WorldWideScience

Sample records for complex brain evolution

  1. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  2. Epigenetics and brain evolution.

    Science.gov (United States)

    Keverne, Eric B

    2011-04-01

    Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.

  3. Physical Complexity and Cognitive Evolution

    Science.gov (United States)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  4. Evolution of complex dynamics

    Science.gov (United States)

    Wilds, Roy; Kauffman, Stuart A.; Glass, Leon

    2008-09-01

    We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.

  5. On the Evolution of the Mammalian Brain.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes.

  6. On the evolution of the mammalian brain

    Directory of Open Access Journals (Sweden)

    John Steven Torday

    2016-04-01

    Full Text Available Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.. This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation, circumventing the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment (= evolution. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday JS. A Central Theory of Biology. Med Hypotheses. 2015 Jul;85(1:49-57, perhaps being the functional homolog for brain heat dissipation and consciousness/mind. The skin and brain similarly share molecular homologies through the ‘skin-brain’ hypothesis, giving insight to the cellular-molecular ‘arc’ of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the

  7. Sexual selection and the evolution of brain size in primates.

    Science.gov (United States)

    Schillaci, Michael A

    2006-12-20

    Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception.

  8. Sexual selection and the evolution of brain size in primates.

    Directory of Open Access Journals (Sweden)

    Michael A Schillaci

    Full Text Available Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception.

  9. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  10. Evolution and transitions in complexity

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.

    2016-01-01

    This book discusses several recent theoretic advancements in interdisciplinary and transdisciplinary integration in the field of evolution. While exploring novel views, the text maintains a close link with one of the most broadly held views on evolution, namely that of "Darwinian evolution." This

  11. Spectral properties of the temporal evolution of brain network structure.

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  12. Mathematical Analysis of Evolution, Information, and Complexity

    CERN Document Server

    Arendt, Wolfgang

    2009-01-01

    Mathematical Analysis of Evolution, Information, and Complexity deals with the analysis of evolution, information and complexity. The time evolution of systems or processes is a central question in science, this text covers a broad range of problems including diffusion processes, neuronal networks, quantum theory and cosmology. Bringing together a wide collection of research in mathematics, information theory, physics and other scientific and technical areas, this new title offers elementary and thus easily accessible introductions to the various fields of research addressed in the book.

  13. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  14. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  15. The sleeping brain as a complex system.

    Science.gov (United States)

    Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas

    2011-10-13

    'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.

  16. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  17. Evolution, brain, and the nature of language.

    Science.gov (United States)

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evolution of complexity following a global quench

    Science.gov (United States)

    Moosa, Mudassir

    2018-03-01

    The rate of complexification of a quantum state is conjectured to be bounded from above by the average energy of the state. A different conjecture relates the complexity of a holographic CFT state to the on-shell gravitational action of a certain bulk region. We use `complexity equals action' conjecture to study the time evolution of the complexity of the CFT state after a global quench. We find that the rate of growth of complexity is not only consistent with the conjectured bound, but it also saturates the bound soon after the system has achieved local equilibrium.

  19. Complexity and technological evolution: What everybody knows?

    NARCIS (Netherlands)

    Vaesen, K.; Houkes, W.N.

    2018-01-01

    The consensus among cultural evolutionists seems to be that human cultural evolution is cumulative, which is commonly understood in the specific sense that cultural traits, especially technological traits, increase in complexity over generations. Here we argue that there is insufficient credible

  20. The evolution of the brain, the human nature of cortical circuits and intellectual creativity

    Directory of Open Access Journals (Sweden)

    Javier eDeFelipe

    2011-05-01

    Full Text Available The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of archetypical microcircuits, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective.

  1. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Identifying modular relations in complex brain networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig

    2012-01-01

    We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure...

  3. Evolution and the complexity of bacteriophages.

    Science.gov (United States)

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine

  4. Evolution and the complexity of bacteriophages

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-03-01

    Full Text Available Abstract Background The genomes of both long-genome (> 200 Kb bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1 Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2 Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection. (3 The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection. (4 The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1 determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2 find the environmental conditions that

  5. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Reconsidering the evolution of brain, cognition and behaviour in birds and mammals

    Directory of Open Access Journals (Sweden)

    Romain eWillemet

    2013-07-01

    Full Text Available Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behaviour of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. Brain and cognition are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behaviour are limited by the complexity of these differences. Indeed, behavioural differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behaviour appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists’ preconceptions. The theoretical framework on the evolution of brain, cognition and behaviour in birds and mammals should be reconsidered with these biases in mind.

  7. Defining nodes in complex brain networks

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Stanley

    2013-11-01

    Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that

  8. Evolution of the human brain: design without a designer.

    NARCIS (Netherlands)

    Hofman, M.A.; Kaas, John

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of mammals. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The objective of this chapter is to present current

  9. Evolution of the brain and phylogenetic development of Mrican ...

    African Journals Online (AJOL)

    Evolution of the brain and phylogenetic development of Mrican Bovidae. Henriette Oboussier. Zoological Institute and Museum, University of Hamburg. Evidence drawn from the study of 270 brains of 54 species and subspecies of African Bovidae makes it possible to base phylogenetic relationships on the similarities in the ...

  10. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  11. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  12. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  13. Complex brain networks: From topological communities to clustered

    Indian Academy of Sciences (India)

    Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.

  14. MCPH1: a window into brain development and evolution

    Directory of Open Access Journals (Sweden)

    Jeannette eNardelli

    2015-03-01

    Full Text Available The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.

  15. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Evolution of the human brain : when bigger is better

    NARCIS (Netherlands)

    Hofman, Michel A

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the

  17. Human brain evolution, theories of innovation, and lessons from the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 3. Human brain evolution, theories of innovation, and lessons from the history of technology. Alfred Gierer. Perspectives Volume 29 Issue 3 September 2004 pp 235-244. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Approach of Complex Networks for the Determination of Brain Death

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Gang; CAO Jian-Ting; WANG Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our Sndings might provide valuable insights on the determination of brain death.%@@ In clinical practice, brain death is the irreversible end of all brain activity.Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination.Brain functional networks constructed by correlation analysis axe derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated.Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state.Our findings might provide valuable insights on the determination of brain death.

  19. Origin and evolution of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Vittorio Alessandro eSironi

    2011-08-01

    Full Text Available This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the 18th century and was subsequently used by the early 20th century, even for therapeutic purposes. In mid-20th century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, DBS was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson's disease, essential tremor and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette's syndrome, psychiatric diseases (depression, obsessive-compulsive disorder, some kinds of headache, eating disorders and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results.

  20. The Evolution of Lateralized Brain Circuits

    Directory of Open Access Journals (Sweden)

    Michael C. Corballis

    2017-06-01

    Full Text Available In the vast clade of animals known as the bilateria, cerebral and behavioral asymmetries emerge against the backdrop of bilateral symmetry, with a functional trade-off between the two. Asymmetries can lead to more efficient processing and packaging of internal structures, but at the expense of efficient adaptation to a natural world without systematic left-right bias. Asymmetries may arise through the fissioning of ancestral structures that are largely symmetrical, creating new circuits. In humans these may include asymmetrical adaptations to language and manufacture, and as one or other hemisphere gains dominance for functions that were previously represented bilaterally. This is best illustrated in the evolution of such functions as language and tool manufacture in humans, which may derive from the mirror-neuron system in primates, but similar principles probably apply to the many other asymmetries now evident in a wide range of animals. Asymmetries arise in largely independent manner with multi-genetic sources, rather than as a single over-riding principle.

  1. Complex Langevin simulation of real time quantum evolution

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.

    1986-07-01

    Complex Langevin methods are used to study the time evolution of quantum mechanical wave packets. We do not need any Feynman ε regularization for the numerical evaluation of the double time path integral. (author)

  2. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  3. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  4. Evolution of complexity in RNA-like replicator systems

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization – be it of molecules or ecosystems – is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization. Results Here we investigate the evolution of complexity in a simulated RNA-like replicator system. The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of individual replicators, whereby we avoid preconceiving the functionality of genotypes (information or the ecological organization of replicators in the model. In particular, the model assumes that interactions among replicators – to replicate or to be replicated – depend on their secondary structures and base-pair matching. The results showed that a population of replicators, originally consisting of one genotype, evolves to form a complex ecosystem of up to four species. During this diversification, the species evolve through acquiring unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that parasitic replicators, which have been thought to destabilize the replicator's diversity, actually promote the evolution of diversity through generating a novel "niche" for catalytic replicators. This also makes the current replicator system extremely stable upon the evolution of parasites. The results also show that the stability of the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynamics is shown to

  5. Approach of Complex Networks for the Determination of Brain Death

    International Nuclear Information System (INIS)

    Sun Wei-Gang; Cao Jian-Ting; Wang Ru-Bin

    2011-01-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death. (cross-disciplinary physics and related areas of science and technology)

  6. Evolution of disorder in Mediator complex and its functional relevance.

    Science.gov (United States)

    Nagulapalli, Malini; Maji, Sourobh; Dwivedi, Nidhi; Dahiya, Pradeep; Thakur, Jitendra K

    2016-02-29

    Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of 'junction-MoRF' has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein-protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  8. Stochastic dynamics of complex systems: from glasses to evolution (series on complexity science)

    CERN Document Server

    Sibani, Paolo

    2013-01-01

    Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex - for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways. The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the desc...

  9. An ensemble approach to the evolution of complex systems

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... [Arpağ G and Erzan A 2014 An ensemble approach to the evolution of complex systems. J. Biosci. ... almost nothing about all the different ways in which your ...... energy cost to the organism of the maintenance, replication,.

  10. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  11. The evolution of cerebellum structure correlates with nest complexity.

    Science.gov (United States)

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  12. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  13. Evolution of weighted complex bus transit networks with flow

    Science.gov (United States)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  14. Brain in complex regional pain syndrome

    OpenAIRE

    Hotta, Jaakko

    2017-01-01

    Complex regional pain syndrome (CRPS) causes disabling and severe limb pain that is difficult to treat. The pain typically increases during motor actions, but is present also at rest. The pathophysiology of CRPS is incompletely understood. Some of the symptoms suggest involvement of the central nervous system, and accordingly, patients have been shown to display alterations in, for instance, the primary sensorimotor cortex (SM1) and indications of neuroinflammation. More thorough pathophysiol...

  15. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  16. Brain architecture and social complexity in modern and ancient birds.

    Science.gov (United States)

    Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H

    2004-01-01

    Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel

  17. Evolution of facial color pattern complexity in lemurs.

    Science.gov (United States)

    Rakotonirina, Hanitriniaina; Kappeler, Peter M; Fichtel, Claudia

    2017-11-09

    Interspecific variation in facial color patterns across New and Old World primates has been linked to species recognition and group size. Because group size has opposite effects on interspecific variation in facial color patterns in these two radiations, a study of the third large primate radiation may shed light on convergences and divergences in this context. We therefore compiled published social and ecological data and analyzed facial photographs of 65 lemur species to categorize variation in hair length, hair and skin coloration as well as color brightness. Phylogenetically controlled analyses revealed that group size and the number of sympatric species did not influence the evolution of facial color complexity in lemurs. Climatic factors, however, influenced facial color complexity, pigmentation and hair length in a few facial regions. Hair length in two facial regions was also correlated with group size and may facilitate individual recognition. Since phylogenetic signals were moderate to high for most models, genetic drift may have also played a role in the evolution of facial color patterns of lemurs. In conclusion, social factors seem to have played only a subordinate role in the evolution of facial color complexity in lemurs, and, more generally, group size appears to have no systematic functional effect on facial color complexity across all primates.

  18. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  19. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  20. Analyzing complex networks evolution through Information Theory quantifiers

    International Nuclear Information System (INIS)

    Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martin Gomez

    2011-01-01

    A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Nino/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.

  1. Analyzing complex networks evolution through Information Theory quantifiers

    Energy Technology Data Exchange (ETDEWEB)

    Carpi, Laura C., E-mail: Laura.Carpi@studentmail.newcastle.edu.a [Civil, Surveying and Environmental Engineering, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte (31270-901), MG (Brazil); Rosso, Osvaldo A., E-mail: rosso@fisica.ufmg.b [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte (31270-901), MG (Brazil); Chaos and Biology Group, Instituto de Calculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires (Argentina); Saco, Patricia M., E-mail: Patricia.Saco@newcastle.edu.a [Civil, Surveying and Environmental Engineering, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Departamento de Hidraulica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, Rosario (Argentina); Ravetti, Martin Gomez, E-mail: martin.ravetti@dep.ufmg.b [Departamento de Engenharia de Producao, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte (31270-901), MG (Brazil)

    2011-01-24

    A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Nino/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.

  2. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  3. Brain evolution relating to family, play, and the separation call.

    Science.gov (United States)

    MacLean, P D

    1985-04-01

    Mammals stem from the mammal-like reptiles (therapsids) that were widely prevalent in Pangaea 250 million years ago. In the evolutionary transition from reptiles to mammals, three key developments were (1) nursing, in conjunction with maternal care; (2) audiovocal communication for maintaining maternal-offspring contact; and (3) play. The separation call perhaps ranks as the earliest and most basic mammalian vocalization, while play may have functioned originally to promote harmony in the nest. How did such family related behavior develop? In its evolution, the forebrain of advanced mammals has expanded as a triune structure that anatomically and chemically reflects ancestral commonalities with reptiles, early mammals, and late mammals. Recent findings suggest that the development of the behavioral triad in question may have depended on the evolution of the thalamocingulate division of the limbic system, a derivative from early mammals. The thalamocingulate division (which has no distinctive counterpart in the reptilian brain) is, in turn, geared in with the prefrontal neocortex that, in human beings, may be inferred to play a key role in familial acculturation.

  4. Nonlinear complexity analysis of brain FMRI signals in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Moses O Sokunbi

    Full Text Available We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H. 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems.

  5. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  6. Evolution of brain-computer interfaces: going beyond classic motor physiology

    Science.gov (United States)

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  7. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  8. Evolution of genome size and complexity in the rhabdoviridae.

    Directory of Open Access Journals (Sweden)

    Peter J Walker

    2015-02-01

    Full Text Available RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  9. Evolution of genome size and complexity in the rhabdoviridae.

    Science.gov (United States)

    Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos

    2015-02-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  10. Evolution of Genome Size and Complexity in the Rhabdoviridae

    Science.gov (United States)

    Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389

  11. Evolution of oxytocin pathways in the brain of vertebrates

    Directory of Open Access Journals (Sweden)

    H. Sophie Knobloch

    2014-02-01

    Full Text Available The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians, magnocellular neurosecretory neurons producing oxytocin, vasopressin and their homologs reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds and mammals into the paraventricular and supraoptic nuclei with accessory nuclei between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.

  12. Evolution of Cooperation in Social Dilemmas on Complex Networks

    Science.gov (United States)

    Iyer, Swami; Killingback, Timothy

    2016-01-01

    Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428

  13. Evolution in students' understanding of thermal physics with increasing complexity

    Science.gov (United States)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  14. Interactive Evolution of Complex Behaviours Through Skill Encapsulation

    DEFF Research Database (Denmark)

    González de Prado Salas, Pablo; Risi, Sebastian

    2017-01-01

    Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution by it...... in evolutionary computation and, as the results in this paper show, IEC-ESP is able to solve complex control problems that are challenging for a traditional fitness-based approach.......Human-based computation (HBC) is an emerging research area in which humans and machines collaborate to solve tasks that neither one can solve in isolation. In evolutionary computation, HBC is often realized through interactive evolutionary computation (IEC), in which a user guides evolution...... by iteratively selecting the parents for the next generation. IEC has shown promise in a variety of different domains, but evolving more complex or hierarchically composed behaviours remains challenging with the traditional IEC approach. To overcome this challenge, this paper combines the recently introduced ESP...

  15. Maternal effects and the evolution of brain size in birds: overlooked developmental constraints.

    Science.gov (United States)

    Garamszegi, L Z; Biard, C; Eens, M; Møller, A P; Saino, N; Surai, P

    2007-01-01

    A central dogma for the evolution of brain size posits that the maintenance of large brains incurs developmental costs, because they need prolonged periods to grow during the early ontogeny. Such constraints are supported by the interspecific relationship between ontological differences and relative brain size in birds and mammals. Given that mothers can strongly influence the development of the offspring via maternal effects that potentially involve substances essential for growing brains, we argue that such effects may represent an important but overlooked component of developmental constraints on brain size. To demonstrate the importance of maternal effect on the evolution of brains, we investigated the interspecific relationship between relative brain size and maternal effects, as reflected by yolk testosterone, carotenoids, and vitamins A and E in a phylogenetic study of birds. Females of species with relatively large brains invested more in eggs in terms of testosterone and vitamin E than females of species with small brains. The effects of carotenoid and vitamin A levels on the evolution of relative brain size were weaker and non-significant. The association between relative brain size and yolk testosterone was curvilinear, suggesting that very high testosterone levels can be suppressive. However, at least in moderate physiological ranges, the positive relationship between components of maternal effects and relative brain size may imply one aspect of developmental costs of large brains. The relationship between vitamin E and relative brain size was weakened when we controlled for developmental mode, and thus the effect of this antioxidant may be indirect. Testosterone-enhanced neurogenesis and vitamin E-mediated defence against oxidative stress may have key functions when the brain of the embryo develops, with evolutionary consequences for relative brain size.

  16. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  17. Evolution in students’ understanding of thermal physics with increasing complexity

    Directory of Open Access Journals (Sweden)

    Elon Langbeheim

    2013-11-01

    Full Text Available We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  18. Lectures in Supercomputational Neurosciences Dynamics in Complex Brain Networks

    CERN Document Server

    Graben, Peter beim; Thiel, Marco; Kurths, Jürgen

    2008-01-01

    Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical co...

  19. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    Science.gov (United States)

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  20. The Bilingual Brain: Human Evolution and Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    L. Kirk Hagen

    2008-01-01

    Full Text Available For the past half-century, psycholinguistic research has concerned itself with two mysteries of human cognition: (1 that children universally acquire a highly abstract, computationally complex set of linguistic rules rapidly and effortlessly, and (2 that second language acquisition (SLA among adults is, conversely, slow, laborious, highly variable, and virtually never results in native fluency. We now have a decent, if approximate, understanding of the biological foundations of first language acquisition, thanks in large part to Lenneberg's (1964, 1984 seminal work on the critical period hypothesis. More recently, the elements of a promising theory of language and evolution have emerged as well (see e.g. Bickerton, 1981, 1990; Leiberman, 1984, 1987. I argue here that the empirical foundations of an evolutionary theory of language are now solid enough to support an account of bilingualism and adult SLA as well. Specifically, I will show that evidence from the environment of evolutionary adaptation of paleolithic humans suggests that for our nomadic ancestors, the ability to master a language early in life was an eminently useful adaptation. However, the ability to acquire another language in adulthood was not, and consequently was not selected for propagation.

  1. The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex.

    Science.gov (United States)

    Merker, Matthias; Kohl, Thomas A; Niemann, Stefan; Supply, Philip

    2017-01-01

    Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.

  2. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Statistical complexity is maximized in a small-world brain.

    Directory of Open Access Journals (Sweden)

    Teck Liang Tan

    Full Text Available In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.

  4. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii)

    Science.gov (United States)

    Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.

    2016-01-01

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  5. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  6. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    Science.gov (United States)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of

  7. Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes

    Directory of Open Access Journals (Sweden)

    Kolm Niclas

    2009-09-01

    Full Text Available Abstract Background The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids. Results Total brain size explained 86% of the variance in brain structure volume in cichlids, a lower proportion than what has previously been reported for mammals. Brain structures showed variation in pair-wise allometry suggesting some degree of independence in evolutionary changes in size. This result is supported by variation among structures on the strength of their loadings on the principal size axis of the allometric analysis. The rate of evolution analyses generally supported the results of the multivariate allometry analyses, showing variation among several structures in their evolutionary patterns. The olfactory bulbs and hypothalamus were found to evolve faster than other structures while the dorsal medulla presented the slowest evolutionary rate. Conclusion Our results favor a mosaic model of brain evolution, as certain

  8. Big words, halved brains and small worlds: complex brain networks of figurative language comprehension.

    Science.gov (United States)

    Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham

    2011-04-27

    Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.

  9. Art and brain: insights from neuropsychology, biology and evolution.

    Science.gov (United States)

    Zaidel, Dahlia W

    2010-02-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation.

  10. A Mind of Three Minds: Evolution of the Human Brain

    Science.gov (United States)

    MacLean, Paul D.

    1978-01-01

    The author examines the evolutionary and neural roots of a triune intelligence comprised of a primal mind, an emotional mind, and a rational mind. A simple brain model and some definitions of unfamiliar behavioral terms are included. (Author/MA)

  11. Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons.

    Science.gov (United States)

    Arbib, Michael A

    2017-02-01

    The approach to language evolution suggested here focuses on three questions: How did the human brain evolve so that humans can develop, use, and acquire languages? How can the evolutionary quest be informed by studying brain, behavior, and social interaction in monkeys, apes, and humans? How can computational modeling advance these studies? I hypothesize that the brain is language ready in that the earliest humans had protolanguages but not languages (i.e., communication systems endowed with rich and open-ended lexicons and grammars supporting a compositional semantics), and that it took cultural evolution to yield societies (a cultural constructed niche) in which language-ready brains could become language-using brains. The mirror system hypothesis is a well-developed example of this approach, but I offer it here not as a closed theory but as an evolving framework for the development and analysis of conflicting subhypotheses in the hope of their eventual integration. I also stress that computational modeling helps us understand the evolving role of mirror neurons, not in and of themselves, but only in their interaction with systems "beyond the mirror." Because a theory of evolution needs a clear characterization of what it is that evolved, I also outline ideas for research in neurolinguistics to complement studies of the evolution of the language-ready brain. A clear challenge is to go beyond models of speech comprehension to include sign language and models of production, and to link language to visuomotor interaction with the physical and social world.

  12. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    Science.gov (United States)

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. On the adaptivity and complexity embedded into differential evolution

    International Nuclear Information System (INIS)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman; Zelinka, Ivan

    2016-01-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  14. On the adaptivity and complexity embedded into differential evolution

    Science.gov (United States)

    Senkerik, Roman; Pluhacek, Michal; Zelinka, Ivan; Jasek, Roman

    2016-06-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  15. On the adaptivity and complexity embedded into differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman [Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic, senkerik@fai.utb.cz,pluhacek@fai.utb.cz (Czech Republic); Zelinka, Ivan [Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,708 33 Ostrava-Poruba, Czech Republic, ivan.zelinka@vsb.cz (Czech Republic)

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  16. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  17. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    OpenAIRE

    Corn?lio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appeal...

  18. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  19. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  20. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    Directory of Open Access Journals (Sweden)

    Barton Robert A

    2010-01-01

    Full Text Available Abstract Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain

  1. On the matter of mind: neural complexity and functional dynamics of the human brain.

    NARCIS (Netherlands)

    Hofman, M.A.; Watanabe, Shigeru; Hofman, Michel; Shimizu, Toru

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of anthropoid primates. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The object of this review is to present

  2. Complex brain networks: From topological communities to clustered ...

    Indian Academy of Sciences (India)

    functional connectivity of the human brain has shown that both types of brain networks share .... the areas and also of the whole network, the Pearson correlation coefficient r and ..... Several areas important for intercommunity communication.

  3. Human brain expansion during evolution is independent of fire control and cooking

    Directory of Open Access Journals (Sweden)

    Alianda Maira Cornélio

    2016-04-01

    Full Text Available What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidences of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  4. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    Science.gov (United States)

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  5. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  6. The application of graph theoretical analysis to complex networks in the brain

    NARCIS (Netherlands)

    Reijneveld, Jaap C.; Ponten, Sophie C.; Berendse, Henk W.; Stam, Cornelis J.

    2007-01-01

    Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in

  7. A Video Game for Learning Brain Evolution: A Resource or a Strategy?

    Science.gov (United States)

    Barbosa Gomez, Luisa Fernanda; Bohorquez Sotelo, Maria Cristina; Roja Higuera, Naydu Shirley; Rodriguez Mendoza, Brigitte Julieth

    2016-01-01

    Learning resources are part of the educational process of students. However, how video games act as learning resources in a population that has not selected the virtual formation as their main methodology? The aim of this study was to identify the influence of a video game in the learning process of brain evolution. For this purpose, the opinions…

  8. Broca's arrow: evolution, prediction, and language in the brain.

    Science.gov (United States)

    Cooper, David L

    2006-01-01

    Brodmann's areas 44 and 45 in the human brain, also known as Broca's area, have long been associated with language functions, especially in the left hemisphere. However, the precise role Broca's area plays in human language has not been established with certainty. Broca's area has homologs in the great apes and in area F5 in monkeys, which suggests that its original function was not linguistic at all. In fact, great ape and hominid brains show very similar left-over-right asymmetries in Broca's area homologs as well as in other areas, such as homologs to Wernicke's area, that are normally associated with language in modern humans. Moreover, the so-called mirror neurons are located in Broca's area in great apes and area F5 in monkeys, which seem to provide a representation of cause and effect in a primate's environment, particularly its social environment. Humans appear to have these mirror neurons in Broca's area as well. Similarly, genetic evidence related to the FOXP2 gene implicates Broca's area in linguistic function and dysfunction, but the gene itself is a highly conserved developmental gene in vertebrates and is shared with only two or three differences between humans and great apes, five between humans and mice, and eight between humans and songbirds. Taking neurons and portions of the brain as discrete computational segments in the sense of constituting specific Turing machines, this evidence points to a predictive motor and conceptual function for Broca's area in primates, especially for social concepts. In human language, this is consistent with evidence from typological and cognitive linguistics. (c) 2006 Wiley-Liss, Inc.

  9. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  10. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  12. Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application

    OpenAIRE

    Li, Xiang

    2005-01-01

    In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...

  13. Brain evolution, the determinates of food choice, and the omnivore's dilemma.

    Science.gov (United States)

    Armelagos, George J

    2014-01-01

    A coevolutionary paradigm using a biocultural perspective can help to unravel the complex interactions that led to the contemporary pattern of eating. Evolutionary history helps to understand the adaptation of diet and its nutritional implications. Anatomical and behavioral changes linked to changing dietary patterns in the Paleolithic resulted in an adaptive framework that affects modern diet. The evolution of an expanding brain, a shrinking large intestine, and lengthening small intestine necessitated a demand for nutritionally dense foods. The key to these changes is an understanding of the response to the omnivore's dilemma. Omnivores in their search for new items to feed their varied diet (neophilia) have a challenge when they fear (neophobia) novel items that may be poisonous and can cause death. The inborn mechanism initiates palate fatigue (sensory-specific satiety) ensuring a variety of foods will be eaten. Variety will limit the impact of toxins ingested and provide a more balanced diet. The development of cuisine, a momentous event in history, mediated the conflict, and changed the course of human evolution. The cuisine, a biocultural construct, defines which items found in nature are edible, how these products are transformed into food, the flavors used to add a sensory dimension to foods, and rules of eating or etiquette. Etiquette defines how, when, and with whom we eat. Patterns of eating in the modern setting are the end product of the way that Homo sapiens evolved and resolved the omnivore's dilemma. Control of fire and cooking expanded the range of available foods by creating a class of foods that are "predigested." An essential element to the evolution of the human diet was the transition to agriculture as the primary mode of subsistence. The Neolithic revolution dramatically narrowed the dietary niche by decreasing the variety of available foods, with the shift to intensive agriculture creating a dramatic decline in human nutrition. The recent

  14. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development?

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-10-01

    Full Text Available The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behaviour. Here in this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a ‘social triangle’ that drives human social behaviour and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  15. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    Science.gov (United States)

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  16. The Origin and Evolution of Complex Enough Systems in Biology

    OpenAIRE

    Brändas, Erkki

    2017-01-01

    Recent criticisms of Neo-Darwinism are considered and disputed within the setting of recent advances in chemical physics. A related query, viz., the ontological thesis, that everything is physical, confronts a crucial test on the validity of reductionism as a fundamental approach to science.  While traditional ‘physicalism’ interprets evolution as a sequence of physical accidents governed by the second law of thermodynamics, the concepts of biology concern processes that owe their goal-direct...

  17. Numerical approaches to time evolution of complex quantum systems

    International Nuclear Information System (INIS)

    Fehske, Holger; Schleede, Jens; Schubert, Gerald; Wellein, Gerhard; Filinov, Vladimir S.; Bishop, Alan R.

    2009-01-01

    We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.

  18. Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng

    2017-01-01

    Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.

  19. The significance of the subplate for evolution and developmental plasticity of the human brain.

    Science.gov (United States)

    Judaš, Miloš; Sedmak, Goran; Kostović, Ivica

    2013-01-01

    The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate (RMR) in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter) probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

  20. THE SIGNIFICANCE OF THE SUBPLATE FOR EVOLUTION AND DEVELOPMENTAL PLASTICITY OF THE HUMAN BRAIN

    Directory of Open Access Journals (Sweden)

    MILOS eJUDAS

    2013-08-01

    Full Text Available The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

  1. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  2. Miniature Brain Decision Making in Complex Visual Environments

    National Research Council Canada - National Science Library

    Dyer, Adrian

    2008-01-01

    .... In particular, the grantee investigated the problem of face invariance to understand the role that experience with stimuli can play in permitting a brain to learn how to reliably recognize target...

  3. Sleeping of a Complex Brain Networks with Hierarchical Organization

    Science.gov (United States)

    Zhang, Ying-Yue; Yang, Qiu-Ying; Chen, Tian-Lun

    2009-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.

  4. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    Science.gov (United States)

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  5. Increase in Complexity and Information through Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Peter Schuster

    2016-11-01

    Full Text Available Biological evolution progresses by essentially three different mechanisms: (I optimization of properties through natural selection in a population of competitors; (II development of new capabilities through cooperation of competitors caused by catalyzed reproduction; and (III variation of genetic information through mutation or recombination. Simplified evolutionary processes combine two out of the three mechanisms: Darwinian evolution combines competition (I and variation (III and is represented by the quasispecies model, major transitions involve cooperation (II of competitors (I, and the third combination, cooperation (II and variation (III provides new insights in the role of mutations in evolution. A minimal kinetic model based on simple molecular mechanisms for reproduction, catalyzed reproduction and mutation is introduced, cast into ordinary differential equations (ODEs, and analyzed mathematically in form of its implementation in a flow reactor. Stochastic aspects are investigated through computer simulation of trajectories of the corresponding chemical master equations. The competition-cooperation model, mechanisms (I and (II, gives rise to selection at low levels of resources and leads to symbiontic cooperation in case the material required is abundant. Accordingly, it provides a kind of minimal system that can undergo a (major transition. Stochastic effects leading to extinction of the population through self-enhancing oscillations destabilize symbioses of four or more partners. Mutations (III are not only the basis of change in phenotypic properties but can also prevent extinction provided the mutation rates are sufficiently large. Threshold phenomena are observed for all three combinations: The quasispecies model leads to an error threshold, the competition-cooperation model allows for an identification of a resource-triggered bifurcation with the transition, and for the cooperation-mutation model a kind of stochastic threshold for

  6. The Amphimedon queenslandica genome and the evolution of animal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Simakov, Oleg; Chapman, Jarrod; Fahey, Bryony; Gauthier, Marie E.A.; Mitros, Therese; Richards, Gemma S.; Conaco, Cecilia; Dacre, Michael; Hellsten, Uffe; Larroux, Claire; Putnam, Nicholas H.; Stanke, Mario; Adamska, Maja; Darling, Aaron; Degnan, Sandie M.; Oakley, Todd H.; Plachetzki, David C.; Zhai, Yufeng; Adamski, Marcin; Calcino, Andrew; Cummins, Scott F.; Goodstein, David M.; Harris, Christina; Jackson, Daniel J.; Leys, Sally P.; Shu, Shengqiang; Woodcroft, Ben J.; Vervoort, Michel; Kosik, Kenneth S.; Manning, Gerard; Degnan, Bernard M.; Rokhsar, Daniel S.

    2010-07-01

    Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sponge sequence reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion, and diversification of pan-metazoan transcription factor, signaling pathway, and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic and germ cell specification, cell adhesion, innate immunity, and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.

  7. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    Science.gov (United States)

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The Evolution of Privatization at Hanford Tank Waste Treatment Complex

    International Nuclear Information System (INIS)

    BROWN, N.R.

    2001-01-01

    Privatization acquisition strategies embody substantial contract reform principles-private financing and ownership, competition, fixed prices, and payment only upon delivery of services-which in time became the recipe for privatization of Department of Energy (DOE) Environmental Management (EM) cleanup projects. Privatization changes the federal government's approach from traditional cost-plus contracting, where the federal government pays the contractor as the project progresses, to a strategy where the federal government pays for products or services as they are delivered. To be successful, the privatization requires additional risk taking by the contractor. This paper focuses on why the Tank Waste Remediation System (TWRS) pursued privatization, how the TWRS Privatization Project matured, and why the privatization project moved to an alternate path. The paper is organized as follows: a description of the TWRS-Privatization framework, how the project changed from the original request for proposal through the decision not to proceed to Part B-2, and the lessons learned during evolution of the effort, including what worked as well as what went wrong and how such negative outcomes might be prevented in the future

  9. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier.

    Science.gov (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo

    2006-10-20

    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  10. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.

    Science.gov (United States)

    Kaiser, Marcus; Varier, Sreedevi

    2011-01-01

    Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.

  11. War, space, and the evolution of Old World complex societies.

    Science.gov (United States)

    Turchin, Peter; Currie, Thomas E; Turner, Edward A L; Gavrilets, Sergey

    2013-10-08

    How did human societies evolve from small groups, integrated by face-to-face cooperation, to huge anonymous societies of today, typically organized as states? Why is there so much variation in the ability of different human populations to construct viable states? Existing theories are usually formulated as verbal models and, as a result, do not yield sharply defined, quantitative predictions that could be unambiguously tested with data. Here we develop a cultural evolutionary model that predicts where and when the largest-scale complex societies arose in human history. The central premise of the model, which we test, is that costly institutions that enabled large human groups to function without splitting up evolved as a result of intense competition between societies-primarily warfare. Warfare intensity, in turn, depended on the spread of historically attested military technologies (e.g., chariots and cavalry) and on geographic factors (e.g., rugged landscape). The model was simulated within a realistic landscape of the Afroeurasian landmass and its predictions were tested against a large dataset documenting the spatiotemporal distribution of historical large-scale societies in Afroeurasia between 1,500 BCE and 1,500 CE. The model-predicted pattern of spread of large-scale societies was very similar to the observed one. Overall, the model explained 65% of variance in the data. An alternative model, omitting the effect of diffusing military technologies, explained only 16% of variance. Our results support theories that emphasize the role of institutions in state-building and suggest a possible explanation why a long history of statehood is positively correlated with political stability, institutional quality, and income per capita.

  12. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    Science.gov (United States)

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  13. Age-dependent complex noise fluctuations in the brain

    International Nuclear Information System (INIS)

    Mareš, Jan; Vyšata, Oldřich; Procházka, Aleš; Vališ, Martin

    2013-01-01

    We investigated the parameters of colored noise in EEG data of 17 722 professional drivers aged 18–70. The whole study is based upon experiments showing that biological neural networks may operate in the vicinity of the critical point and that the balance between excitation and inhibition in the human brain is important for the transfer of information. This paper is devoted to the study of EEG power spectrum which can be described best by a power function with 1/f λ distribution and colored noise corresponding to the critical point in the EEG signal has the value of λ = 1 (purple noise). The slow accumulation of energy and its quick release is a universal property of the 1/f distribution. The physiological mechanism causing energy dissipation in the brain seems to depend on the number and strength of the connections between clusters of neurons. With ageing, the number of connections between the neurons decreases. Learning ability and intellectual performance also decrease. Therefore, age-related changes in the λ coefficient can be anticipated. We found that absolute values of λ coefficients decrease significantly with increasing age. Deviations from this rule are related to age-dependent slowing of the dominant frequency in the alpha band. Age-dependent change in the parameter and colored noise may be indicative of age-related changes in the self-organization of brain activity. Results obtained include (i) the age-dependent decrease of the absolute values of the average λ coefficient with the regression coefficient 0.005 1/year, (ii) distribution of λ value changes related to EEG frequency bands and to localization of electrodes on the scalp, and (iii) relation of age-dependent changes of colored noise and EEG energy in separate frequency bands. (paper)

  14. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    Science.gov (United States)

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. Copyright © 2014. Published by Elsevier Inc.

  15. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  16. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    Science.gov (United States)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  17. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    Science.gov (United States)

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  18. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  19. Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice.

    Science.gov (United States)

    Paul, Rajib; Borah, Anupom

    2017-12-20

    There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.

  20. Complex Dynamics in Physiological Systems: From Heart to Brain

    CERN Document Server

    Dana, Syamal K; Kurths, Jürgen

    2009-01-01

    Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas...

  1. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy.

    Science.gov (United States)

    Du, Enming; Hu, Xunwu; Roy, Sona; Wang, Peng; Deasy, Kieran; Mochizuki, Toshiaki; Zhang, Ye

    2017-05-30

    The precision and efficacy of photodynamic therapy (PDT) is essential for the treatment of brain tumors because the cancer cells are within or adjacent to the delicate nervous system. Taurine is an abundant amino acid in the brain that serves the central nervous system (CNS). A taurine-modified polypyridyl Ru-complex was shown to have optimized intracellular affinity in cancer cells through accumulation in lysosomes. Symmetrical modification of this Ru-complex by multiple taurine molecules enhanced the efficiency of molecular emission with boosted generation of reactive oxygen species. These characteristic features make the taurine-modified Ru-complex a potentially effective photosensitizer for PDT of target cancer cells, with outstanding efficacy in cancerous brain cells.

  2. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  3. Managing Epileptic Seizures by Controlling the Brain Driver Nodes: A Complex Network View

    Energy Technology Data Exchange (ETDEWEB)

    Bakouie, Fatemeh, E-mail: fbakouie@aut.ac.ir [Neural and Cognitive Sciences Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Cybernetics and Modeling of Biological Systems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Gharibzadeh, Shahriar, E-mail: fbakouie@aut.ac.ir [Neural and Cognitive Sciences Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Towhidkhah, Farzad [Cybernetics and Modeling of Biological Systems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2013-12-12

    The brain is a complex biological organization. In its hierarchy, different components, from neurons to functional cognitive circuits are interacting with each other. As a result of cooperation between neurons in the lower levels of this hierarchy, high level cognitive functions emerge (Stam and Reijneveld, 2007). In order to uncover the complexity of these higher functions, understanding the interaction rules in the lower level may be useful. In this level, there are lots of components which connect to each other (with a special structure) and exchange their information (in a specific manner). In this regard, complex network approach will be an influential way to study brain organization. The brain connectivity structure is suggested as a basis for emergence of its complex functions (Rubinov et al., 2009). For example, brain network analysis shows that its connectivity has the “small-worldness” feature, i.e., low characteristic path length and high clustering coefficient (Sporns et al., 2004). It has been seen that “synchronization” (as a collective dynamical behavior) occurs more rapidly in networks with small-world structure (Watts and Strogatz, 1998). Hence, we are able to use structural information (i.e., the pattern of connectivity between elements of the system) for understanding the functional pattern of the organization. Moreover, it is suggested that synchronization is the main mechanism for information exchange between different brain regions (Womelsdorf et al.,).

  4. Managing Epileptic Seizures by Controlling the Brain Driver Nodes: A Complex Network View

    International Nuclear Information System (INIS)

    Bakouie, Fatemeh; Gharibzadeh, Shahriar; Towhidkhah, Farzad

    2013-01-01

    The brain is a complex biological organization. In its hierarchy, different components, from neurons to functional cognitive circuits are interacting with each other. As a result of cooperation between neurons in the lower levels of this hierarchy, high level cognitive functions emerge (Stam and Reijneveld, 2007). In order to uncover the complexity of these higher functions, understanding the interaction rules in the lower level may be useful. In this level, there are lots of components which connect to each other (with a special structure) and exchange their information (in a specific manner). In this regard, complex network approach will be an influential way to study brain organization. The brain connectivity structure is suggested as a basis for emergence of its complex functions (Rubinov et al., 2009). For example, brain network analysis shows that its connectivity has the “small-worldness” feature, i.e., low characteristic path length and high clustering coefficient (Sporns et al., 2004). It has been seen that “synchronization” (as a collective dynamical behavior) occurs more rapidly in networks with small-world structure (Watts and Strogatz, 1998). Hence, we are able to use structural information (i.e., the pattern of connectivity between elements of the system) for understanding the functional pattern of the organization. Moreover, it is suggested that synchronization is the main mechanism for information exchange between different brain regions (Womelsdorf et al.,).

  5. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    Science.gov (United States)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  6. Role of the blood–brain barrier in the evolution of feeding and cognition

    Science.gov (United States)

    Banks, William A

    2012-01-01

    The blood–brain barrier (BBB) regulates the blood-to-brain passage of gastrointestinal hormones, thus informing the brain about feeding and nutritional status. Disruption of this communication results in dysregulation of feeding and body weight control. Leptin, which crosses the BBB to inform the CNS about adiposity, provides an example. Impaired leptin transport, especially coupled with central resistance, results in obesity. Various substances/conditions regulate leptin BBB transport. For example, triglycerides inhibit leptin transport. This may represent an evolutionary adaptation in that hypertriglyceridemia occurs during starvation. Inhibition of leptin, an anorectic, during starvation could have survival advantages. The large number of other substances that influence feeding is explained by the complexity of feeding. This complexity includes cognitive aspects; animals in the wild are faced with cost/benefit analyses to feed in the safest, most economical way. This cognitive aspect partially explains why so many feeding substances affect neurogenesis, neuroprotection, and cognition. The relation between triglycerides and cognition may be partially mediated through triglyceride's ability to regulate the BBB transport of cognitively active gastrointestinal hormones such as leptin, insulin, and ghrelin. PMID:22612379

  7. Role of the blood-brain barrier in the evolution of feeding and cognition.

    Science.gov (United States)

    Banks, William A

    2012-08-01

    The blood-brain barrier (BBB) regulates the blood-to-brain passage of gastrointestinal hormones, thus informing the brain about feeding and nutritional status. Disruption of this communication results in dysregulation of feeding and body weight control. Leptin, which crosses the BBB to inform the CNS about adiposity, provides an example. Impaired leptin transport, especially coupled with central resistance, results in obesity. Various substances/conditions regulate leptin BBB transport. For example, triglycerides inhibit leptin transport. This may represent an evolutionary adaptation in that hypertriglyceridemia occurs during starvation. Inhibition of leptin, an anorectic, during starvation could have survival advantages. The large number of other substances that influence feeding is explained by the complexity of feeding. This complexity includes cognitive aspects; animals in the wild are faced with cost/benefit analyses to feed in the safest, most economical way. This cognitive aspect partially explains why so many feeding substances affect neurogenesis, neuroprotection, and cognition. The relation between triglycerides and cognition may be partially mediated through triglyceride's ability to regulate the BBB transport of cognitively active gastrointestinal hormones such as leptin, insulin, and ghrelin. © 2012 New York Academy of Sciences.

  8. Complex network analysis of resting-state fMRI of the brain.

    Science.gov (United States)

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  9. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    Science.gov (United States)

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  10. Effect of self-interaction on the evolution of cooperation in complex topologies

    Science.gov (United States)

    Wu, Yu'e.; Zhang, Zhipeng; Chang, Shuhua

    2017-09-01

    Self-interaction, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this text, we consider a new self-interaction mechanism in the two typical pairwise models including the prisoner's dilemma and the snowdrift games, where the cooperative agents will gain extra bonus for their selfless behavior. We find that under the mechanism the collective cooperation is elevated to a very high level especially after adopting the finite population analogue of replicator dynamics for evolution. The robustness of the new mechanism is tested for different complex topologies for the prisoner's dilemma game. All the presented results demonstrate that the enhancement effects are independent of the structure of the applied spatial networks and the potential evolutionary games, and thus showing a high degree of universality. Our conclusions might shed light on the understanding of the evolution of cooperation in the real world.

  11. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  12. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.

    Science.gov (United States)

    Hearne, Luke J; Cocchi, Luca; Zalesky, Andrew; Mattingley, Jason B

    2017-08-30

    Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity. SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that

  13. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A genomic approach to examine the complex evolution of laurasiatherian mammals.

    Directory of Open Access Journals (Sweden)

    Björn M Hallström

    Full Text Available Recent phylogenomic studies have failed to conclusively resolve certain branches of the placental mammalian tree, despite the evolutionary analysis of genomic data from 32 species. Previous analyses of single genes and retroposon insertion data yielded support for different phylogenetic scenarios for the most basal divergences. The results indicated that some mammalian divergences were best interpreted not as a single bifurcating tree, but as an evolutionary network. In these studies the relationships among some orders of the super-clade Laurasiatheria were poorly supported, albeit not studied in detail. Therefore, 4775 protein-coding genes (6,196,263 nucleotides were collected and aligned in order to analyze the evolution of this clade. Additionally, over 200,000 introns were screened in silico, resulting in 32 phylogenetically informative long interspersed nuclear elements (LINE insertion events. The present study shows that the genome evolution of Laurasiatheria may best be understood as an evolutionary network. Thus, contrary to the common expectation to resolve major evolutionary events as a bifurcating tree, genome analyses unveil complex speciation processes even in deep mammalian divergences. We exemplify this on a subset of 1159 suitable genes that have individual histories, most likely due to incomplete lineage sorting or introgression, processes that can make the genealogy of mammalian genomes complex. These unexpected results have major implications for the understanding of evolution in general, because the evolution of even some higher level taxa such as mammalian orders may sometimes not be interpreted as a simple bifurcating pattern.

  15. Evolution of pyrochlore composition in a carbonatite complex of the Eastern European platform

    International Nuclear Information System (INIS)

    Nechelyastnov, G.N.; Pozharitskaya, L.K.

    1986-01-01

    X-ray microanalysis is used to study 29 pyrochlore group mineral samples of the East European platform carbonatite complex. Pyrochlore sequential evolution: frm high in tantalum and uranium, passing uranium poor in tantalum to low in tantalum and uranium and also an increased content of iron, manganese, magnesium and lead, is shown. Calcium, niobium, tantalum non-homogeneous distribution in pyrochlore grains is detected. Peculiarities of pyrochlore group mineral composition reflect the effect of specific geologic-structural position of the East European platform carbonatites high depth of formation and intensive development of deformations) on general evolution for pyrochlore of carbonatite complexes and related to it pyrochlore specific nature, in particular, high uranium and low niobium contents

  16. Big brains, small worlds: material culture and the evolution of the mind.

    Science.gov (United States)

    Coward, Fiona; Gamble, Clive

    2008-06-12

    New developments in neuroimaging have demonstrated that the basic capacities underpinning human social skills are shared by our closest extant primate relatives. The challenge for archaeologists is to explain how complex human societies evolved from this shared pattern of face-to-face social interaction. We argue that a key process was the gradual incorporation of material culture into social networks over the course of hominin evolution. Here we use three long-term processes in hominin evolution-encephalization, the global human diaspora and sedentism/agriculture-to illustrate how the cultural transmission of material culture allowed the 'scaling up' of face-to-face social interactions to the global societies known today. We conclude that future research by neuroimagers and archaeologists will need to investigate the cognitive mechanisms behind human engagement with material culture as well as other persons.

  17. Complex and changing patterns of natural selection explain the evolution of the human hip.

    Science.gov (United States)

    Grabowski, Mark; Roseman, Charles C

    2015-08-01

    Causal explanations for the dramatic changes that occurred during the evolution of the human hip focus largely on selection for bipedal function and locomotor efficiency. These hypotheses rest on two critical assumptions. The first-that these anatomical changes served functional roles in bipedalism-has been supported in numerous analyses showing how postcranial changes likely affected locomotion. The second-that morphological changes that did play functional roles in bipedalism were the result of selection for that behavior-has not been previously explored and represents a major gap in our understanding of hominin hip evolution. Here we use evolutionary quantitative genetic models to test the hypothesis that strong directional selection on many individual aspects of morphology was responsible for the large differences observed across a sample of fossil hominin hips spanning the Plio-Pleistocene. Our approach uses covariance among traits and the differences between relatively complete fossils to estimate the net selection pressures that drove the major transitions in hominin hip evolution. Our findings show a complex and changing pattern of natural selection drove hominin hip evolution, and that many, but not all, traits hypothesized to play functional roles in bipedalism evolved as a direct result of natural selection. While the rate of evolutionary change for all transitions explored here does not exceed the amount expected if evolution was occurring solely through neutral processes, it was far above rates of evolution for morphological traits in other mammalian groups. Given that stasis is the norm in the mammalian fossil record, our results suggest that large shifts in the adaptive landscape drove hominin evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Digits lost or gained? Evidence for pedal evolution in the dwarf salamander complex (Eurycea, Plethodontidae.

    Directory of Open Access Journals (Sweden)

    Trip Lamb

    Full Text Available Change in digit number, particularly digit loss, has occurred repeatedly over the evolutionary history of tetrapods. Although digit loss has been documented among distantly related species of salamanders, it is relatively uncommon in this amphibian order. For example, reduction from five to four toes appears to have evolved just three times in the morphologically and ecologically diverse family Plethodontidae. Here we report a molecular phylogenetic analysis for one of these four-toed lineages--the Eurycea quadridigitata complex (dwarf salamanders--emphasizing relationships to other species in the genus. A multilocus phylogeny reveals that dwarf salamanders are paraphyletic with respect to a complex of five-toed, paedomorphic Eurycea from the Edwards Plateau in Texas. We use this phylogeny to examine evolution of digit number within the dwarf-Edwards Plateau clade, testing contrasting hypotheses of digit loss (parallelism among dwarf salamanders versus digit gain (re-evolution in the Edwards Plateau complex. Bayes factors analysis provides statistical support for a five-toed common ancestor at the dwarf-Edwards node, favoring, slightly, the parallelism hypothesis for digit loss. More importantly, our phylogenetic results pinpoint a rare event in the pedal evolution of plethodontid salamanders.

  19. Simple versus complex models of trait evolution and stasis as a response to environmental change

    Science.gov (United States)

    Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott

    2015-04-01

    Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.

  20. The evolution model of Uppsala in light of the complex adaptive systems approach

    Directory of Open Access Journals (Sweden)

    Rennaly Alves da Silva

    2013-11-01

    Full Text Available The behavioral approach to the internationalization of companies explains that the movements toward external markets occur in accordance with the increasing commitment of resources to mitigate the effects of uncertainty and reduce the perception of risk. Evidence indicates that the theories and practices developed in the domestic market may not be able to explain the reality of companies that operate in international markets. Thus, the Paradigm of Complexity presents itself as a comprehensive alternative to realize the relationships within organizations and markets. Accordingly, the aim of this theoretical paper is to analyze the evolution of the Uppsala Model between years 1975 and 2010 with the understanding of the companies in the process of internationalization as Complex Adaptive Systems, in accordance with the Model Kelly and Allison (1998. Four propositions are presented that show the links between the approaches. The most surprising is the perception that the conceptual evolution of the Uppsala Model seems to accompany the evolution of complexity levels, presented in Model Kelly and Allison.

  1. Evolution, immunity and the emergence of brain superautoantigens [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Nataf

    2017-02-01

    Full Text Available While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin, a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS. Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual and evolution (at the scale of species of the antibody and T-cell repertoires

  2. The Co-evolution of Language and the Brain: A Review of Two Contrastive Views (Pinker & Deacon)

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2001-01-01

    in a larger symbolic computational chain controlled by regions in the frontal parts of the brain. To Deacon, a symbolic learning algorithm drives language acquisition. The increase in size of the human brain in relation to the body may be due to a “cognitive arms race”. Both Pinker and Deacon agree......This article is a review of two contrastive views on the co-evolution of language and the brain – The Language Instinct by Steven Pinker (1994) and The Symbolic Species by Terrence Deacon (1997). As language is a trait unique to mankind it can not be equated with nonlinguistic communication – human...... or nonhuman. This points to a special human brain architecture. Pinker’s claim is that certain areas on the left side of the brain constitute a language organ and that language acquisition is instinctual. To Deacon, however, those areas are non-language-specific computational centers. Moreover, they are parts...

  3. Transport of /sup 99m/Tc complexes through the blood-brain barrier

    International Nuclear Information System (INIS)

    Loberg, M.D.; Corder, E.H.; Fields, A.T.; Callery, P.S.

    1979-01-01

    Thirteen /sup 99m/Tc complexes have been synthesized and used to determine the relationships between protein binding, lipophilicity and membrane transport. The lipophilicity of the /sup 99m/Tc complexes was altered by adding substituents to either IDA, EDTA, DTPA or oxine; membrane transport was estimated using the brain uptake index (BUI) method. The BUI of the /sup 99m/Tc complexes was found to vary directly with lipophilicity and inversely with protein binding. These results demonstrated that /sup 99m/Tc-oxine derivatives are better suited for use in the development of intracellular tracers than are the /sup 99m/Tc derivatives of aminopolycarboxylates

  4. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    Science.gov (United States)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  5. Preparation of new technetium-99m NNS/X complexes and selection for brain imaging agent

    Institute of Scientific and Technical Information of China (English)

    HE; Qiange; CHEN; Xiangji; MIAO; Yubin; LIU; Boli

    2004-01-01

    Based on excellent experiment results of 99mTcO-MPBDA-Cl, two new ligands MPTDA and MPDAA are synthesized. Then series of 99mTcO3+ complexes are prepared through adding different halide anions, followed by tests of physical chemistry qualities and biodistribution experiments. And results of these experiments show that complexes formed with MPTDA and MPDAA have better lipophilicity than those formed with MPBDA, still maintain the good brain retention ability of this type of compounds, but radioactivity uptake in blood is higher than that of 99mTcO-MPBDA and ratios of brain/blood are reduced. Obvious affections are fetched out on brain uptake and retention if fluoride, bromide or iodide anions are added. Results of experiments can be explained in reason with theoretic computation. It is confirmed that 99mTcO-MPBDA-Cl has potential to develop a new type of brain imaging agent considering integrated factors such as brain uptake, retention and toxicity.

  6. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Analyzing the evolution of young people's brain cancer mortality in Spanish provinces.

    Science.gov (United States)

    Ugarte, M D; Adin, A; Goicoa, T; López-Abente, G

    2015-06-01

    To analyze the spatio-temporal evolution of brain cancer relative mortality risks in young population (under 20 years of age) in Spanish provinces during the period 1986-2010. A new and flexible conditional autoregressive spatio-temporal model with two levels of spatial aggregation was used. Brain cancer relative mortality risks in young population in Spanish provinces decreased during the last years, although a clear increase was observed during the 1990s. The global geographical pattern emphasized a high relative mortality risk in Navarre and a low relative mortality risk in Madrid. Although there is a specific Autonomous Region-time interaction effect on the relative mortality risks this effect is weak in the final estimates when compared to the global spatial and temporal effects. Differences in mortality between regions and over time may be caused by the increase in survival rates, the differences in treatment or the availability of diagnostic tools. The increase in relative risks observed in the 1990s was probably due to improved diagnostics with computerized axial tomography and magnetic resonance imaging techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain.

    Science.gov (United States)

    Babbitt, Courtney C; Fedrigo, Olivier; Pfefferle, Adam D; Boyle, Alan P; Horvath, Julie E; Furey, Terrence S; Wray, Gregory A

    2010-01-18

    Despite striking differences in cognition and behavior between humans and our closest primate relatives, several studies have found little evidence for adaptive change in protein-coding regions of genes expressed primarily in the brain. Instead, changes in gene expression may underlie many cognitive and behavioral differences. Here, we used digital gene expression: tag profiling (here called Tag-Seq, also called DGE:tag profiling) to assess changes in global transcript abundance in the frontal cortex of the brains of 3 humans, 3 chimpanzees, and 3 rhesus macaques. A substantial fraction of transcripts we identified as differentially transcribed among species were not assayed in previous studies based on microarrays. Differentially expressed tags within coding regions are enriched for gene functions involved in synaptic transmission, transport, oxidative phosphorylation, and lipid metabolism. Importantly, because Tag-Seq technology provides strand-specific information about all polyadenlyated transcripts, we were able to assay expression in noncoding intragenic regions, including both sense and antisense noncoding transcripts (relative to nearby genes). We find that many noncoding transcripts are conserved in both location and expression level between species, suggesting a possible functional role. Lastly, we examined the overlap between differential gene expression and signatures of positive selection within putative promoter regions, a sign that these differences represent adaptations during human evolution. Comparative approaches may provide important insights into genes responsible for differences in cognitive functions between humans and nonhuman primates, as well as highlighting new candidate genes for studies investigating neurological disorders.

  9. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  10. The application of graph theoretical analysis to complex networks in the brain.

    Science.gov (United States)

    Reijneveld, Jaap C; Ponten, Sophie C; Berendse, Henk W; Stam, Cornelis J

    2007-11-01

    Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.

  11. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    Science.gov (United States)

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Region-specific expression of mitochondrial complex I genes during murine brain development.

    Directory of Open Access Journals (Sweden)

    Stefanie Wirtz

    Full Text Available Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks. With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations--known to be associated with higher cognitive functions of the mammalian brain--strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders.

  13. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    Science.gov (United States)

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a

  14. Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium

    International Nuclear Information System (INIS)

    DePaolo, D.J.; Wasserburg, G.J.

    1979-01-01

    An internal isochron determined for a gabbro from the Stillwater complex by the Sm-Nd method yields a precise age of 2701 +- 8 Myr and initial 143 Nd/ 144 Nd 0.508248 +- 12. The initial is close to the CHUR evolution curve but clearly displaced below it by epsilonsub(Nd) = 2.8 +- 0.2. A spectrum of total rocks in the Stillwater complex ranging from anorthosite to pyroxenite were found to lie on the same isochron to within experimental error indicating the same age and initial. These data demonstrate that some ancient mantle-derived rocks have initial 143 Nd/ 144 Nd which deviate substantially from the CHUR evolution curve at the time of their formation. This implies that there was early layering in the mantle with substantial REE fractionation (approximately 6 to 12% Nd/Sm enrichment) or that the Stillwater complex was highly contaminated with REE from much older continental crust during emplacement. The results show the necessity of high-precision ages and initial 143 Nd/ 144 Nd values in order to properly describe REE fractionation in the mantle. While the Sm-Nd age results show no indication of any irregularities, we have confirmed that the Rb-SR data for the Stillwater are highly disturbed. This comparison indicates that the Sm-Nd parent-daughter system may be much less susceptible to element redistribution during metamorphism, therefore permitting wide application of this technique to rocks of complex histories. (author)

  15. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    Science.gov (United States)

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such

  16. The evolution of opsins and color vision: connecting genotype to a complex phenotype

    Directory of Open Access Journals (Sweden)

    Natasha I Bloch

    2016-09-01

    Full Text Available Dissecting the genetic basis of adaptive traits is key to our understanding of evolutionary processes. A major and essential step in the study of evolutionary genetics is drawing link between genotype and phenotype, which depends on the difficult process of defining the phenotype at different levels, from functional to organismal. Visual pigments are a key component of the visual system and their evolution could also provide important clues on the evolution of visual sensory system in response to sexual and natural selection. As a system in which genotype can be linked to phenotype, I will use visual pigments and color vision, particularly in birds, as a case of a complex phenotype. I aim to emphasize the difficulties in drawing the genotype-phenotype relationship for complex phenotypes and to highlight the challenges of doing so for color vision. The use of vision-based receiver models to quantify animal colors and patterns is increasingly important in many fields of evolutionary research, spanning studies of mate choice, predation, camouflage and sensory ecology. Given these models impact on evolution and ecology, it is important to provide other researchers with the opportunity to better understand animal vision and the corresponding advantages and limitations of these models.

  17. Progressive evolution and a measure for its noise-dependent complexity

    Science.gov (United States)

    Fussy, Siegfried; Grössing, Gerhard; Schwabl, Herbert

    1999-03-01

    A recently introduced model of macroevolution is studied on two different levels of systems analysis. Firstly, the systems dynamics and properties, above all the growth of complexity of the evolutionary units during the long-term evolution, are discussed, and, secondly, the complexity of the model itself, i.e. the richness of its various features, is studied with regard to a control parameter representing a background noise within the systems dynamics. The same is done with a randomized version of the model. The model is based on a normalized one-dimensional coupled map lattice with locally interacting sites representing different species. The evolution of the sites' values representing the fitness of the species is governed by a usual diffusion rule and an additional memory- or random-based feedback loop. The introduction of a realistic background noise limiting the range of the feedback operation yields a pattern signature in fitness space with a distribution of temporal boost/mutation distances similar to a punctuated equilibrium behavior. Furthermore, the behavior of the mean lifetimes of "high" fitness values is correlated with the resolution-like parameter ɛ via a power law, a phenomenon called "fractal evolution." Based on simple functional properties of the power law, an additional feedback loop is introduced to use the intrinsic fluctuations of the whole fitness landscape as a driving force to change adaptively the systems resolution. On long-term scales, the dynamical system properties exhibit a clear tendency towards progressive evolution potentials for each species. For both model versions, the memory-based and the random-based one, we achieve some basic mechanisms of evolutionary dynamics like coevolution, punctuated equilibrium with regard to internal or external changes during evolution, coordinated stasis for groups of species, and self-organized growth of complexity for all evolutionary units of the array leading to a kind of "Red

  18. Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates

    Energy Technology Data Exchange (ETDEWEB)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg (Russian Federation); Krivovichev, Sergey V. [Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg (Russian Federation); Tananaev, Ivan G. [Far Eastern Federal University, Suhanova st. 8, 690950 Vladivostok (Russian Federation)

    2017-03-15

    Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.

  19. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  20. [The evolution of human cultural behavior: notes on Darwinism and complexity].

    Science.gov (United States)

    Peric, Mikael; Murrieta, Rui Sérgio Sereni

    2015-12-01

    The article analyzes three schools that can be understood as central in studies of the evolution of human behavior within the paradigm of evolution by natural selection: human behavioral ecology (HBE), evolutionary psychology, and dual inheritance. These three streams of thought are used to depict the Darwinist landscape and pinpoint its strong suits and limitations. Theoretical gaps were identified that seem to reduce these schools' ability to account for the diversity of human evolutionary behavior. Their weak points include issues related to the concept of reproductive success, types of adaptation, and targets of selection. An interdisciplinary approach is proposed as the solution to this dilemma, where complex adaptive systems would serve as a source.

  1. Information properties of morphologically complex words modulate brain activity during word reading.

    Science.gov (United States)

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta

    2017-03-01

    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  4. Diagnosis and temporal evolution of signs of intracranial hypotension on MRI of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Forghani, R. [McGill University Health Center, Department of Radiology, Montreal, Que (Canada); Massachusetts General Hospital, Division of Neuroradiology, Boston, MA (United States); Farb, R.I. [University of Toronto, Department of Medical Imaging, Division of Neuroradiology, Toronto Western Hospital, Toronto, Ontario (Canada)

    2008-12-15

    A comprehensive evaluation of cranial magnetic resonance imagings (MRIs) of 23 patients with intracranial hypotension (IH) was performed, and the evolution of the abnormalities on follow-up MRIs was correlated with the clinical outcome. The MRI report database at the University Health Network in Toronto was searched, and 23 cases of IH were identified between 2001 and 2007. A retrospective review of the MRIs of the brain and the electronic patient chart was performed. A control group of 40 subjects was also selected to complement the analysis of the pituitary gland. A positive venous distention sign (VDS) was observed in 23 out of 23 patients and was the first sign to disappear on early follow-up scans following successful treatment. Pachymeningeal enhancement was seen in 23 out of 23 patients, and pachymeningeal thickening was detectable on unenhanced fluid attenuation inversion recovery (FLAIR) sequences in 17 out of 23 patients (74%). An increase in pituitary size in IH was also demonstrated based on the measured pituitary height and was qualitatively detectable in 12 out of 21 (57%) patients as the protrusion of the pituitary gland above the sella turica (two postpartum patients were excluded from this analysis). Overall, there was good correlation between the imaging findings and clinical outcome following treatment. Accurate diagnosis and follow-up of IH should be possible is some patients on unenhanced MRI of the brain by combining the signs on FLAIR and sagittal T1W images, enabling timely diagnosis in unsuspected cases and avoiding unnecessary administration of gadolinium compounds. In addition, VDS might be useful for early assessment of response to treatment. (orig.)

  5. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  6. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  7. Evolution of brains and behavior for optimal foraging: A tale of two predators

    Science.gov (United States)

    Catania, Kenneth C.

    2012-01-01

    Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352

  8. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  9. Temporal evolution of brain reorganization under cross-modal training: insights into the functional architecture of encoding and retrieval networks

    Science.gov (United States)

    Likova, Lora T.

    2015-03-01

    This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional

  10. The correlated evolution of antipredator defences and brain size in mammals.

    Science.gov (United States)

    Stankowich, Theodore; Romero, Ashly N

    2017-01-11

    Mammals that possess elaborate antipredator defences such as body armour, spines and quills are usually well protected, intermediate in size, primarily insectivorous and live in simple open environments. The benefits of such defences seem clear and may relax selection on maintaining cognitive abilities that aid in vigilance and predator recognition, and their bearers may accrue extensive production and maintenance costs. Here, in this comparative phylogenetic analysis of measurements of encephalization quotient and morphological defence scores of 647 mammal species representing nearly every order, we found that as lineages evolve stronger defences, they suffer a correlated reduction in encephalization. The only exceptions were those that live in trees-a complex three-dimensional world probably requiring greater cognitive abilities. At the proximate level, because brain tissue is extremely energetically expensive to build, mammals may be trading off spending more on elaborate defences and saving by building less powerful brains. At the ultimate level, having greater defences may also reduce the need for advanced cognitive abilities for constant assessment of environmental predation risk, especially in simple open environments. © 2017 The Author(s).

  11. The correlated evolution of antipredator defences and brain size in mammals

    Science.gov (United States)

    Romero, Ashly N.

    2017-01-01

    Mammals that possess elaborate antipredator defences such as body armour, spines and quills are usually well protected, intermediate in size, primarily insectivorous and live in simple open environments. The benefits of such defences seem clear and may relax selection on maintaining cognitive abilities that aid in vigilance and predator recognition, and their bearers may accrue extensive production and maintenance costs. Here, in this comparative phylogenetic analysis of measurements of encephalization quotient and morphological defence scores of 647 mammal species representing nearly every order, we found that as lineages evolve stronger defences, they suffer a correlated reduction in encephalization. The only exceptions were those that live in trees—a complex three-dimensional world probably requiring greater cognitive abilities. At the proximate level, because brain tissue is extremely energetically expensive to build, mammals may be trading off spending more on elaborate defences and saving by building less powerful brains. At the ultimate level, having greater defences may also reduce the need for advanced cognitive abilities for constant assessment of environmental predation risk, especially in simple open environments. PMID:28077771

  12. Neuronal tracing of oral nerves in a velvet worm – Implications for the evolution of the ecdysozoan brain

    Directory of Open Access Journals (Sweden)

    Christine eMartin

    2014-02-01

    Full Text Available As one of the closest relatives of arthropods, Onychophora plays an important role in understanding the evolution of arthropod body plans. Currently there is controversy surrounding the evolution of the brain among the ecdysozoan clades, which shows a collar-shaped, circumoral organisation in cycloneuralians but a ganglionic architecture in panarthropods. Based on the innervation pattern of lip papillae surrounding the mouth, the onychophoran brain has been interpreted as a circumoral ring, suggesting that this organisation is an ancestral feature of Ecdysozoa. However, this interpretation is inconsistent with other published data. To explore the evolutionary origin of the onychophoran mouth and to shed light on the evolution of the ecdysozoan brains, we analysed the innervation pattern and morphogenesis of the oral lip papillae in the onychophoran Euperipatoides rowelli using DNA labelling, immunocytochemistry and neuronal tracing techniques. Our morphogenetic data revealed that the seven paired and one unpaired oral lip papillae arise from three anterior-most body segments. Retrograde fills show that only the first and the third nerves supplying the lip papillae are associated with cell bodies within the brain, whereas the second nerve exclusively receives fibres from somata of peripheral neurons located in the lip papillae. According to our anterograde fills and immunocytochemical data, the first nerve supplies the anterior-most pair of lip papillae, whereas the second and the third nerves are associated with the second to fifth and second to eighth lip papillae, respectively. These data suggest that the lip papillae of E. rowelli are mainly innervated by the proto- and deutocerebrum, whereas there are only a few additional cell bodies situated posterior to the brain. According to these findings, the overall innervation pattern of the oral lip papillae in E. rowelli is incompatible with the interpretation of the onychophoran brain as a

  13. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  14. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    Full Text Available It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans. The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum. These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  15. Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2011-01-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution. PMID:21390261

  16. Complex tasks force hand laterality and technological behaviour in naturalistically housed chimpanzees: inferences in hominin evolution.

    Science.gov (United States)

    Mosquera, M; Geribàs, N; Bargalló, A; Llorente, M; Riba, D

    2012-01-01

    Clear hand laterality patterns in humans are widely accepted. However, humans only elicit a significant hand laterality pattern when performing complementary role differentiation (CRD) tasks. Meanwhile, hand laterality in chimpanzees is weaker and controversial. Here we have reevaluated our results on hand laterality in chimpanzees housed in naturalistic environments at Fundació Mona (Spain) and Chimfunshi Wild Orphanage (Zambia). Our results show that the difference between hand laterality in humans and chimpanzees is not as great as once thought. Furthermore, we found a link between hand laterality and task complexity and also an even more interesting connection: CRD tasks elicited not only the hand laterality but also the use of tools. This paper aims to turn attention to the importance of this threefold connection in human evolution: the link between CRD tasks, hand laterality, and tool use, which has important evolutionary implications that may explain the development of complex behaviour in early hominins.

  17. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life

    Science.gov (United States)

    Bains, William; Schulze-Makuch, Dirk

    2016-01-01

    Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe. PMID:27376334

  18. The Cosmic Zoo: The (Near Inevitability of the Evolution of Complex, Macroscopic Life

    Directory of Open Access Journals (Sweden)

    William Bains

    2016-06-01

    Full Text Available Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe.

  19. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    Directory of Open Access Journals (Sweden)

    Nikky Pathak

    2017-03-01

    Full Text Available The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP and Dual-Phase (DP steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition or drilled and then reamed (reamed edge condition. The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  20. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    Science.gov (United States)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  1. The Mystery of Globular Clusters: Uncovering the Complexities of Their Evolution

    Science.gov (United States)

    O'Malley, Erin Marie

    In recent years, evidence has grown for the existence of multiple stellar populations in globular clusters (GCs). However, questions remain regarding the nature of these populations. Photometric observations clearly show discrete populations while spectroscopic observations seem to show a continuous spread. This dissertation provides steps to better understanding GCs and the complexities associated with their evolution. Calibration of stellar evolution models at low metallicity is necessary for comparison to GCs. Accurate abundances of metal-poor subdwarfs are determined and used in this calibration. A Monte Carlo analysis is then performed in order to determine accurate distances, absolute ages, and integrated orbital trajectories for 24 GCs. These results are of critical importance as they not only incorporate the observational uncertainty, but also the uncertainty incurred by the models themselves. Lastly, high resolution spectra of three GCs (NGC 6681, NGC 6584 and NGC 7099) are obtained for a detailed abundance analysis of red giant branch stars. The high resolution and signal-to-noise achieved in these observations allows for the discovery of a statistically significant Na-O anticorrelation in all three clusters, the populations of which agree with those from photometric observations. Although we cannot determine precisely the nature of the polluters that were the predecessors to the enhanced populations, we do know that both s-process and r-process mechanisms contributed to the evolution and these results can be used to help constrain future models of GC polluter candidates.

  2. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    Science.gov (United States)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  3. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs, 33 early MCI (EMCI, 32 late MCI (LMCI, and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ scores and global Clinical Dementia Rating (CDR scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE

  4. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    Science.gov (United States)

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  5. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera

    Directory of Open Access Journals (Sweden)

    Riss Simone

    2011-04-01

    Full Text Available Abstract Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg. Most of this variation (67% could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32% at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  6. Complexity, Compassion and Self-Organisation: Human Evolution and the Vulnerable Ape Hypothesis

    Directory of Open Access Journals (Sweden)

    Nick P. Winder

    2015-06-01

    Full Text Available Humans are agents capable of helping others, learning new behaviours and forgetting old ones. The evolutionary approach to archaeological systems has therefore been hampered by the 'modern synthesis' - a gene-centred model of evolution as a process that eliminates those that cannot handle stress. The result has been a form of environmental determinism that explains human evolution in terms of heroic struggles and selective winnowing. Biologists committed to the modern synthesis have either dismissed agency as a delusion wrought in our bodies by natural selection, or imposed a sharp, Cartesian split between 'natural' and 'artificial' ecologies. We revisit the seminal literature of evolutionary biology and show that the paradigmatic fault lines of 21st century anthropology can be traced back to the 19th century and beyond. Lamarck had developed a two-factor evolutionary theory - one factor an endogenous tendency to become more advanced and complex, the other an exogenous constraint that drove organisms into conformity with environment. Darwin tried to eliminate the progressive tendency and imposed linearity constraints on evolution that Thomas Henry Huxley rejected. When experimental evidence falsified Darwin's linear hypothesis, the race began to develop a new, gene-centred model of evolution. This became the modern synthesis. The modern synthesis is now under pressure from the evidence of anthropology, sociology, palaeontology, ecology and genetics. An 'extended synthesis' is emerging. If evolution is adequately summarised by the aphorism survival of the fittest, then 'fitness' cannot always be defined in the heroic sense of 'better able to compete and reproduce'. The fittest organisms are often those that evade selective winnowing, even when their ability to compete and reproduce has been compromised by their genes. Characteristically human traits like language, abstraction, compassion and altruism may have arisen as coping strategies that

  7. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    Science.gov (United States)

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  8. Peritumoral Brain Edema after Stereotactic Radiosurgery for Asymptomatic Intracranial Meningiomas: Risks and Pattern of Evolution.

    Science.gov (United States)

    Hoe, Yeon; Choi, Young Jae; Kim, Jeong Hoon; Kwon, Do Hoon; Kim, Chang Jin; Cho, Young Hyun

    2015-10-01

    To investigate the risks and pattern of evolution of peritumoral brain edema (PTE) after stereotactic radiosurgery (SRS) for asymptomatic intracranial meningiomas. A retrospective study was conducted on 320 patients (median age 56 years, range 24-87 years) who underwent primary Gamma Knife radiosurgery for asymptomatic meningiomas between 1998 and 2012. The median tumor volume was 2.7 cc (range 0.2-10.5 cc) and the median follow-up was 48 months (range 24-168 months). Volumetric data sets for tumors and PTE on serial MRIs were analyzed. The edema index (EI) was defined as the ratio of the volume of PTE including tumor to the tumor volume, and the relative edema indices (rEIs) were calculated from serial EIs normalized against the baseline EI. Risk factors for PTE were analyzed using logistic regression. Newly developed or increased PTE was noted in 49 patients (15.3%), among whom it was symptomatic in 28 patients (8.8%). Tumor volume larger than 4.2 cc (pmaking on SRS for asymptomatic meningiomas of large volume (>4.2 cc), of hemispheric location, or with pre-treatment PTE. PTE usually develops within months, reaches its maximum degree until a year, and resolves within 2 years after SRS.

  9. Evolution of light-harvesting complex proteins from Chl c-containing algae

    Directory of Open Access Journals (Sweden)

    Puerta M Virginia

    2011-04-01

    Full Text Available Abstract Background Light harvesting complex (LHC proteins function in photosynthesis by binding chlorophyll (Chl and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs. Results We reconstruct a phylogeny of LHCs from Chl c-containing algae and related lineages using data from recent sequencing projects to give ~10-fold larger taxon sampling than previous studies. The phylogeny indicates that individual taxa possess proteins from multiple LHC subfamilies and that several LHC subfamilies are found in distantly related algal lineages. This phylogenetic pattern implies functional differentiation of the gene families, a hypothesis that is consistent with data on gene expression, carotenoid binding and physical associations with other LHCs. In all probability LHCs have undergone a complex history of evolution of function, gene transfer, and lineage-specific diversification. Conclusion The analysis provides a strikingly different picture of LHC diversity than previous analyses of LHC evolution. Individual algal lineages possess proteins from multiple LHC subfamilies. Evolutionary relationships showed

  10. The number of cell types, information content, and the evolution of complex multicellularity

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2014-12-01

    Full Text Available The number of different cell types (NCT characterizing an organism is often used to quantify organismic complexity. This method results in the tautology that more complex organisms have a larger number of different kinds of cells, and that organisms with more different kinds of cells are more complex. This circular reasoning can be avoided (and simultaneously tested when NCT is plotted against different measures of organismic information content (e.g., genome or proteome size. This approach is illustrated by plotting the NCT of representative diatoms, green and brown algae, land plants, invertebrates, and vertebrates against data for genome size (number of base-pairs, proteome size (number of amino acids, and proteome functional versatility (number of intrinsically disordered protein domains or residues. Statistical analyses of these data indicate that increases in NCT fail to keep pace with increases in genome size, but exceed a one-to-one scaling relationship with increasing proteome size and with increasing numbers of intrinsically disordered protein residues. We interpret these trends to indicate that comparatively small increases in proteome (and not genome size are associated with disproportionate increases in NCT, and that proteins with intrinsically disordered domains enhance cell type diversity and thus contribute to the evolution of complex multicellularity.

  11. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  12. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Science.gov (United States)

    Becerra, Lino; Sava, Simona; Simons, Laura E.; Drosos, Athena M.; Sethna, Navil; Berde, Charles; Lebel, Alyssa A.; Borsook, David

    2014-01-01

    Pediatric complex regional pain syndrome (P-CRPS) offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks) but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state) with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning). Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects). These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects. PMID:25379449

  13. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Lino Becerra

    2014-01-01

    Full Text Available Pediatric complex regional pain syndrome (P-CRPS offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning. Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects. These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects.

  14. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  15. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity.

    Science.gov (United States)

    Speijer, Dave

    2011-05-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes. Copyright © 2011 WILEY Periodicals, Inc.

  16. Persistency and flexibility of complex brain networks underlie dual-task interference.

    Science.gov (United States)

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley

  17. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  18. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  19. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior.

    Science.gov (United States)

    Garland, Theodore; Zhao, Meng; Saltzman, Wendy

    2016-08-01

    Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels. © The Author 2016. Published by Oxford University

  20. VARIATION AND EVOLUTION OF BREEDING SYSTEMS IN THE TURNERA ULMIFOLIA L. COMPLEX (TURNERACEAE).

    Science.gov (United States)

    Barrett, Spencer C H; Shore, Joel S

    1987-03-01

    The evolutionary and functional relationships among breeding systems and floral morphology were investigated in the Turnera ulmifolia complex. Predictions of a model of breeding system evolution among distylous and homostylous varieties were tested. Chromosome counts of 73 accessions revealed an association between breeding system and chromosome number. Diploid and tetraploid populations of five taxonomic varieties are distylous and self-incompatible, whereas hexaploid populations of three varieties are homostylous and self-compatible. The latter occur at different margins of the geographical range of the complex. Crossing studies and analyses of pollen and ovule fertility in F 1 's revealed that the three homostylous varieties are intersterile. To test the prediction that, homostylous varieties are long homostyles that have originated by crossing over within the distyly supergene, a crossing program was undertaken among distylous and homostylous plants. Residual incompatibility was observed in styles and pollen of each homostylous variety with patterns consistent with predictions of the cross-over model. The intersterility of hexaploid varieties suggests that long homostyly has arisen on at least three occasions in the complex by recombination within the supergene controlling distyly. Deviation from expected compatibility behavior occurs in populations of var. angustifolia that have the longest styles. These phenotypes displayed the greatest separation between anthers and stigmas (herkogamy) and set little seed in crosses with long- or short-styled plants. This suggests that they are derived from long homostyles with shorter length styles. It is proposed that selection for increased outcrossing has favored the evolution of herkogamy in long homostyles. Estimates of outcrossing rate in a distylous population using allozyme markers confirmed that dimorphic incompatibility enforces complete outcrossing. Significant genetic variation for floral traits likely to

  1. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  2. Automatic Evolution of Multimodal Behavior with Multi-Brain HyperNEAT

    DEFF Research Database (Denmark)

    Schrum, Jacob; Lehman, Joel; Risi, Sebastian

    2016-01-01

    indirect encoding. A previous multimodal approach called situational policy geometry assumes that multiple brains benefit from being embedded within an explicit geometric space. However, this paper introduces HyperNEAT extensions for evolving many brains without assuming geometric relationships between...

  3. The origin of the supernumerary subunits and assembly factors of complex I: A treasure trove of pathway evolution.

    Science.gov (United States)

    Elurbe, Dei M; Huynen, Martijn A

    2016-07-01

    We review and document the evolutionary origin of all complex I assembly factors and nine supernumerary subunits from protein families. Based on experimental data and the conservation of critical residues we identify a spectrum of protein function conservation between the complex I representatives and their non-complex I homologs. This spectrum ranges from proteins that have retained their molecular function but in which the substrate specificity may have changed or have become more specific, like NDUFAF5, to proteins that have lost their original molecular function and critical catalytic residues like NDUFAF6. In between are proteins that have retained their molecular function, which however appears unrelated to complex I, like ACAD9, or proteins in which amino acids of the active site are conserved but for which no enzymatic activity has been reported, like NDUFA10. We interpret complex I evolution against the background of molecular evolution theory. Complex I supernumerary subunits and assembly factors appear to have been recruited from proteins that are mitochondrial and/or that are expressed when complex I is active. Within the evolution of complex I and its assembly there are many cases of neofunctionalization after gene duplication, like ACAD9 and TMEM126B, one case of subfunctionalization: ACPM1 and ACPM2 in Yarrowia lipolytica, and one case in which a complex I protein itself appears to have been the source of a new protein from another complex: NDUFS6 gave rise to cytochrome c oxidase subunit COX4/COX5b. Complex I and its assembly can therewith be regarded as a treasure trove for pathway evolution. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community

  5. Measuring microscopic evolution processes of complex networks based on empirical data

    International Nuclear Information System (INIS)

    Chi, Liping

    2015-01-01

    Aiming at understanding the microscopic mechanism of complex systems in real world, we perform the measurement that characterizes the evolution properties on two empirical data sets. In the Autonomous Systems Internet data, the network size keeps growing although the system suffers a high rate of node deletion (r = 0.4) and link deletion (q = 0.81). However, the average degree keeps almost unchanged during the whole time range. At each time step the external links attached to a new node are about c = 1.1 and the internal links added between existing nodes are approximately m = 8. For the Scientific Collaboration data, it is a cumulated result of all the authors from 1893 up to the considered year. There is no deletion of nodes and links, r = q = 0. The external and internal links at each time step are c = 1.04 and m = 0, correspondingly. The exponents of degree distribution p(k) ∼ k -γ of these two empirical datasets γ data are in good agreement with that obtained theoretically γ theory . The results indicate that these evolution quantities may provide an insight into capturing the microscopic dynamical processes that govern the network topology. (paper)

  6. Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks

    Science.gov (United States)

    Sarkar, Bijan

    2018-05-01

    Configurational arrangement of network architecture and interaction character of individuals are two most influential factors on the mechanisms underlying the evolutionary outcome of cooperation, which is explained by the well-established framework of evolutionary game theory. In the current study, not only qualitatively but also quantitatively, we measure Moran-evolution of cooperation to support an analytical agreement based on the consequences of the replicator equation in a finite population. The validity of the measurement has been double-checked in the well-mixed network by the Langevin stochastic differential equation and the Gillespie-algorithmic version of Moran-evolution, while in a structured network, the measurement of accuracy is verified by the standard numerical simulation. Considering the Birth-Death and Death-Birth updating rules through diffusion of individuals, the investigation is carried out in the wide range of game environments those relate to the various social dilemmas where we are able to draw a new rigorous mathematical track to tackle the heterogeneity of complex networks. The set of modified criteria reveals the exact fact about the emergence and maintenance of cooperation in the structured population. We find that in general, nature promotes the environment of coexistent traits.

  7. A multiscale asymptotic analysis of time evolution equations on the complex plane

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)

    2016-07-15

    Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.

  8. Complex temperature evolution of the electronic structure of CaFe2As2

    International Nuclear Information System (INIS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-01-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe 2 As 2 , which is a parent compound of high temperature superconductors—CaFe 2 As 2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe 2 As 2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature

  9. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  10. [Application of nootropic agents in complex treatment of patients with concussion of the brain].

    Science.gov (United States)

    Tkachev, A V

    2007-01-01

    65 patients with a mild craniocereberal trauma have been observed. Medical examination included among general clinical methods the following methods: KT (MRT) of the brain, oculist examination including the observation of eye fundus. For objectification of a patient' complaints the authors used orientation and Galvestona's amnesia tests, feeling scale (psychological test), the table to determine the level of memory. Tests have been carried out on the first, tenth and thirty day of the treatment. Patients of the first group received in a complex treatment -pramistar, patients of the second group - piracetam. Patients of both groups noted considerable improvement during a complex treatment (disappearance of headache, dizziness and nausea) and at the same time patients receiving pramistar had better restoration of orientation and feeling. Pramistar was also more effective in patients with amnesia.

  11. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity

    NARCIS (Netherlands)

    Speijer, Dave

    2011-01-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory

  12. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    Science.gov (United States)

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  13. Maturation of the auditory t-complex brain response across adolescence.

    Science.gov (United States)

    Mahajan, Yatin; McArthur, Genevieve

    2013-02-01

    Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). This study tested if the brain's functional processing of sound changed across adolescence. We measured passive auditory t-complex peaks to pure tones and consonant-vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. Across adolescence, Na amplitude increased to tones and speech at the right, but not left, temporal site. Ta amplitude decreased at the right temporal site for tones, and at both sites for speech. The Tb remained constant at both sites. The Na and Ta appeared to mature later in the right than left hemisphere. The t-complex peaks Na and Tb exhibited left lateralization and Ta showed right lateralization. Thus, the functional processing of sound continued to develop across adolescence and into adulthood. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.

    Science.gov (United States)

    Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy

    2012-10-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Evolution of Software and Its Impact on Complex System Design in Robotic Spacecraft Embedded Systems

    Science.gov (United States)

    Butler, Roy

    2013-01-01

    The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.

  16. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    Science.gov (United States)

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  17. Classification of Error Related Brain Activity in an Auditory Identification Task with Conditions of Varying Complexity

    Science.gov (United States)

    Kakkos, I.; Gkiatis, K.; Bromis, K.; Asvestas, P. A.; Karanasiou, I. S.; Ventouras, E. M.; Matsopoulos, G. K.

    2017-11-01

    The detection of an error is the cognitive evaluation of an action outcome that is considered undesired or mismatches an expected response. Brain activity during monitoring of correct and incorrect responses elicits Event Related Potentials (ERPs) revealing complex cerebral responses to deviant sensory stimuli. Development of accurate error detection systems is of great importance both concerning practical applications and in investigating the complex neural mechanisms of decision making. In this study, data are used from an audio identification experiment that was implemented with two levels of complexity in order to investigate neurophysiological error processing mechanisms in actors and observers. To examine and analyse the variations of the processing of erroneous sensory information for each level of complexity we employ Support Vector Machines (SVM) classifiers with various learning methods and kernels using characteristic ERP time-windowed features. For dimensionality reduction and to remove redundant features we implement a feature selection framework based on Sequential Forward Selection (SFS). The proposed method provided high accuracy in identifying correct and incorrect responses both for actors and for observers with mean accuracy of 93% and 91% respectively. Additionally, computational time was reduced and the effects of the nesting problem usually occurring in SFS of large feature sets were alleviated.

  18. The evolution of the dystroglycan complex, a major mediator of muscle integrity

    Directory of Open Access Journals (Sweden)

    Josephine C. Adams

    2015-09-01

    Full Text Available Basement membrane (BM extracellular matrices are crucial for the coordination of different tissue layers. A matrix adhesion receptor that is important for BM function and stability in many mammalian tissues is the dystroglycan (DG complex. This comprises the non-covalently-associated extracellular α-DG, that interacts with laminin in the BM, and the transmembrane β-DG, that interacts principally with dystrophin to connect to the actin cytoskeleton. Mutations in dystrophin, DG, or several enzymes that glycosylate α-DG underlie severe forms of human muscular dystrophy. Nonwithstanding the pathophysiological importance of the DG complex and its fundamental interest as a non-integrin system of cell-ECM adhesion, the evolution of DG and its interacting proteins is not understood. We analysed the phylogenetic distribution of DG, its proximal binding partners and key processing enzymes in extant metazoan and relevant outgroups. We identify that DG originated after the divergence of ctenophores from porifera and eumetazoa. The C-terminal half of the DG core protein is highly-conserved, yet the N-terminal region, that includes the laminin-binding region, has undergone major lineage-specific divergences. Phylogenetic analysis based on the C-terminal IG2_MAT_NU region identified three distinct clades corresponding to deuterostomes, arthropods, and mollusks/early-diverging metazoans. Whereas the glycosyltransferases that modify α-DG are also present in choanoflagellates, the DG-binding proteins dystrophin and laminin originated at the base of the metazoa, and DG-associated sarcoglycan is restricted to cnidarians and bilaterians. These findings implicate extensive functional diversification of DG within invertebrate lineages and identify the laminin-DG-dystrophin axis as a conserved adhesion system that evolved subsequent to integrin-ECM adhesion, likely to enhance the functional complexity of cell-BM interactions in early metazoans.

  19. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients.

    Science.gov (United States)

    Chazot, Charles; Vo-Van, Cyril; Zaoui, Eric; Vanel, Thierry; Hurot, Jean Marc; Lorriaux, Christie; Mayor, Brice; Deleaval, Patrick; Jean, Guillaume

    2011-08-01

    Brain natriuretic peptide (BNP) is a cardiac peptide secreted by ventricle myocardial cells under stretch constraint. Increased BNP has been shown associated with increased mortality in end-stage renal disease patients. In patients starting haemodialysis (HD), both fluid overload and cardiac history are frequently present and may be responsible for a high BNP plasma level. We report in this study the evolution of BNP levels in incident HD patients, its relationship with fluid removal and cardiac history as well as its prognostic value. Forty-six patients (female/male: 21/25; 68.6 ± 14.5 years old) surviving at least 6 months after HD treatment onset were retrospectively analysed. Plasma BNP (Chemoluminescent Microparticule ImmunoAssay on i8200 Architect Abbott, Paris, France; normal value < 100 pg/mL) was assessed at HD start and during the second quarter of HD treatment (Q2). At dialysis start, the plasma BNP level was 1041 ± 1178 pg/mL (range: 14-4181 pg/mL). It was correlated with age (P = 0.0017) and was significantly higher in males (P = 0.0017) and in patients with cardiac disease history (P = 0.001). The plasma BNP level at baseline was not related to the mortality risk. At Q2, predialysis systolic blood pressure (BP) decreased from 140.5 ± 24.5 to 129.4 ± 20.6 mmHg (P = 0.0001) and the postdialysis body weight by 7.6 ± 8.4% (P < 0.0001). The BNP level decreased to 631 ± 707 pg/mL (P = 0.01) at Q2. Its variation was significantly correlated with systolic BP decrease (P = 0.006). A high BNP level was found associated with an increased risk of mortality. Hence, plasma BNP levels decreased during the first months of HD treatment during the dry weight quest. Whereas initial BNP values were not associated with increased mortality risk, the BNP level at Q2 was independently predictive of mortality. Hence, BNP is a useful tool to follow patient dehydration after dialysis start. Initial fluid overload may act as a confounding factor for its value as a

  20. Neuro-Glio-Vascular Complexes of the Brain After Acute Ischemia

    Directory of Open Access Journals (Sweden)

    A. S. Stepanov

    2017-01-01

    Full Text Available The purpose of the study is to compare the structural and functional state of neuro-glio-vascular microstructural complexes of the somatosensory cortex (SSC, CA1 of the hippocampus and amygdala of the brain of white rats under normal conditions and after acute ischemia caused by a 20-minute occlusion of common carotid arteries.Materials and methods. In this experiment, neurons, astrocytes, endotheliocytes, pericytes, basal membrane of the microvessels were studied in the normal (n=5 and the reperfusion period (1, 3, 7, 14, 21 and 30 days, n=30 using electron and fluorescence microscopy (DAPI staining. The morphometric analysis was carried out using the ImageJ 1.46 software.Results. During the recovery period after ischemia was noted reactive (edema-swelling, tinctorial properties of cells and compensatory-restoration (hyperplasia, hypertrophy, proliferation, increased transcytosis changes in neuro-glia-vascular complexes. After ischemia, the number of neurons decreased (by 8.7%—55,3%, and the glial cell count 2—3 fold increased. Increasing neuroglial index (NGI was accompanied by: 1 the emergence of microvessels with numerous branched processes of pericytes, 2 the complication of the spatial organization of basal membranes, and 3 the structural features of activation of transcytosis processes (large number of caveolae, smooth and clathrin vesicles, large vesicles in pericytes and endothelial cells.Conclusion.These findings indicate the compensatory-restoration changes in the components of neuro-gliovascular complexes SSC, CA1 of the hippocampus and amygdala of white rat’s brain after a 20-minute occlusion of the common carotid arteries. The most complete implementation of mechanisms for the protection and repair of damaged neurons occurs in the SSC and amygdala exhibiting high NGI values.

  1. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    Science.gov (United States)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  2. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  3. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  4. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  5. Male and female brain evolution is subject to contrasting selection pressures in primates

    Directory of Open Access Journals (Sweden)

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  6. A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.

    Science.gov (United States)

    Nash, C.; Grant, G.; Campbell, S. D.

    2014-12-01

    There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and

  7. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    Science.gov (United States)

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Land Change Regimes and the Evolution of the Maize-Cattle Complex in Neoliberal Mexico

    Directory of Open Access Journals (Sweden)

    Yankuic Galvan-Miyoshi

    2015-08-01

    Full Text Available How globalization impacts native land cover has become an important issue in studies addressing environmental change, which draw explicit attention to processes of cause and effect operating over significant distances. The literature shows that globalization constitutes an important underlying driver of both deforestation and forest transition via demographic and economic phenomena such as migration and remittance flows. Yet, little is known about how global forces mold the spatial structure of agro-commodity production and how this impacts the balance of forces affecting land change at the meso-scale, within the boundaries of the nation-state. The research presented here fills this gap by examining production networks for Mexico, a large OECD country with complex land change dynamics that has recently experienced a dramatic opening to the world economy. Specifically, we consider how maize and beef commodity chains evolved over the past few decades into a highly interdependent maize-cattle complex, and suggest linkages to patterns of land change at the national scale. Using land cover maps for 1993, 2002, and 2012, at the national scale, governmental statistics and datasets, interviews with key informants, and field observations the article provides an analysis of the impact of neoliberal reforms on the changing geography of beef and maize production, and argues that this process underlies the evolution of Mexico’s land change regime, both before and after the NAFTA reforms. As such, the article presents an account, and a case for further research on the topic of how teleconnections are constituted by spatially-extensive food production networks.

  9. Evaluation of brain metabolite in patients with complex regional pain syndrome by MR spectroscopy

    International Nuclear Information System (INIS)

    Iwashita, Narihito; Fukui, Mikio; Nitta, Kazuhito; Anzawa, Noriyuki; Tomie, Hisashi; Nakanishi, Miho; Matsumoto, Tomikichi; Nosaka, Shuichi

    2010-01-01

    Recently brain imaging studies have shown that patients with chronic pain have an altered cortical processing of nociceptive inputs. We evaluated brain metabolites in patients with complex regional pain syndrome (CRPS) using MR spectroscopy. Absolute concentrations of N-acetylaspartate (NAA) and choline (Cho) were measured in anterior cingulate (ACC) and prefrontal cortices (PFC) of patients and volunteers as matched control. Psychological aspects of patients were also evaluated with Hospital Anxiety and Depression (HAD) scale, in addition to the intensity of pain by visual analog scale. In the ACC, CRPS patients had a significant decrease of NAA and a significant increase of Cho compared to the control. Furthermore, patients with anxiety scored by HAD scale had reduced NAA concentration in ACC compared to the patients without anxiety. In the PFC, there was a reduction of NAA in the patients compared with that in control. No correlation was observed between intensity of pain and these metabolites. These results suggest that metabolite changes in ACC and PFC could reflect the pathogenesis of CRPS. (author)

  10. Oxytocin effects on complex brain networks are moderated by experiences of maternal love withdrawal.

    Science.gov (United States)

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2013-10-01

    The neuropeptide oxytocin has been implicated in a variety of social processes. However, recent studies indicate that oxytocin does not enhance prosocial behavior in all people in all circumstances. Here, we investigate effects of intranasal oxytocin administration on intrinsic functional brain connectivity with resting state functional magnetic resonance imaging. Participants were 42 women who received a nasal spray containing either 16 IU of oxytocin or a placebo and reported how often their mother used love withdrawal as a disciplinary strategy involving withholding love and affection after a failure or misbehavior. We found that oxytocin changes functional connectivity between the posterior cingulate cortex (PCC) and the brainstem. In the oxytocin group there was a positive connectivity between these regions, whereas the placebo group showed negative connectivity. In addition, oxytocin induced functional connectivity changes between the PCC, the cerebellum and the postcentral gyrus, but only for those participants who experienced low levels of maternal love withdrawal. We speculate that oxytocin enhances prosocial behavior by influencing complex brain networks involved in self-referential processing and affectionate touch, most prominently in individuals with supportive family backgrounds. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  11. Characterization of solubilized human and rat brain US -endorphin-receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Helmeste, D.M.; Li, C.H.

    1986-01-01

    Opioid receptors have been solubilized from human striatal and rat whole-brain membranes by use of 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS). Tritiated human US -endorphin (TH-US /sub h/-EP) binding revealed high-affinity competition by morphine, naloxone, and various US -EP analogues. Lack of high-affinity competition by (+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide methanesulfonate (U50-488, Upjohn) indicated that k sites were not labeled by TH-US -/sub h/-EP under these conditions. Affinities were similar in both soluble and membrane preparations except for (Met)enkephalin, which appears to be rapidly degraded by the solubilized extract. Size differences between human and rat solubilized TH-US /sub h/-EP-receptor complexes were revealed by exclusion chromatography.

  12. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity.

    Science.gov (United States)

    Shagin, Dmitry A; Barsova, Ekaterina V; Yanushevich, Yurii G; Fradkov, Arkady F; Lukyanov, Konstantin A; Labas, Yulii A; Semenova, Tatiana N; Ugalde, Juan A; Meyers, Ann; Nunez, Jose M; Widder, Edith A; Lukyanov, Sergey A; Matz, Mikhail V

    2004-05-01

    Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.

  13. Genome-wide signatures of complex introgression and adaptive evolution in the big cats

    Science.gov (United States)

    Figueiró, Henrique V.; Li, Gang; Trindade, Fernanda J.; Assis, Juliana; Pais, Fabiano; Fernandes, Gabriel; Santos, Sarah H. D.; Hughes, Graham M.; Komissarov, Aleksey; Antunes, Agostinho; Trinca, Cristine S.; Rodrigues, Maíra R.; Linderoth, Tyler; Bi, Ke; Silveira, Leandro; Azevedo, Fernando C. C.; Kantek, Daniel; Ramalho, Emiliano; Brassaloti, Ricardo A.; Villela, Priscilla M. S.; Nunes, Adauto L. V.; Teixeira, Rodrigo H. F.; Morato, Ronaldo G.; Loska, Damian; Saragüeta, Patricia; Gabaldón, Toni; Teeling, Emma C.; O’Brien, Stephen J.; Nielsen, Rasmus; Coutinho, Luiz L.; Oliveira, Guilherme; Murphy, William J.; Eizirik, Eduardo

    2017-01-01

    The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages. PMID:28776029

  14. Uranium Isotopes as a Tracer of Groundwater Evolution in the Complexe Terminal Aquifer of Southern Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Ammar, F. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia); Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Chkir, N.; Zouari, K. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia)

    2013-07-15

    The Complexe Terminal (CT) aquifer system is the main water supply for remote areas of southern Tunisia. Its exploitation has resulted in significant draw-down of the water table. The CT aquifer is a multilayered aquifer lodged in Miocene sand deposits, Senonian limestones and Turonian carbonates. Little is known about the relationships and exchanges between the different layers. Here, uranium isotopic measurements carried out in groundwater samples from the CT aquifer are presented in order to constrain models for mixing of water masses, water-rock interaction and groundwater flow. Analyses were performed using a VG54 (TIMS) at the CEREGE. Results indicate a range in {sup 238}U concentration and {sup 234}U/{sup 238}U activity ratios of 1.5 to 8 ppb and 1.1 to 3.2 respectively. Together with major and trace analyses, uranium isotopic compositions provide important insights into the factors controlling the chemical evolution of groundwater and shows very distinct patterns between carbonate and sandstone layers. (author)

  15. Optimum Parameters for Tuned Mass Damper Using Shuffled Complex Evolution (SCE Algorithm

    Directory of Open Access Journals (Sweden)

    Hessamoddin Meshkat Razavi

    2015-06-01

    Full Text Available This study is investigated the optimum parameters for a tuned mass damper (TMD under the seismic excitation. Shuffled complex evolution (SCE is a meta-heuristic optimization method which is used to find the optimum damping and tuning frequency ratio for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement dynamic magnification factor (DDMF and acceleration dynamic magnification factor (ADMF for a specific vibration mode of the structure. The optimum TMD parameters and the corresponding optimized DDMF and ADMF are achieved for two control levels (displacement control and acceleration control, different structural damping ratio and mass ratio of the TMD system. The optimum TMD parameters are checked for a 10-storey building under earthquake excitations. The maximum storey displacement and acceleration obtained by SCE method are compared with the results of other existing approaches. The results show that the peak building response decreased with decreases of about 20% for displacement and 30% for acceleration of the top floor. To show the efficiency of the adopted algorithm (SCE, a comparison is also made between SCE and other meta-heuristic optimization methods such as genetic algorithm (GA, particle swarm optimization (PSO method and harmony search (HS algorithm in terms of success rate and computational processing time. The results show that the proposed algorithm outperforms other meta-heuristic optimization methods.

  16. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  17. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  18. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    Science.gov (United States)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  19. From mice to men: the evolution of the large, complex human brain

    Indian Academy of Sciences (India)

    2004-12-15

    Dec 15, 2004 ... https://www.ias.ac.in/article/fulltext/jbsc/030/02/0155-0165. Keywords. Galagos; neocortex; primates; somatosensory; vision. Author Affiliations. Jon H Kaas1. Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111, 21st Ave. S, Nashville, TN 37240, USA. Dates. Early published: 15 December ...

  20. From mice to men: the evolution of the large, complex human brain

    Indian Academy of Sciences (India)

    2004-12-15

    Dec 15, 2004 ... http://www.ias.ac.in/article/fulltext/jbsc/030/02/0155-0165. Keywords. Galagos; neocortex; primates; somatosensory; vision. Author Affiliations. Jon H Kaas1. Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111, 21st Ave. S, Nashville, TN 37240, USA. Dates. Early published: 15 December ...

  1. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  2. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  3. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  4. Evolution of temperature responses in the Cladophora vagabunda complex and the C-albida/sericea complex (Chlorophyta)

    NARCIS (Netherlands)

    Breeman, AM; Oh, YS; Hwang, MS; Van den Hoek, C

    Differentiation in temperature responses (survival and growth) was investigated among isolates of two tropical to temperate green algal lineages: the Cladophora vagabunda complex and the C. albida/sericea complex. The results were analysed in relation to published data on 18S rRNA and ITS sequence

  5. Formation and past evolution of the showers of 96P/Machholz complex

    Science.gov (United States)

    Abedin, Abedin; Wiegert, Paul; Janches, Diego; Pokorný, Petr; Brown, Peter; Hormaechea, Jose Luis

    2018-01-01

    In this work we model the dynamical evolution of meteoroid streams of comet 96P/Machholz, and the largest member of the Marsden sunskirters, comet P/1999 J6. We simultaneously fit the characteristics of eight meteor showers which have been proposed to be linked to the complex, using observations from a range of techniques - visual, video, TV and radar. The aim is to obtain a self-consistent scenario of past capture of a large comet into a short-period orbit, and its subsequent fragmentation history. Moreover, we also aim to constrain the dominant parent of these showers. The fit of our simulated shower characteristics to observations is consistent with the scenario of a capture of a proto-comet 96P/Machholz by Jupiter circa 20000 BCE, and a subsequent major breakup around 100-950 CE which resulted in the formation of the Marsden group of comets. We find that the Marsden group of comets are not the immediate parents of the daytime Arietids and Northern and Southern δ-Aquariids, as previously suggested. In fact, the hypothesis that the Northern δ-Aquariids are related to the Marsden group of comets is not supported by this study. The bulk of the observational characteristics of all eight showers can be explained by meteoroid ejection primarily from comet 96P/Machholz between 10000 BCE and 20000 BCE. Assuming the Marsden group of comets originated between 100 CE-950 CE, we conclude that sunskirting comets contribute mainly to the meteoroid stream near the time of the peak of the daytime Arietids, Southern δ-Aquariids, κ-Velids. Finally, we find that the meteor showers identified by Babadzhanov and Obrubov (1992) as the α-Cetids, the Ursids and Carinids correspond to the daytime λ-Taurids, the November ι-Draconids or December α-Draconids and the θ-Carinids.

  6. Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization.

    Science.gov (United States)

    Marotta, Roberto; Crottini, Angelica; Raimondi, Elena; Fondello, Cristina; Ferraguti, Marco

    2014-04-02

    Tubifex tubifex is a widespread annelid characterized by considerable variability in its taxonomic characteristics and by a mixed reproductive strategy, with both parthenogenesis and biparental reproduction. In a molecular phylogenetic analysis, we detected substantial genetic variability among sympatric Tubifex spp. from the Lambro River (Milano, Italy), which we suggested comprise several cryptic species. To gain insights into the evolutionary events that generated this differentiation, we performed a cytogenetic analysis in parallel with a molecular assay. Approximately 80 cocoons of T. tubifex and T. blanchardi were collected and dissected. For each cocoon, we sequenced a fragment of the 16S rRNA from half of the sibling embryos and karyotyped the other half. To generate a robust phylogeny enabling the reconstruction of the evolutionary processes shaping the diversity of these sympatric lineages, we complemented our original 16S rRNA gene sequences with additional COI sequences. The chromosome number distribution was consistent with the presence of at least six sympatric euploid chromosome complements (one diploid, one triploid, three tetraploids and one hexaploid), as confirmed by a FISH assay performed with an homologous 18S rDNA probe. All the worms with 2n = 50 chromosomes belonged to an already identified sibling species of T. tubifex, T. blanchardi. The six euploid sets were coherently arranged in the phylogeny, with each lineage grouping specimens with the same chromosome complement. These results are compatible with the hypothesis that multiple polyploidization events, possibly enhanced by parthenogenesis, may have driven the evolution of the T. tubifex species complex.

  7. Tectonic Evolution of Jabal Tays Ophiolite Complex, Eastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    AlHumidan, Saad; Kassem, Osama; Almutairi, Majed; Al-Faifi, Hussain; Kahal, Ali

    2017-04-01

    Microstructural analysis is important for investigation of tectonic evaluation of Jable Tays area. Furthermore, the Jable Tays ophiolite complex is effected by Al Amar -Idsas fault. The nature of the Al Amar-Idsas fault is a part of the Eastern Arabian Shield, which was subjected to multiple interpretations. Through fieldwork investigation, microscopic examination, and microstructural analysis, we aim to understand the evolution and tectonic setting of the Jable Tays area. Finite-strain data displays that the Abt schist, the metavolcanics and the metagranites are highly to moderately deformed. The axial ratios in the XZ section range from 1.40 to 2.20. The long axes of the finite-strain ellipsoids trend NW- SE and W-E in the Jable Tays area while, their short axes are subvertical to subhorizontal foliations. The strain magnitude does not increase towards the tectonic contacts between the Abt schist and metavolcano-sedimentary. While majority of the obtained data indicate a dominant oblate with minor prolate strain symmetries in the Abt schist, metavolcano-sedimentary and metagranites. The strain data also indicate flattening with some constriction. We assume that the Abt schist and the metavolcano-sedimentry rocks have similar deformation behavior. The finite strain in the studied rocks accumulated during the metamorphism that effected by thrusting activity. Based on these results, we finally concluded that the contact between Abt schist and metavolcano-sedimentary rocks were formed during the progressive thrusting under brittle to semi-ductile deformation conditions by simple shear that also involved a component of vertical shortening, causing subhorizontal foliation in Jable Tays area.

  8. Using high complexity analysis to probe the evolution of organic aerosol during pollution events in Beijing

    Science.gov (United States)

    Hamilton, J.; Dixon, W.; Dunmore, R.; Squires, F. A.; Swift, S.; Lee, J. D.; Rickard, A. R.; Sun, Y.; Xu, W.

    2017-12-01

    There is increasing evidence that exposure to air pollution results in significant impacts on human health. In Beijing, home to over 20 million inhabitants, particulate matter levels are very high by international standards, with official estimates of an annual mean PM2.5 concentration in 2014 of 86 μg m-3, nearly 9 times higher than the WHO guideline. Changes in particle composition during pollution events will provide key information on sources and can be used to inform strategies for pollution mitigation and health benefits. The organic fraction of PM is an extremely complex mixture reflecting the diversity of sources to the atmosphere. In this study we attempt to harness the chemical complexity of OA by developing an extensive database of over 700 mass spectra, built using literature data and sources specific tracers (e.g. diesel emission characterisation experiments and SOA generated in chamber simulations). Using a high throughput analysis method (15 min), involving UHPLC coupled to Orbitrap mass spectrometry, chromatograms are integrated, compared to the library and a list of identified compounds produced. Purpose built software based on R is used to automatically produce time series, alongside common aerosol metrics and data visualisation techniques, dramatically reducing analysis times. Offline measurements of organic aerosol composition were made as part of the Sources and Emissions of Air Pollutants in Beijing project, a collaborative program between leading UK and Chinese research groups. Rather than studying only a small number of 24 hr PM samples, we collected 250 filters samples at a range of different time resolutions, from 30 minutes to 12 hours, depending on the time of day and PM loadings. In total 643 species were identified based on their elemental formula and retention time, with species ranging from C2-C22 and between 1-13 oxygens. A large fraction of the OA species observed were organosulfates and/or nitrates. Here we will present

  9. Heterobimetallic porphyrin complexes displaying triple dynamics: coupled metal motions controlled by constitutional evolution.

    Science.gov (United States)

    Le Gac, Stéphane; Fusaro, Luca; Roisnel, Thierry; Boitrel, Bernard

    2014-05-07

    A bis-strap porphyrin ligand (1), with an overhanging carboxylic acid group on each side of the macrocycle, has been investigated toward the formation of dynamic libraries of bimetallic complexes with Hg(II), Cd(II), and Pb(II). Highly heteroselective metalation processes occurred in the presence of Pb(II), with Hg(II) or Cd(II) bound out-of-plane to the N-core and "PbOAc" bound to a carboxylate group of a strap on the opposite side. The resulting complexes, 1(Hg)·PbOAc and 1(Cd)·PbOAc, display three levels of dynamics. The first is strap-level (interactional dynamics), where the PbOAc moiety swings between the left and right side of the strap owing to a second sphere of coordination with lateral amide functions. The second is ligand-level (motional dynamics), where 1(Hg)·PbOAc and 1(Cd)·PbOAc exist as two degenerate states in equilibrium controlled by a chemical effector (AcO(-)). The process corresponds to a double translocation of the metal ions according to an intramolecular migration of Hg(II) or Cd(II) through the N-core, oscillating between the two equivalent overhanging carbonyl groups, coupled to an intermolecular pathway for PbOAc exchanging between the two equivalent overhanging carboxylate groups (N-core(up) ⇆ N-core(down) coupled to strap(down) ⇆ strap(up), i.e., coupled motion #1 in the abstract graphic). The third is library-level (constitutional dynamics), where a dynamic constitutional evolution of the system was achieved by the successive addition of two chemical effectors (DMAP and then AcO(-)). It allowed shifting equilibrium forward and backward between 1(Hg)·PbOAc and the corresponding homobimetallic complexes 1(Hg2)·DMAP and 1(Pb)·PbOAc. The latter displays a different ligand-level dynamics, in the form of an intraligand coupled migration of the Pb(II) ions (N-core(up) ⇆ strap(up) coupled to strap(down) ⇆ N-core(down), i.e., coupled motion #2 in the abstract graphic). In addition, the neutral "bridged" complexes 1HgPb and 1Cd

  10. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    Science.gov (United States)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  11. The correlation of metrics in complex networks with applications in functional brain networks

    International Nuclear Information System (INIS)

    Li, C; Wang, H; Van Mieghem, P; De Haan, W; Stam, C J

    2011-01-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi–Albert graphs, Erdös–Rényi random graphs and Watts–Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös–Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected

  12. Chronic pain and evoked responses in the brain: A magnetoencephalographic study in Complex Regional Pain Syndrome I and II

    NARCIS (Netherlands)

    Theuvenet, P.J.

    2012-01-01

    Complex Regional Pain Syndrome (CRPS) type I and II are chronic pain syndromes with comparable symptoms, only in CRPS II a peripheral nerve injury is present. No objective tests are currently available to differentiate the two types which hampers diagnosis and treatment. Non-invasive brain imaging

  13. Resting and Task-Modulated High-Frequency Brain Rhythms Measured by Scalp Encephalography in Infants with Tuberous Sclerosis Complex

    Science.gov (United States)

    Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.

    2015-01-01

    The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…

  14. Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame.

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W; Erickson, Kirk I; Boot, Walter R; Kramer, Arthur F

    2011-08-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  16. Allometry in primates, with emphasis on scaling and the evolution of the brain.

    Science.gov (United States)

    Gould, S J

    1975-01-01

    Allometry should be defined broadly as the study of size and its consequences, not narrowly as the application of power functions to the data of growth. Variation in size may be ontogenetic, static or phyletic. Errors of omission and treatment have plagued the study of allometry in primates. Standard texts often treat brain size as an independent measure, ignoring its allometric relation with body size - on this basis, gracile australopithecines have been accorded the mental status of gorillas. Intrinsic allometries of the brain/body are likewise neglected: many authors cite cerebral folding as evidence of man's mental superiority, but folding is a mechanical correlate of brain size itself. Confusion among types of scaling heads errors of treatment in both historical primacy [Dubois' ontogenetic inferences from interspecific curves] and current frequency. The predicted parameters of brain-body plots differ greatly for ontogenetic, intrapopulational, interspecific and phyletic allometries. I then discuss basic trends in bivariate allometry at the ordinal level for internal organ weights, skeletal dimensions, lifespan and fetal weight. In considering the causes of basic bivariate allometries, I examine the reason for differences among types of scaling in brain-body relationships. The interspecific exponent of 0.66 strongly suggests a relationship to body surfaces, but we have no satisfactory explanation for why this should be so. The tripartite ontogenetic plot is a consequence of patterns in neuronal differentiation. We do not know why intraspecific exponents fall between 0.2 and 0.4; several partial explanations have been offered. Multivariate techniques have transcended the pictorial representation of transformed coordinates and offer new, powerful approaches to total allometric patterns. Allometry is most often used as a 'criterion for subtraction'. In order to assess the nature and purpose of an adaptation, we must be able to identify and isolate the aspect of

  17. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system.

    Science.gov (United States)

    Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra

    2014-04-01

    Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75

  18. Predicting functional impairment in brain tumor surgery: the Big Five and the Milan Complexity Scale.

    Science.gov (United States)

    Ferroli, Paolo; Broggi, Morgan; Schiavolin, Silvia; Acerbi, Francesco; Bettamio, Valentina; Caldiroli, Dario; Cusin, Alberto; La Corte, Emanuele; Leonardi, Matilde; Raggi, Alberto; Schiariti, Marco; Visintini, Sergio; Franzini, Angelo; Broggi, Giovanni

    2015-12-01

    OBJECT The Milan Complexity Scale-a new practical grading scale designed to estimate the risk of neurological clinical worsening after performing surgery for tumor removal-is presented. METHODS A retrospective study was conducted on all elective consecutive surgical procedures for tumor resection between January 2012 and December 2014 at the Second Division of Neurosurgery at Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan. A prospective database dedicated to reporting complications and all clinical and radiological data was retrospectively reviewed. The Karnofsky Performance Scale (KPS) was used to classify each patient's health status. Complications were divided into major and minor and recorded based on etiology and required treatment. A logistic regression model was used to identify possible predictors of clinical worsening after surgery in terms of changes between the preoperative and discharge KPS scores. Statistically significant predictors were rated based on their odds ratios in order to build an ad hoc complexity scale. For each patient, a corresponding total score was calculated, and ANOVA was performed to compare the mean total scores between the improved/unchanged and worsened patients. Relative risk (RR) and chi-square statistics were employed to provide the risk of worsening after surgery for each total score. RESULTS The case series was composed of 746 patients (53.2% female; mean age 51.3 ± 17.1). The most common tumors were meningiomas (28.6%) and glioblastomas (24.1%). The mortality rate was 0.94%, the major complication rate was 9.1%, and the minor complication rate was 32.6%. Of 746 patients, 523 (70.1%) patients improved or remained unchanged, and 223 (29.9%) patients worsened. The following factors were found to be statistically significant predictors of the change in KPS scores: tumor size larger than 4 cm, cranial nerve manipulation, major brain vessel manipulation, posterior fossa location, and eloquent area involvement

  19. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  20. Functional brain imaging of a complex navigation task following one night of total sleep deprivation

    Science.gov (United States)

    Strangman, Gary; Thompson, John H.; Strauss, Monica M.; Marshburn, Thomas H.; Sutton, Jeffrey P.

    2006-01-01

    Study Objectives: To assess the cerebral effects associated with sleep deprivation in a simulation of a complex, real-world, high-risk task. Design and Interventions: A two-week, repeated measures, cross-over experimental protocol, with counterbalanced orders of normal sleep (NS) and total sleep deprivation (TSD). Setting: Each subject underwent functional magnetic resonance imaging (fMRI) while performing a dual-joystick, 3D sensorimotor navigation task (simulated orbital docking). Scanning was performed twice per subject, once following a night of normal sleep (NS), and once following a single night of total sleep deprivation (TSD). Five runs (eight 24s docking trials each) were performed during each scanning session. Participants: Six healthy, young, right-handed volunteers (2 women; mean age 20) participated. Measurements and Results: Behavioral performance on multiple measures was comparable in the two sleep conditions. Neuroimaging results within sleep conditions revealed similar locations of peak activity for NS and TSD, including left sensorimotor cortex, left precuneus (BA 7), and right visual areas (BA 18/19). However, cerebral activation following TSD was substantially larger and exhibited higher amplitude modulations from baseline. When directly comparing NS and TSD, most regions exhibited TSD>NS activity, including multiple prefrontal cortical areas (BA 8/9,44/45,47), lateral parieto-occipital areas (BA 19/39, 40), superior temporal cortex (BA 22), and bilateral thalamus and amygdala. Only left parietal cortex (BA 7) demonstrated NS>TSD activity. Conclusions: The large network of cerebral differences between the two conditions, even with comparable behavioral performance, suggests the possibility of detecting TSD-induced stress via functional brain imaging techniques on complex tasks before stress-induced failures.

  1. THE EVOLUTION OF OPSINS AND COLOR VISION: CONNECTING GENOTYPE TO A COMPLEX PHENOTYPE

    OpenAIRE

    BLOCH, Natasha I

    2016-01-01

    Dissecting the genetic basis of adaptive traits is key to our understanding of evolutionary processes. A major and essential step in the study of evolutionary genetics is drawing link between genotype and phenotype, which depends on the difficult process of defining the phenotype at different levels, from functional to organismal. Visual pigments are a key component of the visual system and their evolution could also provide important clues on the evolution of visual sensory system in respons...

  2. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  3. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    Rey, A.; Manta, E.; Leon, A.; Papadopoulos, M.; Pirmettis, Y.; Raptopoulou, C.; Chiotellis, E.; Leon, E.; Mallo, L.

    1998-01-01

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O] +3 precursor. Following this ''mixed ligand'' concept, a novel 99m Tc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99m Tc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99 Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  4. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  5. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae.

    Directory of Open Access Journals (Sweden)

    Filip Kolář

    Full Text Available Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae, a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding

  6. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions.

    Science.gov (United States)

    Iriki, Atsushi; Taoka, Miki

    2012-01-12

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.

  7. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.

    Science.gov (United States)

    Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R

    2009-02-01

    Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

  8. Complex and region-specific changes in astroglial markers in the aging brain.

    Science.gov (United States)

    Rodríguez, José J; Yeh, Chia-Yu; Terzieva, Slavica; Olabarria, Markel; Kulijewicz-Nawrot, Magdalena; Verkhratsky, Alexei

    2014-01-01

    Morphological aging of astrocytes was investigated in entorhinal cortex (EC), dentate gyrus (DG), and cornu ammonis 1 (CA1) regions of hippocampus of male SV129/C57BL6 mice of different age groups (3, 9, 18, and 24 months). Astroglial profiles were visualized by immunohistochemistry by using glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and s100β staining; these profiles were imaged using confocal or light microscopy for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of the hippocampus showed progressive age-dependent hypertrophy, as indicated by an increase in surface, volume, and somata volume at 24 months of age compared with 3-month-old mice. In contrast with the hippocampal regions, aging induced a decrease in GFAP-positive astroglial profiles in the EC: the surface, volume, and cell body volume of astroglial cells at 24 months of age were decreased significantly compared with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface areas at 24 months compared with 3-month-old animals in both areas of hippocampus, whereas GS-positive profiles remained unchanged in the EC of old mice. The morphometry of s100β-immunoreactive profiles revealed substantial increase in the EC, more moderate increase in the DG, and no changes in the CA1 area. Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes undergo a complex age-dependent remodeling in a brain region-specific manner. Copyright © 2014. Published by Elsevier Inc.

  9. An automated approach towards detecting complex behaviours in deep brain oscillations.

    Science.gov (United States)

    Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi

    2014-03-15

    Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain.

    Science.gov (United States)

    Gunbin, Konstantin V; Afonnikov, Dmitry A; Kolchanov, Nikolay A; Derevianko, Anatoly P; Rogaev, Eugeny I

    2015-01-01

    As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.

  11. Fluid flow evolution in petroleum reservoirs with a complex diagenetic history: An example from Veracruz, Mexico

    NARCIS (Netherlands)

    Ferket, H.; Swennen, R.; Ortuno-Arzate, S.; Roure, F.

    2006-01-01

    This paper discusses the fluid flow evolution in the Veracruz petroleum province of eastern Mexico based on results of an integrated diagenetic, sedimentological and structural analysis. The area progressively changed from passive foreland towards an active fold-and-thrust belt into a passive belt

  12. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified.

  13. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Directory of Open Access Journals (Sweden)

    Kjell Fuxe

    2016-01-01

    Full Text Available The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  14. Environmental monitoring of the La Grande complex (2003-2004) : evolution of mercury levels in the flesh of fish; Reseau de suivi environnemental du complexe La Grande (2003-2004) : evolution du mercure dans la chair des poissons

    Energy Technology Data Exchange (ETDEWEB)

    Therrien, J. [Genivar SEC, Quebec, PQ (Canada); Schetagne, R. [Hydro-Quebec Production, Baie-Comeau, PQ (Canada)

    2005-11-15

    The results of surveys conducted to assess the duration of temporary mercury levels in piscivorous species in the La Grande Complex were presented. A 2003 survey conducted in the easter sector and a 2004 survey conducted in the western sector of the complex showed that for non-piscivorous fishes of standardized length, a return to mean natural mercury levels will be achieved between 10 and 20 years after impounding. For piscivorous fishes, the evolution pattern of the mean mercury levels suggested that a return to background levels will occur after 20 to 30 years. Mercury levels for northern pike in the Robert-Bourassa Reservoir are expected to return to normal levels after 30 to 35 years. The surveys indicated that mean mercury levels in non-piscivorous fishes were often higher immediately below the La Grande generating stations. Similar observations were made for northern pike and lake trout downstream of the generating stations in the eastern sector of the complex. Mean mercury levels were significantly higher for fishes in the complex than fishes in the natural lakes of the region. Results of the surveys suggested that additional consumption restrictions for piscivorous fishes in the reservoirs are needed. Consumption guidelines for varieties of non-piscivorous and piscivorous fishes from the complex were included.

  15. Further statistical analysis for genome-wide expression evolution in primate brain/liver/fibroblast tissue

    Directory of Open Access Journals (Sweden)

    Gu Jianying

    2004-05-01

    Full Text Available Abstract In spite of only a 1-2 per cent genomic DNA sequence difference, humans and chimpanzees differ considerably in behaviour and cognition. Affymetrix microarray technology provides a novel approach to addressing a long-term debate on whether the difference between humans and chimpanzees results from the alteration of gene expressions. Here, we used several statistical methods (distance method, two-sample t-tests, regularised t-tests, ANOVA and bootstrapping to detect the differential expression pattern between humans and great apes. Our analysis shows that the pattern we observed before is robust against various statistical methods; that is, the pronounced expression changes occurred on the human lineage after the split from chimpanzees, and that the dramatic brain expression alterations in humans may be mainly driven by a set of genes with increased expression (up-regulated rather than decreased expression (down-regulated.

  16. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study

    International Nuclear Information System (INIS)

    Spoudeas, H.A.; Hindmarsh, P.C.; Brook, C.G.D.; Matthews, D.R.

    1996-01-01

    To determine the aetiopathology of post-irradiation growth hormone (GH) deficiency, we performed a mixed longitudinal analysis of 56 24 h serum GH concentration profiles and 45 paired insulin-induced hypoglycaemia tests (ITT) in 35 prepubertal children, aged 1.5-11.8 years, with brain tumours in the posterior foss (n = 25) or cerebral hemispheres (n 10). Assessments were made before (n = 16), 1 year (n = 25) and 2 to 5 years (n = 15) after a cranial irradiation (DXR) dose of at least 30 Gy. Fourier transforms, occupancy percentage, first-order derivatives (FOD) and mean concentrations were determined from the GH profiles taken after neurosurgery but before radiotherapy (n = 16) and in three treatment groups: Group 1: neurosurgery only without DXR 9n 9); Group 2: ≥ 30 Gy DXR only (n = 22); Group 3: ≥ 30 Gy DXR with additional chemotherapy (n = 9). Results were compared with those from 26 short normally growing (SN) children. (author)

  17. Critical zone evolution and the origins of organised complexity in watersheds

    Science.gov (United States)

    Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.

    2012-04-01

    The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system

  18. The Songbird Neurogenomics (SoNG Initiative: Community-based tools and strategies for study of brain gene function and evolution

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2008-03-01

    coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve.

  19. Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity

    NARCIS (Netherlands)

    Haag, Elisabeth; Irrgang, Klaus-D.; Boekema, Egbert J.; Renger, Gernot

    1990-01-01

    Oxygen-evolving photo system II core complexes were prepared from spinach by solubilizing photosystem II membrane fragments with dodecyl-β-D-maltoside. The core complexes consist of the intrinsic 47-kDa, 43-kDa, D1 and D2 polypeptides, the two subunits of cytochrome b559 and the extrinsic 33-kDa

  20. Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest

    OpenAIRE

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data...

  1. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies.

    Science.gov (United States)

    Finkbeiner, Susan D; Briscoe, Adriana D; Mullen, Sean P

    2017-04-01

    Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO

    DEFF Research Database (Denmark)

    Holm, S; Andersen, A R; Vorstrup, S

    1985-01-01

    m PnAO was injected i.v. as a bolus of 15 to 25 mCi. The distribution was followed over 10-sec intervals using a highly sensitive, rapidly rotating SPECT (Tomomatic 64) and compared to 133Xe flow maps. Upon arrival of the PnAO bolus to the brain, a high uptake was found in brain tissue with high......The lipophilic 99mTc-labeled oxime propylene amine oxime (PnAO) should, according to recent reports behave like 133Xe in the human brain. This study compares SPECT images of the two tracers in six subjects: four stroke cases, one transitory ischemic attack case and one normal subject. Technetium-99......AO has a high yet incomplete brain extraction yielding a flow dominated initial distribution with limitations mentioned....

  3. Environmental monitoring of the La Grande complex (2003-2004) : evolution of mercury levels in the flesh of fish

    International Nuclear Information System (INIS)

    Therrien, J.; Schetagne, R.

    2005-11-01

    The results of surveys conducted to assess the duration of temporary mercury levels in piscivorous species in the La Grande Complex were presented. A 2003 survey conducted in the easter sector and a 2004 survey conducted in the western sector of the complex showed that for non-piscivorous fishes of standardized length, a return to mean natural mercury levels will be achieved between 10 and 20 years after impounding. For piscivorous fishes, the evolution pattern of the mean mercury levels suggested that a return to background levels will occur after 20 to 30 years. Mercury levels for northern pike in the Robert-Bourassa Reservoir are expected to return to normal levels after 30 to 35 years. The surveys indicated that mean mercury levels in non-piscivorous fishes were often higher immediately below the La Grande generating stations. Similar observations were made for northern pike and lake trout downstream of the generating stations in the eastern sector of the complex. Mean mercury levels were significantly higher for fishes in the complex than fishes in the natural lakes of the region. Results of the surveys suggested that additional consumption restrictions for piscivorous fishes in the reservoirs are needed. Consumption guidelines for varieties of non-piscivorous and piscivorous fishes from the complex were included

  4. Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    OpenAIRE

    Hoggard, Stephen J.; Wilson, Peter D.; Beattie, Andrew J.; Stow, Adam J.

    2011-01-01

    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of S...

  5. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    Science.gov (United States)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  6. [Asthenic syndrome in clinical course of acute period of brain concussion during complex treatment using nootropic agents].

    Science.gov (United States)

    Tkachov, A V

    2008-01-01

    The comparative analysis of a complex examination of 108 persons aged from 16 till 60 years in acute period of closed craniocerebral injury (CCCT) has been done. Every participants have been divided into 2 groups depending on a nootrop medication they receive in a complex treatment. A control group consisted of 30 practically healthy people. Objective examination by means of tests was done on the 1-st, 10-th that 30-th day of treatment. Patients of 1-st (37 persons) group received piracetam in complex treatment and patients of the 2-nd group (71 persons) pramistar. Patients of the first group received a base treatment (analgetics, tranquilizers, vitamins of group B, magnesium sulfate, diuretic preparations) as well as piracetam at dosage 0.2, two tablets three times per day. The Patients of the 2-nd group received a base treatment as well as pramistar at dosage 0.6, one tablet 2 times per day. Specially developed multiaspects scales and questionnaires, MRT of the brain and EEG have been used for objectification of patient, complaints. During a complex clinico-neuropsychological examination it was found that all cases of concussion of the brain are accompanied by those or other asthenic disorders.

  7. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    Science.gov (United States)

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  8. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    Directory of Open Access Journals (Sweden)

    Anke Schloesser

    2015-01-01

    Full Text Available Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3, may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM. Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice.

  9. Dysbindin-Containing Complexes and their Proposed Functions in Brain: From Zero to (too Many in a Decade

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-04-01

    Full Text Available Dysbindin (also known as dysbindin–1 or dystrobrevin-binding protein 1 was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC–1 (biogenesis of lysosome-related organelles complex–1, which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal–lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.

  10. Temporal evolution of hypoxic-ischiaemic brain lesions in asphyxiated full-term newborns as assessed by computerized tomography

    International Nuclear Information System (INIS)

    Lipp-Zwahlen, A.E.; Zurich Univ.; Deonna, T.; Micheli, J.L.; Calame, A.; Chrzanowski, R.

    1985-01-01

    Hypoxic-ischaemic brain lesions may be detected as low density (LD) areas by means of computerized tomography (CT), but the clinical significance of such LD areas has been controversial. Since timing might be a critical factor, we studied the temporal evolution of LD areas in 9 asphyxiated term babies who had two or more CT, and compared the changes to the neurodevelopmental outcome. Scans were classified according to the elapsed time after asphyxia as early (day 1-7, n=6), intermediate (week 2-4, n=7; week 4-7, n=3) and late CT (3 months or more, n=7). In early scans, no, or only ill defined, LD areas were seen in the periventricular region. In intermediate CT's, LD-zones were further diminshed in those babies who later were normal. Sharply accentuated LD areas, however appeared in those who later suffered from neurodevelopmental disorders. These LD areas, probably representing hypoxic-ischaemic lesions, were located periventricularly, extending into the subcortical white matter and the cortex. They began to disappear at 4 to 7 weaks in some regions. LD persisting more than 4-7 weeks tended to transform into cyst-like lesions, or marked atrophy. We conclude (1) that hypoxic-ischaemic lesions appear as zones of low density on CT scans performed after the first week and (2) that the extent of such lesions can best be assessed between 9 to 23 days after asphyxia. (orig./GSH)

  11. Temporal evolution of hypoxic-ischiaemic brain lesions in asphyxiated full-term newborns as assessed by computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lipp-Zwahlen, A.E.; Deonna, T.; Micheli, J.L.; Calame, A.; Chrzanowski, R.

    1985-03-01

    Hypoxic-ischemic brain lesions may be detected as low density (LD) areas by means of computerized tomography (CT), but the clinical significance of such LD areas has been controversial. Since timing might be a critical factor, the temporal evolution of LD areas was studied in 9 asphyxiated term babies who had two or more CT, and the changes were compared to the neurodevelopmental outcome. Scans were classified according to the elapsed time after asphyxia as early (day 1-7, n=6), intermediate (week 2-4, n=7; week 4-7, n=3) and late CT (3 months or more, n=7). In early scans, no, or only ill defined, LD areas were seen in the periventricular region. In intermediate CT's, LD-zones were further diminshed in those babies who later were normal. Sharply accentuated LD areas, however appeared in those who later suffered from neurodevelopmental disorders. These LD areas, probably representing hypoxic-ischemic lesions, were located periventricularly, extending into the subcortical white matter and the cortex. They began to disappear at 4 to 7 weaks in some regions. LD persisting more than 4-7 weeks tended to transform into cyst-like lesions, or marked atrophy. The authors conclude (1) that hypoxic-ischemic lesions appear as zones of low density on CT scans performed after the first week and (2) that the extent of such lesions can best be assessed between 9 to 23 days after asphyxia.

  12. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rethmann, Christin; Scheer, Ianina; Kellenberger, Christian Johannes [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); Meuli, Martin; Mazzone, Luca; Moehrlen, Ueli [University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); University Children' s Hospital Zurich, Department of Pediatric Surgery, Zurich (Switzerland)

    2017-11-15

    To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology. Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls. Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI. MRI demonstrates change of Chiari malformation type II (CM-II) features. (orig.)

  13. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

    International Nuclear Information System (INIS)

    Rethmann, Christin; Scheer, Ianina; Kellenberger, Christian Johannes; Meuli, Martin; Mazzone, Luca; Moehrlen, Ueli

    2017-01-01

    To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology. Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls. Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI. MRI demonstrates change of Chiari malformation type II (CM-II) features. (orig.)

  14. Complex magnetic monopoles, geometric phases and quantum evolution in the vicinity of diabolic and exceptional points

    International Nuclear Information System (INIS)

    Nesterov, Alexander I; Aceves de la Cruz, F

    2008-01-01

    We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase

  15. Social norm complexity and past reputations in the evolution of cooperation.

    Science.gov (United States)

    Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M

    2018-03-07

    Indirect reciprocity is the most elaborate and cognitively demanding of all known cooperation mechanisms, and is the most specifically human because it involves reputation and status. By helping someone, individuals may increase their reputation, which may change the predisposition of others to help them in future. The revision of an individual's reputation depends on the social norms that establish what characterizes a good or bad action and thus provide a basis for morality. Norms based on indirect reciprocity are often sufficiently complex that an individual's ability to follow subjective rules becomes important, even in models that disregard the past reputations of individuals, and reduce reputations to either 'good' or 'bad' and actions to binary decisions. Here we include past reputations in such a model and identify the key pattern in the associated norms that promotes cooperation. Of the norms that comply with this pattern, the one that leads to maximal cooperation (greater than 90 per cent) with minimum complexity does not discriminate on the basis of past reputation; the relative performance of this norm is particularly evident when we consider a 'complexity cost' in the decision process. This combination of high cooperation and low complexity suggests that simple moral principles can elicit cooperation even in complex environments.

  16. Limits to behavioral evolution: the quantitative genetics of a complex trait under directional selection.

    Science.gov (United States)

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2013-11-01

    Replicated selection experiments provide a powerful way to study how "multiple adaptive solutions" may lead to differences in the quantitative-genetic architecture of selected traits and whether this may translate into differences in the timing at which evolutionary limits are reached. We analyze data from 31 generations (n=17,988) of selection on voluntary wheel running in house mice. The rate of initial response, timing of selection limit, and height of the plateau varied significantly between sexes and among the four selected lines. Analyses of litter size and realized selection differentials seem to rule out counterposing natural selection as a cause of the selection limits. Animal-model analyses showed that although the additive genetic variance was significantly lower in selected than control lines, both before and after the limits, the decrease was not sufficient to explain the limits. Moreover, directional selection promoted a negative covariance between additive and maternal genetic variance over the first 10 generations. These results stress the importance of replication in selection studies of higher-level traits and highlight the fact that long-term predictions of response to selection are not necessarily expected to be linear because of the variable effects of selection on additive genetic variance and maternal effects. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  17. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees.

    Science.gov (United States)

    Grüter, Christoph; Segers, Francisca H I D; Menezes, Cristiano; Vollet-Neto, Ayrton; Falcón, Tiago; von Zuben, Lucas; Bitondi, Márcia M G; Nascimento, Fabio S; Almeida, Eduardo A B

    2017-02-23

    The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.

  18. Volume of discrete brain structures in complex dissociative disorders : preliminary findings

    NARCIS (Netherlands)

    Ehling, T.; Nijenhuis, E. R. S.; Krikke, A. P.; DeKloet, ER; Vermetten, E

    2007-01-01

    Based on findings in traumatized animals and patients with posttraumatic stress disorder, and on traumatogenic models of complex dissociative disorders, it was hypothesized that (1) patients with complex dissociative disorders have smaller volumes of hippocampus, parahippocampal gyrus, and amygdala

  19. Deep brain stimulation for Tourette’s syndrome: the case for targeting the thalamic centromedian-parafascicular complex.

    Directory of Open Access Journals (Sweden)

    Paola Testini

    2016-11-01

    Full Text Available Tourette syndrome is a neurologic condition characterized by both motor and phonic tics and is typically associated with psychiatric comorbidities, including obsessive-compulsive disorder/behavior and attention deficit hyperactivity disorder and can be psychologically and socially debilitating. It is considered a disorder of the cortico-striato-thalamo-cortical circuitry, as suggested by pathophysiology studies and therapeutic options. Among these, deep brain stimulation of the centromedian-parafascicular nuclear complex (CM-Pf of the thalamus is emerging as a valuable treatment modality for patients affected by severe, treatment resistant TS. Here we review the most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology of Tourette syndrome, discuss potential mechanisms of action that may mediate the effects of CM-Pf deep brain stimulation in Tourette syndrome, and summarize its clinical efficacy.

  20. The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms

    Science.gov (United States)

    2014-01-01

    Background Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions We demonstrate the existence of at least two SINE families within the Feliformia suborder, one

  1. Thermal and biological evolution of Fe(III)-Sulfanilamide complexes synthesized by green strategy

    Science.gov (United States)

    Prajapat, Garima; Rathore, Uma; Gupta, Rama; Bhojak, N.

    2018-05-01

    Sulfonamides belong to a category of sulfadrugs, that are widely used as antibiotic medicines. Their metal complexes, also called Metallodrugs, are known to have diverse pharmacological applications and are significantly used as therapeutic agents for treatment of several human diseases. Fe(III) complexes of two sulfonamides, namely Sulfanilamide and Sulfadiazine have been synthesized by the method of Microwave Assisted Organic Synthesis (MAOS), using acetone as solvent medium. Presence of excellent donor atoms such as N and O, induce these drugs to exhibit a chelating behavior with the metal ion, and to act as bidentate ligands. Both the complexes were found to have four coordinated, tetrahedral geometry with one molecule of water of crystallisation. Thermal decomposition studies were carried out in an inert nitrogen atmosphere by Thermogravimetric (TGA) and Derivative Thermogravimetric (DTA) analysis. Interpretation of thermograms have been done to evaluate various kinetic and thermodynamic parameters, using integral method of Coats and Redfern. The antibacterial activity for both complexes have been screened against E.coli, S. aureus and B. subtilis.

  2. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  3. Evolution of Icelandic Central Volcanoes: Evidence from the Austurhorn Plutonic and Vestmannaeyjar Volcanic Complexes

    Science.gov (United States)

    1989-09-01

    complex (figure 3.2; Blake, 1964, 1970). They consist of basic, intermediate and acid lavas as well as pyroclastic deposits. Early propylitic ...hypothesis because dikes are heavily fractured and commonly show incipient propylitization along fracture surfaces. Mafic dikes exhibit a sharp maximum in

  4. Artificial Evolution for the Detection of Group Identities in Complex Artificial Societies

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Togelius, Julian; Yannakakis, Georgios N.

    2013-01-01

    This paper aims at detecting the presence of group structures in complex artificial societies by solely observing and analysing the interactions occurring among the artificial agents. Our approach combines: (1) an unsupervised method for clustering interactions into two possible classes, namely in...

  5. Broad supernatural punishment but not moralizing high gods precede the evolution of political complexity in Austronesia.

    Science.gov (United States)

    Watts, Joseph; Greenhill, Simon J; Atkinson, Quentin D; Currie, Thomas E; Bulbulia, Joseph; Gray, Russell D

    2015-04-07

    Supernatural belief presents an explanatory challenge to evolutionary theorists-it is both costly and prevalent. One influential functional explanation claims that the imagined threat of supernatural punishment can suppress selfishness and enhance cooperation. Specifically, morally concerned supreme deities or 'moralizing high gods' have been argued to reduce free-riding in large social groups, enabling believers to build the kind of complex societies that define modern humanity. Previous cross-cultural studies claiming to support the MHG hypothesis rely on correlational analyses only and do not correct for the statistical non-independence of sampled cultures. Here we use a Bayesian phylogenetic approach with a sample of 96 Austronesian cultures to test the MHG hypothesis as well as an alternative supernatural punishment hypothesis that allows punishment by a broad range of moralizing agents. We find evidence that broad supernatural punishment drives political complexity, whereas MHGs follow political complexity. We suggest that the concept of MHGs diffused as part of a suite of traits arising from cultural exchange between complex societies. Our results show the power of phylogenetic methods to address long-standing debates about the origins and functions of religion in human society. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Social dimension and complexity differentially influence brain responses during feedback processing.

    Science.gov (United States)

    Pfabigan, Daniela M; Gittenberger, Marianne; Lamm, Claus

    2017-10-30

    Recent research emphasizes the importance of social factors during performance monitoring. Thus, the current study investigated the impact of social stimuli -such as communicative gestures- on feedback processing. Moreover, it addressed a shortcoming of previous studies, which failed to consider stimulus complexity as potential confounding factor. Twenty-four volunteers performed a time estimation task while their electroencephalogram was recorded. Either social complex, social non-complex, non-social complex, or non-social non-complex stimuli were used to provide performance feedback. No effects of social dimension or complexity were found for task performance. In contrast, Feedback-Related Negativity (FRN) and P300 amplitudes were sensitive to both factors, with larger FRN and P300 amplitudes after social compared to non-social stimuli, and larger FRN amplitudes after complex positive than non-complex positive stimuli. P2 amplitudes were solely sensitive to feedback valence and social dimension. Subjectively, social complex stimuli were rated as more motivating than non-social complex ones. Independently of each other, social dimension and visual complexity influenced amplitude variation during performance monitoring. Social stimuli seem to be perceived as more salient, which is corroborated by P2, FRN and P300 results, as well as by subjective ratings. This could be explained due to their given relevance during every day social interactions.

  7. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice.

    Directory of Open Access Journals (Sweden)

    Naïg Gueguen

    Full Text Available Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM, resveratrol stimulated complex I activity, whereas at high dose (50 μM it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed.

  8. Evolution of tag-based cooperation with emotion on complex networks

    Science.gov (United States)

    Lima, F. W. S.

    2018-04-01

    We study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals through Monte Carlo simulations. Interactions and reproduction among computational agents are simulated on undirected Barabási-Albert (UBA) networks and Erdös-Rènyi random graphs (ER).We study the Hammond-Axelrod model on both UBA networks and ER random graphs for the asexual reproduction case. We use a modified version of the traditional Hammond-Axelrod model and we also allow the agents’ decisions about one of the strategies to take into account the emotion among their equals. Our simulations showed that egoism and altruism win, differently from other results found in the literature where ethnocentric strategy is common.

  9. The evolution of complex type B Allende inclusion - An ion microprobe trace element study

    Science.gov (United States)

    Macpherson, Glenn J.; Crozaz, Ghislaine; Lundberg, Laura L.

    1989-01-01

    Results are presented of a detailed trace-element and isotopic analyses of the constituent phases in each of the major textural parts (mantle, core, and islands) of a Type B refractory inclusion, the USNM 5241 inclusion from Allende, first described by El Goresy et al. (1985). The REE data on 5241 were found to be largely consistent with a model in which the mantle and the core of 5241 formed sequentially out of a single melt by fractional crystallization. The numerical models of REE evolution in the 5241 melt, especially that of Eu, require that a significant mass of spinel-free island material was assimilated into the evolving melt during the last half of the solidification history of 5241. The trace element results pbtained thus strongly support the interpretation of El Goresy et al. (1985) that the spinel-free islands in the 5241 are trapped xenoliths.

  10. Principles of evolution from the Planck epoch to complex multicellular life

    CERN Document Server

    Meyer-Ortmanns, Hildegard

    2011-01-01

    With contributions from a team of leading experts, this volume provides a comprehensive survey of recent achievements in our scientific understanding of evolution. The questions it asks concern the beginnings of the universe, the origin of life and the chances of its arising at all, the role of contingency, and the search for universal features in the plethora of evolutionary phenomena. Rather than oversimplified or premature answers, the chapters provide a clear picture of how these essential problems are being tackled, enabling the reader to understand current thinking and open questions.  The tools employed stem from a range of disciplines including mathematics, physics, biochemistry and cell biology. Self-organization as an overarching concept is demonstrated in the most diverse areas: from galaxy formation in the universe to spindle and aster formation in the cell. Chemical master equations, population dynamics, and evolutionary game theory are presented as suitable frameworks for understanding the univ...

  11. The evolution of the Dogger Bank, North Sea: A complex history of terrestrial, glacial and marine environmental change

    Science.gov (United States)

    Cotterill, Carol J.; Phillips, Emrys; James, Leo; Forsberg, Carl Fredrik; Tjelta, Tor Inge; Carter, Gareth; Dove, Dayton

    2017-09-01

    This paper presents a summary of the results of a detailed multidisciplinary study of the near surface geology of the Dogger Bank in the southern central North Sea, forming part of a site investigation for a major windfarm development undertaken by the Forewind consortium. It has revealed that the Dogger Bank is internally complex rather than comprising a simple ;layer cake; of the Quaternary sediments as previously thought. Regional and high-resolution seismic surveys have enabled a revised stratigraphic framework to be established for the upper part of this sequence which comprises the Eem (oldest), Dogger Bank, Bolders Bank formations and Botney Cut Formation (youngest), overlain by a typically thin Holocene sequence. Detailed mapping of key horizons identified on the high-resolution seismic profiles has led to the recognition of a series of buried palaeo-landsystems which are characterised by a range of features including; glacial, glacifluvial and fluvial channels, a large-scale glacitectonic thrust-moraine complex with intervening ice-marginal basins, a lacustrine basin and marine ravinement surfaces. Interpretation of these buried landscapes has enabled the development of an environmental change model to explain the evolution of the Dogger Bank. This evolution was driven by the complex interplay between climate change, ice sheet dynamics and sea level change associated with the growth and subsequent demise of the British and Irish and Fennoscandian ice sheets during the Weichselian glaciation. Following the decay of these ice sheets the Dogger Bank entered a period of significant climatic and environmental flux which saw a terrestrial landscape being progressively inundated as sea levels rose during the Holocene.

  12. Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi

    2007-10-01

    Transient slip events, which occur more slowly than traditional earthquakes, are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or in space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as nonvolcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous subevents of smaller size and shorter duration. In addition to along-strike migration rates of ˜10 km/d observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/h over distances of up to ˜20 km. We observe such migration episodes in both the updip and downdip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  13. The complex evolution of transient slip revealed by precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, D. R.; Beroza, G. C.; Ide, S.

    2007-12-01

    Transient slow slip events are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as non-volcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous sub-events of smaller size and shorter duration. In addition to along-strike migration rates of about 10 km/day observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/hour over distances of up to 20 km. We observe such migration episodes in both the up-dip and down-dip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  14. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    Science.gov (United States)

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model

  15. Brain and ventricular volume in patients with syndromic and complex craniosynostosis

    NARCIS (Netherlands)

    T. de Jong (Tim); B.F.M. Rijken (Bianca); M. Leguin (Maarten); M.L.C. van Veelen-Vincent (Marie-Lise); I.M.J. Mathijssen (Irene)

    2012-01-01

    textabstractPurpose: Brain abnormalities in patients with syndromic craniosynostosis can either be a direct result of the genetic defect or develop secondary to compression due to craniosynostosis, raised ICP or hydrocephalus. Today it is unknown whether children with syndromic craniosynostosis have

  16. Oxytocin effects on complex brain networks are moderated by experiences of maternal love withdrawal

    NARCIS (Netherlands)

    Riem, M.M.E.; van IJzendoorn, M.H.; Tops, M.; Boksem, M.A.S.; Rombouts, S.A.R.B.; Bakermans-Kranenburg, M.J.

    2013-01-01

    The neuropeptide oxytocin has been implicated in a variety of social processes. However, recent studies indicate that oxytocin does not enhance prosocial behavior in all people in all circumstances. Here, we investigate effects of intranasal oxytocin administration on intrinsic functional brain

  17. Report of a case of paroxysmal nocturnal hemoglobinuria (PNH) with complex evolution and liver transplant

    OpenAIRE

    Alencar,Railene Célia B.; Guimarães,Andréa M.; Brito Junior,Lacy C.

    2016-01-01

    ABSTRACT The paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disease, with thrombotic episodes and frequent pancytopenia. We report the case of a 32 year-old female PNH patient with bone marrow aplasia, which followed a complex course, diagnosed with aplastic anemia associated with PNH, evolving in three years with Budd-Chiari syndrome and liver transplantation. Post-transplant complications, hepatic arterial thrombosis, graft rejection, liver retransplantation and treatment of P...

  18. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Directory of Open Access Journals (Sweden)

    Kathrin Roderer

    Full Text Available The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS. The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  19. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    Science.gov (United States)

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  20. Broad supernatural punishment but not moralizing high gods precede the evolution of political complexity in Austronesia

    OpenAIRE

    Watts, Joseph; Greenhill, Simon J.; Atkinson, Quentin D.; Currie, Thomas E.; Bulbulia, Joseph; Gray, Russell D.

    2015-01-01

    Supernatural belief presents an explanatory challenge to evolutionary theorists—it is both costly and prevalent. One influential functional explanation claims that the imagined threat of supernatural punishment can suppress selfishness and enhance cooperation. Specifically, morally concerned supreme deities or ‘moralizing high gods' have been argued to reduce free-riding in large social groups, enabling believers to build the kind of complex societies that define modern humanity. Previous cro...

  1. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  2. Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B.

    Science.gov (United States)

    Krause-Kyora, Ben; Susat, Julian; Key, Felix M; Kühnert, Denise; Bosse, Esther; Immel, Alexander; Rinne, Christoph; Kornell, Sabin-Christin; Yepes, Diego; Franzenburg, Sören; Heyne, Henrike O; Meier, Thomas; Lösch, Sandra; Meller, Harald; Friederich, Susanne; Nicklisch, Nicole; Alt, Kurt W; Schreiber, Stefan; Tholey, Andreas; Herbig, Alexander; Nebel, Almut; Krause, Johannes

    2018-05-10

    The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results show that HBV circulates in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. These ancient virus forms appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses. © 2018, Krause-Kyora et al.

  3. Algorithm for predicting the evolution of series of dynamics of complex systems in solving information problems

    Science.gov (United States)

    Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.

    2018-03-01

    In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.

  4. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest.

    Science.gov (United States)

    Ometto, Lino; Cestaro, Alessandro; Ramasamy, Sukanya; Grassi, Alberto; Revadi, Santosh; Siozios, Stefanos; Moretto, Marco; Fontana, Paolo; Varotto, Claudio; Pisani, Davide; Dekker, Teun; Wrobel, Nicola; Viola, Roberto; Pertot, Ilaria; Cavalieri, Duccio; Blaxter, Mark; Anfora, Gianfranco; Rota-Stabelli, Omar

    2013-01-01

    Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America.

  5. Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data

    Energy Technology Data Exchange (ETDEWEB)

    Salami, Alireza

    2012-07-01

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks. Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed. Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality. This thesis focuses on multivariate and multimodal methods of image analysis applied to

  6. Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data

    International Nuclear Information System (INIS)

    Salami, Alireza

    2012-01-01

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks. Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed. Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality. This thesis focuses on multivariate and multimodal methods of image analysis applied to

  7. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  8. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  9. Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation

    International Nuclear Information System (INIS)

    Gameiro, Marcio; Mischaikow, Konstantin; Wanner, Thomas

    2005-01-01

    Phase separation processes in compound materials can produce intriguing and complicated patterns. Yet, characterizing the geometry of these patterns quantitatively can be quite challenging. In this paper we propose the use of computational algebraic topology to obtain such a characterization. Our method is illustrated for the complex microstructures observed during spinodal decomposition and early coarsening in both the deterministic Cahn-Hilliard theory, as well as in the stochastic Cahn-Hilliard-Cook model. While both models produce microstructures that are qualitatively similar to the ones observed experimentally, our topological characterization points to significant differences. One particular aspect of our method is its ability to quantify boundary effects in finite size systems

  10. a Statistical Dynamic Approach to Structural Evolution of Complex Capital Market Systems

    Science.gov (United States)

    Shao, Xiao; Chai, Li H.

    As an important part of modern financial systems, capital market has played a crucial role on diverse social resource allocations and economical exchanges. Beyond traditional models and/or theories based on neoclassical economics, considering capital markets as typical complex open systems, this paper attempts to develop a new approach to overcome some shortcomings of the available researches. By defining the generalized entropy of capital market systems, a theoretical model and nonlinear dynamic equation on the operations of capital market are proposed from statistical dynamic perspectives. The US security market from 1995 to 2001 is then simulated and analyzed as a typical case. Some instructive results are discussed and summarized.

  11. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Science.gov (United States)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  12. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Directory of Open Access Journals (Sweden)

    Venturi Maria L

    2004-01-01

    Full Text Available Abstract Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i animals are more closely related to fungi than to plants, (ii red algae are closer to plants than to animals or fungi, (iii choanoflagellates are closer to animals than to fungi or plants, (iv diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v diplomonads are basal to other eukaryotes (including alveolates and euglenozoans. Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene and concatenated (supergene. Different time estimation methods yielded similar results (within 5%: vertebrate-arthropod (964 million years ago, Ma, Cnidaria-Bilateria (1,298 Ma, Porifera-Eumetozoa (1,351 Ma, Pyrenomycetes-Plectomycetes (551 Ma, Candida-Saccharomyces (723 Ma, Hemiascomycetes-filamentous Ascomycota (982 Ma, Basidiomycota-Ascomycota (968 Ma, Mucorales-Basidiomycota (947 Ma, Fungi-Animalia (1,513 Ma, mosses-vascular plants (707 Ma, Chlorophyta-Tracheophyta (968 Ma, Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma, Plantae-Animalia (1,609 Ma, Alveolata-plants+animals+fungi (1,973 Ma, Euglenozoa-plants+animals+fungi (1,961 Ma, and Giardia-plants+animals+fungi (2,309 Ma. By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10

  13. Living longer living happier: My journey from clinical neurology to complexities of brain

    Directory of Open Access Journals (Sweden)

    Ashok Panagariya

    2011-01-01

    Full Text Available The present article is a treatise on the illuminating voyage of a Neurophysician along the fascinating horizons and frontiers of neurosciences. During the career as a clinical neurologist, some very interesting and intriguing cases and issues were dealt with and documented scientifically. The working of the brain and its operational architectonics came up for critical analysis, opening up new vistas in the appreciation and management of various neurological disorders. Issues regarding the working of the mind and the guidelines for health and happiness became apparent, and some very interesting generalizations with far-reaching consequences on the general well-being and health have been formulated and put forward for a healthy and happy future for mankind. A paradigm shift is warranted for a closer and better appreciation of neural dynamics at all levels of the brain, namely microscopic, mesoscopic and macroscopic levels!

  14. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Science.gov (United States)

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a

  15. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    Directory of Open Access Journals (Sweden)

    Nicoletta Cera

    Full Text Available Psychogenic erectile dysfunction (ED is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp. Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC, using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN, default-mode network (DMN, fronto-parietal network (FPN and salience network (SN were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes

  16. Complex temperature evolution of the electronic structure of CaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran, E-mail: kbmaiti@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2014-03-28

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe{sub 2}As{sub 2}, which is a parent compound of high temperature superconductors—CaFe{sub 2}As{sub 2} exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe{sub 2}As{sub 2} in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature.

  17. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    Directory of Open Access Journals (Sweden)

    John K. Tsotsos

    2017-08-01

    Full Text Available Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987 and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.

  18. Complex treatment of primary brain neuroblastoma with four local recurrences for period of 5 years -clinical case from our practice

    International Nuclear Information System (INIS)

    Marinova, L.; Georgiev, R.; Mihaylova, I.; Belcheva, M.

    2017-01-01

    We present a clinical case of 17 years old girl with primary brain neuroblastoma (supratentorial primitive neuro-ectodermal tumor - PNET in right temporo-parietal brain region). Complex treatment has been applied, including subtotal operation, standard fractioned cranio-spinal external beam radiotherapy with boost up to 56 Gy in the locus of the tumor remnant and 6 courses of adjuvant chemotherapy with Carboplatin and Etoposide. Despite the applied local treatment methods (radical surgery, standard fractioned cranio-spinal external beam radiotherapy and radio-surgery with single total dose of 14 Gy), four recurrences have appeared for period of 5 years in the locus of the primary tumor. The risk of appearance of local recurrences, necessitating re-operations, chemotherapy, bone marrow transplantation of stem cells and radio-surgery was discussed. We are also discussing the radio sensitivity of the PNET and the possibilities for overcoming it with implementation of hyper fractioned cranio-spinal external beam radiotherapy in combination with chemotherapy, followed by bone marrow transplantation of stem cells. Key words: Primary Brain Neuroblastoma. Radio Sensitivity. Cranio-Spinal External Beam Radiotherapy. Adjuvant Chemotherapy [bg

  19. Spectral estimation for long-term evolution transceivers using low-complex filter banks

    Directory of Open Access Journals (Sweden)

    Thomas Schlechter

    2014-06-01

    Full Text Available For mobile user equipments (UEs, a careful power management is essential. Despite this fact, quite an amount of energy is wasted in today's UEs’ analogue (AFEs and digital frontends (DFEs. These are engineered for extracting the wanted signal from a spectral environment defined in the corresponding communication standards with their extremely tough requirements. These requirements define a worst-case scenario still ensuring reliable communication. In a typical receiving process the actual requirements can be considered as less critical. Knowledge about the actual environmental spectral conditions allows to reconfigure both frontends to the actual needs and to save energy. In this paper, the authors present a highly efficient generic spectrum sensing approach, which allows to collect information about the actual spectral environment of an UE. This information can be used to reconfigure both the AFE and DFE, thus endowing them with increased intelligence. A low-complex multiplier free filter bank extended by an efficient power calculation unit will be introduced. They also present simulation results, which illustrate the performance of the spectrum sensing approach and a complexity comparison with different well-known implementations is given. Furthermore, estimates on the chip area and power consumption based on a 65 nm CMOS technology database are provided, considering the Smarti4G chip as a reference.

  20. Structural and metamorphic evolution of the Mid-Late Proterozoic Rayner Complex, Cape Bruce, East Antarctica

    International Nuclear Information System (INIS)

    Dunkley, D.J.; Clarke, G.L.; White, R.W.

    2002-01-01

    Granulite to transitional granulite facies gneisses exposed at Cape Bruce, Rayner Complex, East Antarctica, record three main orogenic/magmatic phases: (1) intrusion of c. 1000-980 Ma felsic orthogneisses into Mid-Proterozoic metasediments, contemporary with the development of north-trending reclined to recumbent folds; (2) extensive c. 980-900 Ma felsic magmatism, including equivalents of the Mawson Charnockite, which accompanied the development of upright, east-northeast-trending folds; and (3) ultramylonite zones of uncertain age. The first two phases are known as the Rayner Structrual Episode, the effects of which are similar in rocks to the east of Cape Bruce, at Mawson, and in the northern Prince Charles Mountains. Archaean rocks immediately to the west of Cape Bruce were tectonically reworked during the Rayner Structural Episode. The first orogenic phase is inferred to represent the collision between a wedge-shaped Proterozoic block comprising rocks of the Mawson Coast and Eastern Ghats Province, with the Archaean Napier Complex. The second orogenic phase included a major period of crustal growth through emplacement of the Mawson Charnockite and equivalents. (author). 41 refs., 6 figs., 1 tab

  1. Directional selection can drive the evolution of modularity in complex traits.

    Science.gov (United States)

    Melo, Diogo; Marroig, Gabriel

    2015-01-13

    Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.

  2. The evolution and geological footprint of the last Eurasian ice-sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along

  3. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    Science.gov (United States)

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Stable Isotope Evidence for a Complex Fluid Evolution of the Northwestern British Columbia Coast Ranges Related to Terrane Accretion

    Science.gov (United States)

    Moertle, J.; Holk, G. J.

    2015-12-01

    Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a

  5. Pressure-temperature evolution of eclogites from the Kechros complex in the Eastern Rhodope (NE Greece)

    Science.gov (United States)

    Mposkos, E.; Baziotis, I.; Proyer, A.

    2012-06-01

    The Rhodope Domain in NE Greece consists of different tectonometamorphic complexes involved in the Alpine collisional history between the Eurasian and African plates. In the Kechros Complex, which is the lowermost tectonic unit in the East Rhodope, a lense of kyanite eclogite occurs within orthogneiss and common eclogites are found between serpentinized peridotite and underlying pelitic gneisses. In kyanite eclogite, the high-pressure (HP) mineral assemblage is Grt + Omp (Jd35-55) + Ky + Ph + Qz + Rt + (indirectly inferred Tlc + Law); a Na-rich tremolite and zoisite formed at or near peak metamorphic conditions. In common eclogites, the HP mineral assemblage is Grt + Omp (Jd29-41) + Rt and, with less certainty, Amp (Gln-rich + Brs + Wnc + Hbl) ± Czo. The inclusions in garnet are glaucophane, actinolite, barroisite, hornblende, omphacite, clinozoisite, titanite, rutile and rarely paragonite and albite. In kyanite eclogite, peak P- T conditions are constrained at 2.2 GPa and 615°C using garnet-omphacite-phengite geothermobarometry and very similar values of 585 ± 32°C and 2.17 ± 0.11 GPa with the average P- T method, by which conditions of formation could also be narrowed down for the common eclogite (619 ± 53°C and 1.69 ± 0.17 GPa) and for a retrogressed eclogite (534 ± 36°C and 0.77 ± 0.11 GPa). Ages for the HP metamorphism in the Kechros Complex are not yet available. A Rb-Sr white mica age of 37 Ma from orthogneiss records a stage of the exhumation. The HP event may be coeval with the Eocene HP metamorphism (49-55 Ma) recorded in the Nestos Shear Zone in Central Rhodope and in the Attic-Cycladic crystalline belt, where it is interpreted as the result of subduction and final closure of the Axios/Vardar ocean and subsequent subduction of the Apulian continental crust (a promontory of the Africa continent) under the southern margin of the European continent in the late Cretaceous and early Tertiary.

  6. Emotion Regulation and Complex Brain Networks: Association Between Expressive Suppression and Efficiency in the Fronto-Parietal Network and Default-Mode Network

    Directory of Open Access Journals (Sweden)

    Junhao Pan

    2018-03-01

    Full Text Available Emotion regulation (ER refers to the “implementation of a conscious or non-conscious goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al., 2015. Whereas multiple brain areas have been found to be involved in ER, relatively little is known about whether and how ER is associated with the global functioning of brain networks. Recent advances in brain connectivity research using graph-theory based analysis have shown that the brain can be organized into complex networks composed of functionally or structurally connected brain areas. Global efficiency is one graphic metric indicating the efficiency of information exchange among brain areas and is utilized to measure global functioning of brain networks. The present study examined the relationship between trait measures of ER (expressive suppression (ES and cognitive reappraisal (CR and global efficiency in resting-state functional brain networks (the whole brain network and ten predefined networks using structural equation modeling (SEM. The results showed that ES was reliably associated with efficiency in the fronto-parietal network and default-mode network. The finding advances the understanding of neural substrates of ER, revealing the relationship between ES and efficient organization of brain networks.

  7. THE CITY- THE PORT-THE SEA The evolutive features of a complex relation

    Directory of Open Access Journals (Sweden)

    Mario Coletta

    2014-01-01

    Full Text Available The balanced relation between the city and the sea was at the centre of the Greek philosophy. During the flourishing of the Hellenic civilization, Plato began wondering about the appropriate characteristics of a site for an urban settlement near the sea. An ideal-type of urban settlement model resulted, based on accessibility, safety, hygienism, productivity, proximity to energy sources, prosperity.Renaissance artists appealed to the ancient knowledge in order to renew the treatises about architecture and town planning, in the perspective of building new models aiming at making perfect the structure and the soul of the city through a strictly geometric form.The harbour rose with open arms, towards the sea; a hug aiming at showing the pleasure of meeting,  guaranteeing shelter, protection, safety and friendly welcome.On the contrary, the harbour turns its back to the city and sometimes it moves the city away, in order to keep a certain distance.Physical and institutional barriers intervene between the city and the sea, claiming autonomous political-administrative and planning roles, often hindering, instead of fostering, natural osmotic processes, debasing functions, roles and social, economic, political and cultural interests of reciprocal belonging.Almost everywhere the legislative evolution has followed, and not preceded, the territorial devastation of settlements along the coasts – especially the devastation spontaneously risen – and only later has tried to hold in check a phenomenon sadly fallen in the ways of doing and the emptiness of thinking, letting the “habit of doing” prevail the conservative legislation based on placing pickets to the “not to do” approach; that situation in the light of an economic power become the director of political power, conditioned at opening eyes on doing for half-closing eyes on business.The new city-sea relation has to be studied as a valorisation, not as mere protective measures prescribed by

  8. Predation and the evolution of complex oviposition behaviour in Amazon rainforest frogs.

    Science.gov (United States)

    Magnusson, William E; Hero, Jean-Marc

    1991-05-01

    Terrestrial oviposition with free-living aquatic larvae is a common reproductive mode used by amphibians within the central Amazonian rainforest. We investigated the factors presently associated with diversity of microhabitats (waterbodies) that may be maintaining the diversity of reproductive modes. In particular, desiccation, predation by fish, competition with other anurans and water quality were examined in 11 waterbodies as possible forces leading to the evolution of terrestrial oviposition. Predation experiments demonstrated that fish generally do not eat anuran eggs, and that predacious tadpoles and dytiscid beetle larvae are voracious predators of anuran eggs. The percentage of species with terrestrial oviposition was only weakly correlated with the occurrence of pond drying, pH and oxygen concentration, suggesting that anurans in this tropical community are able to use the range of water quality available for egg development. There was a tendency for terrestrial oviposition to be associated with the number of species of tadpoles using the waterbody, but we consider this to be spurious as there was no obvious competitive mechanism that could result in this relationship. The percentage of species with terrestrial oviposition was significantly positively related to our index of egg predation pressure, and negatively related to our index of fish biomass. Egg predation pressure was also negatively related to the index of fish biomass. These results allow us to discount as improbable the hypothesis that predation by fish on anuran eggs was an important selective pressure leading to terrestrial oviposition in this community. The strong positive relationship between terrestrial oviposition and our index of egg predation pressure indicates that these predators have exerted, and are exerting, a significant selective pressure for terrestrial oviposition. The strong negative relationship between the occurrence of fish and the egg predators suggests the surprising

  9. Evaluating the complexity of online patient education materials about brain aneurysms published by major academic institutions.

    Science.gov (United States)

    Gupta, Raghav; Adeeb, Nimer; Griessenauer, Christoph J; Moore, Justin M; Patel, Apar S; Kim, Christopher; Thomas, Ajith J; Ogilvy, Christopher S

    2017-08-01

    OBJECTIVE Health care education resources are increasingly available on the Internet. A majority of people reference these resources at one point or another. A threshold literacy level is needed to comprehend the information presented within these materials. A key component of health literacy is the readability of educational resources. The National Institutes of Health (NIH) and the American Medical Association have recommended that patient education materials be written between a 4th- and a 6th-grade education level. The authors assessed the readability of online patient education materials about brain aneurysms that have been published by several academic institutions across the US. METHODS Online patient education materials about brain aneurysms were downloaded from the websites of 20 academic institutions. The materials were assessed via 8 readability scales using Readability Studio software (Oleander Software Solutions), and then were statistically analyzed. RESULTS None of the patient education materials were written at or below the NIH's recommended 6th-grade reading level. The average educational level required to comprehend the texts across all institutions, as assessed by 7 of the readability scales, was 12.4 ± 2.5 (mean ± SD). The Flesch Reading Ease Scale classified the materials as "difficult" to understand, correlating with a college-level education or higher. An ANOVA test found that there were no significant differences in readability among the materials from the institutions (p = 0.215). CONCLUSIONS Brain aneurysms affect 3.2% of adults 50 years or older across the world and can cause significant patient anxiety and uncertainty. Current patient education materials are not written at or below the NIH's recommended 4th- to 6th-grade education level.

  10. New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction?

    Directory of Open Access Journals (Sweden)

    Massimo Nepi

    2017-03-01

    Full Text Available Floral and extra-floral nectars are secretions elaborated by specific organs (nectaries that can be associated with plant reproductive structures (the so-called floral nectaries found only in angiosperms or vegetative parts (extrafloral nectaries. These secretions are common in terrestrial vascular plants, especially angiosperms. Although gymnosperms do not seem to have true nectar, their ovular secretions may share evolutionary links with angiosperm nectar. Nectar is generally involved in interactions with animals and by virtue of its sugar and amino acid content, it has been considered a reward offered by plants to animals in exchange for benefits, mainly pollination and indirect defense against herbivores. These relationships are often cited as examples of classical mutualistic interactions. Nonetheless, recent studies dealing with compounds less abundant than sugars and amino acids challenge this view and suggest that nectar is much more complex than simply a reward in the form of food. Nectar proteins (nectarins and nectar secondary compounds have no primary nutritious function but are involved in plant–animal relationships in other ways. Nectarins protect against proliferation of microorganisms and infection of plant tissues by pathogens. Nectar secondary compounds can be involved in modulating the behavior of nectar feeders, maximizing benefits for the plant. Nectar-dwelling microorganisms (mainly yeasts were recently revealed to be a third partner in the scenario of plant–animal interactions mediated by nectar. There is evidence that yeast has a remarkable impact on nectar feeder behavior, although the effects on plant fitness have not yet been clearly assessed.

  11. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    Science.gov (United States)

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico.

  12. Evolution of Migmatitic Granulite Complexes: implications from Lapland Granulite Belt, Part I: metamorphic geology

    Directory of Open Access Journals (Sweden)

    Pekka Tuisku

    2006-01-01

    Full Text Available The Palaeoproterozoic Lapland granulite belt was juxtaposed between Archaean and Proterozoic terrains in the NE part of the Fennoscandian Shield concurrently with the accretion of Svecofennian arc complexes at ~1.9 Ga. The belt consists mainly of aluminous migmatiticmetagreywackes. Abundant noritic to enderbitic magmas were intruded concordantly into the metasediments and were probably an important heat source for metamorphism, which took place during the crystallization of the magmas. This is supported by structural and contact relations of metasediments and igneous rocks, and by the lack progressive metamorphic reaction textures in the igneous rock series. The peak of metamorphism took place above the dehydration melting temperature of the biotite-sillimanite-plagioclase-quartz assemblageat 750−850°C and 5−8.5 kbar which lead to formation of a restitic palaeosome and peraluminous granitic melt in metapelites. Subsequently, the rocks were decompressed and cooled below the wet melting temperature of pelitic rocks (650°C under the stability field of andalusite coexisting with potassium feldspar (2−3 kbar. Cooling was accompanied by the crystallization of the neosomes, often carrying aluminium-rich phases. Postmetamorphic duplexing of the LGB is clearly seen in the distribution of calculated PT conditions.

  13. Temporal condensation and dynamic λ-transition within the complex network: an application to real-life market evolution

    Science.gov (United States)

    Wiliński, Mateusz; Szewczak, Bartłomiej; Gubiec, Tomasz; Kutner, Ryszard; Struzik, Zbigniew R.

    2015-02-01

    We fill a void in merging empirical and phenomenological characterisation of the dynamical phase transitions in complex networks by identifying and thoroughly characterising a triple sequence of such transitions on a real-life financial market. We extract and interpret the empirical, numerical, and analytical evidences for the existence of these dynamical phase transitions, by considering the medium size Frankfurt stock exchange (FSE), as a typical example of a financial market. By using the canonical object for the graph theory, i.e. the minimal spanning tree (MST) network, we observe: (i) the (initial) dynamical phase transition from equilibrium to non-equilibrium nucleation phase of the MST network, occurring at some critical time. Coalescence of edges on the FSE's transient leader (defined by its largest degree) is observed within the nucleation phase; (ii) subsequent acceleration of the process of nucleation and the emergence of the condensation phase (the second dynamical phase transition), forming a logarithmically diverging temporal λ-peak of the leader's degree at the second critical time; (iii) the third dynamical fragmentation phase transition (after passing the second critical time), where the λ-peak logarithmically relaxes over three quarters of the year, resulting in a few loosely connected sub-graphs. This λ-peak (comparable to that of the specific heat vs. temperature forming during the equilibrium continuous phase transition from the normal fluid I 4He to the superfluid II 4He) is considered as a prominent result of a non-equilibrium superstar-like superhub or a dragon-king's abrupt evolution over about two and a half year of market evolution. We capture and meticulously characterise a remarkable phenomenon in which a peripheral company becomes progressively promoted to become the dragon-king strongly dominating the complex network over an exceptionally long period of time containing the crash. Detailed analysis of the complete trio of the

  14. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    Science.gov (United States)

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  15. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    Science.gov (United States)

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  16. Metamorphic Evolution of Garnet-bearing Epidote-Barroisite Schist from the Meratus Complex in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Nugroho Imam Setiawan

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.139-156This paper presents metamorphic evolution of metamorphic rocks from the Meratus Complex in South Kalimantan, Indonesia. Eight varieties of metamorphic rocks samples from this location, which are garnet-bearing epidote-barroisite schist, epidote-barroisite schist, glaucophane-quartz schist, garnet-muscovite schist, actinolite-talc schist, epidote schist, muscovite schist, and serpentinite, were investigated in detail its petrological and mineralogical characteristics by using polarization microscope and electron probe micro analyzer (EPMA. Furthermore, the pressure-temperature path of garnet-bearing epidote-barroisite schist was estimated by using mineral parageneses, reaction textures, and mineral chemistries to assess the metamorphic history. The primary stage of this rock might be represented by the assemblage of glaucophane + epidote + titanite ± paragonite. The assemblage yields 1.7 - 1.0 GPa in assumed temperature of 300 - 550 °C, which is interpreted as maximum pressure limit of prograde stage. The peak P-T condition estimated on the basis of the equilibrium of garnet rim, barroisite, phengite, epidote, and quartz, yields 547 - 690 °C and 1.1 - 1.5 GPa on the albite epidote amphibolite-facies that correspond to the depth of 38 - 50 km. The retrograde stage was presented by changing mineral compositions of amphiboles from the Si-rich barroisite to the actinolite, which lies near 0.5 GPa at 350 °C. It could be concluded that metamorphic rocks from the Meratus Complex experienced low-temperature and high-pressure conditions (blueschist-facies prior to the peak metamorphism of the epidote amphibolite-facies. The subduction environments in Meratus Complex during Cretaceous should be responsible for this metamorphic condition.

  17. Environmental monitoring at the La Grande Complex : evolution of fish mercury levels : summary report 1978-2000

    Energy Technology Data Exchange (ETDEWEB)

    Schetagne, R. [Hydro-Quebec, Montreal, PQ (Canada). Direction Barrages et Environnement; Therrien, J.; Lalumiere, R. [Genivar SEC, Montreal, PQ (Canada)

    2003-12-15

    In Northern Quebec, mercury has accumulated since the last ice age as a result of atmospheric fallout from natural sources such as the weathering of rocks in the earth's crust, forest fires and volcanoes, as well as from anthropogenic sources such as coal combustion and waste incineration. Mercury of atmospheric origin exists mainly in inorganic form, not readily assimilated by living organisms. In aquatic environments, it is converted to methylmercury by the bacteria that break down organic matter containing mercury which is readily assimilated by living organisms, travels through the food chain and accumulates in fish. The presence of mercury in the environment poses a potential concern as a result of the toxicity of methylmercury for humans, and especially Inuit communities through fish consumption. At the La Grande complex, mercury levels in the flesh of fish have been monitored since 1978, in both natural and modified environments. The main goals of the monitoring are to determine the temporal evolution of the increase in fish mercury levels in environments modified by the development of the La Grande hydroelectric complex, inform fish consumers and allow a comparison of the impacts actually measured with the effects predicted in the impact assessment studies. This report summarized results obtained between 1978 and 2000 at the La Grande complex. It included information presented in previous summary reports or articles as well as data from special studies and other hydroelectric projects. Specifically, the report provided a description of the study area and the hydroelectric developments; the rationale for the monitoring and the objectives; the prediction of the development's impacts; the methods used for the study; and, the results obtained in natural and modified environments. The main lessons learned and recommendations were also presented. 153 refs., 20 tabs., 45 figs., 1 appendix.

  18. Environmental monitoring at the La Grande Complex : evolution of fish mercury levels : summary report 1978-2000

    International Nuclear Information System (INIS)

    Schetagne, R.

    2003-12-01

    In Northern Quebec, mercury has accumulated since the last ice age as a result of atmospheric fallout from natural sources such as the weathering of rocks in the earth's crust, forest fires and volcanoes, as well as from anthropogenic sources such as coal combustion and waste incineration. Mercury of atmospheric origin exists mainly in inorganic form, not readily assimilated by living organisms. In aquatic environments, it is converted to methylmercury by the bacteria that break down organic matter containing mercury which is readily assimilated by living organisms, travels through the food chain and accumulates in fish. The presence of mercury in the environment poses a potential concern as a result of the toxicity of methylmercury for humans, and especially Inuit communities through fish consumption. At the La Grande complex, mercury levels in the flesh of fish have been monitored since 1978, in both natural and modified environments. The main goals of the monitoring are to determine the temporal evolution of the increase in fish mercury levels in environments modified by the development of the La Grande hydroelectric complex, inform fish consumers and allow a comparison of the impacts actually measured with the effects predicted in the impact assessment studies. This report summarized results obtained between 1978 and 2000 at the La Grande complex. It included information presented in previous summary reports or articles as well as data from special studies and other hydroelectric projects. Specifically, the report provided a description of the study area and the hydroelectric developments; the rationale for the monitoring and the objectives; the prediction of the development's impacts; the methods used for the study; and, the results obtained in natural and modified environments. The main lessons learned and recommendations were also presented. 153 refs., 20 tabs., 45 figs., 1 appendix.

  19. Focal cerebral vasculitis associated with circulating immune complexes and brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groothuis, D.R.; Mikhael, M.A.

    1986-06-01

    In this report we describe a patient with a benign glioma treated with surgery and radiation. After a period of stability he developed subacute bacterial endocarditis, and deteriorated neurologically. Computed tomographic scans did not show recurrent tumor. An angiogram showed vasculitis restricted to the previously irradiated area. Secondary to subacute bacterial endocarditis was the presence of high levels of circulating immune complexes. His neurological status was unchanged after antibiotics, but improved after treatment with dexamethasone. We interpret the clinical course as an immune-complex-mediated vasculitis superimposed on a subclinical radiation vasculitis. This case supports the hypothesis that immune mechanisms may be involved in delayed radiation injury to the nervous system.

  20. Focal cerebral vasculitis associated with circulating immune complexes and brain irradiation

    International Nuclear Information System (INIS)

    Groothuis, D.R.; Mikhael, M.A.

    1986-01-01

    In this report we describe a patient with a benign glioma treated with surgery and radiation. After a period of stability he developed subacute bacterial endocarditis, and deteriorated neurologically. Computed tomographic scans did not show recurrent tumor. An angiogram showed vasculitis restricted to the previously irradiated area. Secondary to subacute bacterial endocarditis was the presence of high levels of circulating immune complexes. His neurological status was unchanged after antibiotics, but improved after treatment with dexamethasone. We interpret the clinical course as an immune-complex-mediated vasculitis superimposed on a subclinical radiation vasculitis. This case supports the hypothesis that immune mechanisms may be involved in delayed radiation injury to the nervous system

  1. Planning and Realization of Complex Intentions in Traumatic Brain Injury and Normal Aging

    Science.gov (United States)

    Kliegel, Matthias; Eschen, Anne; Thone-Otto, Angelika I. T.

    2004-01-01

    The realization of delayed intentions (i.e., prospective memory) is a highly complex process composed of four phases: intention formation, retention, re-instantiation, and execution. The aim of this study was to investigate if executive functioning impairments are related to problems in the formation, re-instantiation, and execution of a delayed…

  2. Paving the way towards complex blood-brain barrier models using pluripotent stem cells

    DEFF Research Database (Denmark)

    Lauschke, Karin; Frederiksen, Lise; Hall, Vanessa Jane

    2017-01-01

    , it is now possible to produce many cell types from the BBB and even partially recapitulate this complex tissue in vitro. In this review, we summarize the most recent developments in PSC differentiation and modelling of the BBB. We also suggest how patient-specific human induced PSCs could be used to model...

  3. Analysis of structural patterns in the brain with the complex network approach

    Science.gov (United States)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.

  4. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    Science.gov (United States)

    Morris, A.; Pressling, N.; Gee, J. S.

    2012-04-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest

  5. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients.

    Directory of Open Access Journals (Sweden)

    Matthias Merker

    Full Text Available Multidrug-resistant (MDR Mycobacterium tuberculosis complex (MTBC strains represent a major threat for tuberculosis (TB control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A and nine (Patient B polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and

  6. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    Science.gov (United States)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide

  7. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    Science.gov (United States)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung

  8. Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Shinichiro Teramoto

    Full Text Available Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27 is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27 from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27, which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.

  9. Effect of palladium α-lipoic acid complex on energy in the brain mitochondria of aged rats.

    Science.gov (United States)

    Ajith, Thekkuttuparambil Ananthanarayanan; Nima, Nalin; Veena, Ravindran Kalathil; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis

    2014-01-01

    According to the mitochondrial mutation theory of aging, the impairment of mitochondrial functions and decline of cellular bioenergetics are induced by highly reactive oxygen species (ROS). Supplementation with antioxidants may protect mitochondria against respiration-linked oxidative stress and reduce decay by preserving genomic and structural integrity. Several clinical studies have reported beneficial effects of α-lipoic acid (LA) administration in individuals with Alzheimer's disease, particularly improving their spatial orientation; however, no studies have been reported on the effects of palladium α-lipoic acid (Pd-LA). The current study examined the effects of the Pd-LA complex on mitochondrial energy status in the brains of aged rats. The study used male Wistar rats, some that were older than 24 mo and weighed approximately 350 ± 50 g and some that were younger than 24 mo and weighed approximately 175 ± 25 g. The research team divided the rats into 5 groups of 6 rats. The study was conducted at the Amala Cancer Research Centre in Amala Nagar, Thrissur, Kerala, India. Three groups of rats were controls: (1) young controls administered no solution, (2) aged controls administered 1 mL/kg of a 0.25% solution (PO) of sodium hydroxide (NaOH), and (3) positive aged controls treated with LA (7.6 mg/kg, PO) dissolved in an alkaline saline (0.25% NaOH, w/v). Two groups were intervention groups: (1) aged rats treated with 1.2 mg/kg of Pd-LA (PO) and (2) aged rats treated with 23.5 mg/kg of Pd-LA (PO). The research team administered the solutions once daily for 30 d. After 30 d, all animals were sacrificed. The research team evaluated serum transaminases, lactate dehydrogenase (LDH), serum urea, and creatinine. The activities of superoxide dismutase (SOD), catalase (CAT), and the levels of reduced glutathione (GSH) were determined in the blood samples. Krebs cycle dehydrogenases were evaluated in the brain mitochondria. Furthermore, the activities of the

  10. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.

    Science.gov (United States)

    Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S

    2012-02-01

    HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  11. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.

    2013-04-08

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  12. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  13. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  14. [Intensive care treatment of traumatic brain injury in multiple trauma patients : Decision making for complex pathophysiology].

    Science.gov (United States)

    Trimmel, H; Herzer, G; Schöchl, H; Voelckel, W G

    2017-09-01

    Traumatic brain injury (TBI) and hemorrhagic shock due to uncontrolled bleeding are the major causes of death after severe trauma. Mortality rates are threefold higher in patients suffering from multiple injuries and additionally TBI. Factors known to impair outcome after TBI, namely hypotension, hypoxia, hypercapnia, acidosis, coagulopathy and hypothermia are aggravated by the extent and severity of extracerebral injuries. The mainstays of TBI intensive care may be, at least temporarily, contradictory to the trauma care concept for multiple trauma patients. In particular, achieving normotension in uncontrolled bleeding situations, maintenance of normocapnia in traumatic lung injury and thromboembolic prophylaxis are prone to discussion. Due to an ongoing uncertainty about the definition of normotensive blood pressure values, a cerebral perfusion pressure-guided cardiovascular management is of key importance. In contrast, there is no doubt that early goal directed coagulation management improves outcome in patients with TBI and multiple trauma. The timing of subsequent surgical interventions must be based on the development of TBI pathology; therefore, intensive care of multiple trauma patients with TBI requires an ongoing and close cooperation between intensivists and trauma surgeons in order to individualize patient care.

  15. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.

  16. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.

  17. Evolution of Sequence Type 4821 Clonal Complex Meningococcal Strains in China from Prequinolone to Quinolone Era, 1972–2013

    Science.gov (United States)

    Guo, Qinglan; Mustapha, Mustapha M.; Chen, Mingliang; Qu, Di; Zhang, Xi; Harrison, Lee H.

    2018-01-01

    The expansion of hypervirulent sequence type 4821 clonal complex (CC4821) lineage Neisseria meningitidis bacteria has led to a shift in meningococcal disease epidemiology in China, from serogroup A (MenA) to MenC. Knowledge of the evolution and genetic origin of the emergent MenC strains is limited. In this study, we subjected 76 CC4821 isolates collected across China during 1972–1977 and 2005–2013 to phylogenetic analysis, traditional genotyping, or both. We show that successive recombination events within genes encoding surface antigens and acquisition of quinolone resistance mutations possibly played a role in the emergence of CC4821 as an epidemic clone in China. MenC and MenB CC4821 strains have spread across China and have been detected in several countries in different continents. Capsular switches involving serogroups B and C occurred among epidemic strains, raising concerns regarding possible increases in MenB disease, given that vaccines in use in China do not protect against MenB. PMID:29553310

  18. Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator-based treatments.

    Science.gov (United States)

    Dong, Peng; Pérez-Andújar, Angélica; Pinnaduwage, Dilini; Braunstein, Steve; Theodosopoulos, Philip; McDermott, Michael; Sneed, Penny; Ma, Lijun

    2016-12-01

    OBJECTIVE Noninvasive Gamma Knife (GK) platforms, such as the relocatable frame and on-board imaging, have enabled hypofractionated GK radiosurgery of large or complex brain lesions. This study aimed to characterize the dosimetric quality of such treatments against linear accelerator-based delivery systems that include the CyberKnife (CK) and volumetric modulated arc therapy (VMAT). METHODS Ten patients treated with VMAT at the authors' institution for large brain tumors (> 3 cm in maximum diameter) were selected for the study. The median prescription dose was 25 Gy (range 20-30 Gy) in 5 fractions. The median planning target volume (PTV) was 9.57 cm 3 (range 1.94-24.81 cm 3 ). Treatment planning was performed using Eclipse External Beam Planning V11 for VMAT on the Varian TrueBeam system, Multiplan V4.5 for the CyberKnife VSI System, and Leksell GammaPlan V10.2 for the Gamma Knife Perfexion system. The percentage of the PTV receiving at least the prescription dose was normalized to be identical across all platforms for individual cases. The prescription isodose value for the PTV, conformity index, Paddick gradient index, mean and maximum doses for organs at risk, and normal brain dose at variable isodose volumes ranging from the 5-Gy isodose volume (V5) to the 15-Gy isodose volume (V15) were compared for all of the cases. RESULTS The mean Paddick gradient index was 2.6 ± 0.2, 3.2 ± 0.5, and 4.3 ± 1.0 for GK, CK, and VMAT, respectively (p 0.06). The average prescription isodose values were 52% (range 47%-69%), 60% (range 46%-68%), and 88% (range 70%-94%) for GK, CK, and VMAT, respectively, thus producing significant variations in dose hot spots among the 3 platforms. Furthermore, the mean V5 values for GK and CK were similar (p > 0.79) at 71.9 ± 36.2 cm 3 and 73.3 ± 31.8 cm 3 , respectively, both of which were statistically lower (p linear accelerator-based treatments. Such a result supports the use of a large number of isocenters or confocal beams for the

  19. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  20. Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain.

    Science.gov (United States)

    Epstein, F H; Mugler, J P; Brookeman, J R

    1994-02-01

    A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.

  1. Complexities’ day-to-day dynamic evolution analysis and prediction for a Didi taxi trip network based on complex network theory

    Science.gov (United States)

    Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian

    2018-03-01

    Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.

  2. Shallow sub-surface structure of the central volcanic complex of Tenerife, Canary Islands: implications for the evolution and the recent reactivation of the Las Canadas caldera

    Energy Technology Data Exchange (ETDEWEB)

    Gottsmann, J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ (United Kingdom); Camacho, A G; Fernandez, J [Instituto de Astronomia y Geodesia (CSIC-UCM), Ciudad Universitaria, Pza. de Ciencias, 3, 28040 Madrid (Spain); MartI, J [Institute of Earth Sciences ' Jaume Almera' , CSIC, Lluis Sole SabarIs s/n, Barcelona 08028 (Spain); Wooller, L; Rymer, H [Department of Earth and Environmental Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); GarcIa, A [Department of Volcanology, Museo Nacional de Ciencias Naturales, CSIC, C/ Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)], E-mail: j.gottsmann@bristol.ac.uk

    2008-10-01

    We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain. The high-density core of the CVC and the pronounced gravity low centred in the Las Canadas caldera (LCC) in greater detail than previously available. Mathematical construction of a subsurface model from the local anomaly data, employing a 3-D inversion enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture of the complex, and shedding light on its evolution.

  3. Dimensionality and scaling properties of the Patient Categorisation Tool in patients with complex rehabilitation needs following acquired brain injury

    Directory of Open Access Journals (Sweden)

    Richard J. Siegert

    2018-03-01

    Full Text Available Objective: To investigate the scaling properties of the Patient Categorisation Tool (PCAT as an instrument to measure complexity of rehabilitation needs. Design: Psychometric analysis in a multicentre cohort from the UK national clinical database. Patients: A total of 8,222 patents admitted for specialist inpatient rehabilitation following acquired brain injury. Methods: Dimensionality was explored using principal components analysis with Varimax rotation, followed by Rasch analysis on a random sample of n = 500. Results: Principal components analysis identified 3 components explaining 50% of variance. The partial credit Rasch model was applied for the 17-item PCAT scale using a “super-items” methodology based on the principal components analysis results. Two out of 5 initially created super-items displayed signs of local dependency, which significantly affected the estimates. They were combined into a single super-item resulting in satisfactory model fit and unidimensionality. Differential item functioning (DIF of 2 super-items was addressed by splitting between age groups (<65 and ≥ 65 years to produce the best model fit (χ2/df = 54.72, p = 0.235 and reliability (Person Separation Index (PSI = 0.79. Ordinal-to-interval conversion tables were produced. Conclusion: The PCAT has satisfied expectations of the unidimensional Rasch model in the current sample after minor modifications, and demonstrated acceptable reliability for individual assessment of rehabilitation complexity.

  4. Post-Eocene volcanics of the Abazar district, Qazvin, Iran: Mineralogical and geochemical evidence for a complex magmatic evolution

    Science.gov (United States)

    Asiabanha, A.; Bardintzeff, J. M.; Kananian, A.; Rahimi, G.

    2012-02-01

    The style of volcanism of post-Eocene volcanism in the Alborz zone of northern Iran is different to that of Eocene volcanism (Karaj Formation). Indeed, the volcanic succession of the Abazar district, located in a narrow volcanic strip within the Alborz magmatic assemblage, is characterized by distinct mineralogical and chemical compositions linked to a complex magmatic evolution. The succession was produced by explosive eruptions followed by effusive eruptions. Two main volcanic events are recognized: (1) a thin rhyolitic ignimbritic sheet underlain by a thicker lithic breccia, and (2) lava flows including shoshonite, latite, and andesite that overlie the first event across a reddish soil horizon. Plagioclase in shoshonite (An 48-92) shows normal zoning, whereas plagioclase in latite and andesite (An 48-75) has a similar composition but shows reverse and oscillatory zoning. QUILF temperature calculations for shoshonites and andesites yield temperatures of 1035 °C and 1029 °C, respectively. The geothermometers proposed by Ridolfi et al. (2010) and Holland and Blundy (1994) yield temperatures of 960 °C and 944 °C for latitic lava, respectively. The samples of volcanic rock show a typical geochemical signature of the continental arc regime, but the andesites clearly differ from the shoshonites, the latites and the rhyolites. The mineralogical and chemical characteristics of these rocks are explained by the following petrogenesis: (1) intrusion of a hot, mantle-depth mafic (shoshonitic) magma, which differentiated in the magma chamber to produce a latitic and then a rhyolitic liquid; (2) rhyolitic ignimbritic eruptions from the top of the magma chamber, following by shoshonitic and then latitic extrusions; (3) magma mingling between the latitic and andesitic magmas, as indicated by the occurrence of andesite clasts within the latite; and (4) andesitic effusions. The youngest volcanic events in the Alborz zone show a close chemical relationship with continental arc

  5. Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and "Scala Naturae".

    Science.gov (United States)

    Diogo, Rui; Bello-Hellegouarch, Gaelle; Kohlsdorf, Tiana; Esteve-Altava, Borja; Molnar, Julia L

    2016-09-01

    Opossums are frequent subjects of developmental studies because marsupials share developmental features not seen in placentals and because Didelphimorpha is the sister-group of other extant Marsupialia. But is the adult marsupial muscular system markedly different from that of placentals or is it, like the skeletal system, very similar? We provide, for the first time, a brief description of all head and limb muscles of Didelphis virginiana based on our dissections and using a unifying nomenclature by integrating the data gathered in our long-term project on the development, homologies, and evolution of the muscles of all major vertebrate taxa. Our data indicate that there were many more muscle synapomorphic changes from the last common ancestor (LCA) of amniotes to the mammalian LCA (63) and from this LCA to the LCA of extant therians (48) than from this latter LCA to the LCA of extant placentals (10 or 11). Importantly, Didelphis is anatomically more plesiomorphic (only 14 changes from LCA of extant therians) than are rats (37 changes) and humans (63 changes), but its musculature is more complex (193 muscles) than that of humans (only 180 muscles). Of the 194 muscles of Didelphis, 172 (89%) are present in rats, meaning that their adult muscle anatomy is indeed very similar. This similarity supports the existence of a common, easy recognizable therian Bauplan, but one that is caused by developmental constraints and by evolutionary change driven by the needs of the embryos/neonates, rather than by a "goal" toward a specific adult plan/"archetype," as the name Bauplan suggests. Anat Rec, 299:1224-1255, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun

    2006-01-01

    related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  7. On The Evolution of Human Jaws and Teeth: A Review

    Directory of Open Access Journals (Sweden)

    Serhat Yalcin

    2011-06-01

    Full Text Available The jaws and teeth of Homo sapiens have evolved, from the last common ancestor of chimpanzee and men to their current form. Many factors such as the foods eaten and the processing of foods by fire and tools have effected this evolution course. The evolution of the masticatory complex is related to other anatomical features such as brain size and bipedal posture, and leads to important proceedings like the formation of speech and language. In this review, the evolution of human jaws and teeth and its impact on the general course of human evolution is discussed.

  8. Evidence of an Exponential Decay Pattern of the Hepatitis Delta Virus Evolution Rate and Fluctuations in Quasispecies Complexity in Long-Term Studies of Chronic Delta Infection.

    Directory of Open Access Journals (Sweden)

    Maria Homs

    Full Text Available Chronic HDV infection can cause a severe form of viral hepatitis for which there is no specific treatment. Characterization of the hepatitis B or C viral quasispecies has provided insight into treatment failure and disease recurrence following liver transplantation, has proven useful to understand hepatitis B e antigen seroconversion, and has helped to predict whether hepatitis C infection will resolve or become chronic. It is likely that characterization of the hepatitis delta virus (HDV quasispecies will ultimately have similar value for the management of this infection. This study sought to determine the RNA evolution rates in serum of chronic hepatitis delta (CHD treatment-naïve patients, using next-generation sequencing methods. The region selected for study encompassed nucleotide positions 910 to 1270 of the genome and included the amber/W codon. Amber/W is a substrate of the editing process by the ADAR1 host enzyme and is essential for encoding the 2 delta antigens (HDAg. The amber codon encodes the small (unedited HDAg form and the W codon the large (edited HDAg form. The evolution rate was analyzed taking into account the time elapsed between samples, the percentage of unedited and edited genomes, and the complexity of the viral population. The longitudinal studies included 29 sequential samples from CHD patients followed up for a mean of 11.5 years. In total, 121,116 sequences were analyzed. The HDV evolution rate ranged from 9.5x10-3 to 1.2x10-3 substitutions/site/year and showed a negative correlation with the time elapsed between samples (p<0.05. An accumulation of transition-type changes was found to be responsible for higher evolution rates. The percentages of unedited and edited genomes and the quasispecies complexity showed no relationships with the evolution rate, but the fluctuations in the percentages of genomes and in complexity suggest continuous adaptation of HDV to the host conditions.

  9. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    Science.gov (United States)

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently

  10. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli

    2017-08-01

    Full Text Available Introduction The Jebale-Barez Plutonic Complex (JBPC is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014. The first plutonic phase is the main body of the complex with composition of quartz-diorite to granodiorite. After differentiation of magma in the magmatic chamber, the porphyritic and not fully consolidated magmas have intruded into the main body. Their compositions were dominantly granodiorite and granite that are defined as the second plutonic phase. Finally, the last phase was started by an intrusion of the holo- leucogranite into the previous bodies. This plutonic activity was pursued by the minor Quaternary basaltic volcanism that shows metamorphic haloes in the contacts. They are dominantly porphyric leucogranites. However, some bodies show dendritic texture that may imply the existence of silicic fluids in the latest crystallization stages. Materials and methods In this article different analysis methods were used. For example, we used a total of two hundred samples of the various granitoids that were selected for common thin section study. Forty four representative samples from the different granitic rocks were selected for whole rock chemical analyses. The analyses of both major and trace elements were performed at the Department of Earth Sciences, the University of Perugia, Italy. The analysis for all major elements was carried out by an X-ray fluorescence spectrometry (XRF using a tube completed with a Rn and W anode under conditions with acceleration voltage of 40-45 kV and electric current ranging from I=30-35 mA. After calcination of powdered

  11. Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study

    International Nuclear Information System (INIS)

    Wu, Tung-Hsin; Chen, Chia-Lin; Huang, Yung-Hui; Liu, Ren-Shyan; Hsieh, Jen-Chuen; Lee, Jason J.S.

    2009-01-01

    The aim of this study was to examine the neural bases for the exceptional mental calculation ability possessed by Chinese abacus experts through PET imaging. We compared the different regional cerebral blood flow (rCBF) patterns using 15 O-water PET in 10 abacus experts and 12 non-experts while they were performing each of the following three tasks: covert reading, simple addition, and complex contiguous addition. All data collected were analyzed using SPM2 and MNI templates. For non-experts during the tasks of simple addition, the observed activation of brain regions were associated with coordination of language (inferior frontal network) and visuospatial processing (left parietal/frontal network). Similar activation patterns but with a larger visuospatial processing involvement were observed during complex contiguous addition tasks, suggesting the recruitment of more visuospatial memory for solving the complex problems. For abacus experts, however, the brain activation patterns showed slight differences when they were performing simple and complex addition tasks, both of which involve visuospatial processing (bilateral parietal/frontal network). These findings supported the notion that the experts were completing all the calculation process on a virtual mental abacus and relying on this same computational strategy in both simple and complex tasks, which required almost no increasing brain workload for solving the latter. In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability. (orig.)

  12. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    Science.gov (United States)

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  13. Loss of aPKCλ in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamanaka

    Full Text Available Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS. Recent studies have established the significance of atypical protein kinase C (aPKC and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.

  14. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Science.gov (United States)

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  15. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  16. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity.

    Science.gov (United States)

    Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G

    2013-12-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both

  17. Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

    OpenAIRE

    Herculano-Houzel, Suzana

    2011-01-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodent...

  18. Two forms of acid alpha-D-mannosidase in monkey brain: evidence for the co-existence of high mannose and complex oligosaccharides in one form.

    Science.gov (United States)

    Mathur, R; Alvares, K; Balasubramanian, A S

    1984-09-28

    Lysosomal alpha-D-mannosidase of monkey brain existed in two forms. One form of mannosidase was bound to the Ricinus communis agglutinin120 (RCA1)-Sepharose and could be specifically eluted with lactose. The other form did not bind to the RCA1-Sepharose. Both forms of mannosidase could bind to a similar extent to the immobilized brain lysosomal receptor protein. Both the forms were purified to apparent homogeneity. Neutral sugar analysis by GLC showed the presence of glucose, mannose and galactose in the RCA1-Sepharose bindable mannosidase and glucose and mannose in the non-bindable mannosidase. Several other brain lysosomal hydrolases did not bind to the RCA1-Sepharose. The results suggested the existence of only high mannose oligosaccharides in the RCA1 non-bindable mannosidase and both high mannose and complex oligosaccharides in the bindable mannosidase.

  19. We Recognize Ourselves as Being Similar to Others: Implications of the “Social Brain Hypothesis” for the Biological Evolution of the Intuition of Freedom

    Directory of Open Access Journals (Sweden)

    Eckart Voland

    2007-07-01

    Full Text Available Consistent with and in extension of the “social brain hypothesis,” I discuss the idea that the intuition of free will emerged during the course of primate social evolution. If, as the “social brain hypothesis” alleges, the main selective pressure among primates is on generating social knowledge about one's cooperators and competitors, then it is the knowledge about others and not the knowledge about oneself that is the scarce cognitive resource. It is beneficial to make the others predictable and to form hypotheses about their probable behavioral tendencies. This is done by behavior reading and mind reading and by classifying the recurring stochastic patterns in everyday language as the “will.” Thus, the idea of free will emerged first as a social attribution and not as an introspectively gained insight. The fact that ego applies the idea of freedom also to itself and considers itself to be as free as it considers the social partners to be free, i.e. unpredictable, is in this view a non-selected by-product of social intelligence.

  20. A brief description about the evolution of the masticatory complex, its causes and future effects: A review

    Directory of Open Access Journals (Sweden)

    Imon Pal

    2017-01-01

    Full Text Available The diversity of mammalian teeth remains a major attraction both scientifically and aesthetically. Bizarre-shaped teeth are a good reminder of both evolutionary flexibility and the precision of the developmental control mechanism. With time and adaptation to changing environments, several changes have occurred over a span of million years. These adaptations resulted in both positive and negative changes. The review article was written after an initial thorough search of both online and offline databases regarding articles related to evolution and craniofacial evolution. All available information related to the field of dentistry was compiled together. Ethical clearance was not necessary due to the nature of the study. This article provides a brief review on the changes in the teeth and jaw over the course of evolution and the factors that triggered it. A question arises whether, keeping the past in mind and seeing the present, we can predict the future changes that might occur in the human dentition.

  1. 基于类脑智能的复杂网络机会数据竞争规避机制%Opportunity competition and evasion mechanism data with brain intelligent in complex networks

    Institute of Scientific and Technical Information of China (English)

    魏霖静; 宁璐璐; 代永强; 侯振兴

    2017-01-01

    为了解决复杂网络的数据竞争和规避问题,基于类脑智能与复杂网络相结合提出了一种机会数据竞争规避机制.首先,针对大规模多变和动态复杂网络,基于拓扑演变建立了复杂网络机会数据竞争模型;其次,在已发生竞争的数据集合与复杂子网之间建立映射矩阵,通过类脑智能优化数据竞争序列,机会控制复杂网络大规模信息处理和数据规避.实验结果表明,所建立的数据竞争规避算法对于数据集损耗较低且具有较高的数据竞争检测效率;同时,所提出的算法与插入随机延迟规避机制相比具有低能耗优势.%In order to solve the problem of data competition and avoidance of complex networks,this paper proposed a kind of opportunity data competition avoidance mechanism based on the combination of brain like intelligence and complex network.Firstly,according to the large-scale and dynamic complex network,it established the competition model of complex network opportunity data based on the topological evolution.Secondly,it established the mapping between data matrix and complex networks in the competition,through brain intelligent optimization competition data sequence,opportunity to control the largescale complex network information processing and data to avoid.The experimental results show that the efficiency of the data race detection data competition avoidance algorithm for data sets with low loss and high.At the same time,the proposed algorithm and insert random delay mechanism to avoid advantages compared with low energy consumption

  2. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  3. Data on effects of rotenone on calcium retention capacity, respiration and activities of respiratory chain complexes I and II in isolated rat brain mitochondria

    Directory of Open Access Journals (Sweden)

    Evelina Rekuviene

    2017-08-01

    Full Text Available The data presented in this article are related to the research article entitled “Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains” (Rekuviene et al., 2017 [1]. Data in this article present the direct effects of rotenone on calcium retention capacity (CRC in isolated normal cortex and cerebellum mitochondria, effects of rotenone intravenous infusion on leak and phosphorylating respiration rates of isolated cortex and cerebellum mitochondria, on activities of respiratory chain complexes I and II in freezed-thawed/sonicated cortex and cerebellum mitochondria after brain ischemia. In addition, detailed experimental procedures of isolation of brain mitochondria, measurements of CRC, respiration, activities of respiratory chain complexes and H2O2 generation in cortex and cerebellum mitochondria are described.

  4. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  5. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    Science.gov (United States)

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  6. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.

    Science.gov (United States)

    Persinger, Michael A

    2009-01-01

    To discern if specific structures of the rat brain contained more foci of lymphocytes following induction of experimental allergic encephalomyelitis and exposures to weak, amplitude-modulated magnetic fields for 6 min once per hour during the scotophase, the residuals between the observed and predicted values for the numbers of foci for 320 structures were obtained. Compared to the brains of sham-field exposed rats, the brains of rats exposed to 7-Hz 50 nT (0.5 mG) amplitude-modulated fields showed more foci within hippocampal structures and the dorsal central grey of the midbrain while those exposed to 7-Hz 500 nT (5 mG) fields showed greater densities within the hypothalamus and optic chiasm. The brains of rats exposed to either the 50 nT or 500 nT amplitude-modulated 40-Hz fields displayed greater densities of foci within the midbrain structures related to rapid eye movement. Most of the enhancements of infiltrations within the magnetic field-exposed rats occurred in structures within periventricular or periaqueductal regions and were both frequency- and intensity-dependent. The specificity and complexity of the configurations of the residuals of the numbers of infiltrated foci following exposures to the different fields suggest that the brain itself may be a "sensory organ" for the detection of these stimuli.

  7. Comparison of 99Tcsup(m) complexes (NEP-DADT, ME-NEP-DADT and HMPAO) with 123IAMP for brain SPECT imaging in dogs

    International Nuclear Information System (INIS)

    Bok, B.D.; Scheffel, U.; Goldfarb, H.W.; Burns, H.D.; Lever, S.Z.; Wong, D.F.; Bice, A.; Wagner, H.N. Jr.

    1987-01-01

    In this study we have compared brain uptake and blood clearance of 99 Tcsup(m)-N-ethylpiperi-dinediamino dithiol ( 99 Tcsup(m)-NEP DADT), its 4-methylated derivative ( 99 Tcsup(m)-Me-NEP-DADT) and 99 Tcsup(m)-hexamethyl-propylene-amine-oxime ( 99 Tcsup(m)-HMPAO) with that of N-isopropyl( 123 I)iodoamphetamine ( 123 IAMP) in two dogs. Single photon emission tomography (SPECT) was employed to measure brain accumulation and retention of the four radiopharmaceuticals. Cerebral uptake of the 99 Tcsup(m) complexes was lower than that of 123 IAMP. There was considerable extracerebral activity in the dog's head, especially in the olfactory and snout regions. Because of slow blood clearance, 99 Tcsup(m)-HMPAO showed high uptake in these regions. Brain uptake of 99 Tcsup(m)-HMPAO reached a plateau 5 to 10 min after intravenous injection and remained constant for the entire study period (1 h). 99 Tcsup(m)-NEP-DADT, on the other hand, showed significant clearance from the brain after reaching maximal uptake at 10 to 15 min after injection. However, brain imaging with these agents was possible during the first 20 min. (author)

  8. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Directory of Open Access Journals (Sweden)

    James Haorah

    Full Text Available Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1 and cPT2 levels. The mitochondrial outer (cPT1 and inner (cPT2 membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function can cause a negative impact on ATP production (complex V function. Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2 prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10 was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  9. Reduction of brain mitochondrial β-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration.

    Science.gov (United States)

    Haorah, James; Rump, Travis J; Xiong, Huangui

    2013-01-01

    Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.

  10. Interactions controlled evolution of complex magnetoresistance in as-deposited Ag100−xCox nanogranular films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2015-01-01

    Evolution of a complex magnetoresistance and dc-magnetization behavior of as-deposited co-sputtered Ag 100−x Co x films with the variation of cobalt concentration ‘x’ from 25.2 to 45.1 at% is presented. At 20 K, a transition from normal to complex magnetoresistance behavior, in conjunction with magnetic force microscopy evidence of the existence of a magnetic microstructure resulting in perpendicular magnetic anisotropy (PMA) is observed for x=32.6 cobalt concentration film. The dc-magnetization studies provide additional support to the presence of PMA in film that gets reduced with the increase of cobalt concentration. The complex magnetoresistance (MR) behavior also decreases with the increase of ‘x’. The room temperature MR, coercivity behavior and remanence to saturation magnetization ratio indicate the presence of direct ferromagnetic interactions due to the presence of ferromagnetic particles for x≥32.6 films. The observed complex MR behavior and presence of PMA are interpreted in terms of manifestation of the transition of interparticle magnetic interaction nature from dipolar to direct ferromagnetic. - Highlights: • Complex MR with perpendicular magnetic anisotropy (PMA) is observed. • MFM evidenced the presence of PMA. • Complex MR and PMA decreases with the increase of cobalt concentration. • Observed results are correlated with the nature of magnetic interactions

  11. Brain morphology of the threespine stickleback (Gasterosteus aculeatus) varies inconsistently with respect to habitat complexity: A test of the Clever Foraging Hypothesis.

    Science.gov (United States)

    Ahmed, Newaz I; Thompson, Cole; Bolnick, Daniel I; Stuart, Yoel E

    2017-05-01

    The Clever Foraging Hypothesis asserts that organisms living in a more spatially complex environment will have a greater neurological capacity for cognitive processes related to spatial memory, navigation, and foraging. Because the telencephalon is often associated with spatial memory and navigation tasks, this hypothesis predicts a positive association between telencephalon size and environmental complexity. The association between habitat complexity and brain size has been supported by comparative studies across multiple species but has not been widely studied at the within-species level. We tested for covariation between environmental complexity and neuroanatomy of threespine stickleback ( Gasterosteus aculeatus ) collected from 15 pairs of lakes and their parapatric streams on Vancouver Island. In most pairs, neuroanatomy differed between the adjoining lake and stream populations. However, the magnitude and direction of this difference were inconsistent between watersheds and did not covary strongly with measures of within-site environmental heterogeneity. Overall, we find weak support for the Clever Foraging Hypothesis in our study.

  12. High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P-T-t evolution and tectonic implications

    Science.gov (United States)

    Qian, Jiahui; Yin, Changqing; Zhang, Jian; Ma, Li; Wang, Luojuan

    2018-04-01

    Mafic granulites in the Fuping Complex occur as lenses or boudins within high-grade TTG (Trondhjemite-Tonalite-Granodiorite) gneisses. Petrographic observations reveal four generations of mineral assemblage in the granulites: an inclusion assemblage of hornblende + plagioclase + ilmenite + quartz within garnet core; an inferred peak assemblage composed of garnet ± hornblende + plagioclase + clinopyroxene + rutile/ilmenite + quartz; a decompression assemblage characterized by symplectites of clinopyroxene ± orthopyroxene + plagioclase, coronae of plagioclase ± clinopyroxene ± hornblende around embayed garnet porphyroblasts or a two-pyroxene association; and a late amphibolite-facies retrogressive assemblage. Two representative samples were used for pseudosection modeling in NCFMASHTO model system to determine their metamorphic evolution. The results show that these granulites experienced a high-pressure stage of metamorphism with peak P-T conditions of 12-13 kbar and 760-800 °C (Pmax) and a post-peak history under P-T conditions of ∼9.0 kbar and 805-835 °C (Tmax), indicating a nearly isothermal decompression process (ITD) with a slight heating. Metamorphic evolution from the Pmax to the Tmax is predicted to be dominated by garnet breakdown through continuous metamorphic reactions of garnet + quartz ± diopside = hornblende + plagioclase + liquid and garnet + quartz + hornblende = plagioclase + diopside + liquid + orthopyroxene. Further metamorphic evolution after the Tmax is dominated by cooling, suggesting that high-pressure (HP) granulites may also exist in the Fuping Complex. Metamorphic zircons in the Fuping HP mafic granulites have left inclined REE patterns, Ti contents of 1.68-6.88 ppm and crystallization temperatures of 602-712 °C. SIMS zircon U-Pb dating on these zircons yields 207Pb/206Pb ages of 1891 ± 14 Ma and 1849 ± 6 Ma, interpreted to represent the cooling stage of metamorphism. The P-T-t evolution of the Fuping HP mafic granulites records

  13. Cryo-EM Structure of the Archaeal 50S Ribosomal Subunit in Complex with Initiation Factor 6 and Implications for Ribosome Evolution

    Science.gov (United States)

    Greber, Basil J.; Boehringer, Daniel; Godinic-Mikulcic, Vlatka; Crnkovic, Ana; Ibba, Michael; Weygand-Durasevic, Ivana; Ban, Nenad

    2013-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea. PMID:22306461

  14. The origin of the supernumerary subunits and assembly factors of complex I: A treasure trove of pathway evolution

    NARCIS (Netherlands)

    Elurbe, D.M.; Huynen, M.A.

    2016-01-01

    We review and document the evolutionary origin of all complex I assembly factors and nine supernumerary subunits from protein families. Based on experimental data and the conservation of critical residues we identify a spectrum of protein function conservation between the complex I representatives

  15. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  16. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  17. Adaptation and convergent evolution within the Jamesonia-Eriosorus complex in high-elevation biodiverse Andean hotspots.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia; Thomas, Gavin H

    2014-01-01

    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.

  18. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H{sub 2} evolution over TiO{sub 2} nanoparticles with mesostructures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074 (China); Ke, Dingning; Cai, Ping; Dai, Ke; Ma, Liang; Zan, Ling [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2008-05-15

    H{sub 2} production over dye-sensitized Pt/TiO{sub 2} nanoparticles with mesostructures (m-TiO{sub 2}) under visible light ({lambda} > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO{sub 2} with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO{sub 2} has better durability but the lowest H{sub 2} evolution efficiency, whereas the loosely attached dyes possess higher H{sub 2} evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO{sub 2} and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H{sub 2} evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and ''antenna effect'', which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO{sub 2}. (author)

  19. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    Science.gov (United States)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  20. Initial brain aging: heterogeneity of mitochondrial size is associated with decline in complex I-linked respiration in cortex and hippocampus.

    Science.gov (United States)

    Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin

    2018-01-01

    Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Different distributions of the 5-HT reuptake complex and the postsynaptic 5-HT(2A) receptors in Brodmann areas and brain hemispheres.

    Science.gov (United States)

    Rosel, Pilar; Arranz, Belén; Urretavizcaya, Mikel; Oros, Miguel; San, Luis; Vallejo, Julio; Navarro, Miguel Angel

    2002-08-30

    The aim of the present study was to determine the distribution of the presynaptic 5-HT reuptake complex and the 5-HT(2A) receptors through Brodmann areas from two control subjects, together with the possible existence of laterality between both brain hemispheres. A left laterality was observed in the postsynaptic 5-HT(2A) binding sites, with significantly higher B(max) values in the left frontal and cingulate cortex. In frontal cortex, [3H]imipramine and [3H]paroxetine binding showed the highest B(max) values in areas 25, 10 and 11. In cingulate cortex, the highest [3H]imipramine and [3H]paroxetine B(max) values were noted in Brodmann area 33 followed by area 24, while postsynaptic 5-HT(2A) receptors were mainly distributed through Brodmann areas 23 and 29. In temporal cortex, the highest [3H]imipramine and [3H]paroxetine B(max) was noted in Brodmann areas 28 and 34, followed by areas 35 and 38. All Brodmann areas from parietal cortex (1, 2, 3, 4, 5, 6, 7, 39, 40 and 43) showed similar presynaptic and postsynaptic binding values. In occipital cortex no differences were observed with regard to the brain hemisphere or to the Brodmann area (17, 18 and 19). These results suggest the need to carefully define the brain hemisphere and the Brodmann areas studied, as well to avoid comparisons between studies including different Brodmann areas or brain hemispheres.

  2. Isolation, purification, and partial characterization of a membrane-bound Cl-/HCO3--activated ATPase complex from rat brain with sensitivity to GABAAergic ligands.

    Science.gov (United States)

    Menzikov, Sergey A

    2017-02-07

    This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.

  3. Electron microprobe Th-U-Pb monazite dating and metamorphic evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Junior, Edgar Batista; Marques, Rodson Abreu, E-mail: edgarjr@ymail.com, E-mail: rodson.marques@ufes.br [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Geologia; Jordt-Evangelista, Hanna; Queiroga, Glaucia Nascimento, E-mail: hanna@degeo.ufop.br, E-mail: glauciaqueiroga@yahoo.com.br [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Schulz, Bernhard, E-mail: bernhard.schulz@mineral.tu-freiberg.de [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)

    2016-01-15

    The Acaiaca Complex (AC) is located in southeastern Minas Gerais state, and comprises felsic, mafic, ultramafic, and aluminous granulite as well as lower grade gneisses and mylonite. The complex is distributed over an area of ca. 36 km by 6 km, surrounded by amphibolite facies gneisses of the Mantiqueira Complex (MC). The discrepancy in the metamorphic grade between both complexes led to the present study aiming to understand the metamorphic history of the AC by means of geothermobarometry calculations and electron microprobe Th-U-Pb monazite dating. Estimates of the metamorphic conditions of the granulite based on conventional geothermobarometry and THERMOCALC resulted in temperatures around 800 deg C and pressures between of 5.0 and 9.9 kbar and a retro metamorphic path characterized by near-isobaric cooling. Part of the granulite was affected by anatexis. The melting of felsic granulite resulted in the generation of pegmatites and two aluminous lithotypes. These are: 1) garnet-sillimanite granulite with euhedral plagioclase and cordierite that show straight faces against quartz, and is the crystallization product of an anatectic melt, and 2) garnet-kyanite-cordierite granulite, which is probably the restite of anatexis, as indicated by textures and high magnesium contents. Th-U-Pb monazite geochronology of two granulite samples resulted in a metamorphic age around 2060 Ma, which is similar to the age of the MC registered in the literature. The similar Paleoproterozoic metamorphic ages of both complexes lead to the conclusion that the Acaiaca Complex may be the high grade metamorphic unit geochronological related to the lower grade Mantiqueira Complex. (author)

  4. Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks

    International Nuclear Information System (INIS)

    Li, Y.F.; Sansavini, G.; Zio, E.

    2013-01-01

    A number of research works have been devoted to the optimization of protection strategies (e.g. transmission line switch off) of critical infrastructures (e.g. power grids, telecommunication networks, computer networks, etc) to avoid cascading failures. This work aims at improving a previous optimization approach proposed by some of the authors [1], based on the modified binary differential evolution (MBDE) algorithm. The improvements are three-fold: (1) in the optimization problem formulation, we introduce a third objective function to minimize the impacts of the switching off operations onto the existing network topology; (2) in the optimization problem formulation, we use the final results of cascades, rather than only a short horizon of one step cascading, to evaluate the effects of the switching off strategies; (3) in the optimization algorithm, the fast non-dominated sorting mechanisms are incorporated into the MBDE algorithm: a new algorithm, namely non-dominated sorting binary differential evolution algorithm (NSBDE) is then proposed. The numerical application to the topological structure of the 380 kV Italian power transmission network proves the benefits of the improvements.

  5. Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate.

    Science.gov (United States)

    Pamplona, Reinald; Portero-Otín, Manuel; Sanz, Alberto; Ayala, Victoria; Vasileva, Ekaterina; Barja, Gustavo

    2005-12-01

    What are the mechanisms determining the rate of animal aging? Of the two major classes of endothermic animals, bird species are strikingly long-lived compared to mammals of similar body size and metabolic rate. Thus, they are ideal models to identify longevity-related characteristics not linked to body size or low metabolic rates. Since oxidative stress seems to be related to the basic aging process, we measured specific markers of different kinds of oxidative damage to proteins, like glutamic and aminoadipic semialdehydes (GSA and AASA, specific protein carbonyls), Nɛ-(carboxyethyl)lysine (CEL), Nɛ-(carboxymethyl)lysine (CML), and Nɛ-(malondialdehyde)lysine (MDAL), as well as mitochondrial Complex I content and amino acid and membrane fatty acyl composition, in the brain of short-lived mice (maximum life span [MLSP] 3.5 years) compared with those of long-lived budgerigar 'parakeets' (MLSP, 21 years) and canaries (MLSP, 24 years). The brains of both bird species had significantly lower levels of compounds formed as a result of oxidative (GSA and AASA), glycoxidative (CEL and CML), and lipoxidative (CML and MDAL) protein modifications, as well as a lower levels of mitochondrial complex I protein. Although it is known that fatty acid unsaturation is lower in many tissues of long-lived compared to short-lived mammals, this is not true in the particular case of brain. In agreement with this, we also found that the brain tissue of bugerigars and canaries contains no fewer double bonds than that of mice. Amino acid composition analyses revealed that bird proteins have a significantly lower content of His, Leu and Phe, as well as, interestingly, of methionine, whereas Asp, Glu, Ala, Val, and Lys contents were higher than in the mammals. These results, together with those previously described in other tissues of pigeons (MLSP, 35 years) compared to rats (MLSP, 4 years), indicate that oxidative damage to proteins, lipids and mitochondrial DNA are lower in birds (very

  6. Brain metastasis of Wilms tumor with diffuse anaplasia and complex cytogenetic phenotype in a child with neurofibromatosis Type 1.

    Science.gov (United States)

    Shvartsbeyn, Marianna; Bassani, Luigi; Mikolaenko, Irina; Wisoff, Jeffrey H

    2011-10-01

    The authors report the first case of a Wilms tumor (WT) with diffuse anaplasia metastatic to the brain in a 13-year-old girl with a history of neurofibromatosis Type 1. At presentation, the metastatic tumor had radiological features that suggested a meningioma. Histologically it was characterized by striking anaplasia and features similar to the patient's previously resected WT with diffuse anaplasia.

  7. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  8. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    Energy Technology Data Exchange (ETDEWEB)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex S. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Madsen, G. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Duncan, A. K., E-mail: kbarger@astro.wisc.edu, E-mail: haffner@astro.wisc.edu, E-mail: Alex.Hill@csiro.au, E-mail: wakker@astro.wisc.edu, E-mail: greg.madsen@sydney.edu.au [Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observations in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  9. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex.

    Science.gov (United States)

    Becker, Noémie S; Margos, Gabriele; Blum, Helmut; Krebs, Stefan; Graf, Alexander; Lane, Robert S; Castillo-Ramírez, Santiago; Sing, Andreas; Fingerle, Volker

    2016-09-15

    The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here

  10. Reptiles: a new model for brain evo-devo research.

    Science.gov (United States)

    Nomura, Tadashi; Kawaguchi, Masahumi; Ono, Katsuhiko; Murakami, Yasunori

    2013-03-01

    Vertebrate brains exhibit vast amounts of anatomical diversity. In particular, the elaborate and complex nervous system of amniotes is correlated with the size of their behavioral repertoire. However, the evolutionary mechanisms underlying species-specific brain morphogenesis remain elusive. In this review we introduce reptiles as a new model organism for understanding brain evolution. These animal groups inherited ancestral traits of brain architectures. We will describe several unique aspects of the reptilian nervous system with a special focus on the telencephalon, and discuss the genetic mechanisms underlying reptile-specific brain morphology. The establishment of experimental evo-devo approaches to studying reptiles will help to shed light on the origin of the amniote brains. Copyright © 2013 Wiley Periodicals, Inc.

  11. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain.

    Science.gov (United States)

    Hanafy, Amira S; Farid, Ragwa M; ElGamal, Safaa S

    2015-01-01

    Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer's disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined. Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25 °C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1 h after administration using fluorescence microscopy and software-aided image processing. Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190 nm, and a zeta potential of +40.4 and +31.6 mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07% ± 6.67 after 72 h), improved formulation stability at 4 °C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p > 0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices. Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully

  12. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    Science.gov (United States)

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  13. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  14. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    Science.gov (United States)

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  15. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft)

    OpenAIRE

    Jamal Rasouli; Mansour Ghorbani; Vahid Ahadnejad

    2017-01-01

    Introduction The Jebale-Barez Plutonic Complex (JBPC) is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014). The fi...

  16. New Sm/Nd and U/Pb geochronological constraints of the Archean to neoproterozoic evolution of the Amparo basement complex of the Central Ribeira Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Fetter, A.H.; Hackspacher, P.C.; Ebbert, H.D; Dantas, E.L; Costa, A.C.D. da

    2001-01-01

    The Amparo Basement Complex is a distinctive collage of migmatitic tronjhemitetonalite- granodiorite (TTG) orthogneisses that represents the older basement exposures within the Central Ribeira Belt, a Late Neoproterozoic (ca. 600 Ma) collisional belt in southeastern Brazil. These basement gneisses are overlain by Mesoproterozoic to Neoproterozoic supracrustal sequences, and intruded by Neoproterozoic collisional granitoids. Pioneering Rb/Sr, Pb/Pb and K/Ar geochronological studies of the Amparo Complex, e.g. (Wernick et al., 1981; Wernick and Oliveira, 1986; Arthur, 1988; Tassinari, 1988; Campos Neto, 1991) provided some initial insights into the antiquity and geologic evolution of the complex, but little about the crustal evolution of the constituent gneisses. Furthermore, the susceptibility of these systems to partial isotopic resetting, left some doubt about the timing and true number of geologic events recorded by these polydeformed rocks. Recent Sm/Nd whole rock (Dantas et al., 2000) and new U/Pb single crystal zircon and monazite data obtained from the Amparo Complex, however, now furnish information on the crustal growth history of the basement and provide precise age constraints on the timing of events related to the geologic evolution of the complex. Based on these new data, it appears that the oldest rocks within the complex are polymigmatized tronjhemitic gneisses located near the town of Amparo. The oldest phase of this migmatite yields a U/Pb zircon age of 3,024 +/- 9 Ma. Sm/Nd data from this locale yields a Nd T(DM) model age of 3.28 Ga suggesting that the genesis of this crustal unit involved some input from yet older crust. Data from banded tonalitic gneisses collected ca. 50 km south of Amparo indicate that subsequent Archean crustal growth around the older core occurred around 2.77 Ga (U/Pb zircon age of 2,772 +/- 26 Ma. A Nd T(DM) model age of 3.02 Ga obtained from these tonalites also indicate enrichment from older crustal sources during their

  17. Postural complexity influences development in infants born preterm with brain injury: relating perception-action theory to 3 cases.

    Science.gov (United States)

    Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole

    2014-10-01

    Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.

  18. Paleoenvironmental evolution based on benthic foraminifera biofacies of the Paraíba do Sul Deltaic Complex, eastern Brazil

    Science.gov (United States)

    Gasparini, Sarah Pereira; Vilela, Claudia Gutterres

    2017-12-01

    The paleoecology and distribution of benthic foraminiferal assemblages were analyzed in the core 2-MU-1-RJ well, drilled in the Paraíba do Sul Deltaic Complex, Rio de Janeiro (Brazil). An abundant assemblage was found in the upper portion of the well core, inferred to be pleistocenic deposits. The coastal dynamic was recognized from five biofacies based on clusters, the Planktonic/Benthic (P/B) ratios and indicator species distribution in the core. Several biofacies were identified along the core depending on the species dominance. From the bottom to the top of the core, the biofacies succession represents the environmental changes in the coastal area associated to sea-level oscillations. The biofacies ABP dominated by Ammonia parkinsoniana and Bolivina spp. and Pararotalia cananeiaensis represents an inner shelf environment; biofacies QP dominated by shelf miliolids species; biofacies PGH, dominated by P. cananeiaensis, Gavelinopsis praegeri, and Hanzawaia nitidula, represents the estuary complex with middle or outer shelf influence; biofacies QL represents hypersaline waters dominated by lagoonal miliolids; and biofacies HP characterized by Haynesina germanica and P. cananeiaensis is associated with paralic environments. Marine ingressions are recorded and those biofacies show the pleistocenic coastal hydrodinamic in the deltaic complex. The foraminiferal biofacies contribute with detailed information to sedimentary facies previously characterized in the study area by the reconstruction of paleoenvironment succession.

  19. Historical Evolution of Spatial Abilities

    Directory of Open Access Journals (Sweden)

    A. Ardila

    1993-01-01

    Full Text Available Historical evolution and cross-cultural differences in spatial abilities are analyzed. Spatial abilities have been found to be significantly associated with the complexity of geographical conditions and survival demands. Although impaired spatial cognition is found in cases of, exclusively or predominantly, right hemisphere pathology, it is proposed that this asymmetry may depend on the degree of training in spatial abilities. It is further proposed that spatial cognition might have evolved in a parallel way with cultural evolution and environmental demands. Contemporary city humans might be using spatial abilities in some new, conceptual tasks that did not exist in prehistoric times: mathematics, reading, writing, mechanics, music, etc. Cross-cultural analysis of spatial abilities in different human groups, normalization of neuropsychological testing instruments, and clinical observations of spatial ability disturbances in people with different cultural backgrounds and various spatial requirements, are required to construct a neuropsychological theory of brain organization of spatial cognition.

  20. Systematics and evolution of the Meriones shawii/grandis complex (Rodentia, Gerbillinae) during the Late Quaternary in northwestern Africa: Exploring the role of environmental and anthropogenic changes

    Science.gov (United States)

    Stoetzel, Emmanuelle; Cornette, Raphaël; Lalis, Aude; Nicolas, Violaine; Cucchi, Thomas; Denys, Christiane

    2017-05-01

    Rodents of the Meriones shawii/grandis complex have been attested to in North Africa since the Middle Pleistocene and are abundant in archaeological sites. Today, they are widely spread and represent a major pest to local human populations. This