to demonstrate the possibilities of the SLM process. For that reason, the individually tailored bicycle crank was optimised regarding its weight and local stresses and finally manufactured using the SLM system. The iterative optimisation procedure was based on

  13. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. (United States)

    Zhao, Youxuan; Li, Feilong; Cao, Peng; Liu, Yaolu; Zhang, Jianyu; Fu, Shaoyun; Zhang, Jun; Hu, Ning


    Since the identification of micro-cracks in engineering materials is very valuable in understanding the initial and slight changes in mechanical properties of materials under complex working environments, numerical simulations on the propagation of the low frequency S 0 Lamb wave in thin plates with randomly distributed micro-cracks were performed to study the behavior of nonlinear Lamb waves. The results showed that while the influence of the randomly distributed micro-cracks on the phase velocity of the low frequency S 0 fundamental waves could be neglected, significant ultrasonic nonlinear effects caused by the randomly distributed micro-cracks was discovered, which mainly presented as a second harmonic generation. By using a Monte Carlo simulation method, we found that the acoustic nonlinear parameter increased linearly with the micro-crack density and the size of micro-crack zone, and it was also related to the excitation frequency and friction coefficient of the micro-crack surfaces. In addition, it was found that the nonlinear effect of waves reflected by the micro-cracks was more noticeable than that of the transmitted waves. This study theoretically reveals that the low frequency S 0 mode of Lamb waves can be used as the fundamental waves to quantitatively identify micro-cracks in thin plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R


    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  15. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue


    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  16. Getter materials for cracking ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Boffito, Claudio; Baker, John D.


    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  17. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)


    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  18. Nonlinear structural crack growth monitoring (United States)

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.


    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  19. The Reflective Cracking in Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Pais Jorge


    Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.

  20. Farriery for hoof wall defects: quarter cracks and toe cracks. (United States)

    Pleasant, R Scott; O'Grady, Stephen E; McKinlay, Ian


    Conditions that result in the loss of the structural integrity of the hoof wall, such as quarter and toe cracks, are not uncommon and usually manifest in lameness. The successful management of these problems involves identifying and addressing the underlying causes, stabilization of the foot, and committed follow-up. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang


    _Ldelta_CR where sigma_L is strength, and at the same time constant flow stress, of the uncracked material while delta_CR is flow limit (displacement).Obviously predictions by the Dugdale model are most reliable for materials with stress-strain relations where flow can actually be described (or well approximated...... are assumed to be self created by local materials flow. The strength sigma_CR predictid by the Dugdale model is sigma_CR =(E Gamma_CR/phi1)^½ where E and 1 are Young’s modulus and crack half-length respectively of the material considered. The so-called critical strain energy rate is Gamma_CR = sigma......) by a constant flow stress (sigma_L). A number of materials, however, do not at all exhibit this kind of flow. Such materials are considered in this paper by Modified Dugdale crack models which apply for any cohesive stress distribution in crack front areas. Formally modified Dugdale crack models exhibit...

  2. Analytic crack solutions for tilt fields around hydraulic fractures

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.


    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.

  3. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure (United States)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.


    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  4. Coupled FEM-DBEM method to assess crack growth in magnet system of Wendelstein 7-X

    Directory of Open Access Journals (Sweden)

    R. Citarella


    Full Text Available The fivefold symmetric modular stellarator Wendelstein 7-X (W7-X is currently under construction in Greifswald, Germany. The superconducting coils of the magnet system are bolted onto a central support ring and interconnected with five so-called lateral support elements (LSEs per half module. After welding of the LSE hollow boxes to the coil cases, cracks were found in the vicinity of the welds that could potentially limit the allowed number N of electromagnetic (EM load cycles of the machine. In response to the appearance of first cracks during assembly, the Stress Intensity Factors (SIFs were calculated and corresponding crack growth rates of theoretical semi-circular cracks of measured sizes in potentially critical position and orientation were predicted using Paris’ law, whose parameters were calibrated in fatigue tests at cryogenic temperature. In this paper the Dual Boundary Element Method (DBEM is applied in a coupled FEM-DBEM approach to analyze the propagation of multiple cracks with different shapes. For this purpose, the crack path is assessed with the Minimum Strain Energy density criterion and SIFs are calculated by the J-integral approach. The Finite Element Method (FEM is adopted to model, using the commercial codes Ansys or Abaqus;, the overall component whereas the submodel analysis, in the volume surrounding the cracked area, is performed by FEM (“FEM-FEM approach” or alternatively by DBEM (“FEM-DBEM approach”. The “FEM-FEM approach” considers a FEM submodel, that is extracted from the FEM global model; the latter provide the boundary conditions for the submodel. Such approach is affected by some restrictions in the crack propagation phase, whereas, with the “FEM-DBEM approach”, the crack propagation simulation is straightforward. In this case the submodel is created in a DBEM environment with boundary conditions provided by the global FEM analysis; then the crack is introduced and a crack propagation analysis

  5. Fracture mechanics parameters for small fatigue cracks (United States)

    Newman, J. C., Jr.


    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  6. Cracking of SHCC due to reinforcement corrosion

    NARCIS (Netherlands)

    Savija, B.; Lukovic, M.; Pacheco Farias, J.; Schlangen, H.E.J.G.; Saouma, V.; Bolander, J.; Landis, E.


    Reinforcement corrosion is the most important deterioration mechanism affecting reinforced concrete infrastructures. After corrosion starts, expansive pressures are exerted onto the surrounding concrete, causing cracking and spalling of the cover concrete. The amount of cover cracking can possibly

  7. Effectiveness of two reflection crack attenuation techniques. (United States)


    Asphalt overlays are one of the most common tools for rehabilitating existing asphalt and concrete pavements. : However, the performance of new overlays is often jeopardized by the cracking distress in the existing : pavement. This existing cracking ...

  8. Investigation of reflective cracking mitigation techniques : [summary]. (United States)


    When new asphalt is placed over concrete or : asphalt pavement, cracks or joints in the old : layer can appear in the new overlay; this is : called reflective cracking (RC). In current Florida : practice, an asphalt rubber membrane interlayer : (ARMI...

  9. Development of the crack sealant adhesion test. (United States)


    Crack sealants are widely used in Texas to prevent water from entering into lower structural layers thereby : extending pavement life. However, most current crack sealants have been reported to have a very short life mainly due : to adhesive failures...

  10. Junction formation during desiccation cracking. (United States)

    Toga, K B; Alaca, B Erdem


    In order to provide a sound physical basis for the understanding of the formation of desiccation crack networks, an experimental study is presented addressing junction formation. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction formation during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the formation of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films.

  11. The debauchery that crack brings

    Directory of Open Access Journals (Sweden)

    Francisco Eudison da Silva Maia


    Full Text Available Among the substances with psychoactive effects, the most powerful and damaging is the crack, which acts directly on the central nervous system, producing various sensations of pleasure over the conventional. Currently, because of the debauchery that is causing, it is considered a problem of public health worldwide.

  12. Steam Hydrocarbon Cracking and Reforming (United States)

    Golombok, Michael


    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  13. Crack and seat concrete pavement (United States)


    Prevention of reflective cracking in HMAC overlays placed over PCCP has been based on experience gained from trial and error methods of in-service pavements in many states. Arizona recently utilized this technique on a PCCP section of Interstate 40 b...

  14. The quest for intensified steam cracking process

    NARCIS (Netherlands)

    Van Goethem, M.W.M.; Verheijen, P.J.T.


    In this paper the results are presented on the quest for an intensified steam cracking process. The main focus is to improve the efficiency of the steam cracking process. The first part of the investigation is to examine which of the current available processes is close to the ideal steam cracking

  15. Twisting cracks in Bouligand structures. (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo


    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The interplay of crack hopping, delamination and interface failure in drying nanoparticle films. (United States)

    Yang, Bin; Sharp, James S; Smith, Mike I


    Films formed through the drying of nanoparticle suspensions release the build-up of strain through a variety of different mechanisms including shear banding, crack formation and delamination. Here we show that important connections exist between these different phenomena: delamination depends on the dynamics of crack hopping, which in turn is influenced by the presence of shear bands. We also show that delamination does not occur uniformly across the film. As cracks hop they locally initiate the delamination of the film which warps with a timescale much longer than that associated with the hopping of cracks. The motion of a small region of the delamination front, where the shear component of interfacial crack propagation is believed to be enhanced, results in the deposition of a complex zig-zag pattern on the supporting substrate.

  17. Cracking the Binary Code

    Directory of Open Access Journals (Sweden)

    Hazlehurst Benny


    Full Text Available This paper offers a critique of the ‘binary’ nature of much biblical interpretation and ethical belief in the Church, rejecting simplistic ‘either-or’ approaches to both. Instead there is offered an interpretation of key biblical texts through the lenses of circumstances, needs and motivation. It is argued that, when these factors are taken into account, even for Evangelicals, there is no longer a substantive biblical case against the acceptance of faithful, loving same-sex partnerships and the development of a positive Christian ethic for lesbian, gay, bisexual and transgender people. At the very least, the complexity of the interpretive task must lead to greater openness to and acceptance of those from whom we differ.

  18. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang


    Full Text Available Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  19. Influence of electron beam welding parameters and metallurgical factors on intergranular liquation cracking susceptibility of cast alloy 718 (United States)

    Woo, Insu; Kang, Chungyun; Nishimoto, Kazutoshi


    The factors affecting intergranular liquation cracking susceptibility in electron beam welds were investigated for cast alloy 718. The materials used were as-received plates and heat-treated plates with three different levels of grain size. Liquation cracking susceptibility in HAZ was evaluated by a bead-on-plate test and a restraint/relaxation U-type hot cracking test. The penetrated shapes in the welds were classified into wine cup-like Type W and nail head-like Type N. For a given beam current, Type w and Type N were observed at the lower and higher welding speeds, respectively. Welding defects, i.e., underfills and microcracks were seen in the electron beam welds. Compared with Type W, the liquation cracking was more sensitive for the Type N bead cross sectional shape. Furthermore, it easily occurred at grain boundaries in Region II, i.e., very near the nail head necked part. According to the restraint/relaxation U-type hot cracking test, the liquation cracking susceptibility decreased with decreasing grain size or with homogenization heat treatment. These results suggested that the liquation cracking susceptibility in cast alloy 718 electron beam welds could be improved by using the Type W bead cross sectional shape, a decreasing the grain size and using appropriate heat treatment before welding.

  20. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl


    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  1. Comparison of thermal cracking and hydro-cracking yield distributions

    Energy Technology Data Exchange (ETDEWEB)

    Romero, S.; Sayles, S. [KBC Advanced Technologies Inc., Houston, TX (United States)


    Operators of bitumen upgraders are faced with the challenge of obtaining maximum performance from existing equipment whose performance is already pushed to the limits. The main constraint is the primary upgrader processes, notably coking and hydrocracking. Under the current economic conditions, funding for new equipment is difficult. However, changes can be made to optimize unit performance by better understanding the basic kinetics in thermal cracking and hydrocracking. This paper reviewed the yield distribution differences between thermal cracking and hydrocracking to provide insight into the basic components of operational changes. The objective was to compare yields, product quality distributions and the elemental balances. The opportunities to increase production and improve performance were then analyzed quantitatively within the existing unit equipment limits. tabs., figs.

  2. Magnetic-field-driven crack formation in an evaporated anisotropic colloidal assembly (United States)

    Lama, Hisay; Dugyala, Venkateshwar Rao; Basavaraj, Madivala G.; Satapathy, Dillip K.


    We report the effect of applied magnetic field on the morphology of cracks formed after evaporation of a colloidal suspension consisting of shape-anisotropic ellipsoidal particles on a glass substrate. The evaporation experiments are performed in sessile drop configuration, which usually leads to accumulation of particles at the drop boundaries, commonly known as the "coffee-ring effect." The coffee-ring-like deposits that accompany cracks are formed in the presence as well as in the absence of magnetic field. However, the crack patterns formed in both cases are found to differ markedly. The direction of cracks in the presence of the magnetic field is found to be governed by the orientation of particles and not solely by the magnetic field direction. Our experimental results show that at the vicinity of cracks the particles are ordered and oriented with their long-axis parallel to crack direction. In addition, we observe that the crack spacing in general increases with the height of the particulate film.

  3. An analytical method for free vibration analysis of functionally graded beams with edge cracks (United States)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai


    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  4. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size (United States)

    Wang, Qiang; Zhang, Wei; Jiang, Shan


    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  5. Fatigue and fracture assessment of cracks in steel elements using acoustic emission (United States)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio


    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  6. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size. (United States)

    Wang, Qiang; Zhang, Wei; Jiang, Shan


    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given.

  7. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    Directory of Open Access Journals (Sweden)

    Qiang Wang


    Full Text Available Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given.

  8. Weertman cracks and the fast extraction of diamonds from the Earth's mantle (UNESCO IGCP 557) (United States)

    Regenauer-Lieb, K.; Sommer, H.; Gaede, O.


    New evidence from the Jwangeng diamond mine in South Botswana reveals a possible mechanism of near- sonic speed diamond extraction. Our data support the formation of Weertman cracks as a transport mechanism for the diamond bearing kimberlitic-melt from the Earth's mantle to the surface. Weertman cracks are two-dimensional liquid-filled cracks, which can move with a velocity close to the Rayleigh-wave speed. We present new data that support the hypothesis that Weertman cracks can be responsible for the extraction of diamonds. Arguments for Weertman cracks are threefold: 1) The geometry of kimberlite pipes closely resembles the shape predicted by Weertman cracks; 2) Like Weertman cracks kimberlites themselves never develop an explosive stage besides the mechanism due to contact with groundwater; the melt often gets trapped near the Earth's surface; 3) The speed of the uplift of the diamonds from >150 km depth must be larger than 800 km/h to explain preservation of diamonds themselves and our OH-diffusion profiles in garnet recorded from quenched diamondiferous host rock.


    Directory of Open Access Journals (Sweden)

    Karin Kocúrová


    Full Text Available The article deals with the analysis of a damaged part, which was designed for use in a mechanical clutch of a car. The crack in the part was found during the production inspection. The aim of metallographic and fractography analyses of the fracture surfaces was to discover the reasons for the crack. The reason for creating the crack was the formation of smaller cracks in the production during pressing process of the semiproduct. These cracks even grew after the following thermochemical treatment. The fracture was initiated during the straightening process of quenched part.

  10. The synthesis of organic charge transfer hetero-microtubules by crack welding. (United States)

    Kim, J; Chung, J; Hyon, J; Kwon, T; Seo, C; Nam, J; Kang, Y


    The strain-induced cracks in organic microtubules composed of an organic charge transfer (CT) complex of 1,2,4,5-tetracyanobenzene (TCNB) and naphthalene were selectively welded via the formation of secondary CT complexes; this process, in turn, led to the formation of organic hetero-microtubules consisting of multiple segments of two organic CT complexes.

  11. Lamb wave line sensing for crack detection in a welded stiffener. (United States)

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae


    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  12. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An


    Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  13. The star shaped pattern on broken thin sheets (United States)

    Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel


    We study transverse impacts of rigid objects on a thin elastic sheet made of acrylic. After impact, a transverse wave propagates on the sheet and orthoradial stresses lead to the formation of radial cracks. The result of this fragmentation process is the star shaped pattern frequently observed on broken windows. We investigate the variation of the pattern and in particular the number of radial cracks with impact speed and material properties. The formation of rayed craters by meteorite impacts will be briefly discussed.

  14. Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing

    Directory of Open Access Journals (Sweden)

    Jae Phil Park


    Full Text Available The typical experimental procedure for testing stress corrosion cracking initiation involves an interval-censored reliability test. Based on these test results, the parameters of a Weibull distribution, which is a widely accepted crack initiation model, can be estimated using maximum likelihood estimation or median rank regression. However, it is difficult to determine the appropriate number of test specimens and censoring intervals required to obtain sufficiently accurate Weibull estimators. In this study, we compare maximum likelihood estimation and median rank regression using a Monte Carlo simulation to examine the effects of the total number of specimens, test duration, censoring interval, and shape parameters of the true Weibull distribution on the estimator uncertainty. Finally, we provide the quantitative uncertainties of both Weibull estimators, compare them with the true Weibull parameters, and suggest proper experimental conditions for developing a probabilistic crack initiation model through crack initiation tests.

  15. Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing. (United States)

    Park, Jae Phil; Bahn, Chi Bum


    The typical experimental procedure for testing stress corrosion cracking initiation involves an interval-censored reliability test. Based on these test results, the parameters of a Weibull distribution, which is a widely accepted crack initiation model, can be estimated using maximum likelihood estimation or median rank regression. However, it is difficult to determine the appropriate number of test specimens and censoring intervals required to obtain sufficiently accurate Weibull estimators. In this study, we compare maximum likelihood estimation and median rank regression using a Monte Carlo simulation to examine the effects of the total number of specimens, test duration, censoring interval, and shape parameters of the true Weibull distribution on the estimator uncertainty. Finally, we provide the quantitative uncertainties of both Weibull estimators, compare them with the true Weibull parameters, and suggest proper experimental conditions for developing a probabilistic crack initiation model through crack initiation tests.

  16. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino


    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  17. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Murakawa, H. [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M. [Hitachi Zosen Corp., Osaka (Japan)


    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  18. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  19. The Study of Stress Corrosion Cracking on Alloy 600 C-Ring Samples by Polychromatic X-Ray Microdiffraction (United States)

    Chao, Jing; Fuller, Marina L. Suominen; McIntyre, N. Stewart; Carcea, Anatolie G.; Newman, Roger C.; Kunz, Martin; Tamura, Nobumichi

    Microscopic strains associated with stress corrosion cracks have been investigated in stressed C-rings of Alloy 600 boiler tubing. Polychromatic X-ray Microdiffraction (PXM) was used to measure deviatoric strain tensors and the distribution of dislocations near cracks that had been propagated in electrochemically-accelerated corrosion tests. Stress corrosion cracking (SCC)-generated intergranular cracks were produced in two Alloy 600 specimens after 6h and 18h tests. The diffraction patterns and resultant strain tensors were mapped around the cracked area to a one micron spatial resolution. The strain tensor transverse to the crack growth direction showed tensile strain at the intergranular region just ahead of the crack tip for both specimens. Both cracks were found to follow grain boundary pathways that had the lowest angle of misorientation. Dislocation distributions within each grain were qualitatively obtained from the shapes of the diffraction spots and the effect of "hard" and "soft" grains on the crack pathway was explored for both 6h and 18h specimens.

  20. How life shaped Earth. (United States)

    Gross, Michael


    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  1. Theoretical analysis of crack front instability in mode I+III (United States)

    Leblond, Jean-Baptiste; Karma, Alain; Lazarus, Véronique


    This paper focusses on the theoretical prediction of the widely observed crack front instability in mode I+III, that causes both the crack surface and crack front to deviate from planar and straight shapes, respectively. This problem is addressed within the classical framework of fracture mechanics, where the crack front evolution is governed by conditions of constant energy-release-rate (Griffith criterion) and vanishing stress intensity factor of mode II (principle of local symmetry) along the front. The formulation of the linear stability problem for the evolution of small perturbations of the crack front exploits previous results of Movchan et al. (1998) (suitably extended) and Gao and Rice (1986), which are used to derive expressions for the variations of the stress intensity factors along the front resulting from both in-plane and out-of-plane perturbations. We find exact eigenmode solutions to this problem, which correspond to perturbations of the crack front that are shaped as elliptic helices with their axis coinciding with the unperturbed straight front and an amplitude exponentially growing or decaying along the propagation direction. Exponential growth corresponding to unstable propagation occurs when the ratio of the unperturbed mode III to mode I stress intensity factors exceeds some "threshold" depending on Poisson's ratio. Moreover, the growth rate of helical perturbations is inversely proportional to their wavelength along the front. This growth rate therefore diverges when this wavelength goes to zero, which emphasizes the need for some "regularization" of crack propagation laws at very short scales. This divergence also reveals an interesting similarity between crack front instability in mode I+III and well-known growth front instabilities of interfaces governed by a Laplacian or diffusion field.

  2. Polygon/Cracked Sedimentary Rock (United States)


    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  3. Molecular Dynamics Simulation of Crack Propagation in Single-Crystal Aluminum Plate with Central Cracks

    Directory of Open Access Journals (Sweden)

    Jun Ding


    Full Text Available The crack propagation process in single-crystal aluminum plate (SCAP with central cracks under tensile load was simulated by molecular dynamics method. Further, the effects of model size, crack length, temperature, and strain rate on strength of SCAP and crack growth were comprehensively investigated. The results showed that, with the increase of the model size, crack length, and strain rate, the plastic yield point of SCAP occurred in advance, the limit stress of plastic yield decreased, and the plastic deformability of material increased, but the temperature had less effect and sensitivity on the strength and crack propagation of SCAP. The model size affected the plastic deformation and crack growth of the material. Specifically, at small scale, the plastic deformation and crack propagation in SCAP are mainly affected through dislocation multiplication and slip. However, the plastic deformation and crack propagation are obviously affected by dislocation multiplication and twinning in larger scale.

  4. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth (United States)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.


    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  5. On the origin of residual strain in shape memory alloys: experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings (United States)

    Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.


    The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.

  6. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes


    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked......-hinge model aimed at the analysis of the bending fracture of the cemented material. The model is based on the fracture mechanics concepts of the fictitious crack model with a linear stress–crack opening relationship. Moreover, the paper presents a two-parameter spring foundation model applied to realistically...

  7. Towards robust and effective shape modeling: sparse shape composition. (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean


    Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and treatment evaluation. It is usually derived from low level appearance cues in medical images. However, due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this situation, shape priors become critical to infer and refine the shape derived by image appearances. Effective modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be modeled by a parametric probability distribution; (2) a shape instance derived from image appearance cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve if they are not statistically significant in the training data. In this paper we propose a novel Sparse Shape Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a sparse set of shapes in the shape repository is selected and composed together to infer/refine an input shape. The a priori information is thus implicitly incorporated on-the-fly. Our model leverages two sparsity observations of the input shape instance: (1) the input shape can be approximately represented by a sparse linear combination of shapes in the shape repository; (2) parts of the input shape may contain gross errors but such errors are sparse. Our model is formulated as a sparse learning problem. Using L1 norm relaxation, it can be solved by an efficient expectation-maximization (EM) type of framework. Our method is extensively validated on two medical applications, 2D lung localization in X-ray images and 3D liver segmentation in low-dose CT scans. Compared to state-of-the-art methods, our model exhibits better performance in both studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Cracking behavior of thin gold strip deposited on polycarbonate plate under Cyclic and stepwisely-increased tension

    Directory of Open Access Journals (Sweden)

    Tada Naoya


    Full Text Available Thin metal films deposited on polymers have been attracting much attention in flexible electronics. Various combinations of film and polymer substrate are expected to be developed. In this paper, deformation and fracture of thin metal film on polymer substrate was briefly analysed and the influencing factors were summarized. After that, focusing on the shape and thickness of thin metal film on polymer substrate, cracking behavior of small rounded-rectangular thin gold films called “strips” with a thickness less than one micrometer was observed under cyclic and stepwisely-increased trapezoidal tensions. The strips were deposited on a polycarbonate plate specimen, and wide and narrow strips with different thickness were prepared for the tests. The cracking behaviour was successfully observed and the increasing rate of crack number with the load or strain was examined. Since most cracks were initiated from the small defects, the crack initiation behavior was correlated with the distribution of defects.

  9. Application of Streaming Effect and Joule Heating Effect of Pulse Current in Crack Healing of Metal Materials

    Directory of Open Access Journals (Sweden)

    Jian Chu


    Full Text Available Remanufacture engineering is an emerging industry that saves resources as well as protects the environment. However, cracks on remanufactured components can result in serious trouble. Therefore, in order to avoid unnecessary waste of resources and energy, these cracks should be repaired radically in order to ensure the smooth progressing of the remanufacturing process. Consequently, the crack healing technique of metal materials is very important in the field of remanufacturing. In this study, the U-shape vane stainless steel of a centrifugal compressor which had cracks was processed by pulse current using a high pulse current discharge device, and the influence of the streaming effect and Joule heating effect of pulse current on the crack healing of metal materials was studied, aiming to provide references for the better application of this technology in the remanufacturing field in the future.

  10. 3D Mapping Of Density And Crack Propagation Through Sintering Of Catalysis Tablets By X-Ray Tomography

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Puig-Molina, A.; Dalskov, N.


    For hydrogen production, by steam reforming, porous ceramics are broadly used as catalyst support, due to their stability and ease in shaping. Catalyst supports in the form of tablets are conventionally produced by powder pressing and subsequent sintering. However, if the process is not done...... properly, cracks may arise and propagate during the sintering of the tablets. This can lead to weak sintered tablets that get rejected in the quality control. For this work, crack-containing samples of rejected tabletized support were provided. The formation, growth and closure of internal cracks during...... sintering of the rejected tabletized support material are studied by 3D X-ray tomography. This is a powerful technique, which due to its nondestructive nature is suitable to study the development of internal cracks in the tablets during sintering. Cracks could be identified in the green tablet (before...

  11. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  12. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: the effect of ligand shape on the mode of binding. (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Mansouri, Ghobad


    The interaction of native calf thymus DNA (CT-DNA) with [Cu(ph(2)phen)(phen-dione)Cl]Cl was studied at physiological pH by spectrophotometric, spectrofluorometric, circular dichroism, and viscometric techniques. Considerable hypochromicity and red shift are observed in the UV absorption band of the Cu complex. Binding constants (K(b)) of DNA with the complex were calculated at different temperatures. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van't Hoff equation, which indicated that reaction is predominantly enthalpically driven. All these results indicate that Cu(II) complex interacts with CT-DNA via intercalative mode. Also, this new complex induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) and human T lymphocyte carcinoma-Jurkat cell lines. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Nondestructive determination of fatigue crack damage in composites using vibration tests. (United States)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.


    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  14. Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work (United States)

    Lynch, S. P.


    Mechanisms and kinetics of metal-induced embrittlement, hydrogen-embrittlement, and stress-corrosion cracking are discussed, and long-standing controversies are addressed by reviewing critical observations. Recommendations are also made regarding further work (including repetition of previous work using more advanced measurement and characterisation techniques) that should be carried out in order to resolve some of the contentious issues. The evidence to date suggests that adsorption-based mechanisms, involving weakening of substrate interatomic bonds so that dislocation emission or decohesion is facilitated, accounts for embrittlement in many systems. Embrittling adsorbed species include some metal atoms, hydrogen, and complex ions produced by de-alloying. Other viable mechanisms of embrittlement include those based on (1) dissolution of anodic grain-boundary regions, and (2) decohesion at grain boundaries owing to segregated hydrogen and impurities. The hydrogen-enhanced localised-plasticity mechanism, based on solute hydrogen facilitating dislocation activity in the plastic zone ahead of cracks, makes a contribution in some cases, but is relatively unimportant compared with these other mechanisms for most fracture modes. The film-induced cleavage mechanism, proposed especially for stress-corrosion cracking in systems involving de-alloying at crack tips, is questionable on numerous grounds, and is probably not viable. Rate-controlling processes for environmentally assisted cracking are not well established, except for solid-metal induced embrittlement where surface self-diffusion of embrittling atoms to crack tips controls cracking kinetics. In some systems, adsorption kinetics are probably rate-controlling for liquid-metal embrittlement, hydrogen-environment embrittlement, and stress-corrosion cracking. In other cases, rate-controlling processes could include the rate of anodic or cathodic reactions at and behind crack tips (responsible for producing embrittling

  15. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates (United States)

    Yeasin Bhuiyan, Md; Giurgiutiu, Victor


    The acoustic emission (AE) waveforms from a fatigue crack advancing in a thin metallic plate possess diverse and complex spectral signatures. In this article, we analyze these waveform signatures in coordination with the load level during cyclic fatigue. The advancing fatigue crack may generate numerous AE hits while it grows under fatigue loading. We found that these AE hits can be sorted into various groups based on their AE waveform signatures. Each waveform group has a particular time-domain signal pattern and a specific frequency spectrum. This indicates that each group represents a certain AE event related to the fatigue crack growth behavior. In situ AE-fatigue experiments were conducted to monitor the fatigue crack growth with simultaneous measurement of AE signals, fatigue loading, and optical crack growth measurement. An in situ microscope was installed in the load-frame of the mechanical testing system (MTS) to optically monitor the fatigue crack growth and relate the AE signals with the crack growth measurement. We found the AE signal groups at higher load levels (75%–85% of maximum load) were different from the AE signal groups that happened at lower load levels (below 60% of load level). These AE waveform groups are highly related to the fatigue crack-related AE events. These AE signals mostly contain the higher frequency peaks (100 kHz, 230 kHz, 450 kHz, 550 kHz). Some AE signal groups happened as a clustered form that relates a sequence of small AE events within the fatigue crack. They happened at relatively lower load level (50%–60% of the maximum load). These AE signal groups may be related to crack friction and micro-fracture during the friction process. These AE signals mostly contain the lower frequency peaks (60 kHz, 100 kHz, 200 kHz). The AE waveform based analysis may give us comprehensive information of the metal fatigue.

  16. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities. (United States)

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong


    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1DNA-binding properties are also discussed. Moreover, the complex 3 possess significant antioxidant activity against superoxide and hydroxyl radicals, and the scavenging effects of it are stronger than standard mannitol and vitamin C. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamic shape. (United States)

    Koenderink, J J; van Doorn, A J


    Many useful notions of partial order and/or similarity and relatedness of different geometrical features of smooth shapes that occur in psychologically valid descriptions of shape have no equivalents in the usual geometrical shape theories. This is especially true where similarities are noted between objects of different connectivity: in almost all of the present theories the topological type generates the primary categorization. It is argued that such relations find a logical place only in shape theories that involve morphogenesis. Any object can be embedded uniquely in a morphogenetic sequence if one takes resolution as the parameter of the sequence. A theory of measurement is presented that allows one to define surfaces and (boundary-) curves on multiple levels of resolution. The embedding is essentially unique and is generated via a partial differential equation that governs the evolution. A canonical projection connects any high resolution specimen to lower resolution versions. The bifurcation set of the projection generates natural part boundaries. Singularities of the evolution are completely characterized as emergence, accretion and versification processes (involving topological change) and singularities by which inflections (inflection points for curves, parabolic curves for surfaces) are generated. The latter singularities involve a single process for the generation of inflections and three other processes by which the existing inflection structure may be changed. Relations with existing theories in vogue in robotics and AI, as well as in psychophysics are discussed.

  18. Controlling fatigue crack paths for crack surface marking and growth investigations

    Directory of Open Access Journals (Sweden)

    S. Barter


    Full Text Available While it is well known that fatigue crack growth in metals that display confined slip, such as high strength aluminium alloys, develop crack paths that are responsive to the loading direction and the local microstructural orientation, it is less well known that such paths are also responsive to the loading history. In these materials, certain loading sequences can produce highly directional slip bands ahead of the crack tip and by adjusting the sequence of loads, distinct fracture surface features or progression marks, even at very small crack depths can result. Investigating the path a crack selects in fatigue testing when particular combinations of constant and variable amplitude load sequences are applied is providing insight into crack growth. Further, it is possible to design load sequences that allow very small amounts of crack growth to be measured, at very small crack sizes, well below the conventional crack growth threshold in the aluminium alloy discussed here. This paper reports on observations of the crack path phenomenon and a novel test loading method for measuring crack growth rates for very small crack depths in aluminium alloy 7050-T7451 (an important aircraft primary structural material. The aim of this work was to firstly generate short- crack constant amplitude growth data and secondly, through the careful manipulation of the applied loading, to achieve a greater understanding of the mechanisms of fatigue crack growth in the material being investigated. A particular focus of this work is the identification of the possible sources of crack growth retardation and closure in these small cracks. Interpreting these results suggests a possible mechanism for why small fatigue crack growth through this material under variable amplitude loading is faster than predicted from models based on constant amplitude data alone.

  19. Mechanisms of Subcritical Cracking in Calcite (United States)

    Royne, A.; Dysthe, D. K.; Bisschop, J.


    Brittle materials are characterized by a critical stress intensity factor above which they will fail catastrophically by dynamic cracking. However, it has been observed that materials can also fail at much lower stresses, through slow crack growth, often referred to as subcritical cracking. This phenomenon can take place even in vacuum, but is greatly enhanced by water and other reactive species in the environment. For a given material and environmental condition there is a systematic relationship between the crack tip velocity and the stress intensity factor. The presence of a lower stress limit to subcritical cracking has been predicted from thermodynamics but has not been firmly demonstrated experimentally. This parameter would control the long- term strength of geological materials. Subcritical cracking must necessarily be important in controlling the rock strength in near-surface processes where water and other active species are present and the displacements and stresses are low. Weathering is one example of such a process. Modelling has shown that fracture networks generated by a high degree of subcritical cracking will percolate at much lower fracture densities than purely stochastical fracture networks. This has important implications for how water can move through the crust. Understanding the mechanisms for subcritical crack growth in geological materials is also important in assessing the stability and long term performance of sequestration reservoirs for CO2 or nuclear waste. The mechanism for stress corrosion is well known for glasses and quartz. For carbonate minerals, the mechanism for subcritical crack growth has not been identified, and the only experimental studies on calcitic materials have been on polycrystalline rocks such as marble. Suggested mechanisms include stress corrosion (weakening reactions at the crack tip), preferential dissolution at the crack tip with rapid removal of dissolved species, and environmentally controlled


    Directory of Open Access Journals (Sweden)

    Mircea O. POPOVICU


    Full Text Available The Hydroelectric Power Plants uses the regenerating energy of rivers. The hydraulic Bulb turbines running with low heads are excellent alternative energy sources. The shafts of these units present themselves as massive pieces, with cylindrical shape, manufactured from low-alloyed steels. The paper analyses the fatigue cracks occurring at some turbines in the neighbourhood of the connection zone between the shaft and the turbine runner flange. To obtain the tension state in this zone ANSIS and AFGROW computing programs were used. The number of running hours until the piercing of the shaft wall is established as a useful result.


    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino


    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  2. Crack formation and prevention in colloidal drops (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook


    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  3. Closure measurements of naturally initiating small cracks (United States)

    Sharpe, W. N., Jr.; Su, X.


    The initiation and growth of cracks in smooth 2024-T3 aluminum specimens have been investigated using acetate replicas. Crack opening displacements were measured as a function of load at several positions along the crack as it grew across the thickness of the specimen and became a through-the-thickness crack of a few millimeters in length. Tests run for R-ratios of 0.5, 0.0 and -1.0 showed that closure loads were well predicted by Newman's (1984) model. It is noted that small cracks grow slightly faster than would be predicted by long-crack data, and it is suggested that effects other than plasticity-induced closure must be taken into account.

  4. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan


    for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...... is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...

  5. Crack formation and prevention in colloidal drops. (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook


    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  6. Study of crack inversions utilizing dipole model of a crack and Hall element measurements

    Energy Technology Data Exchange (ETDEWEB)

    Minkov, Dorian E-mail:; Lee, Jinyi; Shoji, Tetsuo


    A method is proposed for computing the depth and width of simple surface cracks based on dipole model of a crack. Surface cracks with different widths cut mechanically in SS400 steel specimens are investigated. Hall voltage distributions are measured by a Hall element sliding on the specimen's surface along a line parallel to the direction of the applied magnetic field, perpendicular to the long axis of the crack, and halving its length. The performed crack inversions show that the depth of the crack can be determined with 2% error, provided, that the crack length and width are measured independently. When the crack width is unknown, the depth error is within 12%, but the width error can be as large as 30%.0.

  7. Ductile crack growth simulation and effects of crack growth on single-edge notched bend specimens (United States)

    Shimada, Keito; Komiya, Shinji; Iwashita, Tsutomu


    This paper describes the testing of single-edge notched bend (SENB) specimens, which are used for fracture toughness tests, and the ductile crack initiation from the notch tip of the specimens. All of the specimens exhibited brittle fracture with relatively large ductile crack growth (from 1.0 to 4.8 mm). The paper also shows the ductile crack growth simulation using a damage model (Bonora model) for finite element analysis (FEA). FEA reproduced ductile crack growth observed in the SENB tests and the analysis results showed the effects of the ductile crack growth rate on stress distribution around the crack tips. In addition, the value of the Weibull stress was calculated in the paper, and the Weibull stress slightly decreased if the model had a higher ductile crack growth rate as compared with the model that had a lower ductile crack growth rate.

  8. Opening-mode cracking in asphalt pavements : crack initiation and saturation. (United States)


    This paper investigates the crack initiation and saturation for opening-mode cracking. Using elastic governing equations : and a weak form stress boundary condition, we derive an explicit solution of elastic fields in the surface course and : obtain ...

  9. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello


    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  10. Expansive Soil Crack Depth under Cumulative Damage

    Directory of Open Access Journals (Sweden)

    Bei-xiao Shi


    Full Text Available The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil.

  11. Cracks in Sheets Draped on Curved Surfaces (United States)

    Mitchell, Noah P.; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    Conforming materials to surfaces with Gaussian curvature has proven a versatile tool to guide the behavior of mechanical defects such as folds, blisters, scars, and pleats. In this talk, we show how curvature can likewise be used to control material failure. In our experiments, thin elastic sheets are confined on curved geometries that stimulate or suppress the growth of cracks, and steer or arrest their propagation. By redistributing stresses in a sheet, curvature provides a geometric tool for protecting certain regions and guiding crack patterns. A simple model captures crack behavior at the onset of propagation, while a 2D phase-field model successfully captures the crack's full phenomenology.

  12. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J


    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  13. Fatigue crack growth detect, assess, avoid

    CERN Document Server

    Richard, Hans Albert


    This book offers a concise introduction to fatigue crack growth, based on practical examples. It discusses the essential concepts of fracture mechanics, fatigue crack growth under constant and variable amplitude loading and the determination of the fracture-mechanical material parameters. The book also introduces the analytical and numerical simulation of fatigue crack growth as well as crack initiation. It concludes with a detailed description of several practical case studies and some exercises. The target group includes graduate students, researchers at universities and practicing engineers.

  14. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina


    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  15. Semi-empirical crack tip analysis (United States)

    Chudnovsky, A.; Ben Ouezdon, M.


    Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.

  16. Measurements of Seismic Anisotropy in Synthetic Rocks with Controlled Crack Geometry and Different Crack Densities (United States)

    Ding, Pinbo; Di, Bangrang; Wang, Ding; Wei, Jianxin; Li, Xiangyang


    Seismic anisotropy can help to extract azimuthal information for predicting crack alignment, but the accurate evaluation of cracked reservoir requires knowledge of degree of crack development, which is achieved through determining the crack density from seismic or VSP data. In this research we study the dependence of seismic anisotropy on crack density, using synthetic rocks with controlled crack geometries. A set of four synthetic rocks containing different crack densities is used in laboratory measurements. The crack thickness is 0.06 mm and the crack diameter is 3 mm in all the cracked rocks, while the crack densities are 0.00, 0.0243, 0.0486, and 0.0729. P and S wave velocities are measured by an ultrasonic investigation system at 0.5 MHz while the rocks are saturated with water. The measurements show the impact of crack density on the P and S wave velocities. Our results are compared to the theoretical prediction of Chapman (J App Geophys 54:191-202, 2003) and Hudson (Geophys J R Astron Soc 64:133-150, 1981). The comparison shows that measured velocities and theoretical results are in good quantitative agreement in all three cracked rocks, although Chapman's model fits the experimental results better. The measured anisotropy of the P and S wave in the four synthetic rocks shows that seismic anisotropy is directly proportional to increasing crack density, as predicted by several theoretical models. The laboratory measurements indicate that it would be effective to use seismic anisotropy to determine the crack density and estimate the intensity of crack density in seismology and seismic exploration.

  17. Extended FEM modeling of crack paths near inclusions

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Legarth, Brian Nyvang; Niordson, Christian Frithiof


    the effects on the crack path when changing the relative stiffness between inclusion and matrix material, the relative distance between initial crack and inclusion, and the size of the inclusion. Both edge cracks and internal cracks are studied. An example with an internal crack near an inclusion is presented...

  18. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology (United States)

    Allen, P. A.; Wells, D. N.


    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  19. Influence of a glide path on the dentinal crack formation of ProTaper Next system

    Directory of Open Access Journals (Sweden)

    Sevinç Aktemur Türker


    Full Text Available Objectives The aim was to evaluate dentinal crack formation after root canal preparation with ProTaper Next system (PTN with and without a glide path. Materials and Methods Forty-five mesial roots of mandibular first molars were selected. Fifteen teeth were left unprepared and served as controls. The experimental groups consist of mesiobuccal and mesiolingual root canals of remaining 30 teeth, which were divided into 2 groups (n = 15: Group PG/PTN, glide path was created with ProGlider (PG and then canals were shaped with PTN system; Group PTN, glide path was not prepared and canals were shaped with PTN system only. All roots were sectioned perpendicular to the long axis at 1, 2, 3, 4, 6, and 8 mm from the apex, and the sections were observed under a stereomicroscope. The presence/absence of cracks was recorded. Data were analyzed with chi-square tests with Yates correction. Results There were no significant differences in crack formation between the PTN with and without glide path preparation. The incidence of cracks observed in PG/PTN and PTN groups was 17.8% and 28.9%, respectively. Conclusions The creation of a glide path with ProGlider before ProTaper Next rotary system did not influence dentinal crack formation in root canals.

  20. Radiation efficiency during slow crack propagation: an experimental study. (United States)

    Jestin, Camille; Lengliné, Olivier; Schmittbuhl, Jean


    Creeping faults are known to host a significant aseismic deformation. However, the observations of micro-earthquake activity related to creeping faults (e.g. San Andreas Faults, North Anatolian Fault) suggest the presence of strong lateral variabilities of the energy partitioning between radiated and fracture energies. The seismic over aseismic slip ratio is rather difficult to image over time and at depth because of observational limitations (spatial resolution, sufficiently broad band instruments, etc.). In this study, we aim to capture in great details the energy partitioning during the slow propagation of mode I fracture along a heterogeneous interface, where the toughness is strongly varying in space.We lead experiments at laboratory scale on a rock analog model (PMMA) enabling a precise monitoring of fracture pinning and depinning on local asperities in the brittle-creep regime. Indeed, optical imaging through the transparent material allows the high resolution description of the fracture front position and velocity during its propagation. At the same time, acoustic emissions are also measured by accelerometers positioned around the rupture. Combining acoustic records, measurements of the crack front position and the loading curve, we compute the total radiated energy and the fracture energy. We deduce from them the radiation efficiency, ηR, characterizing the proportion of the available energy that is radiated in form of seismic wave. We show an increase of ηR with the crack rupture speed computed for each of our experiments in the sub-critical crack propagation domain. Our experimental estimates of ηR are larger than the theoretical model proposed by Freund, stating that the radiation efficiency of crack propagation in homogeneous media is proportional to the crack velocity. Our results are demonstrated to be in agreement with existing studies which showed that the distribution of crack front velocity in a heterogeneous medium can be well described by a

  1. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum (United States)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.


    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  2. Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel (United States)

    Mohtadi-Bonab, M. A.; Eskandari, M.; Karimdadashi, R.; Szpunar, J. A.


    In this study, the surface and cross section of an as-received API X70 pipeline steel was studied by SEM and EDS techniques in order to categorize the shape and morphology of inclusions. Then, an electrochemical hydrogen charging using a mixed solution of 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate has been utilized to create hydrogen cracks in X70 steel. After hydrogen charging experiments, the cross section of this steel has been accurately checked by SEM in order to find out hydrogen cracks. The region of hydrogen cracks was investigated by SEM and EBSD techniques to predict the role of different microstructural parameters involving hydrogen induced cracking (HIC) phenomenon. The results showed that inclusions were randomly distributed in the cross section of tested specimens. Moreover, different types of inclusions in as-received X70 steel were found. However, only inclusions which were hard, brittle and incoherent with the metal matrix, such as manganese sulfide and carbonitride precipitates, were recognized to be harmful to HIC phenomenon. Moreover, HIC cracks propagate dominantly in transgraular manner through differently oriented grains with no clear preferential trend. Moreover, a different type of HIC crack with about 15-20 degrees of deviation from the rolling direction was found and studied by EBSD technique and role of micro-texture parameters on HIC was discussed.

  3. Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams

    Directory of Open Access Journals (Sweden)

    Peng Lin


    Full Text Available In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1 under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2 Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification.

  4. Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels (United States)

    Hong, Youshi; Zhao, Aiguo; Qian, Guian; Zhou, Chengen


    The fatigue strength and crack initiation mechanisms of very-high-cycle fatigue (VHCF) for two low alloy steels were investigated. Rotary bending tests at 52.5 Hz with hour-glass type specimens were carried out to obtain the fatigue propensity of the test steels, for which the failure occurred up to the VHCF regime of 108 cycles with the S-N curves of stepwise tendency. Fractography observations show that the crack initiation of VHCF is at subsurface inclusion with "fish-eye" pattern. The fish-eye is of equiaxed shape and tends to tangent the specimen surface. The size of the fish-eye becomes large with the increasing depth of related inclusion from the surface. The fish-eye crack grows faster outward to the specimen surface than inward. The values of the stress intensity factor ( K I ) at different regions of fracture surface were calculated, indicating that the K I value of fish-eye crack is close to the value of relevant fatigue threshold (Δ K th ). A new parameter was proposed to interpret the competition mechanism of fatigue crack initiation at the specimen surface or at the subsurface. The simulation results indicate that large inclusion size, small grain size, and high strength of material will promote fatigue crack initiation at the specimen subsurface, which are in agreement with experimental observations.

  5. Effects of outlets on cracking risk and integral stability of super-high arch dams. (United States)

    Lin, Peng; Liu, Hongyuan; Li, Qingbin; Hu, Hang


    In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification.

  6. Nucleation of squat cracks in rail, calculation of crack initiation angles in three dimensions

    NARCIS (Netherlands)

    Naeimi, M.; Li, Z.; Dollevoet, R.P.B.J.


    A numerical model of wheel-track system is developed for nucleation of squat-type fatigue cracks in rail material. The model is used for estimating the angles of squat cracks in three dimensions. Contact mechanics and multi-axial fatigue analysis are combined to study the crack initiation mechanism

  7. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon


    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  8. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking : [work plan]. (United States)


    Project -- Work Approach: The first phase will examine the critical problem of controlling cracking in the 82W : girders. This complex problem is controlled by effects of concentrated stresses, force : transfer from pre-tensioning strand, inelastic b...

  9. Molten-Shape Prediction and Fracture-Life Evaluation of Micro-Solder Joint in Semiconductor Structure (United States)

    Tanie, Hisashi

    The reliability of a micro-solder joint in a semiconductor structure depends on its solder shape. Therefore, many methods of predicting the molten-solder shape have been proposed. However, conventional methods cannot be used to accurately predict the shape of a miniaturized solder. In a miniaturized solder joint, molten solder greatly changes its shape during the reflow process, and even topology changes (e.g., merging with another solder in a neighboring joint or splitting into several pieces) might occur. Conventional methods cannot be used for expressing these phenomena. To predict a miniaturized solder shape, we developed a new shape-prediction method based on the moving-particle semi-implicit (MPS) method. In the MPS method, a continuum is expressed as an assembly of particles. In contrast to finite element analysis (FEA), our new method can easily express large deformation and topology changes because the continuum does not need to be divided into elements. Moreover, we evaluated the fracture life of a solder joint with the predicted solder shape by coupling our shape-prediction method with a crack-propagation analysis method that we also developed. The crack-propagation is used for automatically calculating a crack-initiation point and crack-propagation paths, and the fracture life is evaluated quantitatively. We applied this coupling method to evaluate fracture lives of various solder joints and found that a difference in solder shape caused a difference in crack-initiation points, crack-propagation paths, and fracture lives.

  10. Advances in structural damage assessment using strain measurements and invariant shape descriptors (United States)

    Patki, Amol Suhas

    Energy conservation has become one of the most important topic of engineering research over the last couple of decades all around the world and implies reduced energy consumption in order to preserve rapidly depleting natural resources. Along with development of fuel-efficient power plants and technology utilizing alternate fuel to traditional fossil fuels, the design and manufacturing of light-weight energy-efficient structures plays a major role in energy conservation. However this reduction in material and/or weight cannot be achieved at the expense of safety. Thus it is essential to either increase the confidence in the analysis of mechanics of traditional isotropic materials to reduce safety factors or develop new structural materials, such as fiber-reinforced (FRP) polymer matrix composites, which tend to have a higher strength to weight ratio. This doctoral research work will focus on two problems faced by the structural mechanics community viz. effects of closure and overloads on fatigue cracks and structural health monitoring of composites. Fatigue life prediction is largely empirical which in recent years has been shown to be a conservative design model. Investigation of crack growth mechanisms, such as crack closure can lead to design optimization. However, the lack of understanding and accepted theories introduces a degree of uncertainty in such models. Many of the complexity and uncertainty arise from the lack of an experimental technique to quantify crack closure. In this context, this research work offers the most compelling evidence to date of the effects of overload retardation and a confirmation of the Wheeler model using direct experimental observations of the stress field and crack tip plastic zone with the aid of thermoelastic stress analysis. On the other hand, the uncertainties in the post-damage behavior of energy saving FRP-composite materials increase their capital cost and maintenance cost. Damage in isotropic materials tends to be local

  11. Transgranular Crack Nucleation in Carrara Marble of Brittle Failure (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen; Maruvanchery, Varun


    Understanding the microcrack nucleation is of a fundamental importance in the study of rock fracturing process. Due to variations in texture and mineralogy, different rocks may show different distinctive microcrack nucleation mechanisms. In order to understand the microcrack nucleation mechanisms in Carrara marble comprehensively, localized damage zones are artificially produced by loading specimens containing an array of en-echelon flaws in this study. Then, representative samples were cut from those loaded specimens and prepared for optical observation. Four types of microcrack nucleation mechanisms leading to the formation of transgranular cracks have been identified in Carrara marble. Type I and II mechanisms are favored by the distinctive polygonal shape of the crystal grains in Carrara marble. Local tensile stress concentration in these two mechanisms is attributed to grain sliding and divergent normal contact force, respectively. Type III mechanism is associated with the gliding along twin lamellae. The resultant tensile stress concentration could nucleate microcracks within the grain containing these lamellae or in the grain boundary. No microcracks in the adjoining grains were observed in this study. Our statistical analysis suggests that type III mechanism favors the nucleation of new cracks which are nearly perpendicular to the gently inclined twin lamellae and thus have a small angle with the maximum loading direction (about 15°). Type IV mechanism operates in grains failed mainly due to compressive stress rather than tensile stress concentration. Sets of parallel microcracks of this mechanism seem to be related to the crystallographic planes of calcite. The microcracking results also suggest that most of the grain boundaries in damaged zone have been cracked at the loading about 80 % of the specimen strength, while transgranular cracks begin to occur at that time and flourish after about 90 % loading of the strength.

  12. Weertman cracks and the fast extraction of diamonds from the Earth's mantle with a speed of about 800 km/h (United States)

    Sommer, Holger; Regenauer-Lieb, Klaus; Gaede, Oliver


    First evidence from the Jwangeng diamond mine in South Botswana reveals a possible mechanism of near-sonic speed diamond extraction. Our data support the formation of Weertman cracks as a transport mechanism for the diamond bearing kimberlitic-melt from the Earth's mantle to the surface. Weertman cracks are vertical fluid filled cracks, which can move with a velocity of about 800 km/h. External stress fields facilitate the propagation of a Weertman crack, but it is essentially driven by the buoyancy or gravitational potential energy of the fluid. A Weertman crack can never overshoot (propagate faster than) the fluid, without losing its driving force. Therefore, we use properties of the fluid to estimate upper limits for the propagation velocity of a Weertman crack. We present new data that support the hypothesis that Weertman cracks can be responsible for the extraction of diamonds. Arguments for Weertman cracks are threefold: 1) The geometry of kimberlite pipes closely resembles the shape predicted by Weertman cracks; 2) Like Weertman cracks kimberlites themselves never develop an explosive stage besides the mechanism due to contact with groundwater; the melt often gets trapped near the Earth's surface; 3) The speed of the uplift of the diamonds from >150 km depth must be larger than 800 km/h to explain preservation of diamonds themselves and our OH-diffusion profiles in garnet and our calculations recorded from quenched diamondiferous host rock.

  13. Life and death of a single catalytic cracking particle. (United States)

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C; Weckhuysen, Bert M


    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are "highways" of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible.

  14. Mental health care technologies for treating crack users

    Directory of Open Access Journals (Sweden)

    Cintia Nasi

    Full Text Available The aim of this study was to identify mental health care technologies for treating crack users in a Psychosocial Care Center for Alcohol and other Drugs (CAPsad, as per its acronym in Portuguese. A qualitative, evaluative case study was developed in a CAPSad, using fourth generation evaluation. Data collection occurred from January to March 2013 by means of semi-structured interviews applied to 36 subjects, these being health care professionals, patients, patients' relatives and managers. Data analysis identified the category strategies in mental health work. Results showed that recovery programs should provide spaces for dialogue, aiming to clarify the process of psychiatric internment to the user and family, and involve these in the therapy, implementing educational practices and ongoing consideration of mental health activities. In conclusion, it is important to discuss the technologies used in everyday care services, in light of the complexity of crack use.

  15. Surface aspects of pitting and stress corrosion cracking (United States)

    Truhan, J. S., Jr.; Hehemann, R. F.


    The pitting and stress corrosion cracking of a stable austenitic stainless steel in aqueous chloride environments were investigated using a secondary ion mass spectrometer as the primary experimental technique. The surface concentration of hydrogen, oxygen, the hydroxide, and chloride ion, magnesium or sodium, chromium and nickel were measured as a function of potential in both aqueous sodium chloride and magnesium chloride environments at room temperature and boiling temperatures. It was found that, under anodic conditions, a sharp increase in the chloride concentration was observed to occur for all environmental conditions. The increase may be associated with the formation of an iron chloride complex. Higher localized chloride concentrations at pits and cracks were also detected with an electron microprobe.

  16. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel (United States)

    Phung-On, Isaratat


    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  17. Transport properties of MnTe films with cracks produced in thermal cycling process (United States)

    Yang, Liang; Wang, Zhenhua; Zhang, Zhidong


    As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO2/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient ( α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress.

  18. Transport properties of MnTe films with cracks produced in thermal cycling process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang; Wang, Zhenhua; Zhang, Zhidong [Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang (China)


    As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO{sub 2}/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient (α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress. (orig.)

  19. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity (United States)

    Juan, Pierre-Alexandre; Dingreville, Rémi


    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive "interferences" are directly affected by the interface structure and its elastic response. This general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.

  20. Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material (United States)

    Zhang, Jiaxi; Ghosh, Somnath


    Modeling crack propagation in crystalline materials is a challenging enterprise due to complexities induced by the interaction of the crack with various deformation mechanisms such as dislocation, micro twin, stacking faults etc.. As a first step toward the development of physics-based models of deformation in the presence of a crack, this paper proposes a comprehensive approach based on molecular dynamics simulations of a crystalline material with an embedded crack. The MD-based framework invokes a sequence of four tasks to accomplish the overall goal, viz. (i) MD simulation, (ii) characterization of atomic-level crack and deformation mechanisms, (iii) quantification of atomic-level deformation mechanisms and crack, and (iv) response analysis. Effective characterization methods like CNA, DXA and deformation gradient analysis followed by quantification are able to delineate the crack length/opening, dislocation structure and microtwins at a high resolution. Interactions of the crack with the dislocation networks and microtwins under mode I loading conditions are investigated for different lattice orientations. Crystal orientation has significant effect on the mechanisms activation and evolution. An important study is made through partitioning of the total energy into recoverable elastic energy, defect energy and inelastic dissipation, and correlating them with deformation characteristics such as dislocation density and twin volume fraction. Finally, a simple mechanistic model of deformation is developed, which associates dislocation density evolution with the stress-strain response in a crystalline material in the presence of a crack. Results show good quantitative agreement of material softening and hardening behavior with direct MD simulation results. The model can be further used to estimate the range of strain-rates that may be applied for physically meaningful MD simulations.

  1. Knuckle cracking: secondary hyperparathyroidism and what your mother did not tell you. (United States)

    Ross, Edward A; Paugh-Miller, Jennifer L; Nappo, Robert W


    Secondary hyperparathyroidism in end-stage renal disease patients has protean musculoskeletal manifestations. Some of our dialysis patients spontaneously vocalized that they had lost the ability to crack their knuckles and then experienced gratifying restoration after surgical parathyroidectomy. We propose that the physiology and mechanical basis of knuckle cracking would be affected by parathyroid-related mineral and bone disorders. We surveyed all of our chronic dialysis outpatients who had undergone surgical parathyroidectomy. Thirteen (∼12% of the population) individuals were identified: eight males, age 37.7 ± 12.5 years old, dialysis duration of 10.2 ± 7.0 years and peak preoperative intact parathyroid hormone (PTH) levels of 2344 ± 900 pg/mL. Seven patients had no recollection of knuckle cracking issues, with surgery as remote as decades. Six individuals were able to provide adequate histories: four had postoperative restoration of knuckle cracking and expressed great satisfaction from the emotional relief from what appeared to be habitual knuckle cracking. Two of these patients reported rapid return of cracking, occurring in less than ∼2 weeks. This is the first report of loss of knuckle cracking due to hyperparathyroidism and its cure in 67% of patients, following surgical parathyroidectomy. We propose that parathyroid (e.g. calcific) changes in articular structures (tendons, ligaments) cause reduced elasticity, limited joint surface separation upon flexion, attenuation of cavitation and thus, loss of the audible crack upon vacuum collapse. The psychological 'release' from habitual knuckle cracking may be a motivator from some patients to adhere to complex parathyroid regimens or to pursue surgical intervention.

  2. Predicting the growth of small and large cracks using a crack-closure model (United States)

    Newman, J. C., Jr.; Phillips, E. P.; Swain, M. H.


    An evaluation is conducted of the ability of a crack-closure model to predict the fatigue life of notched specimens under spectrum loading, for the cases of crack initiation and growth along the bore of a semicircular notch and the growth of large cracks in 2024-T3 Al alloy sheets under constant-amplitude loading. These cases are used to establish an initial defect size and relationship between the stress-intensity factor range and crack-growth rate. Experimental and calculation results for small-crack growth rates are in good agreement and exhibited a stress level effect at equal values of stress-intensity factor range.

  3. Fatigue cracks in Eurofer 97 steel: Part I. Nucleation and small crack growth kinetics (United States)

    Kruml, T.; Polák, J.


    Fatigue crack nucleation and growth were studied in the Eurofer 97 ferritic-martensitic steel at room temperature. Cylindrical specimens with a shallow notch and no artificial crack starters were used. The constant strain amplitude cycling was adopted. First fatigue cracks nucleate at about 5% of the fatigue life along the surface slip bands. If a crack overcome the barrier of the first high angle boundary, its growth is regular and an exponential growth law is observed. This law may be used for the residual fatigue life prediction based on the small crack growth kinetics.

  4. Mitigation strategies for reflective cracking in pavements : [research project capsule]. (United States)


    Refl ection cracks are caused by discontinuities (cracks or joints) in underlying layers, : which propagate through hot-mix asphalt (HMA) overlay due to continuous movement : at the crack prompted by thermal expansion and traffi c loading. If the new...

  5. Pretensioned concrete girder end crack control : research brief. (United States)


    Research Objectives: : Prove through physical testing and observation that debonding strands can reduce or eliminate critical girder end cracking : Eliminate cracking in the bottom flange of the girders, where cracks could allow moisture to r...

  6. Crack Formation in Grouted Annular Composite

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The objective of the present analysis is to identify the reason for extensive crack formation which occurred during an annulus grouting performance test, to evaluate possible consequences of the cracking, and to recommend measures to be taken in order to avoid similar problems in the future....

  7. Crack Monitoring of Operational Wind Turbine Foundations. (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim


    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  8. Entering a Crack: An Encounter with Gossip (United States)

    Henderson, Linda


    In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…

  9. Corrosion and Cracking of Reinforced Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of the deterioration of reinforced concrete has in recent years changed from being a deterministic modelling based on experience to be stochastic modelling based on sound and consistent physical, chemical and mechanical principles. In this paper is presented a brief review of modern mod...... for time to initial corrosion, time to initial cracking, and time to a given crack width may be obtained....

  10. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter


    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...

  11. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard


    On the basis of the B-model developed in [J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage. John Wiley, New York (1985)] a new numerical model incorporating the physical knowledge of fatigue crack propagation is developed. The model is based on the assumption that the crack...

  12. Uncertainty Quantification in Fatigue Crack Growth Prognosis

    Directory of Open Access Journals (Sweden)

    Shankar Sankararaman


    Full Text Available This paper presents a methodology to quantify the uncertainty in fatigue crack growth prognosis, applied to structures with complicated geometry and subjected to variable amplitude multi-axial loading. Finite element analysis is used to address the complicated geometry and calculate the stress intensity factors. Multi-modal stress intensity factors due to multi-axial loading are combined to calculate an equivalent stress intensity factor using a characteristic plane approach. Crack growth under variable amplitude loading is modeled using a modified Paris law that includes retardation effects. During cycle-by-cycle integration of the crack growth law, a Gaussian process surrogate model is used to replace the expensive finite element analysis. The effect of different types of uncertainty – physical variability, data uncertainty and modeling errors – on crack growth prediction is investigated. The various sources of uncertainty include, but not limited to, variability in loading conditions, material parameters, experimental data, model uncertainty, etc. Three different types of modeling errors – crack growth model error, discretization error and surrogate model error – are included in analysis. The different types of uncertainty are incorporated into the crack growth prediction methodology to predict the probability distribution of crack size as a function of number of load cycles. The proposed method is illustrated using an application problem, surface cracking in a cylindrical structure.

  13. Deformation and Failure Mechanisms of Shape Memory Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Samantha Hayes [Univ. of Michigan, Ann Arbor, MI (United States)


    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior results on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.

  14. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life (United States)

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan


    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  15. Stress-corrosion cracking in metals (United States)


    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  16. Crack opening: from colloidal systems to paintings. (United States)

    Léang, Marguerite; Giorgiutti-Dauphiné, Frédérique; Lee, Lay-Theng; Pauchard, Ludovic


    Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

  17. XFEM for Thermal Crack of Massive Concrete

    Directory of Open Access Journals (Sweden)

    Guowei Liu


    Full Text Available Thermal cracking of massive concrete structures occurs as a result of stresses caused by hydration in real environment conditions. The extended finite element method that combines thermal fields and creep is used in this study to analyze the thermal cracking of massive concrete structures. The temperature field is accurately simulated through an equivalent equation of heat conduction that considers the effect of a cooling pipe system. The time-dependent creep behavior of massive concrete is determined by the viscoelastic constitutive model with Prony series. Based on the degree of hydration, we consider the main properties related to cracking evolving with time. Numerical simulations of a real massive concrete structure are conducted. Results show that the developed method is efficient for numerical calculations of thermal cracks on massive concrete. Further analyses indicate that a cooling system and appropriate heat preservation measures can efficiently prevent the occurrence of thermal cracks.

  18. Evaluation of crack tip constraint using photoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Ayatollahi, M.R.; Safari, H


    The method of photoelasticity has been used extensively in the past for investigating elastic stresses in cracked specimens. However, previous studies concentrate predominantly on different methods for determining the stress intensity factors. Some of these methods make use of the higher order stress terms including the T-stress to achieve more accurate experimental results for stress intensity factors. Nevertheless, the effect of T-stress on the stress fields near the crack tip has received little attention in previous photoelastic studies. In this paper, a two-parameter formulation is used to study how the T-stress influences the isochromatic fringe patterns around the tip of a mode I crack. Theoretical and experimental results obtained in this research show that the isochromatic fringes near the crack tip rotate forward and backward for negative and positive values of T-stress, respectively. Therefore, the experimental technique of photoelasticity can be used to distinguish low constraint cracked components from high constraint ones.

  19. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)


    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  20. The geometry of soil crack networks

    CERN Document Server

    Chertkov, V Y


    The subject of this work is the modification and specification of an approach to detail the estimation of soil crack network characteristics. The modification aims at accounting for the corrected soil crack volume based on the corrected shrinkage geometry factor compared to known estimates of crack volume and shrinkage geometry factor. The mode of the correction relies on recent results of the soil reference shrinkage curve. The main exposition follows the preliminary brief review of available approaches to dealing with the geometry of soil crack networks and gives a preliminary brief summary of the approach to be modified and specified. To validate and illustrate the modified approach the latter is used in the analysis of available data on soil cracking in a lysimeter.

  1. Small crack test program for helicopter materials (United States)

    Annigeri, Bal; Schneider, George


    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  2. Shape-controlled synthesis of Mnsbnd Co complex oxide nanostructures via a polyol-based precursor route and their catalytic properties (United States)

    Liu, Ling; Yang, Yanzhao


    A polyol-based precursor route was developed to synthesize Mnsbnd Co complex oxide with well-defined morphologies, in which ethylene glycol (EG) was treated with metal acetates in the presence of poly(vinyl-pyrrolidone) (PVP). By varying the reaction temperature, the as-obtained precursor was readily regulated its morphologies, which could vary from nanospheres to hierarchically stacked nanoplates. The initial molar ratio of Mn-acetate to Co-acetate in EG solution played a crucial role in determining the chemical composition of the nano/microstructured precursor. On the basis of the experimental results, a possible growth mechanism for the nanostructured precursor was proposed. MnCo2O4 and CoMn2O4 could be obtained from their precursors without changing the morphologies by a simple calcination procedure. The synthetic methodology appears to be general and promises to provide an entryway into other complex oxide materials with various nano/microstructures. As an example of potential applications, the as-obtained Mnsbnd Co mixed oxide nano/microstructures were used as catalyst in CO oxidation, and the effect of the morphology and composition on catalytic activities was investigated.

  3. Crack branching in cross-ply composites (United States)

    La Saponara, Valeria


    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  4. Study on the change of aspect ratios of small surface cracks emanated from a toe of corner boxing; Mawashi yosetsudome tanbu kara hassei denpasuru bishi bisho hyomen kiretsu no aspect hi henka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Toyosada, M.; Yamaguchi, K.; Takeda, K.; Watanabe, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering


    The fatigue test of specimens with a stiffener was carried out to examine the change in aspect ratio (crack depth/length) of fatigue cracks in a stress concentration field and residual stress field. The aspect ratio of surface cracks just after generation can be represented with the single virtual surface crack with the same value as K value at the deepest point considering an interference effect from near cracks. No discontinuous change in K value is found at the deepest point even during growth and combination of cracks on a surface. The change in K value at the deepest point is thus the criterion to represent growth and combination of surface cracks considering the interference effect. The change in aspect ratio of the typical single virtual surface crack linearly decreases with an increase in crack depth. The shape of surface cracks generating and growing in a residual stress field is more flat than that in no residual stress field. In addition, in a residual stress field, surface cracks are longer at the same crack depth, and fatigue lives are shorter. 7 refs., 12 figs.

  5. Novel theranostic zinc phthalocyanine-phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake. (United States)

    Ma, Jinyuan; Li, Yang; Liu, Guihua; Li, Ai; Chen, Yilin; Zhou, Xinyi; Chen, Dengyue; Hou, Zhenqing; Zhu, Xuan


    The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC. The ZS functionalized with DSPE-PEG-MTX (ZSPM) was successfully constructed with an average particle size of ∼170nm, a narrow size distribution, and could remain physiologically stable for at least 7days. In vitro cellular uptake and cytotoxicity studies demonstrated that ZSPM exhibited stronger cellular uptake efficacy and photodynamic cytotoxicity against HeLa and MCF-7 cells than ZS functionalized with DSPE-mPEG (ZSP) and free ZnPc. More importantly, ZSPM showed the enhanced accumulation effect at the tumor region compared with ZSP by the active-plus-passive targeting via enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis. Furthermore, in vivo antitumor effect and histological analysis demonstrated the superior tumor growth inhibition effect of ZSPM. In addition, the needle-shape ZSP (ZSPN) exhibited better in vitro cellular uptake and in vivo tumor accumulation compared with ZSP due to the shape-assisted effect. Moreover, the interesting off-on switch effect of reactive oxygen species (ROS) production of ZnPc-SPC complex-based nanoparticles was discovered to achieve photodynamic treatment in a controllable way. These findings suggested that the ZnPc-SPC complex-based self-assembled nanoparticles could serve as a promising and effective formulation to achieve tumor-targeting fluorescence imaging and enhanced photodynamic treatment. Copyright © 2017. Published by Elsevier B.V.

  6. Investigating Reaction-Driven Cracking (United States)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.


    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  7. Cracks assessment using ultrasonic technology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Maria Pia; Tomasella, Marcelo [OLDELVAL S.A. Oleoductos del Valle, Rio Negro (Argentina). Pipeline Integrity Dept.


    The goal of Oldelval Integrity Program is to prevent ruptures and leaks, developing strategies for a better handling of the integrity of our pipelines. In order to achieve it we have studied and modeled each process that involved in the integrity pipeline. Those processes are mainly based on defects reported by an internal inspection tool and supplied with field inspection and monitoring data. Years of evaluation, study and the continuous effort overturned towards a phenomenon that worries to the industry, as it is the SCC. Since 1998 up to 2004 SCC was included in the integrity program with some preventive maintenance programs. The accomplishment of the inspection based on ultrasound tools, is the culmination of years of evaluation and investigations supported by field digs and materials susceptibility. This paper describes Oldelval's results with ultrasonic crack detection tool, and how it can be reliably to detect SCC. (author)

  8. Environmental stress cracking of polymers (United States)

    Mahan, K. I.


    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  9. The Solitary Isomer of C60 H18 Is Proven to Have a C3v Crown Shape: Crystal Structure Determination and Synthesis of Its Triruthenium Cluster Complex. (United States)

    Chen, Chi-Shian; Chuang, Tsung-Han; Liu, Yi-Hung; Yeh, Wen-Yann


    Analytically pure C60 H18 is obtained by a Ru3 cluster complexation and decomplexation method. The crystal structure of C60 H18 consists of one flattened hemisphere, to which all 18 hydrogen atoms are symmetrically bonded, and one curved hemisphere akin to C60 . A benzenoid ring in the flattened hemisphere is isolated from the residual π systems by a belt composed of sp(3) -hybridized CH units. The average out-of-plane distances for carbon atoms attached to the benzenoid ring (0.14 Å) is substantially larger than that found in C60 F18 (0.06 Å). Several long C(sp(3) )C(sp(3) ) single bond lengths [1.61(3)-1.65(3) Å] are observed for C60 H18 . The reaction of [Ru3 (CO)12 ] and C60 H18 produces [Ru3 (CO)9 (μ3 -η(2) ,η(2) ,η(2) -C60 H18 )] (1), where the Ru3 triangle is regiospecifically linked to the hexagon opposite to the benzenoid ring. Compound 1 is the first transition metal complex of a polyhydrofullerene (fullerane). C60 H18 and 1 have been characterized by (1) H and (13) C NMR, UV/Vis, and mass spectroscopies. The HOMO-LUMO gap of C60 H18 is evaluated to be 1.51 V by cyclic voltammetry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J


    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. New theory for Mode I crack-tip dislocation emission (United States)

    Andric, Predrag; Curtin, W. A.


    A material is intrinsically ductile under Mode I loading when the critical stress intensity KIe for dislocation emission is lower than the critical stress intensity KIc for cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a dependence on the elastic constants and the unstable stacking fault energy γusf for slip along the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc metals show that KIe is systematically larger (10-30%) than predicted. However, the critical (crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I emission is accompanied by the formation of a surface step that is not considered in the Rice theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress resisting step formation at the crack tip creates "lattice trapping" against dislocation emission such that (ii) emission is due to a mechanical instability at the crack tip. The new theory is formulated using a Peierls-type model, naturally includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is small. The new theory predicts a higher KIe at a smaller critical shear displacement, rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for the simulated materials, usually requiring use of the measured critical crack tip shear displacement due to complex material non-linearity, show very good agreement with simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice theory, and is used to understand differences between Rice theory and simulation in recent literature. The new theory highlights the role of surface steps created by dislocation emission in Mode I, which has implications not only for intrinsic ductility but also for crack tip

  12. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco


    Full Text Available In recent years, mechanical property of many SMA has improved in order to introduce these alloys in specific field of industry. Main examples of these alloys are the NiTi, Cu-Zn-Al and Cu-Al-Ni which are used in many fields of engineering such as aerospace or mechanical systems. Cu-Zn-Al alloys are characterized by good shape memory properties due to a bcc disordered structure stable at high temperature called β-phase, which is able to change by means of a reversible transition to a B2 structure after appropriate cooling, and reversible transition from B2 secondary to DO3 order, under other types of cooling. In β-Cu-Zn-Al shape memory alloys, the martensitic transformation is not in equilibrium at room temperature. It is therefore often necessary to obtain the martensitic structure, using a thermal treatment at high temperature followed by quenching. The martensitic phases can be either thermally-induced spontaneous transformation, or stressinduced, or cooling, or stressing the β- phase. Direct quenching from high temperatures to the martensite phase is the most effective because of the non-diffusive character of the transformation. The martensite inherits the atomic order from the β-phase. Precipitation of many kinds of intermetallic phases is the main problem of treatment on cu-based shape memory alloy. For instance, a precipitation of α-phase occurs in many low aluminum copper based SMA alloy and presence of α-phase implies a strong degradation of shape recovery. However, Cu-Zn-Al SMA alloys characterized by aluminum contents less than 5% cover a good cold machining and cost is lower than traditional NiTi SMA alloys. In order to improve the SMA performance, it is always necessary to identify the microstructural changing in mechanical and thermal conditions, using X-Ray analyses. In this work a Cu-Zn-Al SMA alloy obtained in laboratory has been microstructurally and metallographically characterized by means of X-Ray diffraction and Light

  13. The fracture mechanics of fatigue crack propagation in compact bone. (United States)

    Wright, T M; Hayes, W C


    The purpose of this investigation was to apply the techniques of fracture mechanics to a study of fatigue crack propagation in compact bone. Small cracks parallel to the long axis of the bone were initiated in standardized specimens of bovine bone. Crack growth was achieved by cyclically loading these specimens. The rate of crack growth was determined from measurements of crack length versus cycles of loading. The stress intensity factor at the tip of the crack was calculated from knowledge of the applied load, the crack length, and the specimen geometry. A strong correlation was found between the experimentally determined crack growth rate and the applied stress intensity. The relationship takes the form of a power law similar to that for other materials. Visual observation and scanning electron microscopy revealed that crack propagation occurred by initiation of subcritical cracks ahead of the main crack.

  14. On the application of cohesive crack modeling in cementitious materials

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe


    for a centrally cracked sheet is established applying semi-analytical, bridged and fictitious crack modeling. The semi-analytical crack model is compared with a FEM analysis and it is demonstrated, that the standard fictitious crack implementation in FEM packages (in this case DIANA) provides a good approximation......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...... typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model...

  15. Steel bridge fatigue crack detection with piezoelectric wafer active sensors (United States)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick


    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.

  16. Crack growth monitoring at CFRP bond lines (United States)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.


    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  17. Effects of pre-cracks on both initiation and propagation of re-bar corrosion in pure carbon dioxide (United States)

    Hiep Dang, Vu; François, Raoul; L'Hostis, Valérie


    This paper deals with effects of pre-cracks on both initiation and propagation of reinforcement steel corrosion due to carbonation. The ring shaped mortar samples with 8 mm steel bar inside were cracked with different crack widths ranging from 12 micrometers to 600 micrometers and then subjected to carbon dioxide environment for different terms to assess the carbonation profile in cracks and along the interface between steel and concrete, damaged by the internal pressure applied to the ring samples. After carbonation of interface, ring samples were submitted to wetting-drying cycles to study the propagation of corrosion and the effect of corrosion products on healing and then repassivation of steel bar or corrosion cracks development. Results show that irrespective of width of cracks, the carbon dioxide reaches the interface between steel and mortar and propagates along this interface. The samples then subjected to wetting-drying cycles exhibit corrosion development all along the interface,the appearance of oxides does not lead to create corrosion cracks for the duration of the experiments.

  18. Effects of pre-cracks on both initiation and propagation of re-bar corrosion in pure carbon dioxide

    Directory of Open Access Journals (Sweden)

    L’Hostis Valérie


    Full Text Available This paper deals with effects of pre-cracks on both initiation and propagation of reinforcement steel corrosion due to carbonation. The ring shaped mortar samples with 8 mm steel bar inside were cracked with different crack widths ranging from 12 micrometers to 600 micrometers and then subjected to carbon dioxide environment for different terms to assess the carbonation profile in cracks and along the interface between steel and concrete, damaged by the internal pressure applied to the ring samples. After carbonation of interface, ring samples were submitted to wetting-drying cycles to study the propagation of corrosion and the effect of corrosion products on healing and then repassivation of steel bar or corrosion cracks development. Results show that irrespective of width of cracks, the carbon dioxide reaches the interface between steel and mortar and propagates along this interface. The samples then subjected to wetting-drying cycles exhibit corrosion development all along the interface,the appearance of oxides does not lead to create corrosion cracks for the duration of the experiments.

  19. Cracks in high-manganese cast steel

    Directory of Open Access Journals (Sweden)

    A. Chojecki


    Full Text Available The reasons which account for the formation of in service cracks in castings made from Hadfield steel were discussed. To explain the source of existence of the nuclei of brittle fractures, the properties of cast steel were examined within the range of solidification temperatures, remembering that feeding of this material is specially difficult, causing microporosity in hot spots. This creates conditions promoting the formation of microcracks which tend to propagate during service conditions involving high dynamic stresses, and explains why the cracks are mainly characterized by a brittle nature. The reason for crack formation in service are micro-porosities formed during casting solidification.

  20. Resistance to Crack Propagation of Algerian Wood

    Directory of Open Access Journals (Sweden)

    Abdelhakim DAOUI


    Full Text Available Wood is the most building materials widely used since prehistory for the construction of houses, tools, weapons. Accidents occurring during the use of materials caused by different defaults, as: knots, resin pockets, cracks. These various defaults and others are the starting point of the principle of crack mechanics. Our present work focuses on determining the resistance to crack propagation of three types of Algerians wood, (Aleppo pine, eucalyptus and oak, by calculating the energy release rate G (mode I. The estimation of factor G allows the possibility of fracture propagation.

  1. Guided wave scattering by a geometrical or damage feature: application to fatigue crack and machined notch (United States)

    Quaegebeur, Nicolas; Bouslama, Nidhal; Bilodeau, Maxime; Masson, Patrice; Maslouhi, Ahmed; Micheau, Philippe


    Guided-wave based Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) systems validation under realistic conditions or environment requires complex setups. Numerical or theoretical approaches are useful to save time and cost associated with experimental tests but the interaction with realistic geometrical (rivets, thickness changes, stiffeners, extrusions) or damage features (fatigue cracks, fillet cracks, delaminations, disbonds) must be accurately captured in order to be representative. In this paper, an experimental methodology is presented for estimating the far-field scattering of geometrical or damage features. The principle is based on the use of a Hankel transform of the measured 3D velocity field in order to evaluate with precision the scattered pattern using a spatially averaged method. Application to scattering of a hole with simulated machined and real fatigue cracks is proposed. It is observed that the simulated machined crack generally used as a reference standard can only model accurately the transmission behaviour while the scattering patterns are only similar when the wavelength is about the size of the crack, limiting the practical use of machined cracks for experimental validation of SHM or NDE systems.

  2. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves. (United States)

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick


    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  3. Visualization of non-propagating Lamb wave modes for fatigue crack evaluation (United States)

    An, Yun-Kyu; Sohn, Hoon


    This article develops a non-propagating Lamb wave mode (NPL) imaging technique for fatigue crack visualization. NPL has a great potential for crack evaluation in that it significantly contributes local mode amplitudes in the vicinity of a crack without spatial propagation. Such unique physical phenomenon is theoretically proven and experimentally measured through laser scanning. Although its measurement is a quite challenging work due to the fact that it is quite localized and coexists with complex propagating Lamb wave modes, a NPL filter proposed in this article overcomes the technical challenge by eliminating all propagating Lamb modes from laser scanned full Lamb wavefields. Through the NPL filtering process, only fatigue crack-induced NPLs can be measured and retained. To verify such physical observation and the corresponding NPL filter, a real micro fatigue crack is created by applying repeated tensile loading, and its detectability is tested using a surface-mounted piezoelectric transducer for generating Lamb waves and a laser Doppler vibrometer for measuring the corresponding responses. The experimental results confirm that even an invisible fatigue crack can be instantaneously visualized and effectively evaluated through the proposed NPL measurement and filtering processes.

  4. Assessment of residual ultimate strength of cracked plates under biaxial compression

    Directory of Open Access Journals (Sweden)

    LU Yabing


    Full Text Available [Objectives] Such ship hull structures as inner bottom plates always bear complex loads involving the longitudinal bending stress and transverse in-plane stress transferred from the ship's side plates under water pressure. Additionally,the cracks that are likely to occur in welded joints and local stress concentration areas degrade the load bearing capacity of ship plates,so it is very important to assess the ultimate strength of cracked plates under biaxial compression. [Methods] First,the qualitative expression of the residual ultimate strength of cracked hull plates is deduced in theory. Next,the factors that influence residual ultimate strength are investigated by carrying out a series of Finite Element Analyses,including the length and inclined angle of the crack,aspect ratio and slenderness ratio of ship plate,and ratio between transverse and longitudinal in-plane stress,and an approach for the effective projected length of an inclined crack is obtained. Based on the numerical results,a simple empirical formula is proposed to calculate the residual ultimate strength of central cracked hull plates under biaxial compression.[Results] According to a relative error analysis,the caculated results has higher accuracy by the proposed formula,[Conclusions] whick can be used to accurately calculate the longitudinal ultimate strength of inner bottom plates.

  5. Batman-cracks. Observations and numerical simulations (United States)

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.


    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  6. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method (United States)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.


    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  7. Hot cracking during laser welding of steel: influence of the welding parameters and prevention of cracks (United States)

    Schaefer, Marcel; Kessler, Steffen; Scheible, Philipp; Speker, Nicolai; Harrer, Thomas


    In continuous wave keyhole-mode laser welding of high strength steel alloys hot cracking can occur. The hot crack susceptibility depends on the mutual interaction of several factors like the welding parameters, the alloy composition and the weld fixturing. In this paper we focus on the influence of the welding parameters and investigate the dependency of the laser power, the welding speed and the laser wavelength on the crack formation. X-ray images are used to visualize the hot crack patterns, which exhibit a pronounced periodicity. To influence the hot crack formation, the incident energy input into the process was adapted. For specific welding parameters, we show exemplarily the prevention of hot cracking by the use of a twin-spot optics.

  8. The initiation of environmentally-assisted cracking in semi-elliptical surface cracks

    Energy Technology Data Exchange (ETDEWEB)

    James, L.A.


    A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water.

  9. An analysis of creep crack growth of interface cracks in layered/graded materials

    Energy Technology Data Exchange (ETDEWEB)

    Biner, S.B.


    In this study, the growth behavior of interface cracks in bimaterials and in layered materials resulting from the creep cavitation was studied. The growth model includes the effects of material deposition resulting from the growth of creep cavities on the crack tip stress fields. The results indicate that in layered materials under identical applied loading, the location of the interface crack strongly influence the amplitude of the stress field at steady-state. Due to large variation in the distribution of the stresses ahead of the interface cracks at creep regime, depending upon the crack location, the creep crack growth rates will be significantly different from each other under identical loading for a given layered material.

  10. Numerical study of crack path by MMCG specimen using M integral

    Directory of Open Access Journals (Sweden)

    S. El Kabir


    Full Text Available The mixed mode loading configuration occurs in many civil engineering and mechanical applications. In wood material, the study of this problem is very important due to the orthotropic character and the heterogeneity of the material. In order to study the mixed mode loading in wood material, Moutou Pitti et al [1] have proposed a new specimen called Mixed Mode Crack Growth (MMCG. The main goal of this geometry is to propose a decrease of the energy release rate during the crack growth process. In this case, the fracture parameters can be decoupled into Mode I and Mode II in order to determine the impact of time during creep crack test. The present work proposes to study the crack path stability in MMCG specimen for different sizes and thicknesses. The Mθ integral, combining real and virtual mechanical displacement fields is used in order to separate numerically mode I and mode II in the mixed mode ratio. The stability is shown for the opening mode (Mode I, the shear mode (Mode II, and the mixed mode of 15°, 30°, 45°, 60°, 75° by computing the energy release rate versus the crack length. Finally, it is shown that the MMCG specimen can be reduced in various shape and used for example in small climate chamber in order to perform creep test at different temperature and moisture content levels.

  11. Surface strain gradient effects in the torsion of a circular bar with radial cracks (United States)

    Xu, Yang; Wang, Xu


    We study the contribution of surface strain gradient elasticity to the Saint-Venant torsion problem of a circular cylinder containing a radial crack. The surface strain gradient elasticity is incorporated by using an enriched version of the continuum-based surface/interface model of Gurtin and Murdoch. By using Green's function method, the original boundary value problem is reduced to a Cauchy singular integro-differential equation which can be numerically solved by using the Gauss-Chebyshev integration formula, the Chebyshev polynomials and the collocation method. Due to the presence of surface strain gradient elasticity on the crack faces, the stresses are bounded at the crack tips. The torsion problem of a circular cylinder containing two symmetric collinear radial cracks of equal length with surface strain gradient elasticity is also solved by using a similar method. Numerical results indicate that the surface strain gradient effect exerts a significant influence on the torsional rigidity and the jump in warping function. In particular, the jump in warping function forms a cusp shape with zero enclosed angle at the crack tips.

  12. Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System

    Directory of Open Access Journals (Sweden)

    Hoonsoo Lee


    Full Text Available The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR reflectance imaging techniques for detecting cuticle cracks on tomatoes. A hyperspectral NIR reflectance imaging system that analyzed the spectral region of 1000–1700 nm was used to obtain hyperspectral reflectance images of 224 tomatoes: 112 with and 112 without cracks along the stem-scar region. The hyperspectral images were subjected to partial least square discriminant analysis (PLS-DA to classify and detect cracks on the tomatoes. Two morphological features, roundness (R and minimum-maximum distance (D, were calculated from the PLS-DA images to quantify the shape of the stem scar. Linear discriminant analysis (LDA and a support vector machine (SVM were then used to classify R and D. The results revealed 94.6% and 96.4% accuracy for classifications made using LDA and SVM, respectively, for tomatoes with and without crack defects. These data suggest that the hyperspectral near-infrared reflectance imaging system, in addition to traditional NIR spectroscopy-based methods, could potentially be used to detect crack defects on tomatoes and perform quality assessments.

  13. SEM observations on stress corrosion cracking of commercially pure titanium in a topical fluoride solution. (United States)

    Könönen, M H; Lavonius, E T; Kivilahti, J K


    OBJECTIVES. The purpose of the present study was to determine whether commercially pure titanium is susceptible to stress corrosion cracking/hydrogen embrittlement in a topical fluoride solution used in preventive dentistry. Thin electropolished titanium test specimens were previously cold-rolled or cold-rolled and annealed before testing. For the stress corrosion tests, the U-shaped specimens of both treatment types were stressed into a radius of curvature of 30 mm. Then, the bent part was placed in the fluoride solution at 37 degrees C for 1, 5, 10, and 20 d. The effects of the fluoride solution on cold-rolled and annealed titanium were studied using a scanning electron microscope. In addition, mechanically fractured surfaces of cold-rolled titanium specimens exposed and not exposed to the fluoride solution were examined by SEM. A qualitative evaluation of the surfaces was conducted. Narrow cracks were observed in cold-rolled specimens following exposure to the fluoride solution for 5 d. The cracks were associated with branching, a characteristic of stress corrosion cracking. The cold-rolled specimen exposed to the fluoride solution exhibited a brittle fracture. In contrast, the fracture mode of the unexposed specimen was ductile in nature. Topical fluoride solutions can cause stress corrosion cracking of commercially pure titanium.

  14. CRACK2. Modelling calcium carbonate deposition from bicarbonate solutions in cracks in concrete


    Brodersen, Knud Erik


    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description ofthe model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. Thec...

  15. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves (United States)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan


    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  16. A Microstructure Based Multi-Site Crack Growth Model (United States)

    Brockenbrough, J. R.; Fridy, J. M.; Weiland, H.

    A simple computational method to simulate component failures in engineered structures based on microstructure characteristics has been developed. The computational model deals directly with a large set of cracks in a defined geometrical region, and is capable of tracking the simultaneous growth and interaction of those cracks, including crack-tip shielding and link-up, until final failure. The Multi-Site Crack Growth (MSCG) tool is designed to start from either an initial uncracked state where cracks may nucleate from cracked particles or other microstructural features, or from an initial cracked state such as might be expected at a percentage of fatigue life expended. Alternatively, the input can be expected crack nucleation sites from microstructure simulations. The MSCG tool is designed based on microstructural origins of fatigue cracks, and the statistical distributions of microstructural parameters. Thus it is possible to extend this framework to corrosion-fatigue. The computational algorithms used enable rapid calculation of the complete crack growth geometry for the current loading cycle, including the current number of cracks, the maximum crack length, the average crack length, and the total cracked area. This makes application to life predictions possible as crack length, area, and number distribution are predicted for given number of load cycles. Example simulations of crack nucleation from large second phase particles will be given.

  17. Page 1 Stress corrosion cracking of austenitic stainless steels 691 ...

    Indian Academy of Sciences (India)

    Stress corrosion cracking of austenitic stainless steels 691 and crack growth per event computed from acoustic emission and crack growth data are presented in table 3. The crack growth per event varies from less than a micron for a solution annealed material to 15 pm for 10% cold worked material. 4.4 Fractographic ...

  18. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack growth retardation ...

  19. Influence of Experimental Parameters on Fatigue Crack Growth and Heat Build-Up in Rubber. (United States)

    Stadlbauer, Franziska; Koch, Thomas; Archodoulaki, Vasiliki-Maria; Planitzer, Florian; Fidi, Wolfgang; Holzner, Armin


    Loading parameters (frequency, amplitude ratio and waveform) are varied to determine their influence on fatigue crack growth in rubber. Up to three different rubber blends are investigated: one actual engineering material and two model materials. Fatigue crack growth curves and strain distributions of pure shear and faint waist pure shear samples are compared for a model material. Fatigue behavior is studied for three different frequencies (1 Hz, 3 Hz and 5 Hz). Amplitude ratio appears to be another important influence factor concerning fatigue crack growth in rubber. The beneficial effect of positive amplitude ratios (tensional loading conditions) is shown for different materials. However, fatigue crack growth is considerably increased for negative amplitude ratios (tensional-compressional loading conditions). Furthermore, the influence of the waveform is determined for three different waveform shapes. One is sinusoidal, and two have a square shape, including dwell periods and sinusoidal slopes. Special focus lies on heat build-up, which is substantial, especially for large loads, high frequencies and/or highly filled rubber blends. Plateau temperatures are determined for various loading conditions and rubber blends. A very simple linear relationship with dissipated energy per time and unit area is obtained. Results gathered with dynamic mechanical analyses show, likewise, a linear trend, but the heat build-up is very small, due to different sample geometries.

  20. Introduction of Residue Fluid Catalytic Cracking Process

    National Research Council Canada - National Science Library



    .... Fluid catalytic cracking (FCC) is one of the most important conversion processes in a petroleum refinery, it also occupies very significant position in the refinery due to its economic benefits...

  1. Dynamic Strain and Crack Monitoring Sensor Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new automated vehicle health monitoring sensor system capable of measuring loads and detecting crack, corrosion, and...

  2. Investigation of reflective cracking mitigation techniques. (United States)


    In the state of Florida, an asphalt rubber membrane interlayer (ARMI) has been commonly used as a reflective cracking (RC) mitigation method, but inconsistent performance of an ARMI has been observed in the field. Moreover, the Heavy Vehicle Simulato...

  3. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf


    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  4. Cracking the code of change. (United States)

    Beer, M; Nohria, N


    Today's fast-paced economy demands that businesses change or die. But few companies manage corporate transformations as well as they would like. The brutal fact is that about 70% of all change initiatives fail. In this article, authors Michael Beer and Nitin Nohria describe two archetypes--or theories--of corporate transformation that may help executives crack the code of change. Theory E is change based on economic value: shareholder value is the only legitimate measure of success, and change often involves heavy use of economic incentives, layoffs, downsizing, and restructuring. Theory O is change based on organizational capability: the goal is to build and strengthen corporate culture. Most companies focus purely on one theory or the other, or haphazardly use a mix of both, the authors say. Combining E and O is directionally correct, they contend, but it requires a careful, conscious integration plan. Beer and Nohria present the examples of two companies, Scott Paper and Champion International, that used a purely E or purely O strategy to create change--and met with limited levels of success. They contrast those corporate transformations with that of UK-based retailer ASDA, which has successfully embraced the paradox between the opposing theories of change and integrated E and O. The lesson from ASDA? To thrive and adapt in the new economy, companies must make sure the E and O theories of business change are in sync at their own organizations.

  5. Understanding precursory rockfalls along cracks (United States)

    Abellán, A.; Carrea, D.; Loye, A.; Tonini, M.; Jaboyedoff, M.; Royan, M.; Pedrazzini, A.


    Little is known about the characteristics (magnitude, frequency, spatial location, etc) of precursory rockfalls leading to larger failures. In order to better understand this phenomena, we investigated the spatial location of precursory rockfalls and how these events tends to concentrate along the cracks that define the boundaries of the area were a larger failure will took place. Once a certain mass movement has started, the higher stress is concentrated around the limits between the moving and the stables parts of the slope, i.e. the limits between the ongoing rockfall and the rest of the slope. Since natural rock slopes do not allow too much deformation to be produced, the stress on the rock slope surface is expressed in surface by the occurrence of a series of rockfalls along time. Indeed, similar behaviour is observed in other geological events as earthquakes, which distribution is concentrated along the area of higher stress, i.e. along the tectonic plate boundaries. We carried out a series of experimental tests on an analogue scale sandbox. We reproduced the geometry of a sedimentary natural cliff by using washed quartz sands (grain size Catalonia, Spain). Testing this method in new natural slopes will allow the creation of alternative early warning systems. Future perspectives include the study of the spatio-temporal evolution of precursory rockfalls and the study of failure prediction using precursory rockfall volumes.

  6. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials (United States)

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong


    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  7. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila


    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without...... fibres and the influence of fibres and cracks on the water uptake is discussed....

  8. Fracture probability along a fatigue crack path

    Energy Technology Data Exchange (ETDEWEB)

    Makris, P. [Technical Univ., Athens (Greece)


    Long experience has shown that the strength of materials under fatigue load has a stochastic behavior, which can be expressed through the fracture probability. This paper deals with a new analytically derived law for the distribution of the fracture probability along a fatigue crack path. The knowledge of the distribution of the fatigue fracture probability along the crack path helps the connection between stress conditions and the expected fatigue life of a structure under stochasticly varying loads. (orig.)

  9. Crack-Inclusion Interaction: A Review (United States)


    prescribed, we call the equation a Fredholm integral equation (if one is variable, it is called a Volterra integral equation ) (20). For example, a... integral equation solution to an elliptical inclusion and a straight crack in an infinite elastic medium. This report is intended as a detailed...research on the problem. fracture mechanics, inclusion, crack, dislocation, Erdogan, Dundurs, integral equation , Green’s function 58 Christopher S. Meyer

  10. Molecular dynamics simulation of propagating cracks (United States)

    Mullins, M.


    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  11. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    Directory of Open Access Journals (Sweden)

    Hisaaki Tobushi et al


    Full Text Available In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated.

  12. Mechanics of longitudinal cracks in tooth enamel. (United States)

    Barani, A; Keown, A J; Bush, M B; Lee, J J-W; Chai, H; Lawn, B R


    A study is made of longitudinal "channel" cracking in tooth enamel from axial compressive loading. The cracks simulate those generated in the molar and premolar teeth of humans and animals by natural tooth function. Contact loading tests are made on extracted human molars with hard and soft indenting plates to determine the evolution of such cracks with increasing load. Fracture is largely stable, with initial slow growth followed by acceleration as the cracks approach completion around an enamel side wall. A simple power law relation expresses the critical load for full fracture in terms of characteristic tooth dimensions-base radius and enamel thickness-as well as enamel toughness. Extended three-dimensional finite element modeling with provision for growth of embedded cracks is used to validate this relation. The cracks leave "fingerprints" that offer valuable clues to dietary habits, and provide a basis for a priori prediction of bite forces for different animals from measured tooth dimensions. Copyright © 2011 Acta Materialia Inc. All rights reserved.

  13. Creep Behavior and Durability of Cracked CMC (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig


    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  14. Electromagnetic pulsed thermography for natural cracks inspection (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing


    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  15. Electromagnetic pulsed thermography for natural cracks inspection (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing


    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  16. "We need somewhere to smoke crack": An ethnographic study of an unsanctioned safer smoking room in Vancouver, Canada. (United States)

    McNeil, Ryan; Kerr, Thomas; Lampkin, Hugh; Small, Will


    Many cities around the globe have experienced substantial increases in crack cocaine use. Public health programmes have begun to address crack smoking, primarily through the distribution of safer crack use equipment, but their impacts have been limited. More comprehensive safer environmental interventions, specifically safer smoking rooms (SSR), have been implemented only in select European cities. However, none have been subjected to rigorous evaluation. This ethnographic study was undertaken at an 'unsanctioned' SSR operated by a drug user-led organization in Vancouver, Canada, to explore how this intervention shaped crack smoking practices, public crack smoking, and related harms. Ethnographic fieldwork was undertaken at this SSR from September to December 2011, and included approximately 50 hours of ethnographic observation and 23 in-depth interviews with people who smoke crack. Data were analyzed by drawing on the 'Risk Environment' framework and concepts of 'symbolic', 'everyday', and 'structural' violence. Our findings illustrate how a high demand for SSRs was driven by the need to minimize exposure to policing (structural violence), drug scene violence (everyday violence), and stigma (symbolic violence) that characterized unregulated drug use settings (e.g., public spaces). Although resource scarcity and social norms operating within the local drug scene (e.g., gendered power relations) perpetuated crack pipe-sharing within unregulated drug use settings, the SSR fostered harm reduction practices by reshaping the social-structural context of crack smoking and reduced the potential for health harms. Given the significant potential of SSRs in reducing health and social harms, there is an urgent need to scale up these interventions. Integrating SSRs into public health systems, and supplementing these interventions with health and social supports, has potential to improve the health and safety of crack-smoking populations. Copyright © 2015 Elsevier B.V. All

  17. Investigation of subsurface fatigue crack in PEEK shaft under one-point rolling contact by using 2.5D layer observation method

    Directory of Open Access Journals (Sweden)

    KOIKE Hitonobu


    Full Text Available Subsurface fatigue cracks under rolling contact area of the PEEK shaft against an alumina bearing’s ball were investigated for application of frictional part in mechanical element in special situations such as chemical environments. In order to explore the flaking process of the PEEK shaft, the rolling contact fatigue tests were carried out by using a one-point radial loading rolling contact machine. The flaking occurred on the rolling track of the PEEK shaft at approximate 4⨉105 fatigue cycles. The subsurface fatigue crack propagation was investigated by using 2.5-Dimension layer observation method. The flaking was caused by the propagations of surface cracks and subsurface shear cracks, and the flaking shape was half-ellipse. Moreover, beach marks as fatigue crack propagation in the flaking were observed.

  18. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))


    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide



    PriyankaTiwari*1, Nikhilesh N Singh2 & Dr. Prabhat Kumar Sinha3


    In the current research, the natural frequency of a beam with a crack, is investigated numerically by finite part methodology victimization analysis software system ANSYS APDL 15.0. In this research” Vibration Analysis of Elastic Cracked Beam” the response characteristics of a beam is predicted for both intact and cracked beams. In addition to that the response characteristics for different crack depth were studied. Crack depth and location were main parameters for vibration analysis. So it b...

  20. Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian


    A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate...... and arrest of the crack. Digital image correlation is used through the duration of the fatigue experiment to track the strain evolution as the crack tip advances. The measured strains are related to crack tip propagation, arrest, and re-initiation of the crack. A finite element model is used to calculate...... the energy release rate, mode mixity and to simulate crack propagation and arrest of the crack. Finally, the effectiveness of the crack arresting device is demonstrated on composite sandwich beams subjected to fatigue loading conditions....

  1. Environmentally assisted cracking in light water reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.


    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature

  2. Detection of a fatigue crack in a rotor system using full-spectrum ...

    Indian Academy of Sciences (India)

    The force due to crack switching has multiple harmonic components of the spin speed. These components excite the rotor both in the same and reverse directions of the rotor spin. A full-spectrum method using complex Fast Fourier transform equations is developed to obtain force coefficients and displacement coefficients ...

  3. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes


    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  4. Residual stress effects of a fatigue crack on guided lamb waves

    NARCIS (Netherlands)

    Martinez, M.J.; Pant, S; Yanishevsky, M; Backman, D


    Structural health monitoring has focused on the use of computational models to capture the effect of crack-like discontinuities on the behaviour of acoustic-ultrasonic signals. However, few models have taken into account the effect of geometric complexity in combination with residual stresses

  5. Analysis of cracks generated in the spinning-mandrel teeth

    Directory of Open Access Journals (Sweden)

    M. Haghshenas


    Full Text Available The spinning process, using a splined mandrel, is always prone to premature failure of the splined mandrels. Such a failure is thought to be related to the magnitude of the forming forces exerted on the mandrel by the forming rollers during the spinning process. In the present paper, the characteristic of corner cracks in the mandrel teeth (made of S7 tool steel of a spinning process has been investigated. The rotational speed of the mandrel is about 300 rpm during spinning process and the sheet metal (i.e. AISI 1020 is in contact with mandrel teeth to get the mandrel shape at the end of process. During this process, the mandrel teeth eventually break away. Fractography analyses using scanning electron microscopy (SEM clearly confirm “fatigue” as being the main reason for the failure.

  6. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm


    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...

  7. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.


    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  8. Treatment of singularities in cracked bodies (United States)

    Shivakumar, K. N.; Raju, I. S.


    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.


    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.


    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  10. Crack propagation modeling using Peridynamic theory (United States)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.


    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.


    Directory of Open Access Journals (Sweden)

    R. Daud


    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  12. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024 (United States)

    Riddell, William T.; Piascik, Robert S.


    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  13. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian


    of the embedded crack arresters was evaluated in terms of the achieved enhancement of the damage tolerance of the tested sandwich panels. A finite element (FE) model of the experimental setup was used for predicting propagation rates and direction of the crack growth. The FE simulation was based on the adoption......A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect...... of linear fracture mechanics and a fatigue propagation law (i.e. Paris law) to predict the residual fatigue life-time and behaviour of the test specimens. Finally, a comparison between the experimental results and the numerical simulations was made to validate the numerical predictions as well...


    Energy Technology Data Exchange (ETDEWEB)



    The crack tip opening displacements and angles (CTOD/CTOA) are calculated with finite element method based on the test data of a set of constraint-dependent J-R curves for A285 carbon steel. The values of the CTOD/CTOA are initially high at initiation, but rapidly decrease to a nearly constant value. When the common practice is adopted by using only the constant part of CTOD/CTOA as the fracture criterion, the crack growth behavior is shown to be severely underestimated. However, with a bilinear form of CTOD/CTOA fracture criterion which approximates the initial non-constant portion, the experimental load vs. crack extension curves can be closely predicted. Furthermore, it is demonstrated that the CTOD/CTOA is crack tip constraint dependent. The values of CTOD/CTOA for specimens with various ratios of crack length to specimen width (a/W) are reflected by the J-R curves and their slopes.

  15. Experimental evaluation of plasticity-induced crack shielding from crack tip displacements fields

    Directory of Open Access Journals (Sweden)

    J.M. Vasco-Olmo


    Full Text Available In this work it is proposed a methodology for the evaluation of plasticity-induced crack shielding from the analysis of the crack tip displacements fields measured by digital image correlation. This methodology is based on the evaluation of the stress intensity factors determined from the displacements fields measured at the vicinity of the tip of a growing fatigue crack. For the characterisation of the crack tip displacements field, CJP model has been implemented. This model considers the shielding effects due to plasticity generated during fatigue crack growth. For the purpose of the current work, several fatigue experiments at different R-ratios have been conducted on Al2024-T3 compact tension specimens. In addition, compliance based methods have been adopted to perform a comparison of the results with those obtained by DIC. Results show a good level of agreement, illustrating the enormous potential of DIC technique for the study of fracture mechanics problems.

  16. Crack detection for a Jeffcott rotor with a transverse crack: An experimental investigation (United States)

    Guo, Chaozhong; Yan, Jihong; Yang, Weicheng


    In this paper, an experimental investigation is carried out to verify the theoretical results of the dynamic behavior and the EMD based crack detection method for the cracked rotor proposed in our former research. The breathing crack in the rotor is simulated by a real fatigue crack. The whirl orbits during passage through the 1/2, 1/3 and 1/4 subcritical speeds are investigated. The dynamic responses in these subcritical speed zones are decomposed into several subcomponents by the EMD method, and the variation of the high-frequency component are studied. As a comparison, the fast Fourier transform method is used to derive the amplitude variation of the high order frequencies from the frequency spectra of the experimental vibration signal. The experimental results are well concordant with the theoretical analysis, which indicates that the EMD based crack detection method is practicable.

  17. A study on the influence of microstructure on small fatigue cracks (United States)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex

  18. Monitoring small-crack growth by the replication method (United States)

    Swain, Mary H.


    The suitability of the acetate replication method for monitoring the growth of small cracks is discussed. Applications of this technique are shown for cracks growing at the notch root in semicircular-edge-notch specimens of a variety of aluminum alloys and one steel. The calculated crack growth rate versus Delta K relationship for small cracks was compared to that for large cracks obtained from middle-crack-tension specimens. The primary advantage of this techinque is that it provides an opportunity, at the completion of the test, to go backward in time towards the crack initiation event and 'zoom in' on areas of interest on the specimen surface with a resolution of about 0.1 micron. The primary disadvantage is the inability to automate the process. Also, for some materials, the replication process may alter the crack-tip chemistry or plastic zone, thereby affecting crack growth rates.

  19. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu


    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  20. Constitutive Mixed Mode Behavior of Cracks in Concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl

    compressive and tensile strength of the concrete, respectively. The constitutive behavior is based on the relation between normal opening and normal traction. For an opening of the crack the material softens, for a closure the material hardens, and for a large closure the material crushes described......Cracks are a natural part of concrete and concrete structures. The cracks influence the general structural behavior in terms of e.g. the stress distribution and the stiffness. A direct inclusion of the cracks in the design will result in a more precise description of the structural behavior...... and a better basis for the assessment of the service life of the structure. The constitutive relation between Mode I crack opening and the normal stresses across the crack is well described through the Fictitious Crack Model (FCM) and related models. However, after a crack in concrete is initiated, the crack...

  1. Computational modeling of ice cracking and break-up from helicopter blades

    KAUST Repository

    Shiping, Zhang


    In order to reduce the danger of impact onto components caused by break-up, it is important to analyze the shape of shed ice accumulated during flight. In this paper, we will present a 3D finite element method (FEM) to predict the shed ice shape by using a fluid-solid interaction (FSI) approach to determine the loads, and linear fracture mechanics to track crack propagation. Typical icing scenarios for helicopters are analyzed, and the possibility of ice break-up is investigated.

  2. Phase field modeling of crack propagation (United States)

    Spatschek, Robert; Brener, Efim; Karma, Alain


    Fracture is a fundamental mechanism of materials failure. Propagating cracks can exhibit a rich dynamical behavior controlled by a subtle interplay between microscopic failure processes in the crack tip region and macroscopic elasticity. We review recent approaches to understand crack dynamics using the phase field method. This method, developed originally for phase transformations, has the well-known advantage of avoiding explicit front tracking by making material interfaces spatially diffuse. In a fracture context, this method is able to capture both the short-scale physics of failure and macroscopic linear elasticity within a self-consistent set of equations that can be simulated on experimentally relevant length and time scales. We discuss the relevance of different models, which stem from continuum field descriptions of brittle materials and crystals, to address questions concerning crack path selection and branching instabilities, as well as models that are based on mesoscale concepts for crack tip scale selection. Open questions which may be addressed using phase field models of fracture are summarized.

  3. Modified pressure system for imaging egg cracks (United States)

    Lawrence, Kurt C.; Yoon, Seung Chul; Jones, Deana R.; Heitschmidt, Gerald W.; Park, Bosoon; Windham, William R.


    One aspect of grading table eggs is shell checks or cracks. Currently, USDA voluntary regulations require that humans grade a representative sample of all eggs processed. However, as processing plants and packing facilities continue to increase their volume and throughput, human graders are having difficulty matching the pace of the machines. Additionally, some plants also have a problem with micro-cracks that the graders often miss because they are very small and hard to see immediately post-processing but grow and become readily apparent before they reach market. An imaging system was developed to help the grader detect these small micro-cracks. The imaging system utilized one image captured at atmospheric pressure and a second at a slight negative pressure to enhance the crack and make detection much easier. A simple image processing algorithm was then applied to the ratio of these two images and the resulting image, containing both cracked and/or intact eggs were color-coded to simplify identification. The imaging system was capable of imaging 15 eggs in about 3/4 second and the algorithm processing took about another 10 seconds. These times could easily be reduced with a dedicated, multi-threaded computer program. In analyzing 1000 eggs, the system was 99.6% accurate overall with only 0.3% false positives compared to 94.2% accurate overall for the human graders with 1.2% false positives. An international patent on the system was filed and further automation of the system is needed.

  4. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  5. Study of the Residual Strength of an RC Shear Wall with Fractal Crack Taking into Account Interlocking Interface Phenomena

    Directory of Open Access Journals (Sweden)

    O. Panagouli


    Full Text Available In the present paper, the postcracking strength of an RC shear wall element which follows the construction practices applied in Greece during the 70s is examined by taking into account the complex geometry of the crack of the wall and the mixed friction-plastification mechanisms that develop in the vicinity of the crack. Due to the significance of the crack geometry, a multiresolution analysis based on fractal geometry is performed, taking into account the size of the aggregates of concrete. The materials (steel and concrete are assumed to have elastic-plastic behaviour. For concrete, both cracking and crushing are taken into account in an accurate manner. On the interfaces of the crack, unilateral contact and friction conditions are assumed to hold. For every structure corresponding to each resolution of the interface, a classical Euclidean problem is solved. The obtained results lead to interesting conclusions concerning the influence of the simulation of the geometry of the fractal crack on the mechanical interlock between the two faces of the crack, a factor which seems to be very important to the postcracking strength of the lightly reinforced shear wall studied here.

  6. Effect of Open Crack on Vibration Behavior of a Fluid-Conveying Pipe Embedded in a Visco-Elastic Medium

    Directory of Open Access Journals (Sweden)

    Ghiyam Eslami

    Full Text Available Abstract In this paper vibration behavior of a fluid-conveying cracked pipe surrounded by a visco-elastic medium has been considered. During this work, the effect of an open crack parameters and flow velocity profile shape inside the pipe on natural frequency and critical flow velocity of the system has been analytically investigated. An explicit function for the local flexibility of the cracked pipe has been offered using principle of the fracture mechanics. Comparison between the results of the present study and the experimental data reported in the literature reveals success and high accuracy of the implemented method. It is demonstrated that the existence of the crack in the pipe, decreases the natural frequency and the critical flow velocity so that the system instability onsets at a lower flow velocity in comparison with the intact pipe. Results indicate that the flow velocity profile shape inside the pipe caused by the viscosity of real fluids, significantly affects the critical flow velocity of both intact and fluid-conveying cracked pipe. For instance, as the flow-profile-modification factor decreases from 1.33 to 1.015, the dimensionless critical flow velocity of intact clamped-clamped pipe increases from 5.45 to 6.24.

  7. Incidence of Dentinal Cracks after Root Canal Preparation with Twisted File Adaptive Instruments Using Different Kinematics. (United States)

    Karataş, Ertuğrul; Arslan, Hakan; Alsancak, Meltem; Kırıcı, Damla Özsu; Ersoy, İbrahim


    The purpose of the present study was to assess the effect of root canal instrumentation using Twisted File Adaptive instruments (Axis/SybronEndo, Orange, CA) with different kinematics (adaptive motion, 90° clockwise [CW]-30° counterclockwise [CCW], 150° CW-30° CCW, 210° CW-30° CCW, and continuous rotation) on crack formation. One hundred five mandibular central incisor teeth were selected. Fifteen teeth were left unprepared (control group), and the remaining 90 teeth were assigned to the 5 root canal shaping groups as follows (n = 15): adaptive motion, 90° CW-30° CCW, 150° CW-30° CCW, 210° CW-30° CCW, continuous rotation, and hand file. All the roots were sectioned horizontally at 3, 6, and 9 mm from the apex with a low-speed saw under water cooling, and the slices were then viewed through a stereomicroscope at 25× magnification. Digital images of each slice were captured using a camera to determine the presence of dentinal cracks. No cracks were observed in the control group, and the continuous rotation group had more cracks than the reciprocation groups (90° CW-30° CCW, 150° CW-30° CCW, and 210° CW-30° CCW) (P < .05). Both the continuous rotation and adaptive motion groups had significantly more dentinal cracks than the hand file group (P < .05). Regarding the different sections (3, 6, and 9 mm), there was a significant difference between the experimental groups at the 9-mm level (P < .05). The incidence of dentinal cracks is less with TF Adaptive instruments working in 210° CW-30° CCW reciprocating motion compared with working in continuous rotation and adaptive motion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy. (United States)

    Qian, Dan; Xue, Jiawei; Zhang, Anfeng; Li, Yao; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai


    Ductility-dip cracking in Ni-based superalloy, resulting from heat treatment, is known to cause disastrous failure, but its mechanism is still not completely clear. A statistical study of the cracking behavior as a function of crystal orientation in a laser 3D-printed DL125L Ni-based superalloy polycrystal is investigated here using the synchrotron X-ray microdiffraction. The dislocation slip system in each of the forty crystal grains adjacent to the 300 μm long crack has been analyzed through Laue diffraction peak shapes. In all these grains, edge-type geometrically necessary dislocations (GNDs) dominate, and their dislocation line directions are almost parallel to the crack plane. Based on Schmid's law, the equivalent uniaxial tensile force direction is revealed normal to the trace of the crack. A qualitative mechanism is thus proposed. Thermal tensile stress perpendicular to the laser scanning direction is elevated due to a significant temperature gradient, and thus locations in the materials where the thermal stress exceeds the yield stress undergo plastic deformation mediated by GND activations. As the dislocations slip inside the crystal grains and pile up at the grain boundaries, local strain/stress keeps increasing, until the materials in these regions fail to sustain further deformation, leading to voids formation and cracks propagation.

  9. S-shaped learning curves. (United States)

    Murre, Jaap M J


    In this article, learning curves for foreign vocabulary words are investigated, distinguishing between a subject-specific learning rate and a material-specific parameter that is related to the complexity of the items, such as the number of syllables. Two experiments are described, one with Turkish words and one with Italian words. In both, S-shaped learning curves were observed, which were most obvious if the subjects were not very familiar with the materials and if they were slow learners. With prolonged learning, the S shapes disappeared. Three different mathematical functions are proposed to explain these S-shaped curves. A further analysis clarifies why S-shaped learning curves may go unnoticed in many experiments.

  10. Effect of crack orientation statistics on effective stiffness of mircocracked solid

    DEFF Research Database (Denmark)

    Kushch, V.I.; Sevostianov, I.; Mishnaevsky, Leon


    This paper addresses the problem of calculating effective elastic properties of a solid containing multiple cracks with prescribed orientation statistics. To do so, the representative unit cell approach has been used. The microgeometry of a cracked solid is modeled by a periodic structure...... with a unit cell containing multiple cracks: a sufficient number is taken to account for the microstructure statistics. The developed method combines the superposition principle, the technique of complex potentials and certain new results in the theory of special functions. A proper choice of potentials...... provides reducing the boundary-value problem to an ordinary, well-posed set of linear algebraic equations. The exact finite form expression of the effective stiffness tensor has been obtained by analytical averaging the strain and stress fields. The convergence study has been performed: the statistically...

  11. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt


    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  12. Residual stress effects of a fatigue crack on guided lamb waves (United States)

    Martinez, M.; Pant, S.; Yanishevsky, M.; Backman, D.


    Structural health monitoring has focused on the use of computational models to capture the effect of crack-like discontinuities on the behaviour of acoustic-ultrasonic signals. However, few models have taken into account the effect of geometric complexity in combination with residual stresses generated during the fatigue crack growth (FCG) process. In this study, a finite element analysis model of a C-channel type aeronautical structure is evaluated under a pitch-catch scenario. Three different finite element model configurations were considered in order to understand the effects that residual stresses of a fatigue crack emanating from a through-hole have on the guided Lamb wave propagation behaviour. The results demonstrate that numerical modelling is able to capture the change in amplitude and the effect of a phase shift on the guided Lamb wave behaviour due to the presence of the discontinuity and the stress field generated during the FCG process.

  13. Cracked Tooth: A Report of Two Cases and Role of Cone Beam Computed Tomography in Diagnosis

    Directory of Open Access Journals (Sweden)

    Pishipati Vinayak Kalyan Chakravarthy


    Full Text Available Cracked tooth is a distinct type of longitudinal tooth fracture which occurs very commonly and its diagnosis can be challenging. This type of fracture tends to grow and change over time. Clinical diagnosis is difficult because the signs and symptoms are variable or nonspecific and may even resemble post-treatment disease following root canal treatment or periodontal disease. This variety and unpredictability make the cracked tooth a challenging diagnostic entity. The use of cone beam computed tomography (CBCT in diagnosis of complex endodontic cases has been well documented in the literature. In this paper we present two cases of cracked tooth and emphasise on the timely use of cone beam computed tomography as an aid in diagnosis and as a prognostic determinant.

  14. Thermal fatigue cracking of die-casting dies

    Directory of Open Access Journals (Sweden)

    Thermal fatigue cracking of die-casting dies


    Full Text Available Die-casting dies are exposed to high thermal and mechanical loads. Thermal fatigue cracking of dies due to thermal cycling may importantly shorten the life-time of the die. Cracks degrade the surface quality of dies and consequently the surface of castings. In this study, thermal fatigue cracking of dies was analyzed during the process of die casting aluminium alloys. During the process cracks were observed and measured and their location and size were determined. Thermal and mechanical loads cause high local stresses and consequently surface cracks. First cracks occur as early as after 2000 cycles and propagate progressively with cycles.

  15. COD measurements at various positions along a crack (United States)

    Sharpe, W. N., Jr.; Su, X.


    Load versus crack-opening-displacement (COD) was measured at various positions along the border of a fatigue crack as it grew from a small surface crack on the edge of an aluminum specimen into a through-the-thickness crack. Displacements were measured with a laser-based interferometric system with a gage length of 70 microns and a resolution of 0.01 micron. These load-COD curves can be used to determine opening loads and thereby investigate the effect of closure on the growth of small cracks. In general, the opening loads decrease as the crack grows.

  16. Experimental Determination of Stress Intensity in a Cracked Cylindrical Specimen, (United States)


    CRACKED CYLINDRICAL SPEC IMEN 7 ABSTRACT The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack growth...of this report will be similarly clesiied): The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack...EXPERIMENTAL STRESS INTENSITY CALIBRATION 3 3. EXPERIMENTAL DETAILS 4 3.1 Specimen Geometries 4 3.2 Material 5 3.3 Fatigue Loading 5 3.4 Crack Length

  17. Evaluation of a Small-Crack Monitoring System (United States)

    Newman, John A.; Johnston, William M.


    A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.

  18. General cracked-hinge model for simulation of low-cycle damage in cemented beams on soil

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes


    The need for mechanistic constitutive models to evaluate the complex interaction between concrete crack propagation, geometry and soil foundation in concrete- and composite pavement systems has been recognized. Several models developed are either too complex or designed to solve relatively simple...

  19. Environmentally assisted cracking in LWR materials

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Park, J.H.; Shack, W.J. [Argonne National Lab., IL (United States); Zhang, J.; Brust, F.W.; Dong, P. [Battelle Columbus Labs., Columbus, OH (United States)


    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2--0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  20. Seacoast stress corrosion cracking of aluminum alloys (United States)

    Humphries, T. S.; Nelson, E. E.


    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  1. Mitigation strategies for autogenous shrinkage cracking

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede


    As the use of high-performance concrete has increased, problems with early-age cracking have become prominent. The reduction in water-to-cement ratio, the incorporation of silica fume, and the increase in binder content of high-performance concretes all contribute to this problem. In this paper......, the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete are presented. Basic characteristics of the cement paste that contribute to or control the autogenous shrinkage response include the surface tension of the pore solution, the geometry of the pore...... of early-age cracking due to autogenous shrinkage. Mitigation strategies discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition...

  2. FInal Report - Investment Casting Shell Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Von Richards


    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  3. Stress corrosion cracking of titanium alloys (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.


    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  4. Computer vision cracks the leaf code. (United States)

    Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A; Wing, Scott L; Serre, Thomas


    Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies.

  5. The Effect of Grain Size on Fatigue Growth of Short Cracks (United States)

    Zurek, A. K.; James, M. R.; Morris, W. L.


    The influence of alloy grain size on growth rates of surface cracks 20 to 500 μm in length was studied in Al 7075-T6 specimens prepared in 12 and 130 μn grain sizes. Grain boundaries temporarily interrupt the propagation of cracks shorter than several grain diameters in length. Linear elastic fracture mechanics is inadequate to describe resulting average growth rates which must instead be characterized as a function of cyclic stress amplitude, σa, and alloy grain size as well as stress intensity range, σ K. These observations are rationalized using two models, one that relates crack closure stress to alloy grain size, and a second that relates the development of microplasticity in a new grain in the crack path to grain size. In addition, growth rates were found to be faster in fully reversed loading than in tension-tension loading, especially in the large grained material. Evidence is presented to demonstrate that this is a consequence of the fatigue induced development of a compressive residual surface stress during tension-tension loading. These complex effects, and the role of grain size in determining short crack growth, are discussed.

  6. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    Directory of Open Access Journals (Sweden)

    Ruifang Xie


    Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  7. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Directory of Open Access Journals (Sweden)

    Loukili A.


    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  8. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)


    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  9. Residual strength of thin panels with cracks (United States)

    Madenci, Erdogan


    The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.

  10. Way to increase back-up rolls cracking and wearing resistances at high-speed deposition with low heat input

    Directory of Open Access Journals (Sweden)

    Сергій Вікторович Щетинін


    Full Text Available The rolling-mill back-up rolls operate under high specific pressures conditions and are produced of high-carbon steel, prone to hot and cold cracking. Therefore crack resistance increase is an important scientific and technical problem. The impact of the electrode shape and heat input on the arc motion, and heat affected zone, the size of which determines the cold cracks formation and deposited metal flaking has been found. The arc moves along the electrode end face along the longitudinal axis or perpendicular to the weld pool in dependence on the ribbon position. The arc movement governs the heat input in the pool and if the surfacing regime is constant, the heating and cooling rates of the molten metal and heat affected zone as well. At surfacing with a perpendicular ribbon the heat affected zone decreases; at surfacing with a longitudinal ribbon and wire the heat affected zone increases. At surfacing with a composite electrode the heat affected zone reduces sharply while resistance to cracking and wearing increases. With the heat input reduction in weld pool side edges the heat affected zone reduces as well. At high speed surfacing with low heat input, the heat affected zone reduces, the tendency to cold cracking and deposited metal flaking decrease, welding stresses and specific pressure decrease, what results in resistance to cracking increase as well as the increase in wearing resistance. When energy decreases the deposited metal quality increases. Energy minimum results in maximum quality. The process of energy-saving high-speed deposition with low heat input, which provides microstructure reduction, heat input in the base metal and heat affected zone decrease, prevent cold cracking and deposited metal flaking increases both rolling mill back-up cracking resistance and wearing resistance has been developed

  11. Nucleation of squat cracks in rail, calculation of crack initiation angles in three dimensions (United States)

    Naeimi, Meysam; Li, Zili; Dollevoet, Rolf


    A numerical model of wheel-track system is developed for nucleation of squat-type fatigue cracks in rail material. The model is used for estimating the angles of squat cracks in three dimensions. Contact mechanics and multi-axial fatigue analysis are combined to study the crack initiation mechanism in rails. Nonlinear material properties, actual wheel-rail geometries and realistic loading conditions are considered in the modelling process. Using a 3D explicit finite element analysis the transient rolling contact behaviour of wheel on rail is simulated. Employing the critical plane concept, the material points with the largest possibility of crack initiation are determined; based on which, the 3D orientations/angles of the possible squat cracks are estimated. Numerical estimations are compared with sample results of experimental observations on a rail specimen with squat from the site. The findings suggest a proper agreement between results of modelling and experiment. It is observed that squat cracks initiate at an in-plane angle around 13°-22° relative to the rail surface. The initiation angle seen on surface plane is calculated around 29°-48°, while the crack tend to initiate in angles around 25°-31° in the rail cross-section.

  12. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio


    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  13. Investigations on crack development and crack growth in embedded solar cells (United States)

    Sander, M.; Dietrich, S.; Pander, M.; Schweizer, S.; Ebert, M.; Bagdahn, J.


    In recent investigations using various analysis methods it has been shown that mechanical or thermal loading of PV modules leads to mechanical stress in the module parts and especially in the encapsulated solar cells. Cracks in crystalline solar cells are a characteristic defect that is caused by mechanical stress. They can lead to efficiency losses and lifetime reduction of the modules. This paper presents two experiments for systematic investigation of crack initiation and crack growth under thermal and mechanical loading using electroluminescence. For this purpose PV modules and laminated test specimens on smaller scales were produced including different cell types and module layouts. They were exposed to thermal cycling and to mechanical loading derived from the international standard IEC 61215. Cracks were observed mainly at the beginning and the end of the busbars and along the busbars. The cracks were analyzed and evaluated statistically. The experimental results are compared to results from numerical simulations to understand the reasons for the crack initiation and the observed crack growth and to allow module design optimization to reduce the mechanical stress.

  14. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N.Z. [Univ. of Central Florida, Cape Canaveral, FL (United States)


    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  15. Fatigue crack growth under variable amplitude loading (United States)

    Sidawi, Jihad A.


    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  16. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel (United States)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin


    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  17. PFM Analysis for Pre-Existing Cracks on Alloy 182 Weld in PWR Primary Water Environment using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Phil; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)


    Probabilistic Fracture Mechanics (PFM) analysis was generally used to consider the scatter and uncertainty of parameters in complex phenomenon. Weld defects could be present in weld regions of Pressurized Water Reactors (PWRs), which cannot be considered by the typical fracture mechanics analysis. It is necessary to evaluate the effects of the pre-existing cracks in welds for the integrity of the welds. In this paper, PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out using a Monte Carlo simulation. PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out. It was shown that inspection decreases the gradient of the failure probability. And failure probability caused by the pre-existing cracks was stabilized after 15 years of operation time in this input condition.

  18. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  19. Experimental study of heat dissipation at the crack tip during fatigue crack propagation

    Directory of Open Access Journals (Sweden)

    A. Vshivkov


    Full Text Available This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE and titanium alloy OT4-0 samples. The investigation of the fatigue crack propagation was carried out on flat samples with different geometries and types of stress concentrators. The heat flux sensor was developed based on the Seebeck effect. This sensor was used for measuring the heat dissipation power in the examined samples during the fatigue tests. The measurements showed that the rate of fatigue crack growth depends on the heat flux at the crack tip.

  20. Standard test method for crack-tip opening displacement (CTOD) fracture toughness measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers the determination of critical crack-tip opening displacement (CTOD) values at one or more of several crack extension events, and may be used to measure cleavage crack initiation toughness for materials that exhibit a change from ductile to brittle behavior with decreasing temperature, such as ferritic steels. This test method applies specifically to notched specimens sharpened by fatigue cracking. The recommended specimens are three-point bend [SE(B)], compact [C(T)], or arc-shaped bend [A(B)] specimens. The loading rate is slow and influences of environment (other than temperature) are not covered. The specimens are tested under crosshead or clip gage displacement controlled loading. 1.1.1 The recommended specimen thickness, B, for the SE(B) and C(T) specimens is that of the material in thicknesses intended for an application. For the A(B) specimen, the recommended depth, W, is the wall thickness of the tube or pipe from which the specimen is obtained. Superficial surface machini...