WorldWideScience

Sample records for complete optical neurophysiology

  1. Neurophysiological intraoperative monitoring during an optic nerve schwannoma removal.

    Science.gov (United States)

    San-Juan, Daniel; Escanio Cortés, Manuel; Tena-Suck, Martha; Orozco Garduño, Adolfo Josué; López Pizano, Jesús Alejandro; Villanueva Domínguez, Jonathan; Fernández Gónzalez-Aragón, Maricarmen; Gómez-Amador, Juan Luis

    2017-10-01

    This paper reports the case of a patient with optic nerve schwannoma and the first use of neurophysiological intraoperative monitoring of visual evoked potentials during the removal of such tumor with no postoperative visual damage. Schwannomas are benign neoplasms of the peripheral nervous system arising from the neural crest-derived Schwann cells, these tumors are rarely located in the optic nerve and the treatment consists on surgical removal leading to high risk of damage to the visual pathway. Case report of a thirty-year-old woman with an optic nerve schwannoma. The patient underwent surgery for tumor removal on the left optic nerve through a left orbitozygomatic approach with intraoperative monitoring of left II and III cranial nerves. We used Nicolet Endeavour CR IOM (Carefusion, Middleton WI, USA) to performed visual evoked potentials stimulating binocularly with LED flash goggles with the patient´s eyes closed and direct epidural optic nerve stimulation delivering rostral to the tumor a rectangular current pulse. At follow up examinations 7 months later, the left eye visual acuity was 20/60; Ishihara score was 8/8 in both eyes; the right eye photomotor reflex was normal and left eye was mydriatic and arreflectic; optokinetic reflex and ocular conjugate movements were normal. In this case, the epidural direct electrical stimulation of optic nerve provided stable waveforms during optic nerve schwannoma resection without visual loss.

  2. Nonlinear optical crystals a complete survey

    CERN Document Server

    Nikogosyan, David N

    2005-01-01

    Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...

  3. Influence of cataract surgery on optical coherence tomography and neurophysiology measurements in patients with retinitis pigmentosa.

    Science.gov (United States)

    Garcia-Martin, Elena; Rodriguez-Mena, Diego; Dolz, Isabel; Almarcegui, Carmen; Gil-Arribas, Laura; Bambo, Maria P; Larrosa, Jose M; Polo, Vicente; Pablo, Luis E

    2013-08-01

    To evaluate the effect of uncomplicated cataract phacoemulsification on the measurements of visual evoked potentials (VEP), pattern electroretinogram (PERG), and macular and retinal nerve fiber layer (RNFL) using 2 spectral-domain optical coherence tomography (OCT) instruments, the Cirrus OCT (Carl Zeiss Meditech) and Spectralis OCT (Heidelberg Engineering), in patients with retinitis pigmentosa (RP), and to assess the reliability of the OCT measurements before and after cataract surgery. Observational cross-sectional study. Thirty-five eyes of 35 patients with RP (20 men and 15 women, 45-66 years) who underwent cataract phacoemulsification were studied. At 1 month before and 1 month after surgery, visual acuity, VEP, PERG, and 3 repetitions of scans using the RNFL and macular analysis protocols of the Cirrus and Spectralis OCT instruments were performed. The differences in measurements between the 2 visits were analyzed. Repeatability of OCT measurements was evaluated by calculating the coefficients of variation. VEP amplitude, RNFL thicknesses provided by Cirrus and Spectralis, and macular measurements provided by Cirrus OCT differed between the 2 visits. VEP latency, PERG measurements, and macular thicknesses provided by the Spectralis OCT before surgery did not differ significantly from those after surgery. The OCT repeatability was better after surgery, with lower coefficients of variation for scans performed after surgical removal of the cataract. The nuclear, cortical, and posterior subcapsular types of cataracts did not show different repeatability. The presence of cataracts affects VEP amplitude, RNFL, and macular measurements performed with OCT in eyes with RP. Image repeatability significantly improves after cataract phacoemulsification. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Neurophysiology Summary

    Science.gov (United States)

    Paloski, William H.

    2001-01-01

    The terrestrial gravitational field serves as an important orientation reference for human perception and movement, being continually monitored by sensory receptors in the skin, muscles, joints, and vestibular otolith organs. Cues from these graviceptors are used by the brain to estimate spatial orientation and to control balance and movement. Changes in these cues associated with the tonic changes in gravity (gravito-inertial force),during the launch and entry phases of space flight missions result in altered perceptions, degraded motor control performance, and in some cases, "motion" sickness during, and for a period of time after, the g-transitions. In response to these transitions, however, physiological and behavioral response mechanisms are triggered to compensate for altered graviceptor cues and/or to adapt to the new sensory environment. Basic research in the neurophysiology discipline is focused on understanding the characteristic features of and the underlying mechanisms for the normal human response to tonic changes in the gravito-inertial force environment. These studies address fundamental questions regarding the role of graviceptors in orientation and movement in the terrestrial environment, as well as the capacity, specificity, and modes for neural plasticity in the sensory-motor and perceptual systems of the brain. At the 2001 workshop basic research studies were presented addressing: neuroanatomical responses to altered gravity environments, the neural mechanisms for resolving the ambiguity between tilting and translational stimuli in otolith organ sensory input, interactions between the vestibular system and the autonomic nervous system , the roles of haptic and visual cues in spatial orientation, mechanisms for training environment-appropriate sensorimotor responses triggered by environment-specific context cues, and studies of sensori-motor control of posture and locomotion in the terrestrial environment with and without recent exposure to space

  5. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides

    Science.gov (United States)

    Huang, Wei; Kyoseva, Elica

    2018-01-01

    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  6. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  7. [Neurophysiology of systemic diseases].

    Science.gov (United States)

    Attarian, S

    2004-01-01

    Connective tissue diseases represent a varied and challenging group of disorders. Neuromuscular structures are highly susceptible targets for damage. In this review, the neurophysiological explorations of the neuromuscular complications are examined with particular attention to the peripheral nerve system. The most common presentations are sensorimotor polyneuropathy, mononeuritis multiplex, distal symmetric neuropathy, compression neuropathy and trigeminal sensory neuropathy.

  8. [Neurophysiology of pruritus].

    Science.gov (United States)

    Raap, U; Ikoma, A; Kapp, A

    2006-05-01

    Neurophysiologic studies indicate that pruritus is a distinct sensation with its own neuronal pathways in the peripheral and central nervous system which are different from that of pain. Pruritus is a very disturbing sensation and most common skin-related symptom. Histamine was long considered to be the only mediator of pruritus. However, it has become evident that - besides histamine - a variety of neuromediators such as neurotrophins and neuropeptides as well as their receptors play an important role in pruritus. Neuromediators are produced by mast cells, keratinocytes and eosinophil granulocytes which are in close contact to sensory nerves. The discovery of these neurophysiological interactions opens new and promising therapeutic options for the treatment of pruritus.

  9. Arbitrarily complete Bell-state measurement using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  10. 3.6-m Devasthal Optical Telescope Project: Completion and first results

    Science.gov (United States)

    Kumar, Brijesh; Omar, Amitesh; Maheswar, Gopinathan; Pandey, Anil Kumar; Sagar, Ram; Uddin, Wahab; Sanwal, Basant Ballabh; Bangia, Tarun; Kumar, Tripurari Satyanarayana; Yadav, Shobhit; Sahu, Sanjit; Pant, Jayshreekar; Reddy, Bheemireddy Krishna; Gupta, Alok Chandra; Chand, Hum; Pandey, Jeewan Chandra; Joshi, Mohit Kumar; Jaiswar, Mukeshkuma; Nanjappa, Nandish; Purushottam; Yadav, Rama Kant Singh; Sharma, Saurabh; Pandey, Shashi Bhushan; Joshi, Santosh; Joshi, Yogesh Chandra; Lata, Sneh; Mehdi, Biman Jyoti; Misra, Kuntal; Singh, Mahendra

    2018-04-01

    We present an update on the 3.6-m aperture optical telescope, which has been installed at Devasthal in the year 2016. In this paper, a brief overview of installation activities at site and first results are presented. The 3.6-m Devasthal Optical Telescope project was initiated in 2007 by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital, India) in partnership with Belgium. The telescope has Ritchey-Chretien optics, an alt-azimuth mount, an active control of the primary and a corrected science field of view of 30' at the Cassegrain focus. The construction of the telescope enclosure building was completed in June 2014 and after successful installation of the telescope. The first engineering light was obtained on 22 March 2015. The on-sky performance of the telescope was carried out till February 2016.

  11. Assessing the completeness of optical resetting of quartz OSL in the natural environment

    International Nuclear Information System (INIS)

    Singarayer, J.S.; Bailey, R.M.; Ward, S.; Stokes, S.

    2005-01-01

    Resetting of previously accumulated optically stimulated luminescence (OSL) signals during transport of sediment is a fundamental requirement for reliable optical dating. The completeness of optical resetting of 46 modern-age quartz samples from a variety of depositional environments was examined. All equivalent dose (D e ) estimates were e from easy-to-bleach through to hard-to-bleach components. For all modern fluvial samples with non-zero D e values, SAR D e (t) analysis and component-resolved linearly modulated OSL (LM OSL) D e estimates showed this to be the case, implying incomplete resetting of previously accumulated charge. LM OSL measurements were also made to investigate the extent of bleaching of the slow components in the natural environment. In aeolian sediments examined, the natural LM OSL was effectively zero (i.e. all components were fully reset). The slow components of modern fluvial samples displayed measurable residual signals up to 15Gy

  12. Neurophysiology and itch pathways.

    Science.gov (United States)

    Schmelz, Martin

    2015-01-01

    As we all can easily differentiate the sensations of itch and pain, the most straightforward neurophysiologic concept would consist of two specific pathways that independently encode itch and pain. Indeed, a neuronal pathway for histamine-induced itch in the peripheral and central nervous system has been described in animals and humans, and recently several non-histaminergic pathways for itch have been discovered in rodents that support a dichotomous concept differentiated into a pain and an itch pathway, with both pathways being composed of different "flavors." Numerous markers and mediators have been found that are linked to itch processing pathways. Thus, the delineation of neuronal pathways for itch from pain pathways seemingly proves that all sensory aspects of itch are based on an itch-specific neuronal pathway. However, such a concept is incomplete as itch can also be induced by the activation of the pain pathway in particular when the stimulus is applied in a highly localized spatial pattern. These opposite views reflect the old dispute between specificity and pattern theories of itch. Rather than only being of theoretic interest, this conceptual problem has key implication for the strategy to treat chronic itch as key therapeutic targets would be either itch-specific pathways or unspecific nociceptive pathways.

  13. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    reliability of the psychological and clinical neurophysiological assessment techniques available today allows a multidisciplinary approach to fatigue in neurological patients, which may contribute to the elucidation of the pathophysiological mechanisms of chronic fatigue, with the ultimate goal to develop tailored treatments for fatigue in neurological patients. The present report discusses the different manifestations of fatigue and the available tools to assess peripheral and central fatigue.

  14. Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2014-01-01

    We propose a DWDM-to-Nyquist channel conversion scheme based on complete Optical Fourier Transformation and optical Nyquist filtering. We demonstrate conversion from 50-GHz-grid 16×10 Gbit/s DPSK DWDM to a 160-Gbit/s Nyquist channel (0.9 symbol/s/Hz spectral efficiency) with 1.4 dB power penalty....

  15. Neurophysiological evidence of methylmercury neurotoxicity

    DEFF Research Database (Denmark)

    Murata, Katsuyuki; Grandjean, Philippe; Dakeishi, Miwako

    2007-01-01

    neurotoxicity and to examine the usefulness of those measures. METHODS: The reports addressing both neurophysiological measures and methylmercury exposure in humans were identified and evaluated. RESULTS: The neurological signs and symptoms of MD included paresthesias, constriction of visual fields, impairment...... disease (MD; methylmercury poisoning). In recent years, some of these methods have been used for the risk assessment of low-level methylmercury exposure in asymptomatic children. The objectives of this article were to present an overview of neurophysiological findings involved in methylmercury...... of hearing and speech, mental disturbances, excessive sweating, and hypersalivation. Neuropathological lesions involved visual, auditory, and post- and pre-central cortex areas. Neurophysiological changes involved in methylmercury, as assessed by EPs and HRV, were found to be in accordance with both clinical...

  16. Imaging of the Macula Indicates Early Completion of Structural Deficit in Autosomal-Dominant Optic Atrophy

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Milea, Dan; Larsen, Michael

    2013-01-01

    Optical coherence tomography (OCT) enables 3-dimensional imaging of the retina, including the layer of ganglion cells that supplies the optic nerve with its axons. We tested OCT as means of diagnosing and phenotyping autosomal-dominant optic atrophy (ADOA)....

  17. Polar optical phonons in a semiconductor quantum-well: The complete matching problem

    International Nuclear Information System (INIS)

    Nieto, J.M.; Comas, F.

    2007-01-01

    Confined polar optical phonons in a semiconductor quantum-well (QW) are studied by applying a phenomenological theory which was proposed a few years ago and is based on a continuum approach. This theory considers the coupled character of the electromechanical vibrations and takes due account of both the electric and mechanical boundary conditions. In the present work, we have applied the so-called complete matching problem in contrast with all previous published works on the subject, where more restrictive approximate boundary conditions has been applied. We also consider the effects of strains at the interfaces on the phonon spectra. Comparisons with previous works are made, while we focused on the study of a ZnTe/CdTe/ZnTe QW

  18. Neurophysiological effects of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, I.; Wildt, K.; Gullberg, B.; Berlin, M.

    1983-10-01

    A series of neurophysiological variables was measured for men occupationally exposed to lead. The results were related to the degree of lead exposure and to the concentrations of lead and zinc protoporphyrin in blood. A small but significant correlation was observed between lead exposure and motor and sensory conduction velocities in the lower limbs, the conduction velocities of slow motor fibers in the upper limbs, and also sensory nerve action potentials. It is suggested that a neurophysiological examination should be considered in the surveillance of the health of lead workers.

  19. Completely optical orientation determination for an unstabilized aerial three-line camera

    Science.gov (United States)

    Wohlfeil, Jürgen

    2010-10-01

    Aerial line cameras allow the fast acquisition of high-resolution images at low costs. Unfortunately the measurement of the camera's orientation with the necessary rate and precision is related with large effort, unless extensive camera stabilization is used. But also stabilization implicates high costs, weight, and power consumption. This contribution shows that it is possible to completely derive the absolute exterior orientation of an unstabilized line camera from its images and global position measurements. The presented approach is based on previous work on the determination of the relative orientation of subsequent lines using optical information from the remote sensing system. The relative orientation is used to pre-correct the line images, in which homologous points can reliably be determined using the SURF operator. Together with the position measurements these points are used to determine the absolute orientation from the relative orientations via bundle adjustment of a block of overlapping line images. The approach was tested at a flight with the DLR's RGB three-line camera MFC. To evaluate the precision of the resulting orientation the measurements of a high-end navigation system and ground control points are used.

  20. The neurophysiology of sexual arousal.

    Science.gov (United States)

    Schober, Justine M; Pfaff, Donald

    2007-09-01

    Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.

  1. Completion of the Design of the Top End Optical Assembly for ATST

    Science.gov (United States)

    Canzian, Blaise; Barentine, J.

    2013-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.

  2. Neurophysiological Based Methods of Guided Image Search

    National Research Council Canada - National Science Library

    Marchak, Frank

    2003-01-01

    .... We developed a model of visual feature detection, the Neuronal Synchrony Model, based on neurophysiological models of temporal neuronal processing, to improve the accuracy of automatic detection...

  3. Chronic alcoholism: insights from neurophysiology.

    Science.gov (United States)

    Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X

    2009-01-01

    Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.

  4. Students Performance And Perception Of Neurophysiology ...

    African Journals Online (AJOL)

    We also surveyed learning experience of a batch of graduating doctors in neurosciences (n=50) and surveyed the staff and students' perception of the teaching of neurophysiology. The students performances in neurophysiology was comparatively poorer than in cardiovascular and endocrinology aspects of the subject over ...

  5. Circadian Rhythm Control: Neurophysiological Investigations

    Science.gov (United States)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  6. Basics of neuroanatomy and neurophysiology.

    Science.gov (United States)

    Barha, C K; Nagamatsu, L S; Liu-Ambrose, T

    2016-01-01

    This chapter presents an overview of the anatomy and functioning of the central nervous system. We begin the discussion by first examining the cellular basis of neural transmission. Then we present a brief description of the brain's white and gray matter and associated diseases, including a discussion of white-matter lesions. Finally, we place this information into context by discussing how the central nervous system integrates complex information to guide key functional systems, including the visual, auditory, chemosensory, somatic, limbic, motor, and autonomic systems. Where appropriate, we have supplied information pertaining to pathologic and functional outcomes of damage to the central nervous system. Also included is a brief description of important tools and methods used in the study of neuroanatomy and neurophysiology. Overall, this chapter provides a basic review of the concepts required to understand and interpret the clinical disorders and related material presented in the subsequent chapters of this book. © 2016 Elsevier B.V. All rights reserved.

  7. Neurophysiological characterization of postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Christensen, Bente

    2008-01-01

    Inguinal herniotomy is one of the most frequent surgical procedures and chronic pain affecting everyday activities is reported in approximately 10% of patients. However, the neurophysiological changes and underlying pathophysiological mechanisms of postherniotomy pain are not known in detail...... postoperatively. A quantitative sensory testing protocol was used, assessing sensory dysfunction type, location and severity. We assessed the protocol test-retest variability using data from healthy control subjects. All patients (pain and pain-free) had signs of nerve damage, seen as sensory dysfunction......). The specific finding of reduced pain detection threshold over the external inguinal annulus is consistent with damage to the cutaneous innervation territory of nervous structures in the inguinal region. The correspondence between pain location and sensory disturbance suggests that the pain is neuropathic...

  8. Simultaneous all-channel OTDM demultiplexing based on complete optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lillieholm, Mads; Røge, Kasper Meldgaard

    2016-01-01

    We demonstrate simultaneous OTDM demultiplexing of all 16-channels for 160-Gbit/s DPSK and 320-Gbit/s DQPSK signals based on complete OFT. Furthermore, numerical simulations show promising results for extending the proposed technique to spectrally efficient Nyquist-OTDM....

  9. Incorporating neurophysiological concepts in mathematical thermoregulation models

    Science.gov (United States)

    Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2014-01-01

    Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.

  10. Behavioral guides for sensory neurophysiology.

    Science.gov (United States)

    Konishi, M

    2006-06-01

    The study of natural behavior is important for understanding the coding schemes of sensory systems. The jamming avoidance response of the weakly electric fish Eigenmannia is an excellent example of a bottom-up approach, in which behavioral analyses guided neurophysiological studies. These studies started from the electroreceptive sense organs to the motor output consisting of pacemaker neurons. Going in the opposite direction, from the central nervous system to lower centers, is the characteristic of the top-down approach. Although this approach is perhaps more difficult than the bottom-up approach, it was successfully employed in the neuroethological analysis of sound localization in the barn owl. In the latter studies, high-order neurons selective for complex natural stimuli led to the discovery of neural pathways and networks responsible for the genesis of the stimulus selectivity. Comparison of Eigenmannia and barn owls, and their neural systems, has revealed similarities in network designs, such as parallel pathways and their convergence to produce stimulus selectivity necessary for detection of natural stimuli.

  11. Neurophysiological approach to tinnitus patients.

    Science.gov (United States)

    Jastreboff, P J; Gray, W C; Gold, S L

    1996-03-01

    The principal postulate of the neurophysiological model of tinnitus is that all levels of the auditory pathways and several nonauditory systems play essential roles in each case of tinnitus, stressing the dominance of nonauditory systems in determining the level of tinnitus annoyance. Thus it has been proposed to treat tinnitus by inducing and facilitating habituation to the tinnitus signal. The goal is to reach the stage at which, although patients may perceive tinnitus as unchanged when they focus on it, they are otherwise not aware of tinnitus. Furthermore, even when perceived, tinnitus does not evoke annoyance. Habituation is achieved by directive counseling combined with low-level, broad-band noise generated by wearable generators, and environmental sounds, according to a specific protocol. For habituation to occur, it is imperative to avoid masking tinnitus by these sounds. Since 1991, > 500 tinnitus patients have been seen in our center. About 40% exhibited hyperacusis to varying degrees. A survey of > 100 patients revealed > 80% of significant improvement in groups of patients treated with the full protocol involving counseling and the use of noise generators. Notably, in patients who received counseling only, the success rate was < 20%. The improvement in hyperacusis was observed in approximately 90% of treated patients.

  12. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    Science.gov (United States)

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  13. Self-assisted complete hyperentangled Bell state analysis using quantum-dot spins in optical microcavities

    Science.gov (United States)

    Zeng, Zhi

    2018-05-01

    An efficient scheme for the discrimination of 16 hyperentangled Bell states of a two-photon system that is entangled in both polarization and spatial-mode degrees of freedom is presented in this paper. Using the interaction between the photons and quantum-dot spins in cavities, the spatial-mode Bell states can be distinguished completely and nondestructively in the first step. Subsequently, the preserved spatial-mode entanglement is utilized as an auxiliary to analyze the polarization Bell states. Compared with a previous scheme (Ren et al 2012 Opt. Express 20 24664-77), our scheme reduces the requirement for nonlinear interaction substantially by utilizing the intrinsic degrees of freedom in hyperentanglement.

  14. Optical preparation of H2 rovibrational levels with almost complete population transfer

    Science.gov (United States)

    Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N.

    2013-08-01

    Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1051101-4 (2013)], 10.1063/1.4790402. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.

  15. Duplication of complete dentures using general-purpose handheld optical scanner and 3-dimensional printer: Introduction and clinical considerations.

    Science.gov (United States)

    Kurahashi, Kosuke; Matsuda, Takashi; Goto, Takaharu; Ishida, Yuichi; Ito, Teruaki; Ichikawa, Tetsuo

    2017-01-01

    To introduce a new clinical procedure for fabricating duplicates of complete dentures by bite pressure impression using digital technology, and to discuss its clinical significance. The denture is placed on a rotary table and the 3-dimensional form of the denture is digitized using a general-purpose handheld optical scanner. The duplicate denture is made of polylactic acid by a 3-dimensional printer using the 3-dimensional data. This procedure has the advantages of wasting less material, employing less human power, decreasing treatment time at the chair side, lowering the rates of contamination, and being readily fabricated at the time of the treatment visit. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Neurophysiology of conversion disorders: a historical perspective.

    Science.gov (United States)

    Crommelinck, M

    2014-10-01

    The aim of this paper is to present a short historical perspective on the neurophysiological approach to hysteria and conversion disorders. The body of this paper will be constituted of three main parts. In the first part, we will present the significant progress due to some pioneers of neurology/psychiatry during the XIXth century. As we shall see, this period was particularly rich in personalities whose work gradually laid the foundations to a true medical approach to hysteria. In the first half of the XXth century, different factors have led to a long eclipse of the neurological approach to hysteria. In the second part, we will show how, by the 1960's-1970's, the conceptual and methodological advances in neurophysiology, as well as the turning point of cognitive sciences (and cognitive psychology in particular) allowed a gradual reinstatement of hysteria within the fields of neurology and clinical neurophysiology. Finally, and this is the third part of this paper, we will show how over the past three decades, an entirely new neurophysiological approach to hysteria and conversion disorders has emerged. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Intraoperative neurophysiological monitoring for the anaesthetist ...

    African Journals Online (AJOL)

    Intraoperative neurophysiological monitoring (IONM) has become the gold standard for the monitoring of functional nervous tissue and mapping of eloquent brain tissue during neurosurgical procedures. The multimodal use of somatosensory-evoked potentials and motor-evoked potentials ensures adequate monitoring of ...

  18. The neurophysiology of paediatric movement disorders.

    Science.gov (United States)

    McClelland, Verity M

    2017-12-01

    To demonstrate how neurophysiological tools have advanced our understanding of the pathophysiology of paediatric movement disorders, and of neuroplasticity in the developing brain. Delineation of corticospinal tract connectivity using transcranial magnetic stimulation (TMS) is being investigated as a potential biomarker for response to therapy. TMS measures of cortical excitability and neuroplasticity are also being used to investigate the effects of therapy, demonstrating neuroplastic changes that relate to functional improvements. Analyses of evoked potentials and event-related changes in the electroencephalogaphy spectral activity provide growing evidence for the important role of aberrant sensory processing in the pathophysiology of many different movement disorders. Neurophysiological findings demonstrate that children with clinically similar phenotypes may have differing underlying pathophysiology, which in turn may explain differential response to therapy. Neurophysiological parameters can act as biomarkers, providing a means to stratify individuals, and are well suited to provide biofeedback. They therefore have enormous potential to facilitate improvements to therapy. Although currently a small field, the role of neurophysiology in paediatric movement disorders is poised to expand, both fuelled by and contributing to the rapidly growing fields of neuro-rehabilitation and neuromodulation and the move towards a more individualized therapeutic approach.

  19. Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b

    Science.gov (United States)

    Huitson, C. M.; Désert, J.-M.; Bean, J. L.; Fortney, J. J.; Stevenson, K. B.; Bergmann, M.

    2017-09-01

    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440 to 940 nm at R ˜ 400-1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to its large scale height (370 km). We derive the transmission spectrum of WASP-4b using four transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain sizes of ˜1 μm. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time-dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.

  20. Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b

    Energy Technology Data Exchange (ETDEWEB)

    Huitson, C. M. [CASA, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Désert, J.-M. [API, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Bean, J. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Stevenson, K. B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bergmann, M., E-mail: catherine.huitson@colorado.edu [NOAO and Gemini Observatory, present address Palo Alto, CA (United States)

    2017-09-01

    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440 to 940 nm at R  ∼ 400–1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to its large scale height (370 km). We derive the transmission spectrum of WASP-4b using four transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain sizes of ∼1  μ m. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time-dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.

  1. Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b

    International Nuclear Information System (INIS)

    Huitson, C. M.; Désert, J.-M.; Bean, J. L.; Fortney, J. J.; Stevenson, K. B.; Bergmann, M.

    2017-01-01

    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440 to 940 nm at R  ∼ 400–1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to its large scale height (370 km). We derive the transmission spectrum of WASP-4b using four transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain sizes of ∼1  μ m. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time-dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.

  2. [Mixed depressions: clinical and neurophysiological biomarkers].

    Science.gov (United States)

    Micoulaud Franchi, J-A; Geoffroy, P-A; Vion-Dury, J; Balzani, C; Belzeaux, R; Maurel, M; Cermolacce, M; Fakra, E; Azorin, J-M

    2013-12-01

    Epidemiological studies of major depressive episodes (MDE) highlighted the frequent association of symptoms or signs of mania or hypomania with depressive syndrome. Beyond the strict definition of DSM-IV, epidemiological recognition of a subset of MDE characterized by the presence of symptoms or signs of the opposite polarity is clinically important because it is associated with pejorative prognosis and therapeutic response compared to the subgroup of "typical MDE". The development of DSM-5 took into account the epidemiological data. DSM-5 opted for a more dimensional perspective in implementing the concept of "mixed features" from an "episode" to a "specification" of mood disorder. As outlined in the DSM-5: "Mixed features associated with a major depressive episode have been found to be a significant risk factor for the development of bipolar I and II disorder. As a result, it is clinically useful to note the presence of this specifier for treatment planning and monitoring of response to therapeutic". However, the mixed features are sometimes difficult to identify, and neurophysiological biomarkers would be useful to make a more specific diagnosis. Two neurophysiological models make it possible to better understand MDE with mixed features : i) the emotional regulation model that highlights a tendency to hyper-reactive and unstable emotion response, and ii) the vigilance regulation model that highlights, through EEG recording, a tendency to unstable vigilance. Further research is required to better understand relationships between these two models. These models provide the opportunity of a neurophysiological framework to better understand the mixed features associated with MDE and to identify potential neurophysiological biomarkers to guide therapeutic strategies. Copyright © 2013 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  3. [The links between neuropsychology and neurophysiology].

    Science.gov (United States)

    Stolarska-Weryńska, Urszula; Biedroń, Agnieszka; Kaciński, Marek

    2016-01-01

    The aim of the study was to establish current scope of knowledge regarding associations between neurophysiological functioning, neuropsychology and psychoterapy. A systematic review was performed including 93 publications from Science Server, which contains the collections of Elsevier, Springer Journals, SCI-Ex/ICM, MEDLINE/PubMed, and SCOPUS. The works have been selected basing on following key words: 'neuropsychology, neurocognitive correlates, electrodermal response, event related potential, EEG, pupillography, electromiography' out of papers published between 2004-2015. Present reports on the use of neurophysiological methods in psychology can be divided into two areas: experimental research and research of the practical use of conditioning techniques and biofeedback in the treatment of somatic disease. Among the experimental research the following have been distinguished: research based on the startle reflex, physiological reaction to novelty, stress, type/amount of cognitive load and physiological correlates of emotion; research on the neurophysiological correlates of mental disorders, mostly mood and anxiety disorders, and neurocognitive correlates: of memory, attention, learning and intelligence. Among papers regarding the use of neurophysiological methods in psychology two types are the most frequent: on the mechanisms of biofeedback, related mainly to neuro- feedback, which is a quickly expanding method of various attention and mental disorders'treatment, and also research of the use of conditioning techniques in the treatment of mental disorders, especially depression and anxiety. A special place among all the above is taken by the research on electrophysiological correlates of psychotherapy, aiming to differentiate between the efficacy of various psychotherapeutic schools (the largest amount of publications regard the efficacy of cognitive-behavioral psychotherapy) in patients of different age groups and different diagnosis.

  4. Neurophysiology of Drosophila Models of Parkinson's Disease

    OpenAIRE

    West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's ...

  5. Evaluation of TV commercials using neurophysiological responses

    OpenAIRE

    Yang, Taeyang; Lee, Do-Young; Kwak, Youngshin; Choi, Jinsook; Kim, Chajoong; Kim, Sung-Phil

    2015-01-01

    Background In recent years, neuroscientific knowledge has been applied to marketing as a novel and efficient means to comprehend the cognitive and behavioral aspects of consumers. A number of studies have attempted to evaluate media contents, especially TV commercials using various neuroimaging techniques such as electroencephalography (EEG). Yet neurophysiological examination of detailed cognitive and affective responses in viewers is still required to provide practical information to market...

  6. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  7. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  8. Neurophysiology and neural engineering: a review.

    Science.gov (United States)

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  9. Evaluation of TV commercials using neurophysiological responses.

    Science.gov (United States)

    Yang, Taeyang; Lee, Do-Young; Kwak, Youngshin; Choi, Jinsook; Kim, Chajoong; Kim, Sung-Phil

    2015-04-24

    In recent years, neuroscientific knowledge has been applied to marketing as a novel and efficient means to comprehend the cognitive and behavioral aspects of consumers. A number of studies have attempted to evaluate media contents, especially TV commercials using various neuroimaging techniques such as electroencephalography (EEG). Yet neurophysiological examination of detailed cognitive and affective responses in viewers is still required to provide practical information to marketers. Here, this study develops a method to analyze temporal patterns of EEG data and extract affective and cognitive indices such as happiness, surprise, and attention for TV commercial evaluation. Twenty participants participated in the study. We developed the neurophysiological indices for TV commercial evaluation using classification model. Specifically, these model-based indices were customized using individual EEG features. We used a video game for developing the index of attention and four video clips for developing indices of happiness and surprise. Statistical processes including one-way analyses of variance (ANOVA) and the cross validation scheme were used to select EEG features for each index. The EEG features were composed of the combinations of spectral power at selected channels from the cross validation for each individual. The Fisher's linear discriminant classifier (FLDA) was used to estimate each neurophysiological index during viewing four different TV commercials. Post hoc behavioral responses of preference, short-term memory, and recall were measured. Behavioral results showed significant differences for all preference, short-term memory rates, and recall rates between commercials, leading to a 'high-ranked' commercial group and a 'low-ranked' group (P < 0.05). Neural estimation of happiness results revealed a significant difference between the high-ranked and the low-ranked commercials in happiness index (P < 0.01). The order of rankings based on happiness and

  10. Handling Metadata in a Neurophysiology Laboratory

    Directory of Open Access Journals (Sweden)

    Lyuba Zehl

    2016-07-01

    Full Text Available To date, non-reproducibility of neurophysiological research is a matterof intense discussion in the scientific community. A crucial componentto enhance reproducibility is to comprehensively collect and storemetadata, that is all information about the experiment, the data,and the applied preprocessing steps on the data, such that they canbe accessed and shared in a consistent and simple manner. However,the complexity of experiments, the highly specialized analysis workflowsand a lack of knowledge on how to make use of supporting softwaretools often overburden researchers to perform such a detailed documentation.For this reason, the collected metadata are often incomplete, incomprehensiblefor outsiders or ambiguous. Based on our research experience in dealingwith diverse datasets, we here provide conceptual and technical guidanceto overcome the challenges associated with the collection, organization,and storage of metadata in a neurophysiology laboratory. Through theconcrete example of managing the metadata of a complex experimentthat yields multi-channel recordings from monkeys performing a behavioralmotor task, we practically demonstrate the implementation of theseapproaches and solutions with the intention that they may be generalizedto a specific project at hand. Moreover, we detail five use casesthat demonstrate the resulting benefits of constructing a well-organizedmetadata collection when processing or analyzing the recorded data,in particular when these are shared between laboratories in a modernscientific collaboration. Finally, we suggest an adaptable workflowto accumulate, structure and store metadata from different sourcesusing, by way of example, the odML metadata framework.

  11. Neurophysiology and neurochemistry of corticobasal syndrome.

    Science.gov (United States)

    Murgai, Aditya A; Jog, Mandar S

    2018-01-06

    Corticobasal syndrome is a rare neurodegenerative disorder, which presents with a progressive, asymmetrical, akinetic rigid syndrome and early cortical signs. However, clinical, pathological, and electrophysiological heterogeneity makes the understanding of this syndrome challenging. Corticobasal syndrome can have various pathological substrates including corticobasal degeneration, Alzheimer's disease, Fronto-temporal degeneration with TDP inclusions, Creutzfeldt-Jakob disease, and progressive supranuclear palsy (PSP). Furthermore, tools such as transcranial magnetic stimulation (TMS) and functional neuroimaging techniques like PET and SPECT have not been adequately used to supplement the clinico-pathological heterogeneity. TMS studies in CBS have revealed changes in cortical excitability and transcortical inhibition. Despite the availability of more than 2 decades, its potential in CBS has not been fully utilized in studying the cortical plasticity and effect of Levodopa on central neurophysiology. PET and SPECT studies in CBS have shown abnormalities in regional glucose metabolism, asymmetrical involvement of presynaptic dopaminergic system, and ascending cholinergic connections to the cortex. While most studies have shown normal D2 receptor-binding activity in striatum of CBS cases, the results have not been unanimous. Functional neuroimaging and TMS studies in CBS have shown the involvement of GABAergic, muscarinic, and dopaminergic systems. In this review, we aim to provide the current state of understanding of central neurophysiology and neurochemistry of CBS using TMS and functional neuroimaging techniques. We also highlight the heterogeneous nature of this disorder and the existing knowledge gaps.

  12. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Gregory A Light

    Full Text Available Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1 associated with schizophrenia, 2 stable over time, independent of state-related changes, and 3 free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ and nonpsychiatric comparison subjects (NCS. Stability of clinical and functional measures was also assessed.Participants (SZ n = 341; NCS n = 205 completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade, neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II. In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF. 223 subjects (SZ n = 163; NCS n = 58 returned for retesting after 1 year.Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria.The majority of neurophysiological and neurocognitive measures exhibited deficits in

  13. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.

    Science.gov (United States)

    Light, Gregory A; Swerdlow, Neal R; Rissling, Anthony J; Radant, Allen; Sugar, Catherine A; Sprock, Joyce; Pela, Marlena; Geyer, Mark A; Braff, David L

    2012-01-01

    Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed. Participants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year. Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. The majority of neurophysiological and neurocognitive measures exhibited deficits in patients

  14. Ultra-high-speed all-channel serial-to-parallel conversion based on complete optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We propose a serial-to-parallel conversion scheme based on complete OFT, allowing simultaneous conversion of all channels. We demonstrate all 32-channel simultaneous OTDM to WDM conversion of 320-Gbit/s DPSK and of 640-Gbit/s DQPSK signal, respectively....

  15. [Mental Imagery: Neurophysiology and Implications in Psychiatry].

    Science.gov (United States)

    Martínez, Nathalie Tamayo

    2014-03-01

    To provide an explanation about what mental imagery is and some implications in psychiatry. This article is a narrative literature review. There are many terms in which imagery representations are described in different fields of research. They are defined as perceptions in the absence of an external stimulus, and can be created in any sensory modality. Their neurophysiological substrate is almost the same as the one activated during sensory perception. There is no unified theory about its function, but it is possibly the way that our brain uses and manipulates the information to respond to the environment. Mental imagery is an everyday phenomenon, and when it occurs in specific patterns it can be a sign of mental disorders. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Neurophysiology of visual aura in migraine

    International Nuclear Information System (INIS)

    Shibata, Koichi

    2007-01-01

    Visual processing in migraine has been targeted because the visual symptoms that are commonly associated with attack, either in the form of aura or other more subtle symptoms, indicate that the visual pathways are involved in migrainous pathophysiology. The visual aura of the migraine attack has been explained by the cortical spreading depression (CSD) of Leao, neuroelectric event beginning in the occipital cortex and propagating into contiguous brain region. Clinical observations suggest that hyperexcitability occurs not only during the attack, typically in the form of photophobia, but also between attacks. Numerous human neuroimaging, neurophysiological and psychophysical studies have identified differences in cortical visual processing in migraine. The possibility of imaging the typical visual aura with BOLD functional MRI has revealed multiple neurovascular events in the occipital cortex within a single attack that closely resemble CSD. As transient synchronized neuronal excitation precedes CSD, changes in cortical excitability underlie the migraine attack. Independent evidence for altered neuronal excitability in migraineurs between attacks emerges from visual evoked potentials (VEPs) and transcranial magnetic stimulation (TMS), recordings of cortical potentials and psychophysics. Recently, both TMS and psychophysical studies measuring visual performance in migraineurs have used measures which presumably measure primary visual (V1) and visual association cortex. Our VEP and blink reflex study showed that migraine patients exhibiting allodynia might show central sensitization of braistem trigeminal neuron and had contrast modulation dysfunction during the cortical visual processing of V1 and visual association cortex in-between attacks. In pathophysiology of migraine, these neurophysiological and psychophysical studies indicate that abnormal visual and trigeminal hyperexcitability might persist between migraine attacks. The influence of migraine on cortical

  17. Polarization variablity among Wolf-Rayet stars. IV. A complete lack of circular polarization in the optical continuum

    International Nuclear Information System (INIS)

    Robert, C.; Moffat, A.F.J.

    1989-01-01

    Quasi-simultaneous blue and red, broadband optical monitoring in linear and circular polarization and in intensity has been carried out over an interval of three weeks for several Wolf-Rayet stars that show relatively large Delta P variations in linear polarization. No significant varying Delta V component of circular polarization is detected in any of these stars. The lower upper limit Delta V/Delta P implies that the intrinsic linearly polarized light which does vary cannot be produced by electrons gyrating in a magnetic field, unless they are ultrarelativistic - a rather unlikely situation. The low mean circular polarization typically observed is probably interstellar in origin. Lack of periodicity in the observed variations of linear polarization implies that even weak magnetic field loops are unlikely to be involved in confining pockets of wind plasma. The observed linear polarization variations are related mainly to electron scattering. 25 refs

  18. Optical 3D scans for orthodontic diagnostics performed on full-arch impressions. Completeness of surface structure representation.

    Science.gov (United States)

    Vogel, Annike B; Kilic, Fatih; Schmidt, Falko; Rübel, Sebastian; Lapatki, Bernd G

    2015-11-01

    The purpose of this work was to evaluate the completeness of surface structure representation offered by full-arch impression scans in different situations of tooth (mal)alignment and whether this completeness could be improved by performing rescans on the same impressions reduced sequentially to different levels of gingival height and by adding extra single scans to the number of single scans recommended by the manufacturer. Three pairs of full-arch resin models were used as reference, characterized either by normal occlusion, by anterior diastematic protrusion (and edentulous spaces in the lower posterior segments), or by anterior crowding. An alginate impression of each arch was taken and digitized with a structured-light scanner, followed by three rescans with the impression cut back to 10, 5, and 1 mm of gingival height. Both the initial scan and the rescans were performed both with 19 basic single scans and with 10 extra single scans. Each impression scan was analyzed for quantitative completeness relative to its homologous direct scan of the original resin model. In addition, the topography of voids in the resultant digital model was assessed by visual inspection. Compared to the homologous reference scans of the original resin models, completeness of the original impression scans--in the absence of both gingival cutback and extra single scans--was 97.23 ± 0.066% in the maxilla or 95.72 ± 0.070% in the mandible with normal occlusion, 91.11 ± 0.132% or 96.07 ± 0.109% in the arches with anterior diastematic protrusion, and 98.24 ± 0.085% or 93.39 ± 0.146% in those with anterior crowding. Gingival cutback and extra single scans were found to improve these values up to 100.35 ± 0.066% or 99.53 ± 0.070% in the arches with normal occlusion, 91.77 ± 0.132% or 97.95 ± 0.109% in those with anterior diastematic protrusion, and 98.59 ± 0.085% or 98.96 ± 0.146% in those with anterior crowding. In strictly quantitative terms, the impression scans did capture

  19. Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films

    International Nuclear Information System (INIS)

    Deb, M; Popova, E; Fouchet, A; Keller, N

    2012-01-01

    We performed a magneto-optical (MO) Faraday spectroscopy study of bismuth iron garnet Bi 3 Fe 5 O 12 thin single-crystalline films with thickness from 5 to 220 nm. The Faraday rotation and ellipticity spectra were measured for photon energies ranging from 1.7 to 4.2 eV. Using a model based on two electric dipole transitions associated with tetrahedral and octahedral iron sites, we successfully reproduce the observed rotation and ellipticity spectra. The sign of both site contributions to the Faraday rotation and ellipticity spectra has been used to interpret the complex thermal dependence of the Faraday rotation and ellipticity. For a Faraday ellipticity, anomalous hysteresis loops have been observed around specific photon energies. To explain the surprising shape of hysteresis loop, a model based on the superposition of two hysteresis loops with opposite sign associated with both sites is proposed. The modelling of these hysteresis loops allows accessing the magnetic properties of each individual sublattice. Finally, we have studied the dependence of the energy level parameters on bismuth content in Yi 3-x Bi x Fe 5 O 12 garnet and on the thickness of bismuth iron garnet. Based on this analysis, we show that MO spectroscopy is a fast and non-destructive technique to determine the bi-deficiency of BIG films.

  20. Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder).

    Science.gov (United States)

    Voon, Valerie; Cavanna, Andrea E; Coburn, Kerry; Sampson, Shirlene; Reeve, Alya; LaFrance, W Curt

    2016-01-01

    Much is known regarding the physical characteristics, comorbid symptoms, psychological makeup, and neuropsychological performance of patients with functional neurological disorders (FNDs)/conversion disorders. Gross neurostructural deficits do not account for the patients' deficits or symptoms. This review describes the literature focusing on potential neurobiological (i.e. functional neuroanatomic/neurophysiological) findings among individuals with FND, examining neuroimaging and neurophysiological studies of patients with the various forms of motor and sensory FND. In summary, neural networks and neurophysiologic mechanisms may mediate "functional" symptoms, reflecting neurobiological and intrapsychic processes.

  1. Influence of actual and virtual chess on neurophysiology and cognition

    African Journals Online (AJOL)

    ... activity, as required in the cognitive activity of planning and processing the consequences and sequels of alternative chess moves. Integrative findings have valuable implications for future neurophysiologic, neuropsychological and cognitive psychological assessment and training of players, clinicians and researchers.

  2. Advancing the Neurophysiological Understanding of Delirium.

    Science.gov (United States)

    Shafi, Mouhsin M; Santarnecchi, Emiliano; Fong, Tamara G; Jones, Richard N; Marcantonio, Edward R; Pascual-Leone, Alvaro; Inouye, Sharon K

    2017-06-01

    Delirium is a common problem associated with substantial morbidity and increased mortality. However, the brain dysfunction that leads some individuals to develop delirium in response to stressors is unclear. In this article, we briefly review the neurophysiologic literature characterizing the changes in brain function that occur in delirium, and in other cognitive disorders such as Alzheimer's disease. Based on this literature, we propose a conceptual model for delirium. We propose that delirium results from a breakdown of brain function in individuals with impairments in brain connectivity and brain plasticity exposed to a stressor. The validity of this conceptual model can be tested using Transcranial Magnetic Stimulation in combination with Electroencephalography, and, if accurate, could lead to the development of biomarkers for delirium risk in individual patients. This model could also be used to guide interventions to decrease the risk of cerebral dysfunction in patients preoperatively, and facilitate recovery in patients during or after an episode of delirium. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  3. Neurophysiology of Drosophila models of Parkinson's disease.

    Science.gov (United States)

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  4. A neurophysiological approach to tinnitus: clinical implications.

    Science.gov (United States)

    Jastreboff, P J; Hazell, J W

    1993-02-01

    This paper presents a neurophysiological approach to tinnitus and discusses its clinical implications. A hypothesis of discordant damage of inner and outer hair cells systems in tinnitus generation is outlined. A recent animal model has facilitated the investigation of the mechanisms of tinnitus and has been further refined to allow for the measurement of tinnitus pitch and loudness. The analysis of the processes involved in tinnitus detection postulates the involvement of an abnormal increase of gain within the auditory system. Moreover, it provides a basis for treating patients with hyperacusis, which we are considering to be a pre-tinnitus state. Analysis of the process of tinnitus perception allows for the possibility of facilitating the process of tinnitus habituation for the purpose of its alleviation. The combining of theoretical analysis with clinical findings has resulted in the creation of a multidisciplinary Tinnitus Centre. The foundation of the Centre focuses on two goals: the clinical goal is to remove tinnitus perception from the patient's consciousness, while directing research toward finding a mechanism-based method for the suppression of tinnitus generators and processes responsible for enhancement of tinnitus-related neuronal activity.

  5. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  6. Neurophysiological Correlates of Various Mental Perspectives

    Directory of Open Access Journals (Sweden)

    Thilo eHinterberger

    2014-08-01

    Full Text Available A common view of consciousness is that our mind presents emotions, experiences and images in an internal mental (re-presentation space which in a state of wakefulness is triggered by the world outside. Consciousness can be defined as the observation of this inner mental space. We propose a new model, in which the state of the conscious observer is defined by the observer’s mental position and focus of attention. The mental position of the observer can either be within the mental self (intrapersonal space, in the mental outer world (extrapersonal space or in an empathic connection, i.e. within the intrapersonal space of another person (perspective taking. The focus of attention can be directed towards the self or towards the outside world. This mental space model can help us to understand the patterns of relationships and interactions with other persons as they occur in social life.To investigate the neurophysiological correlates and discriminability of the different mental states, we conducted an EEG experiment measuring the brain activity of 16 subjects via 64 electrodes while they engaged in different mental positions (intrapersonal, extrapersonal, perspective taking with different attentional foci (self, object. Compared to external mental locations, internal ones showed significantly increased alpha2 power, especially when the observer was focusing on an object. Alpha2 and beta2 were increased in the empathic condition compared to the extrapersonal perspective. Delta power was significantly higher when the attentional focus was directed towards an object in comparison to the participant’s own self. This exploratory study demonstrates highly significant differences between various mental locations and foci, suggesting that the proposed categories of mental location and intra- and interpersonal attentional foci are not only helpful theoretical concepts but are also physiologically relevant and therefore may relate to basic brain processing

  7. Customizable cap implants for neurophysiological experimentation.

    Science.gov (United States)

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C

    2018-04-22

    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. Neurophysiologic intraoperative monitoring of the vestibulocochlear nerve.

    Science.gov (United States)

    Simon, Mirela V

    2011-12-01

    Neurosurgical procedures involving the skull base and structures within can pose a significant risk of damage to the brain stem and cranial nerves. This can have life-threatening consequences and/or result in devastating neurologic deficits. Over the past decade, intraoperative neurophysiology has significantly evolved and currently offers a great tool for live monitoring of the integrity of nervous structures. Thus, dysfunction can be identified early and prompt modification of the surgical management or operating conditions, leads to avoidance of permanent structural damage.Along these lines, the vestibulocochlear nerve (CN VIII) and, to a greater extent, the auditory pathways as they pass through the brain stem are especially at risk during cerebelopontine angle (CPA), posterior/middle fossa, or brain stem surgery. CN VIII can be damaged by several mechanisms, from vascular compromise to mechanical injury by stretch, compression, dissection, and heat injury. Additionally, cochlea itself can be significantly damaged during temporal bone drilling, by noise, mechanical destruction, or infarction, and because of rupture, occlusion, or vasospasm of the internal auditory artery.CN VIII monitoring can be successfully achieved by live recording of the function of one of its parts, the cochlear or auditory nerve (AN), using the brain stem auditory evoked potentials (BAEPs), electrocochleography (ECochG), and compound nerve action potentials (CNAPs) of the cochlear nerve.This is a review of these techniques, their principle, applications, methodology, interpretation of the evoked responses, and their change from baseline, within the context of surgical and anesthesia environments, and finally the appropriate management of these changes.

  9. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  10. [Cost analysis of intraoperative neurophysiological monitoring (IOM)].

    Science.gov (United States)

    Kombos, T; Suess, O; Brock, M

    2002-01-01

    A number of studies demonstrate that a significant reduction of postoperative neurological deficits can be achieved by applying intraoperative neurophysiological monitoring (IOM) methods. A cost analysis of IOM is imperative considering the strained financial situation in the public health services. The calculation model presented here comprises two cost components: material and personnel. The material costs comprise consumer goods and depreciation of capital goods. The computation base was 200 IOM cases per year. Consumer goods were calculated for each IOM procedure respectively. The following constellation served as a basis for calculating personnel costs: (a) a medical technician (salary level BAT Vc) for one hour per case; (b) a resident (BAT IIa) for the entire duration of the measurement, and (c) a senior resident (BAT Ia) only for supervision. An IOM device consisting of an 8-channel preamplifier, an electrical and acoustic stimulator and special software costs 66,467 euros on the average. With an annual depreciation of 20%, the costs are 13,293 euros per year. This amounts to 66.46 euros per case for the capital goods. For reusable materials a sum of 0.75 euro; per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euro; per case were,s a sum of 0.75 euros per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euros per case were, calculated for surgery on the peripheral nervous system. They amount to 196.40 euros per case for spinal interventions and to 347.63 euros per case for more complex spinal operations. Operations in the cerebellopontine angle and brain stem cost 376.63 euros and 397.33 euros per case respectively. IOM costs amount to 328.03 euros per case for surgical management of an intracranial aneurysm and to 537.15 euros per case for functional interventions. Expenses run up to 833.63 euros per case for operations near the

  11. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  12. Behavioural and neurophysiological study of olfactory perception and learning in honeybees

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eSandoz

    2011-12-01

    Full Text Available The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioural and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odours, based on behavioural, neuroanatomical and neurophysiological approaches. I first address the behavioural study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odour-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odour representation changes as a result of experience. This impressive ensemble of behavioural, neuroanatomical and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.

  13. Pygopagus Conjoined Twins: A Neurophysiologic Intraoperative Monitoring Schema.

    Science.gov (United States)

    Cromeens, Barrett P; McKinney, Jennifer L; Leonard, Jeffrey R; Governale, Lance S; Brown, Judy L; Henry, Christina M; Levitt, Marc A; Wood, Richard J; Besner, Gail E; Islam, Monica P

    2017-03-01

    Conjoined twins occur in up to 1 in 50,000 live births with approximately 18% joined in a pygopagus configuration at the buttocks. Twins with this configuration display symptoms and carry surgical risks during separation related to the extent of their connection which can include anorectal, genitourinary, vertebral, and neural structures. Neurophysiologic intraoperative monitoring for these cases has been discussed in the literature with variable utility. The authors present a case of pygopagus twins with fused spinal cords and imperforate anus where the use of neurophysiologic intraoperative monitoring significantly impacted surgical decision-making in division of these critical structures.

  14. Introductory editorial to ?Orgasm: Neurophysiological, Psychological, and Evolutionary Perspectives?

    OpenAIRE

    Klimaj, Victoria; Safron, Adam

    2016-01-01

    No abstract available.(Published: 25 October 2016)Citation: Socioaffective Neuroscience & Psychology 2016, 6: 33598 - http://dx.doi.org/10.3402/snp.v6.33598This paper is part of the Special Issue: Orgasm: Neurophysiological, Psychological, and Evolutionary Perspectives. More papers from this issue can be found at www.socioaffectiveneuroscipsychol.net

  15. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia.

    NARCIS (Netherlands)

    Teo, J.T.; Warrenburg, B.P.C. van de; Schneider, S.A.; Rothwell, J.C.; Bhatia, K.P.

    2009-01-01

    Recent studies have suggested that there may be functional and structural changes in the cerebellum of patients with adult onset primary focal dystonia. The aim of this study was to establish whether there is any neurophysiological indicator of abnormal cerebellar function, using the classic

  16. Neurophysiological responses during cooking food associated with different emotions

    NARCIS (Netherlands)

    Brouwer, A.M.; Hogervorst, M.A.; Grootjen, M.; Erp, J.B.F. van; Zandstra, E.H.

    2017-01-01

    Neurophysiological correlates of affective experience could potentially provide continuous information about a person’s experience when cooking and tasting food, without explicitly verbalizing this. Such measures would be helpful to understand people’s implicit food preferences and choices. This

  17. Neurophysiological influence of musical training on speech perception.

    Science.gov (United States)

    Shahin, Antoine J

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL.

  18. Backwards and Forwards: Behavioral and Neurophysiological Investigations into Dependency Processing

    Science.gov (United States)

    Witzel, Jeffrey D.

    2010-01-01

    This dissertation examines the processing of sentences involving long-distance linguistic dependencies, or sentences containing elements that must be linked across intervening words and phrases. Specifically, both behavioral (self-paced reading and eye tracking) and neurophysiological (electroencephalography) methods were used (a) to evaluate the…

  19. Serial neurophysiological and neurophysiological examinations for delayed facial nerve palsy in a patient with Fisher syndrome.

    Science.gov (United States)

    Umekawa, Motoyuki; Hatano, Keiko; Matsumoto, Hideyuki; Shimizu, Takahiro; Hashida, Hideji

    2017-05-27

    The patient was a 47-year-old man who presented with diplopia and gait instability with a gradual onset over the course of three days. Neurological examinations showed ophthalmoplegia, diminished tendon reflexes, and truncal ataxia. Tests for anti-GQ1b antibodies and several other antibodies to ganglioside complex were positive. We made a diagnosis of Fisher syndrome. After administration of intravenous immunoglobulin, the patient's symptoms gradually improved. However, bilateral facial palsy appeared during the recovery phase. Brain MRI showed intensive contrast enhancement of bilateral facial nerves. During the onset phase of facial palsy, the amplitude of the compound muscle action potential (CMAP) in the facial nerves was preserved. During the peak phase, the facial CMAP amplitude was within the lower limit of normal values, or mildly decreased. During the recovery phase, the CMAP amplitude was normalized, and the R1 and R2 responses of the blink reflex were prolonged. The delayed facial nerve palsy improved spontaneously, and the enhancement on brain MRI disappeared. Serial neurophysiological and neuroradiological examinations suggested that the main lesions existed in the proximal part of the facial nerves and the mild lesions existed in the facial nerve terminals, probably due to reversible conduction failure.

  20. Neurophysiological criteria in the diagnosis of different clinical types of Guillain-Barre syndrome.

    Science.gov (United States)

    Kalita, J; Misra, U K; Das, M

    2008-03-01

    The diagnostic yield of various neurophysiological criteria may vary in different subforms of Guillain-Barre syndrome (GBS), whose prevalence varies in different geographical areas. To evaluate the sensitivity of various neurophysiological criteria in different clinical subtypes of GBS, and their relationship with severity, duration and outcome. Consecutive patients with GBS underwent detailed clinical evaluation. Severity was graded on a scale from 0 to 10. Motor and sensory nerve conductions and F wave studies were performed. The diagnostic sensitivity of Albers et al (set 1), Cornblath (set 2), Ho et al (set 3), Dutch GBS study group (set 4), Italian GBS study group (set 5) and Albers and Kelly (set 6) criteria were evaluated and correlated with clinical subtypes of GBS, duration, severity and outcome. There were 51 patients. Mean disability was 6.8; 34 patients were bedridden and five needed a ventilator. Clinical presentation was pure motor in 31, motorsensory in 18 and pure sensory in two patients. The sensitivity of nerve conduction study in the diagnosis of GBS was highest in set 1 (88.2%) followed by set 3 (86.3%) and set 4 (82.4%) and lowest in set 2 (39.2%). The diagnostic yield of sets 1, 3 and 4 were also higher than sets 2, 5 and 6 in different clinical subtypes of GBS. As per Ho et al, patients could be categorised into acute inflammatory demyelinating polyradiculoneuropathy (44 (86.3%)), acute motor axonal neuropathy (4 (7.8%)) and acute motor sensory axonal neuropathy (3 (5.9%)). One (2%) patient died, 22.4% had complete, 57.1% partial and 18.4% poor recovery at 3 months. Outcome was related to severity of illness and compound muscle action potential (CMAP) amplitude. The sensitivity of different neurophysiological criteria in the diagnosis of Indian GBS patients varied from 39.2% to 88.2%. The outcome was related to severity of illness and CMAP amplitude.

  1. Neurophysiological Correlates of Attentional Fluctuation in Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Cheung, Celeste H M; McLoughlin, Gráinne; Brandeis, Daniel; Banaschewski, Tobias; Asherson, Philip; Kuntsi, Jonna

    2017-05-01

    Cognitive performance in attention-deficit/hyperactivity disorder (ADHD) is characterised, in part, by frequent fluctuations in response speed, resulting in high reaction time variability (RTV). RTV captures a large proportion of the genetic risk in ADHD but, importantly, is malleable, improving significantly in a fast-paced, rewarded task condition. Using the temporal precision offered by event-related potentials (ERPs), we aimed to examine the neurophysiological measures of attention allocation (P3 amplitudes) and preparation (contingent negative variation, CNV), and their associations with the fluctuating RT performance and its improvement in ADHD. 93 participants with ADHD and 174 controls completed the baseline and fast-incentive conditions of a four-choice reaction time task, while EEG was simultaneously recorded. Compared to controls, individuals with ADHD showed both increased RTV and reduced P3 amplitudes during performance on the RT task. In the participants with ADHD, attenuated P3 amplitudes were significantly associated with high RTV, and the increase in P3 amplitudes from a slow baseline to a fast-paced, rewarded condition was significantly associated with the RTV decrease. Yet, the individuals with ADHD did not show the same increase in CNV from baseline to fast-incentive condition as observed in controls. ADHD is associated both with a neurophysiological impairment of attention allocation (P3 amplitudes) and an inability to adjust the preparatory state (CNV) in a changed context. Our findings suggest that both neurophysiological and cognitive performance measures of attention are malleable in ADHD, which are potential targets for non-pharmacological interventions.

  2. Neuroanatomy, neurophysiology, and dysfunction of the female lower urinary tract: a review.

    Science.gov (United States)

    Unger, Cécile A; Tunitsky-Bitton, Elena; Muffly, Tyler; Barber, Matthew D

    2014-01-01

    The 2 major functions of the lower urinary tract are the storage and emptying of urine. These processes are controlled by complex neurophysiologic mechanisms and are subject to injury and disease. When there is disruption of the neurologic control centers, dysfunction of the lower urinary tract may occur. This is sometimes referred to as the "neurogenic bladder." The manifestation of dysfunction depends on the level of injury and severity of disruption. Patients with lesions above the spinal cord often have detrusor overactivity with no disruption in detrusor-sphincter coordination. Patients with well-defined suprasacral spinal cord injuries usually present with intact reflex detrusor activity but have detrusor sphincter dyssynergia, whereas injuries to or below the sacral spinal cord usually lead to persistent detrusor areflexia. A complete gynecologic, urologic, and neurologic examination should be performed when evaluating patients with neurologic lower urinary tract dysfunction. In addition, urodynamic studies and neurophysiologic testing can be used in certain circumstances to help establish diagnosis or to achieve better understanding of a patient's vesicourethral functioning. In the management of neurogenic lower urinary tract dysfunction, the primary goal is improvement of a patient's quality of life. Second to this is the prevention of chronic damage to the bladder and kidneys, which can lead to worsening impairment and symptoms. Treatment is often multifactorial, including behavioral modifications, bladder training programs, and pharmacotherapy. Surgical procedures are often a last resort option for management. An understanding of the basic neurophysiologic mechanisms of the lower urinary tract can guide providers in their evaluation and treatment of patients who present with lower urinary tract disorders. As neurologic diseases progress, voiding function often changes or worsens, necessitating a good understanding of the underlying physiology in question.

  3. Parsec-Scale Radio Structure and Broad Optical Emission Lines in a Complete Sample of 3CR Lobe-dominated Quasars

    Science.gov (United States)

    Hough, D. H.; Vermeulen, R. C.; Readhead, A. C. S.; Cross, L. L.; Barth, E. L.; Yu, L. H.; Beyer, P. J.; Phifer, E. M.

    2002-03-01

    We present results from VLBI observations of 24 of the 25 lobe-dominated quasars (LDQs) in the 3CR complete sample and from optical spectrophotometry of 14 of these objects. The VLBI observations were made with a variety of arrays-most recently the Very Long Baseline Array-at frequencies ranging from 5 to 22 GHz during the period 1981-1997. The optical spectra were obtained with the Hale 200 inch (5 m) telescope at Palomar Observatory, using the blue and red CCDs of the Double Spectrograph, between 1984 and 1992. The radio nuclei range in strength over nearly 3 orders of magnitude, from ~0.9 Jy down to ~3 mJy, and were imaged at typical resolutions of ~0.5-1.0 mas and sensitivities of ~0.1-0.2 mJy beam-1. All 24 LDQs show detectable radio structure in their nuclei. All 19 objects for which VLBI images could be made show one-sided nuclear jets, often several milliarcseconds in length and significantly curved, on the same side of the compact core as the one-sided large-scale jets seen on Very Large Array images. No counterjets were observed; jet-to-counterjet ratios that virtually all exceed ~10 suggest that these objects are all oriented within ~70° to the line of sight. For the 10 sources in which parsec-scale jet speeds could be estimated, the well-defined motions range from orientations, it is more easily accomodated by a restricted range of orientations. Evidence for slower jet speeds and larger apparent bends close to the core support the concept of a ``transition'' zone in the inner few parsecs of these jets. There are significant correlations among the prominences of the cores and jets, relative jet length, maximum jet deflection angles, and variability amplitude, as well as possible trends involving jet speed and strength of compact jet knots; furthermore, these objects tend to exhibit flat-spectrum cores and steep-spectrum jets. These results are all consistent with orientation-dependent relativistic beaming effects and unification of core- and lobe

  4. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.

    Science.gov (United States)

    Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L

    2015-03-01

    In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.

  5. EEG INTERFACE MODULE FOR COGNITIVE ASSESSMENT THROUGH NEUROPHYSIOLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Kundan Lal Verma

    2014-12-01

    Full Text Available The cognitive signal processing is one of the important interdisciplinary field came from areas of life sciences, psychology, psychiatry, engi-neering, mathematics, physics, statistics and many other fields of research. Neurophysiologic tests are utilized to assess and treat brain injury, dementia, neurological conditions, and useful to investigate psychological and psychiatric disorders. This paper presents an ongoing research work on development of EEG interface device based on the principles of cognitive assessments and instrumentation. The method proposed engineering and science of cogni-tive signal processing in case of brain computer in-terface based neurophysiologic tests. The future scope of this study is to build a low cost EEG device for various clinical and pre-clinical applications with specific emphasis to measure the effect of cognitive action on human brain.

  6. DNA methylation regulates neurophysiological spatial representation in memory formation

    Directory of Open Access Journals (Sweden)

    Eric D. Roth

    2015-04-01

    Full Text Available Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here, we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single-unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together, our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  7. DNA methylation regulates neurophysiological spatial representation in memory formation.

    Science.gov (United States)

    Roth, Eric D; Roth, Tania L; Money, Kelli M; SenGupta, Sonda; Eason, Dawn E; Sweatt, J David

    2015-04-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation.

  8. Tinnitus sensitization: a neurophysiological pathway of chronic complex tinnitus.

    Science.gov (United States)

    Zenner, Hans P

    2006-01-01

    A novel neuro- and psychophysiological pathway for central cognition of tinnitus, i.e. tinnitus sensitization, is presented here. As a complement to the neurophysiological pathway for the conditioned reflex according to Jastreboff, which permits therapeutic procedures to bring about an extinction of the tinnitus (e.g. by the acoustic tinnitus retraining therapy), sensitization can be treated with procedures that act at the cognitive level. Since on the one hand therapeutic extinction procedures (e.g. the therapeutic application of sound) are still to be proven effective in controlled studies, while on the other cognitive interventions such as cognitive behavioral therapies have in fact acquired evidence level IIa in prospective studies, it is indeed appropriate to discuss whether the earlier neurophysiological model of a conditioned reflex is sufficient on its own, and whether in fact it needs to be complemented with the sensitization model.

  9. Neurophysiological findings relevant to echolocation in marine animals

    Science.gov (United States)

    Bullock, T. H.; Ridgway, S. H.

    1972-01-01

    A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz).

  10. Human skin wetness perception: psychophysical and neurophysiological bases

    Science.gov (United States)

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  11. Neurophysiological Markers of Emotion Processing in Burnout Syndrome.

    Science.gov (United States)

    Golonka, Krystyna; Mojsa-Kaja, Justyna; Popiel, Katarzyna; Marek, Tadeusz; Gawlowska, Magda

    2017-01-01

    The substantial body of research employing subjective measures indicates that burnout syndrome is associated with cognitive and emotional dysfunctions. The growing amount of neurophysiological and neuroimaging research helps in broadening existing knowledge of the neural mechanisms underlying core burnout components (emotional exhaustion and depersonalization/cynicism) that are inextricably associated with emotional processing. In the presented EEG study, a group of 93 participants (55 women; mean age = 35.8) were selected for the burnout group or the demographically matched control group on the basis of the results of the Maslach Burnout Inventory - General Survey (MBI-GS) and the Areas of Worklife Survey (AWS). Subjects then participated in an EEG experiment using two experimental procedures: a facial recognition task and viewing of passive pictures. The study focuses on analyzing event-related potentials (ERPs): N170, VPP, EPN, and LPP, as indicators of emotional information processing. Our results show that burnout subjects, as compared to the control group, demonstrate significantly weaker response to affect-evoking stimuli, indexed by a decline in VPP amplitude to emotional faces and decreased EPN amplitude in processing emotional scenes. The analysis of N170 and LPP showed no significant between-group difference. The correlation analyses revealed that VPP and EPN, which are ERP components related to emotional processing, are associated with two core burnout symptoms: emotional exhaustion and cynicism. To our knowledge, we are one of the first research groups to use ERPs to demonstrate such a relationship between neurophysiological activity and burnout syndrome in the context of emotional processing. Thus, in conclusion we emphasized that the decreased amplitude of VPP and EPN components in the burnout group may be a neurophysiological manifestation of emotional blunting and may be considered as neurophysiological markers of emotional exhaustion and cynicism

  12. Neurophysiologic Correlates of Post-Stroke Mood and Emotional Control

    Directory of Open Access Journals (Sweden)

    Deniz Doruk

    2016-08-01

    Full Text Available Objective: Emotional disturbance is a common complication of stroke significantly affecting functional recovery and quality of life. Identifying relevant neurophysiologic markers associated with post-stroke emotional disturbance may lead to a better understanding of this disabling condition, guiding the diagnosis, development of new interventions and the assessments of treatment response. Methods: Thirty-five subjects with chronic stroke were enrolled in this study. The emotion sub-domain of Stroke Impact Scale (SIS-Emotion was used to assess post-stroke mood and emotional control. The relation between SIS-Emotion and neurophysiologic measures was assessed by using covariance mapping and univariate linear regression. Multivariate analyses were conducted to identify and adjust for potential confounders. Neurophysiologic measures included power asymmetry and coherence assessed by electroencephalography (EEG; and motor threshold, intracortical inhibition (ICI and intracortical facilitation (ICF measured by transcranial magnetic stimulation (TMS. Results: Lower scores on SIS-Emotion was associated with 1 frontal EEG power asymmetry in alpha and beta bands, 2 central EEG power asymmetry in alpha and theta bands, and 3 lower inter-hemispheric coherence over frontal and central areas in alpha band. SIS-Emotion also correlated with higher ICF and MT in the unlesioned hemisphere as measured by TMS. Conclusions: To our knowledge, this is the first study using EEG and TMS to index neurophysiologic changes associated with post-stroke mood and emotional control. Our results suggest that inter-hemispheric imbalance measured by EEG power and coherence, as well as an increased intracortical facilitation in the unlesioned hemisphere measured by TMS might be relevant markers associated with post-stroke mood and emotional control which can guide future studies investigating new diagnostic and treatment modalities in stroke rehabilitation.

  13. Intraoperative neurophysiology of the conus medullaris and cauda equina.

    Science.gov (United States)

    Kothbauer, Karl F; Deletis, Vedran

    2010-02-01

    Intraoperative neurophysiological techniques are becoming routine tools for neurosurgical practice. Procedures affecting the lumbosacral nervous system are frequent in adult and pediatric neurosurgery. This review provides an overview of the techniques utilized in cauda and conus operations. Two basic methodologies of intraoperative neurophysiological testing are utilized during surgery in the lumbosacral spinal canal. Mapping techniques help identify functional neural structures, namely, nerve roots and their respective spinal levels. Monitoring is referred to as the technology to continuously assess the functional integrity of pathways and reflex circuits. For mapping direct electrical stimulation of a structure within the surgical field and recording at a distant site, usually a muscle is the most commonly used setup. Sensory nerve roots or spinal cord areas can be mapped by stimulation of a distant sensory nerve or skin area and recording from a structure within the surgical field. Continuous monitoring of the motor system is done with motor evoked potentials. These are evoked by transcranial electrical stimulation and recorded from lower extremity and sphincter muscles. Presence or absence of muscle responses are the monitored parameters. To monitor the sensory pathways, sensory potentials evoked by tibial, peroneal, or pudendal nerve stimulation and recorded from the dorsal columns with a spinal electrode or as cortical responses from scalp electrodes are used. Amplitudes and latencies of these responses are measured for interpretation. The bulbocavernosus reflex, with stimulation of the pudendal nerve and recording from the external anal sphincter, is used for continuous monitoring of the reflex circuitry. The presence of absence of this response is the pertinent parameter monitored. Stimulation of individual dorsal nerve roots is used to identify those segments that generate spastic activity and which may be cut during selective dorsal rhizotomy

  14. Neurophysiological basis of rehabilitation of adolescent idiopathic scoliosis.

    Science.gov (United States)

    Smania, Nicola; Picelli, Alessandro; Romano, Michele; Negrini, Stefano

    2008-01-01

    Knowledge on mechanisms of neurophysiological control of trunk movement and posture could help in the development of rehabilitation programs and brace treatment in adolescent idiopathic scoliosis (AIS). Reviewing up-to-date research on neurophysiology of movement and posture control with the aim of providing basis for new researches in the field of AIS rehabilitation and background understanding for clinicians engaged in management of AIS. Review of literature. We considered several neurophysiological issues relevant for AIS rehabilitation, namely, the peculiar organization of patterns of trunk muscle recruitment, the structure of the neural hardware subserving axial and arm muscle control, and the relevance of cognitive systems allowing mapping of spatial coordinates and building of body schema. We made clear the reason why trunk control is generally carried out by means of very fast, feedforward or feedback driven patterns of muscle activation which are deeply rooted in our neural control system and very difficult to modify by training. We hypothesized that augmented sensory feedback and strength exercises could be an important stage in a rehabilitation program aimed at hindering, or possibly reversing, scoliosis progression. In this context we considered bracing not only as a corrective biomechanical device but also as a tool for continuous sensory stimulation that could help awareness of body misalignment. Future research aimed at developing strategies of trunk postural control learning is essential in the rehabilitation of adolescent idiopathic scoliosis.

  15. Memory formation during anaesthesia: plausibility of a neurophysiological basis

    Science.gov (United States)

    Veselis, R. A.

    2015-01-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of ‘hidden’ memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. PMID:25735711

  16. Memory formation during anaesthesia: plausibility of a neurophysiological basis.

    Science.gov (United States)

    Veselis, R A

    2015-07-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of 'hidden' memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Neurophysiological symptoms and aspartame: What is the connection?

    Science.gov (United States)

    Choudhary, Arbind Kumar; Lee, Yeong Yeh

    2018-06-01

    Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.

  18. Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review.

    Science.gov (United States)

    Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L

    2013-01-01

    Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.

  19. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  20. Benefit of neurophysiologic monitoring for pediatric cardiac surgery.

    Science.gov (United States)

    Austin, E H; Edmonds, H L; Auden, S M; Seremet, V; Niznik, G; Sehic, A; Sowell, M K; Cheppo, C D; Corlett, K M

    1997-11-01

    Pediatric patients undergoing repair of congenital cardiac abnormalities have a significant risk of an adverse neurologic event. Therefore this retrospective cohort study examined the potential benefit of interventions based on intraoperative neurophysiologic monitoring in decreasing both postoperative neurologic sequelae and length of hospital stay as a cost proxy. With informed parental consent approved by the institutional review board, electroencephalography, transcranial Doppler ultrasonic measurement of middle cerebral artery blood flow velocity, and transcranial near-infrared cerebral oximetry were monitored in 250 patients. An interventional algorithm was used to detect and correct specific deficiencies in cerebral perfusion or oxygenation or to increase cerebral tolerance to ischemia or hypoxia. Noteworthy changes in brain perfusion or metabolism were observed in 176 of 250 (70%) patients. Intervention that altered patient management was initially deemed appropriate in 130 of 176 (74%) patients with neurophysiologic changes. Obvious neurologic sequelae (i.e., seizure, movement, vision or speech disorder) occurred in five of 74 (7%) patients without noteworthy change, seven of 130 (6%) patients with intervention, and 12 of 46 (26%) patients without intervention (p = 0.001). Survivors' median length of stay was 6 days in the no-change and intervention groups but 9 days in the no-intervention group. In addition, the percentage of patients in the no-intervention group discharged from the hospital within 1 week (32%) was significantly less than that in either the intervention (51%, p = 0.05) or no-change (58%, p = 0.01) groups. On the basis of an estimated hospital neurologic complication cost of $1500 per day, break-even analysis justified a hospital expenditure for neurophysiologic monitoring of $2142 per case. Interventions based on neurophysiologic monitoring appear to decrease the incidence of postoperative neurologic sequelae and reduce the length of stay

  1. Customer needs, expectations, and satisfaction with clinical neurophysiology services in Ireland: a case for tele-neurophysiology development.

    Science.gov (United States)

    Fitzsimons, M; Ronan, L; Murphy, K; Browne, G; Connolly, S; McMenamin, J; Delanty, N

    2004-01-01

    Although equitable access to services should be based on need, geographical location of patients and their clinicians can give rise to inequalities in healthcare delivery. Development of tele-medicine services can improve equity of access. The specialty of Clinical Neurophysiology (CN), currently under-developed in Ireland provides an example of such potential. This study aimed to determine the needs, expectations, and satisfaction of CN customers, namely patients and referring clinicians. The goal was to examine geographical impediments to access that might be addressed by the introduction of tele-neurophysiology. Two customer surveys were conducted: CN referring clinicians and CN patients. Thirty-one North Western Health Board (NWHB) consultant clinicians responded to a postal survey. Distance and delays caused by long waiting lists were felt to deter or make CN referral irrelevant. Ninety-seven percent believed the lack of a local service negatively impacts on patient management and 93% would welcome the introduction of a tele-neurophysiology service. The geographical location of patient's residence and/or the location of the referring clinician's practice influenced waiting lists for CN. Fifty-eight (105/182) percent of patients living in a region with a CN service compared to 39% (50/128) of those living in a region with no service received an appointment within one month. In addition to the current insufficient CN service capacity in Ireland, these surveys highlighted geographical inequities. Tele-neurophysiology has the potential to speed-up diagnosis, result in more patients being appropriately investigated and be fairer to patients.

  2. Intelligence and Neurophysiological Markers of Error Monitoring Relate to Children's Intellectual Humility.

    Science.gov (United States)

    Danovitch, Judith H; Fisher, Megan; Schroder, Hans; Hambrick, David Z; Moser, Jason

    2017-09-18

    This study explored developmental and individual differences in intellectual humility (IH) among 127 children ages 6-8. IH was operationalized as children's assessment of their knowledge and willingness to delegate scientific questions to experts. Children completed measures of IH, theory of mind, motivational framework, and intelligence, and neurophysiological measures indexing early (error-related negativity [ERN]) and later (error positivity [Pe]) error-monitoring processes related to cognitive control. Children's knowledge self-assessment correlated with question delegation, and older children showed greater IH than younger children. Greater IH was associated with higher intelligence but not with social cognition or motivational framework. ERN related to self-assessment, whereas Pe related to question delegation. Thus, children show separable epistemic and social components of IH that may differentially contribute to metacognition and learning. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  3. Neurophysiology of the "Celiac Brain": Disentangling Gut-Brain Connections.

    Science.gov (United States)

    Pennisi, Manuela; Bramanti, Alessia; Cantone, Mariagiovanna; Pennisi, Giovanni; Bella, Rita; Lanza, Giuseppe

    2017-01-01

    Celiac disease (CD) can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS) excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG), multimodal evoked potentials, and transcranial magnetic stimulation (TMS). The evidence examined here seems to converge on an overall profile of "hyperexcitable celiac brain," which partially recovers after institution of a gluten-free diet (GFD). The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.

  4. Neurophysiological aspects of the trigeminal sensory system: an update.

    Science.gov (United States)

    Van der Cruyssen, Frederic; Politis, Constantinus

    2018-02-23

    The trigeminal system is one of the most complex cranial nerve systems of the human body. Research on it has vastly grown in recent years and concentrated more and more on molecular mechanisms and pathophysiology, but thorough reviews on this topic are lacking, certainly on the normal physiology of the trigeminal sensory system. Here we review the current literature on neurophysiology of the trigeminal nerve from peripheral receptors up to its central projections toward the somatosensory cortex. We focus on the most recent scientific discoveries and describe historical relevant research to substantiate further. One chapter on new insights of the pathophysiology of pain at the level of the trigeminal system is added. A database search of Medline, Embase and Cochrane was conducted with the search terms 'animal study', 'neurophysiology', 'trigeminal', 'oral' and 'sensory'. Articles were manually selected after reading the abstract and where needed the article. Reference lists also served to include relevant research articles. Fifty-six articles were included after critical appraisal. Physiological aspects on mechanoreceptors, trigeminal afferents, trigeminal ganglion and central projections are reviewed in light of reference works. Embryologic and anatomic insights are cited where needed. A brief description of pathophysiology of pain pathways in the trigeminal area and recent advances in dental stem cell research are also discussed. Neurophysiology at the level of the central nervous system is not reviewed. The current body of knowledge is mainly based on animal and cadaveric studies, but recent advancements in functional imaging and molecular neuroscience are elucidating the pathways and functioning of this mixed nerve system. Extrapolation of animal studies or functioning of peripheral nerves should be warranted.

  5. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations

    Science.gov (United States)

    Koester, Dirk; Schack, Thomas

    2016-01-01

    Handling our everyday life, we often react manually to verbal requests or instruction, but the functional interrelations of motor control and language are not fully understood yet, especially their neurophysiological basis. Here, we investigated whether specific motor representations for grip types interact neurophysiologically with conceptual information, that is, when reading nouns. Participants performed lexical decisions and, for words, executed a grasp-and-lift task on objects of different sizes involving precision or power grips while the electroencephalogram was recorded. Nouns could denote objects that require either a precision or a power grip and could, thus, be (in)congruent with the performed grasp. In a control block, participants pointed at the objects instead of grasping them. The main result revealed an event-related potential (ERP) interaction of grip type and conceptual information which was not present for pointing. Incongruent compared to congruent conditions elicited an increased positivity (100–200 ms after noun onset). Grip type effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at left anterior electrodes). These findings attest that grip type and conceptual information are functionally related when planning a grasping action but such an interaction could not be detected for pointing. Generally, the results suggest that control of behaviour can be modulated by task demands; conceptual noun information (i.e., associated action knowledge) may gain processing priority if the task requires a complex motor response. PMID:27973539

  6. Neurophysiology of action anticipation in athletes: A systematic review.

    Science.gov (United States)

    Smith, Daniel M

    2016-01-01

    The purpose of this study was to provide a systematic review of action anticipation studies using functional neuroimaging or brain stimulation during a sport-specific anticipation task. A total of 15 studies from 2008 to 2014 were evaluated and are reported in four sections: expert-novice samples, action anticipation tasks, neuroimaging and stimulation techniques, and key findings. Investigators examined a wide range of action anticipation scenarios specific to eight different sports and utilized functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and transcranial magnetic stimulation (TMS). Expert-novice comparisons were commonly used to investigate differences in action anticipation performance and neurophysiology. Experts tended to outperform novices, and an extensive array of brain structures were reported to be involved differently for experts and novices during action anticipation. However, these neurophysiological findings were generally inconsistent across the studies reviewed. The discussion focuses on strengths and four key limitations. The conclusion posits remaining questions and recommendations for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Early neurophysiological indices of second language morphosyntax learning.

    Science.gov (United States)

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-02-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Exogenous Cortisol Administration; Effects on Risk Taking Behavior, Exercise Performance, and Physiological and Neurophysiological Responses.

    Science.gov (United States)

    Robertson, Caroline V; Immink, Maarten A; Marino, Frank E

    2016-01-01

    Rationale: Exogenous cortisol is a modulator of behavior related to increased motivated decision making (Putman et al., 2010), where risky choices yield potentially big reward. Making risk based judgments has been shown to be important to athletes in optimizing pacing during endurance events (Renfree et al., 2014; Micklewright et al., 2015). Objectives: Therefore, the aims of this study were to examine the effect of 50 mg exogenous cortisol on neurophysiological responses and risk taking behavior in nine healthy men. Further to this, to examine the effect of exogenous cortisol on exercise performance. Methods: Using a double blind counterbalanced design, cyclists completed a placebo (PLA), and a cortisol (COR) trial (50 mg cortisol), with drug ingestion at 0 min. Each trial consisted of a rest period from 0 to 60 min, followed by a risk taking behavior task, a 30 min time trial (TT) with 5 × 30 s sprints at the following time intervals; 5, 11, 17, 23, and 29 min. Salivary cortisol (SaCOR), Electroencephalography (EEG) and Near Infrared Spectroscopy (NIRs) were measured at 15, 30, 45, and 60 min post-ingestion. Glucose and lactate samples were taken at 0 and 60 min post-ingestion. During exercise, power output (PO), heart rate (HR), EEG, and NIRS were measured. SaCOR was measured 10 min post-exercise. Results: Cortisol increased risk taking behavior from baseline testing. This was in line with significant neurophysiological changes at rest and during exercise. At rest, SaCOR levels were higher ( P exogenous cortisol on exercise performance. These results are in line with previous research showing altered risk taking behavior following exogenous cortisol, however the altered behavior did not translate into changes in exercise performance.

  9. Behavioural and neurophysiological evidence for face identity and face emotion processing in animals

    Science.gov (United States)

    Tate, Andrew J; Fischer, Hanno; Leigh, Andrea E; Kendrick, Keith M

    2006-01-01

    Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task. PMID:17118930

  10. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD

    Science.gov (United States)

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L.; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F.; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD…

  11. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  12. [Clinical and neurophysiological heterogeneity of attention deficit hyperactivity disorder].

    Science.gov (United States)

    Chutko, L S; Yakovenko, E A; Surushkina, S Yu; Anisimova, T I; Kropotov, Yu D

    To determine clinical/neurophysiological characteristics of different forms of attention deficit hyperactivity disorder (ADHD) and the efficacy of treatment with cerebrolysin. Sixty children, aged 9 to 12 years, with ADHD were examined using clinical and electroencephalographic methods. Idiopathic and residual-organic forms were compared. The study shows significantly higher levels of impulsivity and hyperactivity in children with residual-organic form of the disease. There were significant differences in the amplitude component of engaging in action (P3 Go) and the amplitude of the action suppression component (P3 NOGO) in patients with different forms of ADHD. The high clinical efficacy (improvement in 70.0% of patients with idiopathic form of ADHD and 86.7% of patients with residual-organic form of the disease) was found.

  13. Music evolution in the laboratory: Cultural transmission meets neurophysiology

    DEFF Research Database (Denmark)

    Lumaca, Massimo; Ravignani, Andrea; Baggio, G.

    2018-01-01

    In recent years, there has been a renewed interest in the biological and cultural origins of music, and specifically in the role played by perceptual and cognitive biases and constraints in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates...... of music transmission. In this paper, we first review some of the most important theoretical and empirical contributions to this area of research. Next, we identify one major current limitation of these studies: the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we...... discuss a recent experiment in which this issue was addressed using event-related brain potentials (ERPs). We argue that the introduction of neurophysiology in cultural transmission research may provide new insights on the micro-evolutionary origins of forms of variation observed in cultural systems....

  14. Dreaming and the brain: from phenomenology to neurophysiology.

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2010-02-01

    Dreams are a remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that the human brain, disconnected from the environment, can generate an entire world of conscious experiences by itself. Content analysis and developmental studies have promoted understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging and neurophysiology have advanced current knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research to address fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. Published by Elsevier Ltd.

  15. [A Matter of Nerves - Applied Neurophysiology of Female Sexuality].

    Science.gov (United States)

    Bischof, Karoline

    2015-06-17

    Sexual problems are often attributed to psychological or physical deficits that are difficult to modify, or to a poor lover. In contrast, the neurophysiological interaction between body and brain can be understood as fundamental for the genital and emotional experience of sexuality. Neuropsychological discoveries and clinical observations show that elevated muscle tension, superficial breathing and reduced body movement, as employed by many individuals during sexual arousal, will limit the perception of arousal and the degree of sexual pleasure. In contrast, deep breathing and variations in movement and muscle tension support it. Through the use of self awareness exercises and physical learning steps, patients can integrate their sexuality and increases its resistance to psychological, medical and relational interferences.

  16. Energy drinks and the neurophysiological impact of caffeine.

    Science.gov (United States)

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  17. Dreaming and the brain: from phenomenology to neurophysiology

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2009-01-01

    Dreams are a most remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that our brain, disconnected from the environment, can generate by itself an entire world of conscious experiences. Content analysis and developmental studies have furthered our understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging, and neurophysiology have advanced our knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research in order to address some fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. PMID:20079677

  18. Energy drinks and the neurophysiological impacts of caffeine

    Directory of Open Access Journals (Sweden)

    Leeana eBagwath Persad

    2011-10-01

    Full Text Available Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  19. Vectorization of optically sectioned brain microvasculature: learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments.

    Science.gov (United States)

    Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David

    2012-08-01

    A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error

  20. Final Report for completed IPP-0110 and 0110A Projects: 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications'

    International Nuclear Information System (INIS)

    Brown, Ian

    2009-01-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The

  1. FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian

    2009-09-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join

  2. Complete Resolution of a Giant Pigment Epithelial Detachment Secondary to Exudative Age-Related Macular Degeneration after a Single Intravitreal Ranibizumab (Lucentis Injection: Results Documented by Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Eleni Loukianou

    2010-12-01

    Full Text Available Aim:To describe a patient with a giant pigment epithelial detachment (PED secondary to exudative age-related macular degeneration (ARMD successfully treated with a single intravitreal ranibizumab (Lucentis injection (0.5 mg/0.05 ml.Methods:An 89-year-old woman presented with a six-day history of reduced vision and distortion in the left eye. Best-corrected visual acuity in that eye was 6/15. Fundoscopy revealed a giant PED and exudates temporally to the fovea. Optical coherence tomography showed a PED associated with subretinal and intraretinal fluid. Fluorescein angiography confirmed the diagnosis of an occult choroidal neovascularization. Treatment with intravitreal injections of ranibizumab (Lucentis was recommended, although the increased risk of retinal pigment epithelium (RPE rip was mentioned. Results:Four weeks after the first intravitreal Lucentis injection, the visual acuity in the left eye improved to 6/7.5, with a significant improvement of the distortion and a complete anatomical resolution of the PED confirmed by optical coherence tomography. Conclusion:Giant PED secondary to exudative ARMD can be successfully treated with intravitreal ranibizumab, despite the increased risk of RPE rip. To our knowledge, this is the first case presenting with complete resolution of PED after a single ranibizumab injection.

  3. Neurophysiological detection of impending spinal cord injury during scoliosis surgery.

    Science.gov (United States)

    Schwartz, Daniel M; Auerbach, Joshua D; Dormans, John P; Flynn, John; Drummond, Denis S; Bowe, J Andrew; Laufer, Samuel; Shah, Suken A; Bowen, J Richard; Pizzutillo, Peter D; Jones, Kristofer J; Drummond, Denis S

    2007-11-01

    Despite the many reports attesting to the efficacy of intraoperative somatosensory evoked potential monitoring in reducing the prevalence of iatrogenic spinal cord injury during corrective scoliosis surgery, these afferent neurophysiological signals can provide only indirect evidence of injury to the motor tracts since they monitor posterior column function. Early reports on the use of transcranial electric motor evoked potentials to monitor the corticospinal motor tracts directly suggested that the method holds great promise for improving detection of emerging spinal cord injury. We sought to compare the efficacy of these two methods of monitoring to detect impending iatrogenic neural injury during scoliosis surgery. We reviewed the intraoperative neurophysiological monitoring records of 1121 consecutive patients (834 female and 287 male) with adolescent idiopathic scoliosis (mean age, 13.9 years) treated between 2000 and 2004 at four pediatric spine centers. The same group of experienced surgical neurophysiologists monitored spinal cord function in all patients with use of a standardized multimodality technique with the patient under total intravenous anesthesia. A relevant neurophysiological change (an alert) was defined as a reduction in amplitude (unilateral or bilateral) of at least 50% for somatosensory evoked potentials and at least 65% for transcranial electric motor evoked potentials compared with baseline. Thirty-eight (3.4%) of the 1121 patients had recordings that met the criteria for a relevant signal change (i.e., an alert). Of those thirty-eight patients, seventeen showed suppression of the amplitude of transcranial electric motor evoked potentials in excess of 65% without any evidence of changes in somatosensory evoked potentials. In nine of the thirty-eight patients, the signal change was related to hypotension and was corrected with augmentation of the blood pressure. The remaining twenty-nine patients had an alert that was related directly to a

  4. Cannabinoid-induced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio

    2009-05-01

    Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.

  5. Descartes' visit to the town library, or how Augustinian is Descartes' neurophysiology?

    Science.gov (United States)

    Smith, C U

    1998-08-01

    Rene Descartes was early accused of taking his central philosophical proposition from St Augustine. Did he also take his central neurophysiological concept from the same source? This is the question which this paper sets out to answer. It is concluded that the foundational neurophysiology propounded in L'Homme does indeed show strong and interesting resemblences to Augustine's largely Erasistratean version. Descartes, however, working within the new paradigm of seventeenth-century physical science, introduced a new principle: whereas Augustine's neurophysiology is pervaded throughout by a vital factor, the pneuma, Descartes' theory involved only inanimate material forces. It is concluded, further, that in spite of the interesting similarities between Augustinian and Cartesian neurophysiology there is no evidence for any direct plagiarism. It seems more likely that Augustine's influence was filtered through the Galenical physiologists of Descartes' own time and of the preceding century.

  6. Cough: neurophysiology, methods of research, pharmacological therapy and phonoaudiology

    Directory of Open Access Journals (Sweden)

    Balbani, Aracy Pereira Silveira

    2012-01-01

    Full Text Available Introduction: The cough is the more common respiratory symptom in children and adults. Objective: To present a revision on the neurophysiology and the methods for study of the consequence of the cough, as well as the pharmacotherapy and phonoaudiology therapy of the cough, based on the works published between 2005 and 2010 and indexed in the bases Medline, Lilacs and Library Cochrane under them to keywords "cough" or "anti-cough". Synthesis of the data: The consequence of the cough involves activation of receiving multiples becomes vacant in the aerial ways and of neural projections of the nucleus of the solitary treatment for other structures of the central nervous system. Experimental techniques allow studying the consequence of the cough to the cellular and molecular level to develop new anti-cough agents. It does not have evidences of that anti-cough exempt of medical lapsing they have superior effectiveness to the one of placebo for the relief of the cough. The phonoaudiology therapy can benefit patients with refractory chronic cough to the pharmacological treatment, over all when paradoxical movement of the vocal folds coexists. Final Comments: The boarding to multidiscipline has basic paper in the etiological diagnosis and treatment of the cough. The otolaryngologist must inform the patients on the risks of the anti-cough of free sales in order to prevent adverse poisonings and effect, especially in children.

  7. Investigating neurophysiological correlates of metacontrast masking with magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Jens Schwarzbach

    2006-01-01

    Full Text Available Early components of visual evoked potentials (VEP in EEG seem to be unaffected by target visibility in visual masking studies. Bridgeman's reanalysis of Jeffreys and Musselwhite's (1986 data suggests that a later visual component in the VEP, around 250 ms reflects the perceptual effect of masking. We challenge this view on the ground that temporal interactions between targets and masks unrelated to stimulus visibility could account for Bridgeman's observation of a U-shaped time course in VEP amplitudes for this later component. In an MEG experiment of metacontrast masking with variable stimulus onset asynchrony, we introduce a proper control, a pseudo mask. In contrast to an effective mask, the pseudomask should produce neither behavioral masking nor amplitude modulations of late VEPs. Our results show that effective masks produced a strong U-shaped perceptual effect of target visibility while performance remained virtually perfect when a pseudomask was used. The visual components around 250 ms after target onset did not show a distinction between mask and pseudomask conditions. The results indicate that these visual evoked potentials do not reveal neurophysiological correlates of stimulus visibility but rather reflect dynamic interactions between superimposed potentials elicited by stimuli in close temporal proximity. However, we observed a postperceptual component around 340 ms after target onset, located over temporal-parietal cortex, which shows a clear effect of visibility. Based on P300 ERP literature, this finding could indicate that working memory related processes contribute to metacontrast masking.

  8. Neurophysiological findings in vibration-exposed male workers.

    Science.gov (United States)

    Strömberg, T; Dahlin, L B; Rosén, I; Lundborg, G

    1999-04-01

    Fractionated nerve conduction, vibrotactile sense, and temperature thresholds were studied in 73 symptomatic vibration-exposed male workers. Three symptomatic groups were distinguished: patients with isolated sensorineural symptoms; with isolated vasospastic problems; and with both. Clinical carpal tunnel syndrome occurred in 14 patients and abnormal cold intolerance (without blanching of the fingers) in 23. In the group as a whole, nerve conduction studies were abnormal in the median nerve but not in the ulnar nerve and vibration perception and temperature thresholds were impaired. Of the three symptomatic groups, patients with isolated sensorineural symptoms differed from controls. No differences were seen between patients with and without clinical carpal tunnel syndrome. With severe sensorineural symptoms the vibration perception thresholds, but not the values of the nerve conduction studies, were further impaired. The results indicated two injuries that are easily confused: one at receptor level in the fingertips and one in the carpal tunnel. Careful clinical assessment, neurophysiological testing, and examination of vibrotactile sense are required before carpal tunnel release should be considered in these patients.

  9. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology

    Directory of Open Access Journals (Sweden)

    Massimo Lumaca

    2018-04-01

    Full Text Available In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs. We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.

  10. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology.

    Science.gov (United States)

    Lumaca, Massimo; Ravignani, Andrea; Baggio, Giosuè

    2018-01-01

    In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and "users" of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.

  11. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    Science.gov (United States)

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Neurophysiology underlying influence of stimulus reliability on audiovisual integration.

    Science.gov (United States)

    Shatzer, Hannah; Shen, Stanley; Kerlin, Jess R; Pitt, Mark A; Shahin, Antoine J

    2018-01-24

    We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Artificial gravity exposure impairs exercise-related neurophysiological benefits.

    Science.gov (United States)

    Vogt, Tobias; Abeln, Vera; Strüder, Heiko K; Schneider, Stefan

    2014-01-17

    Artificial gravity (AG) exposure is suggested to counteract health deconditioning, theoretically complementing exercise during space habitations. Exercise-benefits on mental health are well documented (i.e. well-being, enhanced executive functions). Although AG is coherent for the integrity of fundamental physiological systems, the effects of its exposure on neurophysiological processes related to cognitive performance are poorly understood and therefore characterize the primary aim of this study. 16 healthy males participated in two randomly assigned sessions, AG and exercise (30minute each). Participants were exposed to AG at continuous +2Gz in a short-arm human centrifuge and performed moderate exercise (cycling ergometer). Using 64 active electrodes, resting EEG was recorded before (pre), immediately after (post), and 15min after (post15) each session. Alpha (7.5-12.5Hz) and beta frequencies (12.5-35.0Hz) were exported for analysis. Cognitive performance and mood states were assessed before and after each session. Cognitive performance improved after exercise (pexercise, however not after AG. Frontal alpha (post pexercise. Relaxed cortical states were indicated after exercise, but were less apparent after AG. Changes in mood states failed significance after both sessions. Summarized, the benefits to mental health, recorded after exercise, were absent after AG, indicating that AG might cause neurocognitive deconditioning. © 2013.

  14. Excessive bodybuilding as pathology? A first neurophysiological classification.

    Science.gov (United States)

    Maier, Moritz Julian; Haeussinger, Florian Benedikt; Hautzinger, Martin; Fallgatter, Andreas Jochen; Ehlis, Ann-Christine

    2017-11-15

    Excessive bodybuilding as a pathological syndrome has been classified based on two different theories: bodybuilding as dependency or as muscle dysmorphic disorder (MDD). This study is a first attempt to find psychophysiological data supporting one of these classifications. Twenty-four participants (bodybuilders vs healthy controls) were presented with pictures of bodies, exercise equipment or general reward stimuli in a control or experimental condition, and were measured with functional near-infrared spectroscopy (fNIRS). Higher activation in the dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC) while watching bodies and training equipment in the experimental condition (muscular bodies and bodybuilding-typical equipment) would be an indicator for the addiction theory. Higher activation in motion-related areas would be an indicator for the MDD theory. We found no task-related differences between the groups in the DLPFC and OFC, but a significantly higher activation in bodybuilders in the primary somatosensory cortex (PSC) and left-hemispheric supplementary motor area (SMA) while watching body pictures (across conditions) as compared to the control group. These neurophysiological results could be interpreted as a first evidence for the MDD theory of excessive bodybuilding.

  15. Neurophysiology of Drosophila Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ryan J. H. West

    2015-01-01

    Full Text Available We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson’s disease- (PD- related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson’s disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak’s scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  16. [Neurophysiological methods in evaliuation of neurorehabiltation in children].

    Science.gov (United States)

    Świerczyńska, Anna; Kłusek, Renata; Kaciński, Marek

    2016-01-01

    The authors reviewed neurophysiological methods, which are used in the evaluation of children referred for neurorehabilitation. Rehabilitation techniques which may stimulate or provoke pathological changes in EEG must be ruled out. Electrophysiological and clinical improvement allow for the extension and intensification of rehabilitation. Normal EEG pattern ensures the safe use of techniques consisting of neuromuscular re-education or passive verticalisation, electrotherapy and thermotherapy. Quantitative and qualitative assessment of cognitive impairment is based on neuropsychological tests and endogenous evoked potentials (most often P300). Presence of cognitive dysfunction needs the use of neuropsychological and neurologopedic therapy. Based on results of exogenous evoked potentials appropriate neurorehabilitation program (physiotherapy, kinezytherapy) can be determined and clinical outcome predicted. EMG allows appropriate usage of applications, patterns and principles in the PNF method (such as compression, stretching, resistance), adapting them optimally to the possibility of a child. ENG estimates conduction in motor and sensory nerves. Based on the results nerve impairment can be localized, severity and character of damage estimated (demyelinating, axonal or complex) and course of the disease and treatment monitored. Short characteristics of 37 children with Guillain-Barre syndrome referred for rehabilitation was presented. Special attention was drawn to floppy infants. Results of neuroelectrophysiological examinations determine suitable rehabilitation program adjusted to the course of central nervous system impairment.

  17. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.

    Science.gov (United States)

    Pasion, Rita; Paiva, Tiago O; Pedrosa, Paulo; Gaspar, Hugo; Vasconcelos, Beatriz; Martins, Ana C; Amaral, Maria H; Nóbrega, João M; Páscoa, Ricardo; Fonseca, Carlos; Barbosa, Fernando

    2016-07-15

    The EEG technique has decades of valid applications in clinical and experimental neurophysiology. EEG equipment and data analysis methods have been characterized by remarkable developments, but the skin-to-electrode signal transfer remains a challenge for EEG recording. A novel quasi-dry system - the polymer wick-based electrode - was developed to overcome the limitations of conventional dry and wet silver/silver-chloride (Ag/AgCl) electrodes for EEG recording. Nine participants completed an auditory oddball protocol with simultaneous EEG acquisition using both the conventional Ag/AgCl and the wick electrodes. Wick system successfully recorded the expected P300 modulation. Standard ERP analysis, residual random noise analysis, and single-trial analysis of the P300 wave were performed in order to compare signal acquired by both electrodes. It was found that the novel wick electrode performed similarly to the conventional Ag/AgCl electrodes. The developed wick electrode appears to be a reliable alternative for EEG research, representing a promising halfway alternative between wet and dry electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. God will forgive: reflecting on God’s love decreases neurophysiological responses to errors

    Science.gov (United States)

    Inzlicht, Michael; Larson, Michael J.

    2015-01-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God’s love may be more effective, relative to God’s wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God’s love reduces our ability to detect and emotionally react to conflict between one’s behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God’s love vs punishment on the error-related negativity (ERN)—a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made ‘religious’ errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God’s love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God’s punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God’s love is prominent in the minds of believers. PMID:25062839

  19. God will forgive: reflecting on God's love decreases neurophysiological responses to errors.

    Science.gov (United States)

    Good, Marie; Inzlicht, Michael; Larson, Michael J

    2015-03-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God's love may be more effective, relative to God's wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God's love reduces our ability to detect and emotionally react to conflict between one's behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God's love vs punishment on the error-related negativity (ERN)--a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made 'religious' errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God's love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God's punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God's love is prominent in the minds of believers. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Preliminary evidence of a neurophysiological basis for individual discrimination in filial imprinting.

    Science.gov (United States)

    Town, Stephen Michael

    2011-12-01

    Filial imprinting involves a predisposition for biologically important stimuli and a learning process directing preferences towards a particular stimulus. Learning underlies discrimination between imprinted and unfamiliar individuals and depends upon the IMM (intermediate and medial mesopallium). Here, IMM neurons responded differentially to familiar and unfamiliar conspecifics following socialization and the neurophysiological effects of social experience differed between hemispheres. Such findings may provide a neurophysiological basis for individual discrimination in imprinting. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. HANSENS DISEASE : STUDY OF CLINICAL, NEUROPATHOLOGICAL, NEUROPHYSIOLOGICAL PATTERN OF LEPROUS NEUROPATHY

    OpenAIRE

    Vijay Kumar; Ajay Kumar

    2015-01-01

    A need still exists to determine the clinical and neurophysiological characteristics of leprosy neuropathy at distinct times of the disease by different methods that measure the various nerve fiber functions. A prospective clinical study was performed 100 patients of clinically proven Hansen’s will take in study and given diagnosis is made by dermatologist and neurologist. For Study of Clinical, Neuropathological , Neurophysiological Pattern of leprous neuropathy and r...

  2. Exploring the potential of neurophysiological measures for user-adaptive visualization

    OpenAIRE

    Tak, S.; Brouwer, A.M.; Toet, A.; Erp, J.B.F. van

    2013-01-01

    User-adaptive visualization aims to adapt visualized information to the needs and characteristics of the individual user. Current approaches deploy user personality factors, user behavior and preferences, and visual scanning behavior to achieve this goal. We argue that neurophysiological data provide valuable additional input for user-adaptive visualization systems since they contain a wealth of objective information about user characteristics. The combination of neurophysiological data with ...

  3. [Intraoperative neurophysiological monitoring in Spain: its beginnings, current situation and future prospects].

    Science.gov (United States)

    Cortes-Donate, V E; Perez-Lorensu, P J; Garcia-Garcia, A; Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine, Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine; Sociedad Espanola de Neurofisiologia Clinica Senfc, Sociedad Espanola de Neurofisiologia Clinica Senfc; Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc, Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc

    2018-05-01

    Intraoperative neurophysiological monitoring (IONM) is nowadays another tool within the operating room that seeks to avoid neurological sequels derived from the surgical act. The Spanish Neurophysiological Intra-Surgical Monitoring Association (AMINE) in collaboration with the Spanish Society of Clinical Neurophysiology (SENFC), and the IONM Working Group of the SENFC has been collecting data in order to know the current situation of the IONM in Spain by hospitals, autonomous communities including the autonomous cities of Ceuta and Melilla, the opinions of the specialists in clinical neurophysiology involved in this topic and further forecasts regarding IONM. The data was gathered from November 2015 to May 2016 through telephone contact and/or email with specialists in clinical neurophysiology of the public National Health System, and through a computerized survey that also includes private healthcare centers. With the data obtained, from the perspective of AMINE and the SENFC we consider that nowadays the field of medicine covered by IONM is considerably large and it is foreseen that it will continue to grow. Therefore, a greater number of specialists in Clinical Neurophysiology will be required, as well as the need for specific training within the specialty that involves increasing the training period of MIRs based on competencies due to the increase in techniques/procedures, as well as its complexity.

  4. Complete azimuthal decomposition of optical fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-02-01

    Full Text Available the spatial distribution of the selected mode in terms of spatially dependant coefficients. We use this to infer directly from the measured weightings of the azimuthally decomposed modes and their phase-delay measurements, the intensity of the selected field...

  5. Drawing on student knowledge of neuroanatomy and neurophysiology.

    Science.gov (United States)

    Slominski, Tara N; Momsen, Jennifer L; Montplaisir, Lisa M

    2017-06-01

    Drawings are an underutilized assessment format in Human Anatomy and Physiology (HA&P), despite their potential to reveal student content understanding and alternative conceptions. This study used student-generated drawings to explore student knowledge in a HA&P course. The drawing tasks in this study focused on chemical synapses between neurons, an abstract concept in HA&P. Using two preinstruction drawing tasks, students were asked to depict synaptic transmission and summation. In response to the first drawing task, 20% of students ( n = 352) created accurate representations of neuron anatomy. The remaining students created drawings suggesting an inaccurate or incomplete understanding of synaptic transmission. Of the 208 inaccurate student-generated drawings, 21% depicted the neurons as touching. When asked to illustrate summation, only 10 students (roughly 4%) were able to produce an accurate drawing. Overall, students were more successful at drawing anatomy (synapse) than physiology (summation) before formal instruction. The common errors observed in student-generated drawings indicate students do not enter the classroom as blank slates. The error of "touching" neurons in a chemical synapse suggests that students may be using intuitive or experiential knowledge when reasoning about physiological concepts. These results 1 ) support the utility of drawing tasks as a tool to reveal student content knowledge about neuroanatomy and neurophysiology; and 2 ) suggest students enter the classroom with better knowledge of anatomy than physiology. Collectively, the findings from this study inform both practitioners and researchers about the prevalence and nature of student difficulties in HA&P, while also demonstrating the utility of drawing in revealing student knowledge. Copyright © 2017 the American Physiological Society.

  6. Neurophysiological responses to music and vibroacoustic stimuli in Rett syndrome.

    Science.gov (United States)

    Bergström-Isacsson, Märith; Lagerkvist, Bengt; Holck, Ulla; Gold, Christian

    2014-06-01

    People with Rett syndrome (RTT) have severe communicative difficulties. They have as well an immature brainstem that implies dysfunction of the autonomic nervous system. Music plays an important role in their life, is often used as a motivating tool in a variety of situations and activities, and caregivers are often clear about people with RTTs favourites. The aim of this study was to investigate physiological and emotional responses related to six different musical stimuli in people with RTT. The study included 29 participants with RTT who were referred to the Swedish Rett Center for medical brainstem assessment during the period 2006-2007. 11 children with a typical developmental pattern were used as comparison. A repeated measures design was used, and physiological data were collected from a neurophysiological brainstem assessment. The continuous dependent variables measured were Cardiac Vagal Tone (CVT), Cardiac Sensitivity to Baroreflex (CSB), Mean Arterial Blood Pressure (MAP) and the Coefficient of Variation of Mean Arterial Blood Pressure (MAP-CV). These parameters were used to categorise brainstem responses as parasympathetic (calming) response, sympathetic (activating) response, arousal (alerting) response and unclear response. The results showed that all participants responded to the musical stimuli, but not always in the expected way. It was noticeable that both people with and without RTT responded with an arousal to all musical stimuli to begin with. Even though the initial expressions sometimes changed after some time due to poor control functions of their brainstem, the present results are consistent with the possibility that the RTT participants' normal responses to music are intact. These findings may explain why music is so important for individuals with RTT throughout life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Neurophysiological localisation of ulnar neuropathy at the elbow: validation of diagnostic criteria developed by a taskforce of the Danish Society of Clinical Neurophysiology

    DEFF Research Database (Denmark)

    Pugdahl, Kirsten; Beniczky, Sándor; Wanscher, Benedikte

    2017-01-01

    OBJECTIVE: This study validates consensus criteria for localisation of ulnar neuropathy at elbow (UNE) developed by a taskforce of the Danish Society of Clinical Neurophysiology and compares them to the existing criteria from the American Association of Neuromuscular and Electrodiagnostic Medicine...

  8. Applied optics and optical design

    CERN Document Server

    Conrady, Alexander Eugen

    1957-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  9. YB0 SERVICES INSTALLATION COMPLETED

    CERN Document Server

    The beauty of the completed YB0 was briefly visible at P5 as preparations continue for Tracker installation. A tremendous effort, lasting 7 months and involving more than 100 workers on the busiest days, resulted in 5700 electrical cables, 780 optical cables with 65k fibre channels, and 550 pipes laid on YB0 for HB, EB and Tracker.

  10. Valence and charge-transfer optical properties for some SinCm (m, n ≤ 12) clusters: Comparing TD-DFT, complete-basis-limit EOMCC, and benchmarks from spectroscopy

    Science.gov (United States)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Ranasinghe, Duminda S.; Jin, Yifan; Margraf, Johannes T.; Perera, Ajith; Burggraf, Larry W.; Bartlett, Rodney J.

    2018-05-01

    Accurate optical characterization of the closo-Si12C12 molecule is important to guide experimental efforts toward the synthesis of nano-wires, cyclic nano-arrays, and related array structures, which are anticipated to be robust and efficient exciton materials for opto-electronic devices. Working toward calibrated methods for the description of closo-Si12C12 oligomers, various electronic structure approaches are evaluated for their ability to reproduce measured optical transitions of the SiC2, Si2Cn (n = 1-3), and Si3Cn (n = 1, 2) clusters reported earlier by Steglich and Maier [Astrophys. J. 801, 119 (2015)]. Complete-basis-limit equation-of-motion coupled-cluster (EOMCC) results are presented and a comparison is made between perturbative and renormalized non-iterative triples corrections. The effect of adding a renormalized correction for quadruples is also tested. Benchmark test sets derived from both measurement and high-level EOMCC calculations are then used to evaluate the performance of a variety of density functionals within the time-dependent density functional theory (TD-DFT) framework. The best-performing functionals are subsequently applied to predict valence TD-DFT excitation energies for the lowest-energy isomers of SinC and Sin-1C7-n (n = 4-6). TD-DFT approaches are then applied to the SinCn (n = 4-12) clusters and unique spectroscopic signatures of closo-Si12C12 are discussed. Finally, various long-range corrected density functionals, including those from the CAM-QTP family, are applied to a charge-transfer excitation in a cyclic (Si4C4)4 oligomer. Approaches for gauging the extent of charge-transfer character are also tested and EOMCC results are used to benchmark functionals and make recommendations.

  11. Unravelling the neurophysiological basis of aggression in a fish model

    Directory of Open Access Journals (Sweden)

    Hickmore Tamsin FA

    2010-09-01

    Full Text Available Abstract Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio, an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT, previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases

  12. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review.

    Science.gov (United States)

    Kesić, Srdjan; Spasić, Sladjana Z

    2016-09-01

    For more than 20 years, Higuchi's fractal dimension (HFD), as a nonlinear method, has occupied an important place in the analysis of biological signals. The use of HFD has evolved from EEG and single neuron activity analysis to the most recent application in automated assessments of different clinical conditions. Our objective is to provide an updated review of the HFD method applied in basic and clinical neurophysiological research. This article summarizes and critically reviews a broad literature and major findings concerning the applications of HFD for measuring the complexity of neuronal activity during different neurophysiological conditions. The source of information used in this review comes from the PubMed, Scopus, Google Scholar and IEEE Xplore Digital Library databases. The review process substantiated the significance, advantages and shortcomings of HFD application within all key areas of basic and clinical neurophysiology. Therefore, the paper discusses HFD application alone, combined with other linear or nonlinear measures, or as a part of automated methods for analyzing neurophysiological signals. The speed, accuracy and cost of applying the HFD method for research and medical diagnosis make it stand out from the widely used linear methods. However, only a combination of HFD with other nonlinear methods ensures reliable and accurate analysis of a wide range of neurophysiological signals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Clinical neurophysiology referral patterns to a tertiary hospital--a prospective audit.

    LENUS (Irish Health Repository)

    Renganathan, R

    2012-02-03

    BACKGROUND: Cork University Hospital (CUH) provides a tertiary service for all neurophysiology referrals in the Southern Health Board region. AIM: To ascertain the number, source, symptoms and diagnosis of neurophysiology referrals at CUH. METHODS: We did a prospective audit of the referral patterns to the neurophysiology department over a 12 -week period. RESULTS: Of 635 referrals, 254 had electromyograms (EMG), 359 had electro-encephalograms (EEG), 18 had visual evoked potentials (VEP), three had somato-sensory evoked potentials (SSEP) and one had multiple sleep latency tests (MSLT). We analysed the demographic pattern, reason for referrals, the average waiting time for neurophysiology tests and the patterns of diagnosis in this audit. CONCLUSIONS: Patients from County Cork are making more use of the neurophysiology services than patients from other counties within the Southern Health Board. The average waiting time for an EEG was 32 days and for an EMG was 74 days. However, more than 35% of those patients waiting for an EEG or an EMG had their tests done within four weeks of referral. The appointments of EEG and EMG were assigned on the basis of clinical need.

  14. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG)

    DEFF Research Database (Denmark)

    Guørit, J.M.; Amantini, A.; Amodio, P.

    2009-01-01

    STUDY AIM: To provide a consensus of European leading authorities about the optimal use of clinical neurophysiological (CN) tests (electroencephalogram [EEG]; evoked potentials [EP]; electroneuromyography [ENMG]) in the intensive care unit (ICU) and, particularly, about the way to make these tests...... contribution to all other experts. A complete consensus has been reached when submitting the manuscript. RESULTS: What the group considered as the best classification systems for EEG and EP abnormalities in the ICU is first presented. CN tests are useful for diagnosis (epilepsy, brain death, and neuromuscular...

  15. Psychosocial, Physical, and Neurophysiological Risk Factors for Chronic Neck Pain: A Prospective Inception Cohort Study.

    Science.gov (United States)

    Shahidi, Bahar; Curran-Everett, Douglas; Maluf, Katrina S

    2015-12-01

    The purpose of this investigation was to identify modifiable risk factors for the development of first-onset chronic neck pain among an inception cohort of healthy individuals working in a high-risk occupation. Candidate risk factors identified from previous studies were categorized into psychosocial, physical, and neurophysiological domains, which were assessed concurrently in a baseline evaluation of 171 office workers within the first 3 months of hire. Participants completed monthly online surveys over the subsequent year to identify the presence of chronic interfering neck pain, defined as a Neck Disability Index score ≥5 points for 3 or more months. Data were analyzed using backward logistic regression to identify significant predictors within each domain, which were then entered into a multivariate regression model adjusted for age, sex, and body mass index. Development of chronic interfering neck pain was predicted by depressed mood (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 1.10-10.31, P = .03), cervical extensor endurance (OR = .92, 95% CI, .87-.97, P = .001), and diffuse noxious inhibitory control (OR = .90, 95% CI, .83-.98, P = .02) at baseline. These findings provide the first evidence that individuals with preexisting impairments in mood and descending pain modulation may be at greater risk for developing chronic neck pain when exposed to peripheral nociceptive stimuli such as that produced during muscle fatigue. Depressed mood, poor muscle endurance, and impaired endogenous pain inhibition are predisposing factors for the development of new-onset chronic neck pain of nonspecific origin in office workers. These findings may assist with primary prevention by allowing clinicians to screen for individuals at risk of developing chronic neck pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Indirect assessment of an interpretation bias in humans: Neurophysiological and behavioral correlates

    Directory of Open Access Journals (Sweden)

    Anita eSchick

    2013-06-01

    Full Text Available Affective state can influence cognition leading to biased information processing, interpretation, attention, and memory. Such bias has been reported to be essential for the onset and maintenance of different psychopathologies, particularly affective disorders. However, empirical evidence has been very heterogeneous and little is known about the neurophysiological mechanisms underlying cognitive bias and its time-course. We therefore investigated the interpretation of ambiguous stimuli as indicators of biased information processing with an ambiguous cue-conditioning paradigm. In an acquisition phase, participants learned to discriminate two tones of different frequency, which acquired emotional and motivational value due to subsequent feedback (monetary gain or avoidance of monetary loss. In the test phase, three additional tones of intermediate frequencies were presented, whose interpretation as positive (approach of reward or negative (avoidance of punishment, indicated by a button press, was used as an indicator of the bias. Twenty healthy volunteers participated in this paradigm while a 64-channel electroencephalogram was recorded. Participants also completed questionnaires assessing individual differences in depression and rumination. Overall, we found a small positive bias, which correlated negatively with reflective pondering, a type of rumination. As expected, reaction times were increased for intermediate tones. ERP amplitudes between 300 – 700 ms post-stimulus differed depending on the interpretation of the intermediate tones. A negative compared to a positive interpretation led to an amplitude increase over frontal electrodes. Our study provides evidence that in humans, as in animal research, the ambiguous cue-conditioning paradigm is a valid procedure for indirectly assessing ambiguous cue interpretation and a potential interpretation bias, which is sensitive to individual differences in affect-related traits.

  17. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  18. Neurodata Without Borders: Creating a Common Data Format for Neurophysiology.

    Science.gov (United States)

    Teeters, Jeffery L; Godfrey, Keith; Young, Rob; Dang, Chinh; Friedsam, Claudia; Wark, Barry; Asari, Hiroki; Peron, Simon; Li, Nuo; Peyrache, Adrien; Denisov, Gennady; Siegle, Joshua H; Olsen, Shawn R; Martin, Christopher; Chun, Miyoung; Tripathy, Shreejoy; Blanche, Timothy J; Harris, Kenneth; Buzsáki, György; Koch, Christof; Meister, Markus; Svoboda, Karel; Sommer, Friedrich T

    2015-11-18

    The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neurodata Without Borders: Creating a Common Data Format for Neurophysiology

    OpenAIRE

    Teeters, Jeffery L.; Godfrey, Keith; Young, Rob; Dang, Chinh; Friedsam, Claudia; Wark, Barry; Asari, Hiroki; Peron, Simon; Li, Nuo; Peyrache, Adrien; Denisov, Gennady; Siegle, Joshua H.; Olsen, Shawn R.; Martin, Christopher; Chun, Miyoung

    2015-01-01

    The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released.

  20. Neuropathy in the hemodialysis population: a review of neurophysiology referrals in a tertiary center.

    LENUS (Irish Health Repository)

    O'Regan, John

    2012-01-01

    This was a retrospective observational study of neurophysiology referrals over 8 years from a tertiary referral center in Ireland. A total of 68 of the 73 referrals yielded one or more abnormalities. Thirty-nine (53%) patients had one or more mononeuropathies; iatrogenic mononeuropathies believed to be associated with arterio-venous fistula creation occurred in 15 patients. Polyneuropathy was identified in 43 patients (59%). Access to an experienced neurophysiology department offers valuable insight into dialysis-associated neuropathies, especially when associated with arterio-venous fistulae.

  1. Neurophysiological localisation of ulnar neuropathy at the elbow: Validation of diagnostic criteria developed by a taskforce of the Danish Society of clinical neurophysiology.

    Science.gov (United States)

    Pugdahl, K; Beniczky, S; Wanscher, B; Johnsen, B; Qerama, E; Ballegaard, M; Benedek, K; Juhl, A; Ööpik, M; Selmar, P; Sønderborg, J; Terney, D; Fuglsang-Frederiksen, A

    2017-11-01

    This study validates consensus criteria for localisation of ulnar neuropathy at elbow (UNE) developed by a taskforce of the Danish Society of Clinical Neurophysiology and compares them to the existing criteria from the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM). The Danish criteria are based on combinations of conduction slowing in the segments of the elbow and forearm expressed in Z-scores, and difference between the segments in m/s. Examining fibres to several muscles and sensory fibres can increase the certainty of the localisation. Diagnostic accuracy for UNE was evaluated on 181 neurophysiological studies of the ulnar nerve from 171 peer-reviewed patients from a mixed patient-group. The diagnostic reference standard was the consensus diagnosis based on all available clinical, laboratory, and electrodiagnostic information reached by a group of experienced Danish neurophysiologists. The Danish criteria had high specificity (98.4%) and positive predictive value (PPV) (95.2%) and fair sensitivity (76.9%). Compared to the AANEM criteria, the Danish criteria had higher specificity (p<0.001) and lower sensitivity (p=0.02). The Danish consensus criteria for UNE are very specific and have high PPV. The Danish criteria for UNE are reliable and well suited for use in different centres as they are based on Z-scores. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. The neurophysiology of human touch and eye gaze and its effects on therapeutic relationships and healing: a scoping review protocol.

    Science.gov (United States)

    Kerr, Fiona; Wiechula, Rick; Feo, Rebecca; Schultz, Tim; Kitson, Alison

    2016-04-01

    The objective of this scoping review is to examine and map the range of neurophysiological impacts of human touch and eye gaze, and better understand their possible links to the therapeutic relationship and the process of healing. The specific question is "what neurophysiological impacts of human touch and eye gaze have been reported in relation to therapeutic relationships and healing?"

  3. Is appreciation of written education about pain neurophysiology related to changes in illness perceptions and health status in patients with fibromyalgia?

    NARCIS (Netherlands)

    van Ittersum, M. W.; van Wilgen, C. P.; Groothoff, J. W.; van der Schans, C. P.

    2011-01-01

    Objective: To investigate the appreciation of written education about pain neurophysiology in patients with fibromyalgia (FM) and its effects on illness perceptions and perceived health status. Methods: A booklet explaining pain neurophysiology was sent to participants with FM. Appreciation was

  4. Is appreciation of written education about pain neurophysiology related to changes in illness perceptions and health status in patients with fibromyalgia?

    NARCIS (Netherlands)

    van Ittersum, Miriam; van Wilgen, C P; Groothoff, J W; van der Schans, C.P.

    2011-01-01

    OBJECTIVE: To investigate the appreciation of written education about pain neurophysiology in patients with fibromyalgia (FM) and its effects on illness perceptions and perceived health status. METHODS: A booklet explaining pain neurophysiology was sent to participants with FM. Appreciation was

  5. Reward mechanisms in the brain and their role in dependence : evidence from neurophysiological and neuroimaging studies

    NARCIS (Netherlands)

    Martin-Soelch, C; Leenders, KL; Chevalley, AF; Missimer, J; Kunig, G; Magyar, S; Mino, A; Schultz, W

    2001-01-01

    This article reviews neuronal activity related to reward processing in primate and human brains. In the primate brain, neurophysiological methods provide a differentiated view of reward processing in a limited number of brain structures. Dopamine neurons respond to unpredictable rewards and produce

  6. Analysis of 1014 consecutive operative cases to determine the utility of intraoperative neurophysiological data

    OpenAIRE

    Hussain, Namath Syed

    2015-01-01

    Introduction: Intraoperative neurophysiological monitoring (IOM) during neurosurgical procedures has become the standard of care at tertiary care medical centers. While prospective data regarding the clinical utility of IOM are conspicuously lacking, retrospective analyses continue to provide useful information regarding surgeon responses to reported waveform changes. Methods: Data regarding clinical presentation, operative course, IOM, and postoperative neurological examination were compiled...

  7. Maternal Behavior Predicts Infant Neurophysiological and Behavioral Attention Processes in the First Year

    Science.gov (United States)

    Swingler, Margaret M.; Perry, Nicole B.; Calkins, Susan D.; Bell, Martha Ann

    2017-01-01

    We apply a biopsychosocial conceptualization to attention development in the 1st year and examine the role of neurophysiological and social processes on the development of early attention processes. We tested whether maternal behavior measured during 2 mother-child interaction tasks when infants (N = 388) were 5 months predicted infant medial…

  8. Exploring the potential of neurophysiological measures for user-adaptive visualization

    NARCIS (Netherlands)

    Tak, S.; Brouwer, A.M.; Toet, A.; Erp, J.B.F. van

    2013-01-01

    User-adaptive visualization aims to adapt visualized information to the needs and characteristics of the individual user. Current approaches deploy user personality factors, user behavior and preferences, and visual scanning behavior to achieve this goal. We argue that neurophysiological data

  9. A Study of the Effectiveness of Sensory Integration Therapy on Neuro-Physiological Development

    Science.gov (United States)

    Reynolds, Christopher; Reynolds, Kathleen Sheena

    2010-01-01

    Background: Sensory integration theory proposes that because there is plasticity within the central nervous system (the brain is moldable) and because the brain consists of systems that are hierarchically organised, it is possible to stimulate and improve neuro-physiological processing and integration and thereby increase learning capacity.…

  10. Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football.

    Science.gov (United States)

    Breedlove, Evan L; Robinson, Meghan; Talavage, Thomas M; Morigaki, Katherine E; Yoruk, Umit; O'Keefe, Kyle; King, Jeff; Leverenz, Larry J; Gilger, Jeffrey W; Nauman, Eric A

    2012-04-30

    Concussion is a growing public health issue in the United States, and chronic traumatic encephalopathy (CTE) is the chief long-term concern linked to repeated concussions. Recently, attention has shifted toward subconcussive blows and the role they may play in the development of CTE. We recruited a cohort of high school football players for two seasons of observation. Acceleration sensors were placed in the helmets, and all contact activity was monitored. Pre-season computer-based neuropsychological tests and functional magnetic resonance imaging (fMRI) tests were also obtained in order to assess cognitive and neurophysiological health. In-season follow-up scans were then obtained both from individuals who had sustained a clinically-diagnosed concussion and those who had not. These changes were then related through stepwise regression to history of blows recorded throughout the football season up to the date of the scan. In addition to those subjects who had sustained a concussion, a substantial portion of our cohort who did not sustain concussions showed significant neurophysiological changes. Stepwise regression indicated significant relationships between the number of blows sustained by a subject and the ensuing neurophysiological change. Our findings reinforce the hypothesis that the effects of repetitive blows to the head are cumulative and that repeated exposure to subconcussive blows is connected to pathologically altered neurophysiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Neurophysiological studies may provide a misleading picture of how perceptual-motor interactions are coordinated

    NARCIS (Netherlands)

    Mann, D.L.; Dicks, M.; Canal Bruland, R.; van der Kamp, J.

    2013-01-01

    Neurophysiological measurement techniques like fMRI and TMS are increasingly being used to examine the perceptual-motor processes underpinning the ability to anticipate the actions of others. Crucially, these techniques invariably restrict the experimental task that can be used and consequently

  12. Risk and Resilience: Early Manipulation of Macaque Social Experience and Persistent Behavioral and Neurophysiological Outcomes

    Science.gov (United States)

    Stevens, Hanna E.; Leckman, James F.; Coplan, Jeremy D.; Suomi, Stephen J.

    2009-01-01

    A literature review on macaque monkeys finds that peer rearing of young macaques and rearing of young macaques by mothers that are undergoing variable foraging conditions result in emotional and neurophysiological disturbance. Certain genotypes contribute to resilience to this disturbance. The findings have implications to child mental health and…

  13. Social Consumer Neuroscience: Neurophysiological Measures of Advertising Effectiveness in a Social Context

    NARCIS (Netherlands)

    R. Pozharliev (Rumen); W.J.M.I. Verbeke (Willem); R.P. Bagozzi (Richard)

    2017-01-01

    textabstractThe application of neurophysiological methods to study the effects of advertising on consumer purchase behavior has seen an enormous growth in recent years. However, little is known about the role social settings have on shaping the human brain during the processing of advertising

  14. Neurophysiology and Neuroanatomy of Reflexive and Voluntary Saccades in Non-Human Primates

    Science.gov (United States)

    Johnston, Kevin; Everling, Stefan

    2008-01-01

    A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have…

  15. Neurophysiological correlates of the pathway to the early stages of psychosis

    NARCIS (Netherlands)

    van Tricht, M.J.

    2013-01-01

    Our results indicate that in help-seeking individuals who meet the criteria for ‘at risk mental state’, particular neurophysiological paradigms (i.e. parietal P300 amplitudes and resting state QEEG theta and delta power and individual alpha peak frequency) can contribute to the differentiation

  16. Monitoring Brain Activity of Geriatric Learners with Low-Cost Neurophysiological Technology

    Science.gov (United States)

    Romero-Hall, Enilda; Scott, JoAnne

    2017-01-01

    Cultural stereotypes rooted in both antiquated data and misinterpretation of data have long perpetuated the belief that older adults are unable to learn new concepts because they are doomed to lose brain cells at an alarming rate during their geriatric years. However, advances in neurophysiological technologies that allow researchers to observe…

  17. A neurophysiological study of facial numbness in multiple sclerosis: Integration with clinical data and imaging findings.

    Science.gov (United States)

    Koutsis, Georgios; Kokotis, Panagiotis; Papagianni, Aikaterini E; Evangelopoulos, Maria-Eleftheria; Kilidireas, Constantinos; Karandreas, Nikolaos

    2016-09-01

    To integrate neurophysiological findings with clinical and imaging data in a consecutive series of multiple sclerosis (MS) patients developing facial numbness during the course of an MS attack. Nine consecutive patients with MS and recent-onset facial numbness were studied clinically, imaged with routine MRI, and assessed neurophysiologically with trigeminal somatosensory evoked potential (TSEP), blink reflex (BR), masseter reflex (MR), facial nerve conduction, facial muscle and masseter EMG studies. All patients had unilateral facial hypoesthesia on examination and lesions in the ipsilateral pontine tegmentum on MRI. All patients had abnormal TSEPs upon stimulation of the affected side, excepting one that was tested following remission of numbness. BR was the second most sensitive neurophysiological method with 6/9 examinations exhibiting an abnormal R1 component. The MR was abnormal in 3/6 patients, always on the affected side. Facial conduction and EMG studies were normal in all patients but one. Facial numbness was always related to abnormal TSEPs. A concomitant R1 abnormality on BR allowed localization of the responsible pontine lesion, which closely corresponded with MRI findings. We conclude that neurophysiological assessment of MS patients with facial numbness is a sensitive tool, which complements MRI, and can improve lesion localization. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    Science.gov (United States)

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  19. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    Science.gov (United States)

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  20. Completely continuous and weakly completely continuous abstract ...

    Indian Academy of Sciences (India)

    An algebra A is called right completely continuous (right weakly completely continuous) ... Moreover, some applications of these results in group algebras are .... A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the.

  1. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    International Nuclear Information System (INIS)

    Hill, Andrew; Bergin, Peter; Hanning, Fritha; Thompson, Paul; Findlay, Michael; Damianovich, Dragan; McKeage, Mark J

    2010-01-01

    Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable on EMG on days 2 to 4 post

  2. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2010-08-01

    Full Text Available Abstract Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6 and 72% of muscles (n = 22 on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8 and 13% of muscles (n = 32 on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14 or muscles (n = 56 tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7 and 32% of muscles (n = 32 on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22 and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6. Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve

  3. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  4. Direct behavioral and neurophysiological evidence for retronasal olfaction in mice.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available The neuroscience of flavor perception is hence becoming increasingly important to understand food flavor perception that guides food selection, ingestion and appreciation. We recently provided evidence that rats can use the retronasal mode of olfaction, an essential element of human flavor perception. We showed that in rats, like humans, odors can acquire a taste. We and others also defined how the input of the olfactory bulb (OB -not functionally imageable in humans- codes retronasal smell in anesthetized rat. The powerful awake transgenic mouse, however, would be a valuable additional model in the study of flavor neuroscience. We used a go/no-go behavioral task to test the mouse's ability to detect and discriminate the retronasal odor amyl acetate. In this paradigm a tasteless aqueous odor solution was licked by water-restricted head-fixed mice from a lick spout. Orthonasal contamination was avoided. The retronasal odor was successfully discriminated by mice against pure distilled water in a concentration-dependent manner. Bulbectomy removed the mice's ability to discriminate the retronasal odor but not tastants. The OB showed robust optical calcium responses to retronasal odorants in these awake mice. These results suggest that mice, like rats, are capable of smelling retronasally. This direct neuro-behavioral evidence establishes the mouse as a useful additional animal model for flavor research.

  5. Behavioral, neurophysiological, and descriptive changes after occupation-based intervention.

    Science.gov (United States)

    Skubik-Peplaski, Camille; Carrico, Cheryl; Nichols, Laurel; Chelette, Kenneth; Sawaki, Lumy

    2012-01-01

    We evaluated the effects of occupation-based intervention on poststroke upper-extremity (UE) motor recovery, neuroplastic change, and occupational performance in 1 research participant. A 55-yr-old man with chronic stroke and moderately impaired UE motor function participated in 15 sessions of occupation-based intervention in a hospital setting designed to simulate a home environment. We tested behavioral motor function (Fugl-Meyer Assessment, Stroke Impact Scale, Canadian Occupational Performance Measure) and neuroplasticity (transcranial magnetic stimulation [TMS]) at baseline and at completion of intervention. We collected descriptive data on occupational participation throughout the study. All behavioral outcomes indicated clinically relevant improvement. TMS revealed bihemispheric corticomotor reorganization. Descriptive data revealed enhanced occupational performance. Occupation-based intervention delivered in a hospital-based, homelike environment can lead to poststroke neuroplastic change, increased functional use of the affected UE, and improved occupational performance. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  6. Assessing fitness-for-duty and predicting performance with cognitive neurophysiological measures

    Science.gov (United States)

    Smith, Michael E.; Gevins, Alan

    2005-05-01

    Progress is described in developing a novel test of neurocognitive status for fitness-for-duty testing. The Sustained Attention & Memory (SAM) test combines neurophysiologic (EEG) measures of brain activation with performance measures during a psychometric test of sustained attention and working memory, and then gauges changes in neurocognitive status relative to an individual"s normative baseline. In studies of the effects of common psychoactive substances that can affect job performance, including sedating antihistamines, caffeine, alcohol, marijuana, and prescription medications, test sensitivity was greater for the combined neurophysiological and performance measures than for task performance measures by themselves. The neurocognitive effects of overnight sleep deprivation were quite evident, and such effects predicted subsequent performance impairment on a flight simulator task. Sensitivity to diurnal circadian variations was also demonstrated. With further refinement and independent validation, the SAM Test may prove useful for assessing readiness-to-perform in high-asset personnel working in demanding, high risk situations.

  7. Expectations affect psychological and neurophysiological benefits even after a single bout of exercise.

    Science.gov (United States)

    Mothes, Hendrik; Leukel, Christian; Jo, Han-Gue; Seelig, Harald; Schmidt, Stefan; Fuchs, Reinhard

    2017-04-01

    The study investigated whether typical psychological, physiological, and neurophysiological changes from a single exercise are affected by one's beliefs and expectations. Seventy-six participants were randomly assigned to four groups and saw different multimedia presentations suggesting that the subsequent exercise (moderate 30 min cycling) would result in more or less health benefits (induced expectations). Additionally, we assessed habitual expectations reflecting previous experience and beliefs regarding exercise benefits. Participants with more positive habitual expectations consistently demonstrated both greater psychological benefits (more enjoyment, mood increase, and anxiety reduction) and greater increase of alpha-2 power, assessed with electroencephalography. Manipulating participants' expectations also resulted in largely greater increases of alpha-2 power, but not in more psychological exercise benefits. On the physiological level, participants decreased their blood pressure after exercising, but this was independent of their expectations. These results indicate that habitual expectations in particular affect exercise-induced psychological and neurophysiological changes in a self-fulfilling manner.

  8. [Clinical and neurophysiological aspects of severe forms of autism in children].

    Science.gov (United States)

    Simashkova, N V; Iakupova, L P; Bashina, V M

    2006-01-01

    The aim of the study was to elucidate fundamentals for the phenomenon of universality of childhood autism by comparison of clinical and neurophysiological features of its severest forms--children endogenous autism (CEA) and Rett's syndrome (RS). Each group included 20 patients. Both groups were similar by age-at-disease-onset, clinical appearances during the disease course and dynamics of psychopathological syndromes. The theta-rhythm is common for CEA and RS at the disease stage with marked signs of disease acuity, autism, regress and, therefore, may be regarded as a marker of severity and development delay. The universality of autism phenomenon in its severe forms was confirmed both at the clinical and neurophysiological levels.

  9. Clinical and neurophysiological investigation of a large family with dominant Charcot-Marie-Tooth type 2 disease with pyramidal signs

    Directory of Open Access Journals (Sweden)

    Eduardo Luis de Aquino Neves

    2011-06-01

    Full Text Available Charcot-Marie-Tooth (CMT disease is a hereditary neuropathy of motor and sensory impairment with distal predominance. Atrophy and weakness of lower limbs are the first signs of the disease. It can be classified, with the aid of electromyography and nerve conduction studies, as demyelinating (CMT1 or axonal (CMT2. OBJECTIVE: Clinical and neurophysiological investigation of a large multigenerational family with CMT2 with autosomal dominant mode of transmission. METHOD: Fifty individuals were evaluated and neurophysiological studies performed in 22 patients. RESULTS: Thirty individuals had clinical signs of motor-sensory neuropathy. Babinski sign was present in 14 individuals. Neurophysiological study showed motor-sensory axonal polyneuropathy. CONCLUSION: The clinical and neurophysiological characteristics of this family does not differ from those observed with other forms of CMT, except for the high prevalence of Babinski sign.

  10. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism

    Directory of Open Access Journals (Sweden)

    Mireia Rabella

    2016-01-01

    Conclusions: These results indicate that SPD individuals show deficits in self-monitoring analogous to those in schizophrenia. These deficits can be evidenced by neurophysiological measures, suggest a dopaminergic imbalance, and can be reverted by dopaminergic antagonists.

  11. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    OpenAIRE

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and...

  12. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.

    Science.gov (United States)

    White-Schwoch, Travis; Davies, Evan C; Thompson, Elaine C; Woodruff Carr, Kali; Nicol, Trent; Bradlow, Ann R; Kraus, Nina

    2015-10-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But this auditory learning rarely occurs in ideal listening conditions-children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3-5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features-even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response

  13. Neurophysiological evaluation of patients with degenerative diseases of the cervical spine

    Directory of Open Access Journals (Sweden)

    Ilić Tihomir V.

    2011-01-01

    Full Text Available Bacground/Aim. Diagnostic protocol for patients with degenerative diseases of the cervical spine demands, in parallel with neuroimaging methods, functional evaluation through neurophysiological methods (somatosensitive and motor evoked potentials and electromyoneurography aiming to evaluate possible subclinical affection of spinal medula resulting in neurological signs of long tract abnormalities. Considering diversities of clinical outcomes for these patients, complex diagnostic evaluation provides a prognosis of the disease progression. Methods. The study included 21 patients (48.24 ± 11.01 years of age with clinical presentation of cervical spondylarthropathy, without neuroradiological signs of myelopathy. For each patient, in addition to conventional neurophysiological tests (somatisensory evoked potentials - SSEP, motor evoked potentials - MEP, electromyoneurography - EMG, nerve conduction studies, we calculated central motor conduction time (CMCTF, as well the same parameter in relation to a different position of the head (maximal anteflexion and retroflexion, so-called dynamic tests. Results. Abnormalities of the peripheral motor neurone by conventional EMNeG was established in 2/3 of the patients, correponding to the findings of root condution time. Prolonged conventional CVMPF were found in 29% of the patients, comparing to 43% CVMPF abnormalities found with the dynamic tests. In addition, the SSEP findings were abnormal in 38% of the patients with degenerative diseases of the cervical spine. Conclusion. An extended neurophysiological protocol of testing corticospinal functions, including dynamic tests of central and periheral motor neurons are relevant for detection of subclinical forms of cervical spondylothic myelopathy, even at early stages. In addition to the conventional neurophysiological tests, we found usefull to include the dynamic motor tests and root conduction time measurement in diagnostic evaluation.

  14. Punishment induced behavioural and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters

    Science.gov (United States)

    Galea, Joseph M.; Ruge, Diane; Buijink, Arthur; Bestmann, Sven; Rothwell, John C.

    2013-01-01

    Action selection describes the high-level process which selects between competing movements. In animals, behavioural variability is critical for the motor exploration required to select the action which optimizes reward and minimizes cost/punishment, and is guided by dopamine (DA). The aim of this study was to test in humans whether low-level movement parameters are affected by punishment and reward in ways similar to high-level action selection. Moreover, we addressed the proposed dependence of behavioural and neurophysiological variability on DA, and whether this may underpin the exploration of kinematic parameters. Participants performed an out-and-back index finger movement and were instructed that monetary reward and punishment were based on its maximal acceleration (MA). In fact, the feedback was not contingent on the participant’s behaviour but pre-determined. Blocks highly-biased towards punishment were associated with increased MA variability relative to blocks with either reward or without feedback. This increase in behavioural variability was positively correlated with neurophysiological variability, as measured by changes in cortico-spinal excitability with transcranial magnetic stimulation over the primary motor cortex. Following the administration of a DA-antagonist, the variability associated with punishment diminished and the correlation between behavioural and neurophysiological variability no longer existed. Similar changes in variability were not observed when participants executed a pre-determined MA, nor did DA influence resting neurophysiological variability. Thus, under conditions of punishment, DA-dependent processes influence the selection of low-level movement parameters. We propose that the enhanced behavioural variability reflects the exploration of kinematic parameters for less punishing, or conversely more rewarding, outcomes. PMID:23447607

  15. Neuropsychological and neurophysiological benefits from white noise in children with and without ADHD

    OpenAIRE

    Baijot, Simon; Slama, Hichem; S?derlund, G?ran; Dan, Bernard; Deltenre, Paul; Colin, C?cile; Deconinck, Nicolas

    2016-01-01

    Background Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity disorder (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD (7?12?years old), both at behavioral and at neurophysiological levels. Methods Thirty children with and without ADHD performed a visual cued Go/Nogo task in two...

  16. Social Consumer Neuroscience: Neurophysiological Measures of Advertising Effectiveness in a Social Context

    OpenAIRE

    Pozharliev, Rumen; Verbeke, Willem; Bagozzi, Richard

    2017-01-01

    textabstractThe application of neurophysiological methods to study the effects of advertising on consumer purchase behavior has seen an enormous growth in recent years. However, little is known about the role social settings have on shaping the human brain during the processing of advertising stimuli. To address this issue, we first review previous key findings of neuroscience research on advertising effectiveness. Next, we discuss traditional advertising research into the effects social cont...

  17. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents

    OpenAIRE

    Sanganahalli, Basavaraju G.; Bailey, Christopher J.; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD...

  18. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures

    OpenAIRE

    Yan H. Yu; Valerie L. Shafer; Elyse S. Sussman

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory represe...

  19. Sexual dysfunction following surgery for rectal cancer - a clinical and neurophysiological study

    Directory of Open Access Journals (Sweden)

    Sperduti Isabella

    2009-09-01

    Full Text Available Abstract Background Sexual dysfunction following surgery for rectal cancer may be frequent and often severe. The aim of the present study is to evaluate the occurrence of this complication from both a clinical point of view and by means of neurophysiological tests. Methods We studied a group of 57 patients submitted to rectal resection for adenocarcinoma. All the patients underwent neurological, psychological and the following neurophysiological tests: sacral reflex (SR, pudendal somatosensory evoked potentials (PEPs, motor evoked potential (MEPs and sympathetic skin responses (SSRs. The results were compared with a control group of 67 rectal cancer patients studied before surgery. Only 10 of these patients could be studied both pre- and postoperatively. 10 patients submitted to high dose preoperative chemoradiation were studied to evaluate the effect of this treatment on sexual function. Statistical analysis was performed by means of the two-tailed Student's t test for paired observations and k concordance test. Results 59.6% of patients operated reported sexual dysfunction, while this symptom occurred in 16.4% in the control group. Moreover, a significantly higher rate of alterations of the neurophysiological tests and longer mean latencies of the SR, PEPs, MEPs and SSRs were observed in the patients who had undergone resection. In the 10 patients studied both pre and post-surgery impotence occurred in 6 of them and the mean latencies of SSRs were longer after operation. In the 10 patients studied pre and post chemoradiation impotence occurred in 1 patient only, showing the mild effect of these treatments on sexual function. Conclusion Patients operated showed severe sexual dysfunctions. The neurophysiological test may be a useful tool to investigate this complication. The neurological damage could be monitored to decide the rehabilitation strategy.

  20. NEUROPHYSIOLOGY PARAMETERS IN DIAGNOSTICS OF MULTIPLE SCLEROSIS AND ACUTE DISSEMINATED ENCEPHALOMYELITIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V. B. Voitenkov

    2017-01-01

    Full Text Available Our research objective was to evaluate the importance of neurophysiological methods in diagnosing the state of visual, somatosensory and motor pathways condition in the early stages of multiple sclerosis (MS and acute disseminated encephalomyelitis (ADEM in children.Materials and methods. Twenty-four children with a debut of multiple sclerosis, 15 children with debute of acute disseminated encephalomyelitis and 20 neurologically healthy children of the comparison group were examined. All patients were evaluated by neurologist, brain MRI and CSF analysis (isoelectrofocusing to oligoclonal IgG, oligoclonal bands test, visual evoked potentials (VEP, transcranial magnetic stimulation (TMS and somatosensory evoked potentials (SSEP.Results. In children with MS asymmetry of the conduction along the motor pathways on the spinal level was higher than in patients with ADEM and controls, functional state of somatosensory cortex neurons was lower and conduction along somatosensory pathways on the spinal level was slower – all differences significant. According to the visual evoked potentials, in more than half of the cases, there was an increase in the latency of the P100 peak. Also in MS group there was a significant disruption of the visual pathway in 54% of the cases. Neurophysiological changes in 58% of cases were demyelinating, and violations of the axonal type occurred in 37% of cases.Conclusions. Neurophysiological diagnostic methods such as transcranial magnetic stimulation, visual evoked potentials, somatosensory evoked potentials are highly informative for the differential diagnosis of multiple sclerosis and acute disseminated encephalomyelitis. More pronounced spinal lesions in early stages of MS than in ADEM in children may be the cause of the neurophysiologic differences, and prevalence of the sensory system involvement at this stage may be the reason behind more extended SSEP abnormalities comparing with TMS. VEP changes may reflect primary

  1. Neurophysiological correlates of attention behavior in early infancy: Implications for emotion regulation during early childhood

    Science.gov (United States)

    Perry, Nicole B.; Swingler, Margaret M.; Calkins, Susan D.; Bell, Martha Ann

    2015-01-01

    Current theoretical conceptualizations of regulatory development suggest that attention processes and emotion regulation processes share common neurophysiological underpinnings and behavioral antecedents such that emotion regulation abilities may build upon early attentional skills. To further elucidate this proposed relationship, we tested whether early neurophysiological processes measured during an attention task in infancy predicted in-task attention behavior, and whether infant's attention behavior was subsequently associated with their ability to regulate emotion in early childhood (N=388). Results indicated that, greater EEG power change (from baseline to task) at medial frontal locations (F3 and F4) during an attention task at 10 months were associated with concurrent observed behavioral attention. Specifically, greater change in EEG power at the right frontal location (F4) was associated with more attention, and greater EEG power at the left frontal location (F3) was associated with less attention, indicating a potential right hemisphere specialization for attention processes already present in the first year of life. In addition, after controlling for 5-month attention behavior, increased behavioral attention at 10-months was negatively associated with children's observed frustration to emotional challenge at age 3. Finally, the indirect effects from 10-month EEG power change at F3 and F4 to 3-year emotion regulation via infants' 10-month behavioral attention were significant, suggesting that infant's attention behavior is one mechanism through which early neurophysiological activity is related to emotion regulation abilities in childhood. PMID:26381926

  2. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research

    Directory of Open Access Journals (Sweden)

    Rafael N. Ruggiero

    2017-06-01

    Full Text Available Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC or ameliorate (e.g., cannabidiol, CBD schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.

  3. Neurophysiological correlates of word processing deficits in isolated reading and isolated spelling disorders.

    Science.gov (United States)

    Bakos, Sarolta; Landerl, Karin; Bartling, Jürgen; Schulte-Körne, Gerd; Moll, Kristina

    2018-03-01

    In consistent orthographies, isolated reading disorders (iRD) and isolated spelling disorders (iSD) are nearly as common as combined reading-spelling disorders (cRSD). However, the exact nature of the underlying word processing deficits in isolated versus combined literacy deficits are not well understood yet. We applied a phonological lexical decision task (including words, pseudohomophones, legal and illegal pseudowords) during ERP recording to investigate the neurophysiological correlates of lexical and sublexical word-processing in children with iRD, iSD and cRSD compared to typically developing (TD) 9-year-olds. TD children showed enhanced early sensitivity (N170) for word material and for the violation of orthographic rules compared to the other groups. Lexical orthographic effects (higher LPC amplitude for words than for pseudohomophones) were the same in the TD and iRD groups, although processing took longer in children with iRD. In the iSD and cRSD groups, lexical orthographic effects were evident and stable over time only for correctly spelled words. Orthographic representations were intact in iRD children, but word processing took longer compared to TD. Children with spelling disorders had partly missing orthographic representations. Our study is the first to specify the underlying neurophysiology of word processing deficits associated with isolated literacy deficits. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Neurophysiological basis of creativity in healthy elderly people: a multiscale entropy approach.

    Science.gov (United States)

    Ueno, Kanji; Takahashi, Tetsuya; Takahashi, Koichi; Mizukami, Kimiko; Tanaka, Yuji; Wada, Yuji

    2015-03-01

    Creativity, which presumably involves various connections within and across different neural networks, reportedly underpins the mental well-being of older adults. Multiscale entropy (MSE) can characterize the complexity inherent in EEG dynamics with multiple temporal scales. It can therefore provide useful insight into neural networks. Given that background, we sought to clarify the neurophysiological bases of creativity in healthy elderly subjects by assessing EEG complexity with MSE, with emphasis on assessment of neural networks. We recorded resting state EEG of 20 healthy elderly subjects. MSE was calculated for each subject for continuous 20-s epochs. Their relevance to individual creativity was examined concurrently with intellectual function. Higher individual creativity was linked closely to increased EEG complexity across higher temporal scales, but no significant relation was found with intellectual function (IQ score). Considering the general "loss of complexity" theory of aging, our finding of increased EEG complexity in elderly people with heightened creativity supports the idea that creativity is associated with activated neural networks. Results reported here underscore the potential usefulness of MSE analysis for characterizing the neurophysiological bases of elderly people with heightened creativity. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Multimodal neurophysiological and psychometric evaluation among patients with systemic lupus erythematosus

    Science.gov (United States)

    Shehata, Ghaydaa A; Elserogy, Yasser MB; Ahmad, Hossam Eddin K; Abdel-Kareem, Mohamed I; Al-kabeer, Ashraf M; Rayan, Mohamed M; El-Baky, Mohamed ES Abd

    2011-01-01

    Objective: To determine some of the neuropsychiatric manifestations of systemic lupus erythematosus (SLE) by applying multimodal neurophysiological and psychometric studies. Patients and methods: Twenty-six SLE patients were evaluated for neurological and psychiatric disorders and compared with 26 healthy controls matched for age, sex, education, and social class. The severity of SLE disease was assessed. Each subject was subjected to the following examinations: laboratory, neurophysiology, magnetic resonance imaging of the brain, transcranial duplex, Modified Mini-mental State Examination, Cognitive Assessment Scale Inventory, Hamilton Depression Scale, and Hamilton Anxiety Scale. Results: The mean age of subjects was 25.9 ± 8.9 years. The most prevalent neurological manifestations were (in order of frequency) anxiety in 17 cases (65.4%), depression in 15 cases (57.7%), headache in 10 cases (38.5%), peripheral neuropathy in 7 cases (26.9%), seizures in 6 cases (23.1%), psychosis in 5 cases (19.2%), dementia in 4 cases (15.4%), radiculopathy in 4 cases (15.4%), myositis in 3 cases (11.5%), and stroke in 2 cases (7.7%). There was a significant affection in amplitude of the ulnar nerve, cognitive function impairment, and electroencephalography changes. There was a significant increased mean velocity and decreased Pulsatility Index of the most studied intracranial vessels in the patients. Conclusion: The use of multimodal neurophysiological, transcranial duplex, and psychometric scales increases the sensitivity for detecting nervous system involvement. PMID:21674025

  6. Sex Differences in Neurophysiological Activation Patterns During Phonological Input Processing: An Influencing Factor for Normative Data.

    Science.gov (United States)

    Aerts, Annelies; van Mierlo, Pieter; Hartsuiker, Robert J; Santens, Patrick; De Letter, Miet

    2015-11-01

    In the context of neurophysiological normative data, it has been established that aging has a significant impact on neurophysiological correlates of auditory phonological input processes, such as phoneme discrimination (PD) and word recognition (WR). Besides age, sex is another demographic factor that influences several language processes. We aimed to disentangle whether sex has a similar effect on PD and WR. Event-related potentials (ERPs) were recorded in 20 men and 24 women. During PD, three phonemic contrasts (place and manner of articulation and voicing) were compared using the attentive P300 and pre-attentive Mismatch Negativity. To investigate WR, real words were contrasted with pseudowords in a pre-attentive oddball task. Women demonstrated a larger sensitivity to spectrotemporal differences, as evidenced by larger P300 responses to the place of articulation (PoA) contrast and larger P300 and MMN responses than men in PoA-based PD. Men did not display such sensitivity. Attention played an important role, considering that women needed more attentional resources to differentiate between PoA and the other phonemic contrasts. During WR, pseudowords evoked larger amplitudes already 100 ms post-stimulus independent of sex. However, women had decreased P200 latencies, but longer N400 latencies in response to pseudowords, whereas men showed increased N400 latencies compared to women in response to real words. The current results demonstrate significant sex-related influences on phonological input processes. Therefore, existing neurophysiological normative data for age should be complemented for the factor sex.

  7. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    Directory of Open Access Journals (Sweden)

    Elise Houdayer

    Full Text Available The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS. Twelve subjects (experimental group underwent, before and after a two week-piano training: (1 hand-motor function tests: Jamar, grip and nine-hole peg tests; (2 electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD during keyboard performance; and (3 TMS, targeting bilateral abductor pollicis brevis (APB and abductor digiti minimi (ADM, to obtain duration and area of ipsilateral silent period (ISP during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  8. Latino College Completion: Hawaii

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  9. Latino College Completion: Pennsylvania

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  10. Completeness, supervenience and ontology

    International Nuclear Information System (INIS)

    Maudlin, Tim W E

    2007-01-01

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction

  11. Completeness, supervenience and ontology

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, Tim W E [Department of Philosophy, Rutgers University, 26 Nichol Avenue, New Brunswick, NJ 08901-1411 (United States)

    2007-03-23

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction.

  12. Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts.

    Science.gov (United States)

    Schreiter, Marie Luise; Chmielewski, Witold; Beste, Christian

    2018-07-01

    There is a strong inter-relation of cognitive and emotional processes as evidenced by emotional conflict monitoring processes. In the cognitive domain, proactive effects of conflicts have widely been studied; i.e. effects of conflicts in the n-1 trial on trial n. Yet, the neurophysiological processes and associated functional neuroanatomical structures underlying such proactive effects during emotional conflicts have not been investigated. This is done in the current study combining EEG recordings with signal decomposition methods and source localization approaches. We show that an emotional conflict in the n-1 trial differentially influences processing of positive and negative emotions in trial n, but not the processing of conflicts in trial n. The dual competition framework stresses the importance of dissociable 'perceptual' and 'response selection' or cognitive control levels for interactive effects of cognition and emotion. Only once these coding levels were isolated in the neurophysiological data, processes explaining the behavioral effects were detectable. The data show that there is not only a close correspondence between theoretical propositions of the dual competition framework and neurophysiological processes. Rather, processing levels conceptualized in the framework operate in overlapping time windows, but are implemented via distinct functional neuroanatomical structures; the precuneus (BA31) and the insula (BA13). It seems that decoding of information in the precuneus, as well as the integration of information during response selection in the insula is more difficult when confronted with angry facial emotions whenever cognitive control resources have been highly taxed by previous conflicts. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Multimodal neurophysiological and psychometric evaluation among patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Shehata GA

    2011-04-01

    Full Text Available Ghaydaa A Shehata1, Yasser MB Elserogy2, Hossam Eddin K Ahmad2, Mohamed I Abdel-Kareem3, Ashraf M Al-kabeer4, Mohamed M Rayan2, Mohamed ES Abd El-Baky 1Department of Neurology; 2Department of Psychiatry, Assiut University, Egypt; 3Department of Rheumatology, Physical Medicine and Rehabilitation; 4Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assiut, EgyptObjective: To determine some of the neuropsychiatric manifestations of systemic lupus erythematosus (SLE by applying multimodal neurophysiological and psychometric studies.Patients and methods: Twenty-six SLE patients were evaluated for neurological and psychiatric disorders and compared with 26 healthy controls matched for age, sex, education, and social class. The severity of SLE disease was assessed. Each subject was subjected to the following examinations: laboratory, neurophysiology, magnetic resonance imaging of the brain, transcranial duplex, Modified Mini-mental State Examination, Cognitive Assessment Scale Inventory, Hamilton Depression Scale, and Hamilton Anxiety Scale.Results: The mean age of subjects was 25.9 ± 8.9 years. The most prevalent neurological manifestations were (in order of frequency anxiety in 17 cases (65.4%, depression in 15 cases (57.7%, headache in 10 cases (38.5%, peripheral neuropathy in 7 cases (26.9%, seizures in 6 cases (23.1%, psychosis in 5 cases (19.2%, dementia in 4 cases (15.4%, radiculopathy in 4 cases (15.4%, myositis in 3 cases (11.5%, and stroke in 2 cases (7.7%. There was a significant affection in amplitude of the ulnar nerve, cognitive function impairment, and electroencephalography changes. There was a significant increased mean velocity and decreased Pulsatility Index of the most studied intracranial vessels in the patients.Conclusion: The use of multimodal neurophysiological, transcranial duplex, and psychometric scales increases the sensitivity for detecting nervous system involvement.Keywords: SLE, SLEDAI

  14. The neurophysiology of language processing shapes the evolution of grammar: evidence from case marking.

    Science.gov (United States)

    Bickel, Balthasar; Witzlack-Makarevich, Alena; Choudhary, Kamal K; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina

    2015-01-01

    Do principles of language processing in the brain affect the way grammar evolves over time or is language change just a matter of socio-historical contingency? While the balance of evidence has been ambiguous and controversial, we identify here a neurophysiological constraint on the processing of language that has a systematic effect on the evolution of how noun phrases are marked by case (i.e. by such contrasts as between the English base form she and the object form her). In neurophysiological experiments across diverse languages we found that during processing, participants initially interpret the first base-form noun phrase they hear (e.g. she…) as an agent (which would fit a continuation like … greeted him), even when the sentence later requires the interpretation of a patient role (as in … was greeted). We show that this processing principle is also operative in Hindi, a language where initial base-form noun phrases most commonly denote patients because many agents receive a special case marker ("ergative") and are often left out in discourse. This finding suggests that the principle is species-wide and independent of the structural affordances of specific languages. As such, the principle favors the development and maintenance of case-marking systems that equate base-form cases with agents rather than with patients. We confirm this evolutionary bias by statistical analyses of phylogenetic signals in over 600 languages worldwide, controlling for confounding effects from language contact. Our findings suggest that at least one core property of grammar systematically adapts in its evolution to the neurophysiological conditions of the brain, independently of socio-historical factors. This opens up new avenues for understanding how specific properties of grammar have developed in tight interaction with the biological evolution of our species.

  15. Neurophysiology of the “Celiac Brain”: Disentangling Gut-Brain Connections

    Directory of Open Access Journals (Sweden)

    Manuela Pennisi

    2017-09-01

    Full Text Available Celiac disease (CD can be considered a complex multi-organ disorder with highly variable extra-intestinal, including neurological, involvement. Cerebellar ataxia, peripheral neuropathy, seizures, headache, cognitive impairment, and neuropsychiatric diseases are complications frequently reported. These manifestations may be present at the onset of the typical disease or become clinically evident during its course. However, CD subjects with subclinical neurological involvement have also been described, as well as patients with clear central and/or peripheral nervous system and intestinal histopathological disease features in the absence of typical CD manifestations. Based on these considerations, a sensitive and specific diagnostic method that is able to detect early disease process, progression, and complications is desirable. In this context, neurophysiological techniques play a crucial role in the non-invasive assessment of central nervous system (CNS excitability and conductivity. Moreover, some of these tools are known for their valuable role in early diagnosis and follow-up of several neurological diseases or systemic disorders, such as CD with nervous system involvement, even at the subclinical level. This review provides an up-to-date summary of the neurophysiological basis of CD using electroencephalography (EEG, multimodal evoked potentials, and transcranial magnetic stimulation (TMS. The evidence examined here seems to converge on an overall profile of “hyperexcitable celiac brain,” which partially recovers after institution of a gluten-free diet (GFD. The main translational correlate is that in case of subclinical neurological involvement or overt unexplained symptoms, neurophysiology could contribute to the diagnosis, assessment, and monitoring of a potentially underlying CD.

  16. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Bailey, Christopher J; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably

  17. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics.

    Science.gov (United States)

    Akerman, Simon; Romero-Reyes, Marcela; Holland, Philip R

    2017-04-01

    Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT 1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neuropsychological and neurophysiological approaches to study of variants of Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Matveyeva E. Yu.

    2012-06-01

    Full Text Available The present review carries out analysis of empirical studies concerning neuropsychological and neurophysiological mechanisms of Attention Deficit Hyperactivity Disorder (ADHD. The current data, regarding malfunctions of brain systems at various levels of aetiopathogenesis (genetic, neurotrasmitting, functioning of separate brain structure, are discussed. The article regards the character of deficit in various components of psychic activity in people with ADHD, namely, executive functions and temporary storage (working memory, activating and neurodynamic components of activity, separate operational characteristics, and motivational impairments of patients with ADHD. The possibility of disclosing some clinical variants of the ADHD syndrome, differing in mechanisms, is also discussed in the article.

  19. Neurophysiological mechanisms in acceptance and commitment therapy in opioid-addicted patients with chronic pain.

    Science.gov (United States)

    Smallwood, Rachel F; Potter, Jennifer S; Robin, Donald A

    2016-04-30

    Acceptance and Commitment Therapy (ACT) has been effectively utilized to treat both chronic pain and substance use disorder independently. Given these results and the vital need to treat the comorbidity of the two disorders, a pilot ACT treatment was implemented in individuals with comorbid chronic pain and opioid addiction. This pilot study supported using neurophysiology to characterize treatment effects and revealed that, following ACT, participants with this comorbidity exhibited reductions in brain activation due to painful stimulus and in connectivity at rest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The clinical and neurophysiological characteristics of the deja vu phenomenon in epilepsy

    OpenAIRE

    P. N. Vlasov; A. V. Chervyakov; G. R. Drozhzhina; М. V. Antonyuk; N. V. Orekhova; V. V. Gnezditsky; T. Yu. Noskova; P. A. Fedin

    2012-01-01

    Objective: to study the clinical and neurophysiological characteristics of the deja vu phenomenon in epilepsy. Patients and methods. The manifestations of the dВjЕ vu phenomenon were compared in 154 examinees in two groups: 1) 139 healthy individuals and 2) 25 patients with epilepsy (mean age 25.17±9.19 years; women, 63.2%) The characteristics of the phenomenon were determined, by questioning the examinees; 12—16-hour ambulatory electroencephalogram (EEG) monitoring was made. Results. The dej...

  1. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  2. Complete Ureteral Avulsion

    Directory of Open Access Journals (Sweden)

    V. Gupta

    2005-01-01

    Full Text Available Complete avulsion of the ureter is one of the most serious complications of ureteroscopy. It requires open or laparoscopic intervention for repair. This case report emphasizes its management and presents recommendations for prevention in current urological practice.

  3. Neurophysiology of spontaneous facial expressions: I. Motor control of the upper and lower face is behaviorally independent in adults.

    Science.gov (United States)

    Ross, Elliott D; Gupta, Smita S; Adnan, Asif M; Holden, Thomas L; Havlicek, Joseph; Radhakrishnan, Sridhar

    2016-03-01

    Facial expressions are described traditionally as monolithic entities. However, humans have the capacity to produce facial blends, in which the upper and lower face simultaneously display different emotional expressions. This, in turn, has led to the Component Theory of facial expressions. Recent neuroanatomical studies in monkeys have demonstrated that there are separate cortical motor areas for controlling the upper and lower face that, presumably, also occur in humans. The lower face is represented on the posterior ventrolateral surface of the frontal lobes in the primary motor and premotor cortices and the upper face is represented on the medial surface of the posterior frontal lobes in the supplementary motor and anterior cingulate cortices. Our laboratory has been engaged in a series of studies exploring the perception and production of facial blends. Using high-speed videography, we began measuring the temporal aspects of facial expressions to develop a more complete understanding of the neurophysiology underlying facial expressions and facial blends. The goal of the research presented here was to determine if spontaneous facial expressions in adults are predominantly monolithic or exhibit independent motor control of the upper and lower face. We found that spontaneous facial expressions are very complex and that the motor control of the upper and lower face is overwhelmingly independent, thus robustly supporting the Component Theory of facial expressions. Seemingly monolithic expressions, be they full facial or facial blends, are most likely the result of a timing coincident rather than a synchronous coordination between the ventrolateral and medial cortical motor areas responsible for controlling the lower and upper face, respectively. In addition, we found evidence that the right and left face may also exhibit independent motor control, thus supporting the concept that spontaneous facial expressions are organized predominantly across the horizontal facial

  4. The effect of L-dopa in Parkinson's disease as revealed by neurophysiological studies of motor and sensory functions.

    Science.gov (United States)

    Suppa, Antonio; Bologna, Matteo; Conte, Antonella; Berardelli, Alfredo; Fabbrini, Giovanni

    2017-02-01

    This review will first discuss evidence of motor and sensory abnormalities as yielded by neurophysiological techniques in patients with PD. It will then go on to describe the effects of L-dopa replacement on motor and sensory abnormalities in PD as assessed by neurophysiological studies. Areas covered: We analyzed papers in English using Pubmed with the following keywords: L-dopa, dopamine, bradykinesia, basal ganglia, kinematic analysis, TMS, motor cortex plasticity, motor cortex excitability, somatosensory discrimination threshold, pain Expert commentary: L-dopa improves the amplitude and speed of upper limb voluntary movements, but it does not restore abnormalities in the sequence effect or voluntary facial movements. L-dopa only partially normalizes changes in motor cortex excitability and plasticity and has also contrasting effects on the sensory system and on sensory-motor integration. The neurophysiological studies reviewed here show that PD is more than a hypo-dopaminergic disease, and non-dopaminergic mechanisms should also be considered.

  5. Resting-State Neurophysiological Activity Patterns in Young People with ASD, ADHD, and ASD + ADHD.

    Science.gov (United States)

    Shephard, Elizabeth; Tye, Charlotte; Ashwood, Karen L; Azadi, Bahar; Asherson, Philip; Bolton, Patrick F; McLoughlin, Grainne

    2018-01-01

    Altered power of resting-state neurophysiological activity has been associated with autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. We compared resting-state neurophysiological power in children with ASD, ADHD, co-occurring ASD + ADHD, and typically developing controls. Children with ASD (ASD/ASD + ADHD) showed reduced theta and alpha power compared to children without ASD (controls/ADHD). Children with ADHD (ADHD/ASD + ADHD) displayed decreased delta power compared to children without ADHD (ASD/controls). Children with ASD + ADHD largely presented as an additive co-occurrence with deficits of both disorders, although reduced theta compared to ADHD-only and reduced delta compared to controls suggested some unique markers. Identifying specific neurophysiological profiles in ASD and ADHD may assist in characterising more homogeneous subgroups to inform treatment approaches and aetiological investigations.

  6. Neurophysiological determinants of tic severity in children with chronic motor tic disorder.

    Science.gov (United States)

    Siniatchkin, Michael; Kuppe, Andrea

    2011-06-01

    Tics wax and wane in severity. Although the understanding of the natural course of symptoms in tic disorder (TD) is important for planning and assessing therapeutic interventions, neurophysiological mechanisms and predictors of tic exacerbation and remission have not been sufficiently investigated. In each of seven children suffering from TD, contingent negative variation (CNV) was recorded on 10 occasions over a period of 2 months. CNV parameters of children with TD were compared with CNV data of healthy, age-matched children. During the entire time of observation, tic severity was assessed by parents and the investigator using a scale developed from the Yale Global Tic Severity Scale. Moreover, tic severity was also evaluated using video assessments. Patients with TD were characterized by significantly lower amplitude of the total CNV and more pronounced habituation of the early CNV component as compared to healthy children. Correlation analysis between tic severity and CNV parameters demonstrated that the more severe the tics were, the lower the amplitude of the total CNV. Since CNV amplitude represents processes of resource mobilization and control over neuronal excitability, tic severity may result from less ability to control neurophysiological functions in patients with TD.

  7. Using pupil size and heart rate to infer affective states during behavioral neurophysiology and neuropsychology experiments.

    Science.gov (United States)

    Mitz, Andrew R; Chacko, Ravi V; Putnam, Philip T; Rudebeck, Peter H; Murray, Elisabeth A

    2017-03-01

    Nonhuman primates (NHPs) are a valuable research model because of their behavioral, physiological and neuroanatomical similarities to humans. In the absence of language, autonomic activity can provide crucial information about cognitive and affective states during single-unit recording, inactivation and lesion studies. Methods standardized for use in humans are not easily adapted to NHPs and detailed guidance has been lacking. We provide guidance for monitoring heart rate and pupil size in the behavioral neurophysiology setting by addressing the methodological issues, pitfalls and solutions for NHP studies. The methods are based on comparative physiology to establish a rationale for each solution. We include examples from both electrophysiological and lesion studies. Single-unit recording, pupil responses and heart rate changes represent a range of decreasing temporal resolution, a characteristic that impacts experimental design and analysis. We demonstrate the unexpected result that autonomic measures acquired before and after amygdala lesions are comparable despite disruption of normal autonomic function. Species and study design differences can render standard techniques used in human studies inappropriate for NHP studies. We show how to manage data from small groups typical of NHP studies, data from the short behavioral trials typical of neurophysiological studies, issues associated with longitudinal studies, and differences in anatomy and physiology. Autonomic measurement to infer cognitive and affective states in NHP is neither off-the-shelf nor onerous. Familiarity with the issues and solutions will broaden the use of autonomic signals in NHP single unit and lesion studies. Published by Elsevier B.V.

  8. Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update.

    Science.gov (United States)

    Coppola, Angela; Tramontano, Vincenzo; Basaldella, Federica; Arcaro, Chiara; Squintani, Giovanna; Sala, Francesco

    2016-10-01

    Over the past decade, the reluctance to operate in eloquent brain areas has been reconsidered in the light of the advent of new peri-operative functional neuroimaging techniques and new evidence from neuro-oncology. To maximise tumour resection while minimising morbidity should be the goal of brain surgery in children as much as it is in adults, and preservation of brain functions is critical in the light of the increased survival and the expectations in terms of quality of life. Intra-operative neurophysiology is the gold standard to localise and preserve brain functions during surgery and is increasingly used in paediatric neurosurgery. Yet, the developing nervous system has peculiar characteristics in terms of anatomical and physiological maturation, and some technical aspects need to be tailored for its use in children, especially in infants. This paper will review the most recent advances in the field of intra-operative neurophysiology (ION) techniques during brain surgery, focussing on those aspects that are relevant to the paediatric neurosurgery practice.

  9. Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study.

    Science.gov (United States)

    Son, K-L; Choi, J-S; Lee, J; Park, S M; Lim, J-A; Lee, J Y; Kim, S N; Oh, S; Kim, D J; Kwon, J S

    2015-09-01

    Despite that Internet gaming disorder (IGD) shares clinical, neuropsychological and personality characteristics with alcohol use disorder (AUD), little is known about the resting-state quantitative electroencephalography (QEEG) patterns associated with IGD and AUD. Therefore, this study compared the QEEG patterns in patients with IGD with those in patients with AUD to identify unique neurophysiological characteristics that can be used as biomarkers of IGD. A total of 76 subjects (34 with IGD, 17 with AUD and 25 healthy controls) participated in this study. Resting-state, eyes-closed QEEGs were recorded, and the absolute and relative power of brains were analyzed. The generalized estimating equation showed that the IGD group had lower absolute beta power than AUD (estimate = 5.319, P < 0.01) and the healthy control group (estimate = 2.612, P = 0.01). The AUD group showed higher absolute delta power than IGD (estimate = 7.516, P < 0.01) and the healthy control group (estimate = 7.179, P < 0.01). We found no significant correlations between the severity of IGD and QEEG activities in patients with IGD. The current findings suggest that lower absolute beta power can be used as a potential trait marker of IGD. Higher absolute power in the delta band may be a susceptibility marker for AUD. This study clarifies the unique characteristics of IGD as a behavioral addiction, which is distinct from AUD, by providing neurophysiological evidence.

  10. An integral investigation into the phenomenology and neurophysiology of Christian Trinity meditation

    Directory of Open Access Journals (Sweden)

    Stephen D. Edwards

    2012-03-01

    Full Text Available This integral investigation explored phenomenological and neurophysiologic, individual and collective dimensions of Christian Trinitarian meditation experiences in a volunteer, convenience sample of 10 practicing Christians, 6 men and 4 women, with a mean age of 48 years and an age range from 21 to 85 years. Participants meditated for a minimum period of 15 minutes, during which neurophysiologic data in the form of electroencephalographic (EEG, electromyographic (EMG, blood volume pulse (BVP and respiratory activity were recorded. A phenomenological analysis indicated that the meditation process generally involved a movement from body to mind to spirit as evident in reports of an increasingly relaxed, contented and focused state of consciousness characterised by Christian Trinitarian imagery, wonder, surrender, peace, bliss, openness and formlessness. The neuropsychological findings indicated significant increases, from baseline to meditation recordings, in the alpha and beta range, accompanied by increasing mean trends in the theta and gamma range, and decreasing mean trends in the delta range, EMG, BVP and respiration. Integrative findings indicated the practical theological value of small doses of Christian Trinity meditation to enhance spiritual life for those forms of waking, thinking, conscious behaviour needed in everyday world involvement and healing. Findings were discussed in relation to further integrative investigations and interventions with practical theological implications.

  11. Neurophysiology in preschool improves behavioral prediction of reading ability throughout primary school.

    Science.gov (United States)

    Maurer, Urs; Bucher, Kerstin; Brem, Silvia; Benz, Rosmarie; Kranz, Felicitas; Schulz, Enrico; van der Mark, Sanne; Steinhausen, Hans-Christoph; Brandeis, Daniel

    2009-08-15

    More struggling readers could profit from additional help at the beginning of reading acquisition if dyslexia prediction were more successful. Currently, prediction is based only on behavioral assessment of early phonological processing deficits associated with dyslexia, but it might be improved by adding brain-based measures. In a 5-year longitudinal study of children with (n = 21) and without (n = 23) familial risk for dyslexia, we tested whether neurophysiological measures of automatic phoneme and tone deviance processing obtained in kindergarten would improve prediction of reading over behavioral measures alone. Together, neurophysiological and behavioral measures obtained in kindergarten significantly predicted reading in school. Particularly the late mismatch negativity measure that indicated hemispheric lateralization of automatic phoneme processing improved prediction of reading ability over behavioral measures. It was also the only significant predictor for long-term reading success in fifth grade. Importantly, this result also held for the subgroup of children at familial risk. The results demonstrate that brain-based measures of processing deficits associated with dyslexia improve prediction of reading and thus may be further evaluated to complement clinical practice of dyslexia prediction, especially in targeted populations, such as children with a familial risk.

  12. Evaluating Sativex® in Neuropathic Pain Management: A Clinical and Neurophysiological Assessment in Multiple Sclerosis.

    Science.gov (United States)

    Russo, Margherita; Naro, Antonino; Leo, Antonino; Sessa, Edoardo; D'Aleo, Giangaetano; Bramanti, Placido; Calabrò, Rocco Salvatore

    2016-06-01

    The aim of our study was to better investigate the role of Sativex(®) in improving pain in multiple sclerosis (MS) patients by means of either clinical or neurophysiological assessment. Pain is a common symptom of MS, affecting up to 70% of patients. Pain treatment is often unsatisfactory, although emerging drugs (including cannabinoids) are giving encouraging results. Clinical pain assessment in MS is very difficult, and more objective tools are necessary to better quantify this symptom and its potential response to the treatments. We enrolled 20 MS patients (10 with and 10 without neuropathic pain), who underwent a specific clinical (such as visual analog scale) and neurophysiological assessment (by means of laser-evoked potentials and transcranial magnetic stimulation), before and after 4 weeks of Sativex administration. One month of drug administration in MS patients with neuropathic pain successfully reduced pain rating and improved quality of life. Interestingly, such effects were paralleled by an increase of fronto-central γ-band oscillation and of pain-motor integration strength. Our data suggest that Sativex may be effective in improving MS-related neuropathic pain, maybe through its action on specific cortical pathways. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Correlation between muscle electrical impedance data and standard neurophysiologic parameters after experimental neurogenic injury

    International Nuclear Information System (INIS)

    Ahad, M; Rutkove, S B

    2010-01-01

    Previous work has shown that electrical impedance measurements of muscle can assist in quantifying the degree of muscle atrophy resulting from neuronal injury, with impedance values correlating strongly with standard clinical parameters. However, the relationship between such data and neurophysiologic measurements is unexplored. In this study, 24 Wistar rats underwent sciatic crush, with measurement of the 2–1000 kHz impedance spectrum, standard electrophysiological measures, including nerve conduction studies, needle electromyography, and motor unit number estimation (MUNE) before and after sciatic crush, with animals assessed weekly for 4 weeks post-injury. All electrical impedance values, including a group of 'collapsed' variables, in which the spectral characteristics were reduced to single values, showed reductions as high as 47.2% after sciatic crush, paralleling and correlating with changes in compound motor action potential amplitude, conduction velocity and most closely to MUNE, but not to the presence of fibrillation potentials observed on needle electromyography. These results support the concept that localized impedance measurements can serve as surrogate makers of nerve injury; these measurements may be especially useful in assessing nerve injury impacting proximal or axial muscles where standard quantitative neurophysiologic methods such as nerve conduction or MUNE cannot be readily performed

  14. Foot Drop: Looking Beyond Common Peroneal Nerve Palsy – A Neurophysiology Centre Experience

    LENUS (Irish Health Repository)

    Yap, SM

    2016-04-01

    Foot drop is a complex symptom with a considerable range in aetiology, severity and prognosis. We aim to characterise the aetiologies of foot drop and assess the diagnostic contribution of neurophysiologic testing (NCS\\/EMG). Retrospective review of consecutive referrals of foot drop to the Neurophysiology Department in Cork University Hospital was performed over a two year period (January 2012 to December 2013). Of a total of 59 referrals, common peroneal nerve (CPN) palsy comprised only slightly more than half of cases; 3(5%) have central origin; 3(5%) have motor neuron disease. Six (10%) have diabetes; 7(12%) have cancer; 5(8%) were bilateral. NCS\\/EMG altered initial working diagnosis in 14 out of 52 (27%) cases whereby initial diagnosis was provided. However one-third of all cases revealed additional coexistent pathology in an anatomic location remote to that of the primary diagnosis. Foot drop with central and proximal localisations are important and under recognised. NCS\\/EMG is valuable and also reveals additional pathology which warrants investigation

  15. A portable platform to collect and review behavioral data simultaneously with neurophysiological signals.

    Science.gov (United States)

    Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F

    2017-07-01

    This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.

  16. Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2017-01-01

    Full Text Available The circadian variation of sensory and motor symptoms with increasing severity in the evening and at night is a key diagnostic feature/symptom of the restless legs syndrome (RLS. Even though many neurological diseases have shown a strong nexus between motor and cognitive symptoms, it has remained unclear whether cognitive performance of RLS patients declines in the evening and which neurophysiological mechanisms are affected by the circadian variation. In the current study, we examined daytime effects (morning vs. evening on cognitive performance in RLS patients (n = 33 compared to healthy controls (n = 29 by analyzing flanker interference effects in combination with EEG and source localization techniques. RLS patients showed larger flanker interference effects in the evening than in the morning (p = .023, while healthy controls did not display a comparable circadian variation. In line with this, the neurophysiological data showed smaller N1 amplitudes in RLS patients compared to controls in the interfering task condition in the evening (p = .042, but not in the morning. The results demonstrate diurnal cognitive changes in RLS patients with intensified impairments in the evening. It seems that not all dopamine-regulated cognitive processes are altered in RLS and thus show daytime-dependent impairments. Instead, the daytime-related cognitive impairment emerges from attentional selection processes within the extra-striate visual cortex, but not from later cognitive processes such as conflict monitoring and response selection.

  17. Neurophysiological model of tinnitus: dependence of the minimal masking level on treatment outcome.

    Science.gov (United States)

    Jastreboff, P J; Hazell, J W; Graham, R L

    1994-11-01

    Validity of the neurophysiological model of tinnitus (Jastreboff, 1990), outlined in this paper, was tested on data from multicenter trial of tinnitus masking (Hazell et al., 1985). Minimal masking level, intensity match of tinnitus, and the threshold of hearing have been evaluated on a total of 382 patients before and after 6 months of treatment with maskers, hearing aids, or combination devices. The data has been divided into categories depending on treatment outcome and type of approach used. Results of analysis revealed that: i) the psychoacoustical description of tinnitus does not possess a predictive value for the outcome of the treatment; ii) minimal masking level changed significantly depending on the treatment outcome, decreasing on average by 5.3 dB in patients reporting improvement, and increasing by 4.9 dB in those whose tinnitus remained the same or worsened; iii) 73.9% of patients reporting improvement had their minimal masking level decreased as compared with 50.5% for patients not showing improvement, which is at the level of random change; iv) the type of device used has no significant impact on the treatment outcome and minimal masking level change; v) intensity match and threshold of hearing did not exhibit any significant changes which can be related to treatment outcome. These results are fully consistent with the neurophysiological interpretation of mechanisms involved in the phenomenon of tinnitus and its alleviation.

  18. The effect of task demand and incentive on neurophysiological and cardiovascular markers of effort.

    Science.gov (United States)

    Fairclough, Stephen H; Ewing, Kate

    2017-09-01

    According to motivational intensity theory, effort is proportional to the level of task demand provided that success is possible and successful performance is deemed worthwhile. The current study represents a simultaneous manipulation of demand (working memory load) and success importance (financial incentive) to investigate neurophysiological (EEG) and cardiovascular measures of effort. A 2×2 repeated-measures study was conducted where 18 participants performed a n-back task under three conditions of demand: easy (1-back), hard (4-back) and very hard (7-back). In addition, participants performed these tasks in the presence of performance-contingent financial incentive or in a no-incentive (pilot trial) condition. Three bands of EEG activity were quantified: theta (4-7Hz), lower-alpha (7.5-10Hz) and upper-alpha (10.5-13Hz). Fronto-medial activity in the theta band and activity in the upper-alpha band at frontal, central and parietal sites were sensitive to demand and indicated greatest effort when the task was challenging and success was possible. Mean systolic blood pressure and activity in the lower-alpha band at parietal sites were also sensitive to demand but also increased in the incentive condition across all levels of task demand. The results of the study largely support the predictions of motivational intensity using neurophysiological markers of effort. Copyright © 2017. Published by Elsevier B.V.

  19. Completeness of Lyapunov Abstraction

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Sloth, Christoffer

    2013-01-01

    the vector field, which allows the generation of a complete abstraction. To compute the functions that define the subdivision of the state space in an algorithm, we formulate a sum of squares optimization problem. This optimization problem finds the best subdivisioning functions, with respect to the ability......This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...

  20. Is appreciation of written education about pain neurophysiology related to changes in illness perceptions and health status in patients with fibromyalgia?

    NARCIS (Netherlands)

    van Ittersum, M. W.; van Wilgen, C. P.; Groothoff, J. W.; van der Schans, C. P.

    2011-01-01

    To investigate the appreciation of written education about pain neurophysiology in patients with fibromyalgia (FM) and its effects on illness perceptions and perceived health status. A booklet explaining pain neurophysiology was sent to participants with FM. Appreciation was assessed with 10

  1. Construction completion report

    International Nuclear Information System (INIS)

    1990-01-01

    This Construction Completion Report documents the major construction projects at the Waste Isolation Pilot Plant (WIPP) site and related information on contracts, schedules, and other areas which affected construction. This report is not intended to be an exhaustive detailed analysis of construction, but is a general overview and summary of the WIPP construction. 10 refs., 29 figs

  2. Complete Rerouting Protection

    DEFF Research Database (Denmark)

    Stidsen, Thomas K.; Kjærulff, Peter

    2005-01-01

    In this paper we present a new protection method: Complete Rerouting. This is the most capacity e cient protection method for circuit switched networks and it is, to the best of our knowledge, the first time it has been described. We implement a column generation algorithm and test the performance...

  3. Complete French Teach Yourself

    CERN Document Server

    Graham, Gaelle

    2010-01-01

    The best-selling complete course for a fun and effective way to learn French. This ISBN is for the paperback book. The corresponding audio support (ISBN: 9781444100068) is also available. The book and audio support can also be purchased as a pack (ISBN: 9781444100051).

  4. Completeness of Lyapunov Abstraction

    Directory of Open Access Journals (Sweden)

    Rafael Wisniewski

    2013-08-01

    Full Text Available In this work, we continue our study on discrete abstractions of dynamical systems. To this end, we use a family of partitioning functions to generate an abstraction. The intersection of sub-level sets of the partitioning functions defines cells, which are regarded as discrete objects. The union of cells makes up the state space of the dynamical systems. Our construction gives rise to a combinatorial object - a timed automaton. We examine sound and complete abstractions. An abstraction is said to be sound when the flow of the time automata covers the flow lines of the dynamical systems. If the dynamics of the dynamical system and the time automaton are equivalent, the abstraction is complete. The commonly accepted paradigm for partitioning functions is that they ought to be transversal to the studied vector field. We show that there is no complete partitioning with transversal functions, even for particular dynamical systems whose critical sets are isolated critical points. Therefore, we allow the directional derivative along the vector field to be non-positive in this work. This considerably complicates the abstraction technique. For understanding dynamical systems, it is vital to study stable and unstable manifolds and their intersections. These objects appear naturally in this work. Indeed, we show that for an abstraction to be complete, the set of critical points of an abstraction function shall contain either the stable or unstable manifold of the dynamical system.

  5. Dual completion method

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, N Ya; Kadymova, K S; Dzhafarov, Sh T

    1963-10-28

    One type of dual completion method utilizes a single tubing string. Through the use of the proper tubing equipment, the fluid from the low-productive upper formation is lifted by utilizing the surplus energy of a submerged pump, which handles the production from the lower stratum.

  6. A complete woman

    Indian Academy of Sciences (India)

    Lawrence

    treated me like a son in the way he encouraged my education, while my mother ... cine gives me a lot of satisfaction when I see my patients getting cured. Teaching ... thing in life as a complete woman in different roles – daughter, wife, mother ...

  7. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  8. The crossroads of anxiety: distinct neurophysiological maps for different symptomatic groups

    Directory of Open Access Journals (Sweden)

    Gerez M

    2016-01-01

    Full Text Available Montserrat Gerez,1–3 Enrique Suárez,2,3 Carlos Serrano,2,3 Lauro Castanedo,2 Armando Tello1,3 1Departamento de Neurofisiología Clínica, Hospital Español de México, Mexico City, Mexico; 2Departamento de Psiquiatría, Hospital Español de México, Mexico City, Mexico; 3Unidad de Postgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico Background: Despite the devastating impact of anxiety disorders (ADs worldwide, long-lasting debates on causes and remedies have not solved the clinician’s puzzle: who should be treated and how? Psychiatric classifications conceptualize ADs as distinct entities, with strong support from neuroscience fields. Yet, comorbidity and pharmacological response suggest a single “serotonin dysfunction” dimension. Whether AD is one or several disorders goes beyond academic quarrels, and the distinction has therapeutic relevance. Addressing the underlying dysfunctions should improve treatment response. By its own nature, neurophysiology can be the best tool to address dysfunctional processes.Purpose: To search for neurophysiological dysfunctions and differences among panic disorder (PD, agoraphobia-social-specific phobia, obsessive–compulsive disorder (OCD and generalized anxiety disorder.Methods: A sample population of 192 unmedicated patients and 30 aged-matched controls partook in this study. Hypothesis-related neurophysiological variables were combined into ten independent factors: 1 dysrhythmic patterns, 2 delta, 3 theta, 4 alpha, 5 beta (whole-head absolute power z-scores, 6 event-related potential (ERP combined latency, 7 ERP combined amplitude (z-scores, 8 magnitude, 9 site, and 10 site of hyperactive networks. Combining single variables into representative factors was necessary because, as in all real-life phenomena, the complexity of interactive processes cannot be addressed through single variables and the multiplicity of potentially implicated variables would demand an extremely large

  9. The complete cosmicomics

    CERN Document Server

    Calvino, Italo

    2014-01-01

    The definitive edition of Calvino’s cosmicomics, bringing together all of these enchanting stories—including some never before translated—in one volume for the first time. In Italo Calvino’s cosmicomics, primordial beings cavort on the nearby surface of the moon, play marbles with atoms, and bear ecstatic witness to Earth’s first dawn. Exploring natural phenomena and the origins of the universe, these beloved tales relate complex scientific concepts to our common sensory, emotional, human world. Now, The Complete Cosmicomics brings together all of the cosmicomic stories for the first time. Containing works previously published in Cosmicomics, t zero, and Numbers in the Dark, this single volume also includes seven previously uncollected stories, four of which have never been published in translation in the United States. This “complete and definitive collection” (Evening Standard) reconfirms the cosmicomics as a crowning literary achievement and makes them available to new generations of reader...

  10. CMS Is Finally Completed

    CERN Multimedia

    2008-01-01

    Yet another step in the completion of the Large Hadron Collider was taken yesterday morning, as the final element of the Compact Muon Solenoid was lowered nearly 100 meters bellow ground. After more than eight years of work at the world's most powerful particle accelerator, scientists hope that they will be able to start initial experiments with the LHC until the end of this year.

  11. LEAR construction completed

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    In July 1982, LEAR construction was completed, the individual systems had been dry-tested. On 16 July, the first 50 MeV (309 MeV/c) protons from Linac 1 were injected and circulated. On 11 October, the first antiprotons from the AA, decelerated in the PS to 609 MeV/c, were injected. Also in 1982, acceleration, deceleration and stochastic cooling were successfully tested. See 9007366 for a more detailed description. See also 8201061, 8204131, 8309026.

  12. SHIVA laser: nearing completion

    International Nuclear Information System (INIS)

    Glaze, J.A.; Godwin, R.O.

    1977-01-01

    Construction of the Shiva laser system is nearing completion. This laser will be operating in fall 1977 and will produce over 20 terawatts of focusable power in a subnanosecond pulse. Fusion experiments will begin early in 1978. It is anticipated that thermonuclear energy release equal to one percent that of the incident light energy will be achieved with sub-millimeter deuterium-tritium targets. From other experiments densities in excess of a thousand times that of liquid are also expected

  13. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  14. Influence of neurophysiological hippotherapy on the transference of the centre of gravity among children with cerebral palsy.

    Science.gov (United States)

    Maćków, Anna; Małachowska-Sobieska, Monika; Demczuk-Włodarczyk, Ewa; Sidorowska, Marta; Szklarska, Alicja; Lipowicz, Anna

    2014-01-01

    The aim of the study was to present the influence of neurophysiological hippotherapy on the transference of the centre of gravity (COG) among children with cerebral palsy (CP). The study involved 19 children aged 4-13 years suffering from CP who demonstrated an asymmetric (A/P) model of compensation. Body balance was studied with the Cosmogamma Balance Platform. An examination on this platform was performed before and after a session of neurophysiological hippotherapy. In order to compare the correlations and differences between the examinations, the results were analysed using Student's T-test for dependent samples at p ≤ 0.05 as the level of statistical significance and descriptive statistics were calculated. The mean value of the body's centre of gravity in the frontal plane (COG X) was 18.33 (mm) during the first examination, changing by 21.84 (mm) after neurophysiological hippotherapy towards deloading of the antigravity lower limb (p ≤ 0.0001). The other stabilographic parameters increased; however, only the change in average speed of antero - posterior COG oscillation was statistically significant (p = 0.0354). 1. One session of neurophysiological hippotherapy induced statistically significant changes in the position of the centre of gravity in the body in the frontal plane and the average speed of COG oscillation in the sagittal plane among CP children demonstrating an asymmetric model of compensation (A/P).

  15. Leg Regrowth in Blaberus discoidalis (Discoid Cockroach) following Limb Autotomy versus Limb Severance and Relevance to Neurophysiology Experiments

    Science.gov (United States)

    Marzullo, Timothy C.

    2016-01-01

    Background Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1) the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2) the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds. Leg Regrowth Results First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (pbarbs, and a 10% higher electrical microstimulation threshold for movement. Summary It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content. PMID:26824931

  16. Postural control in children with Cerebral Palsy during reaching : assessment of two therapies based on neurophysiological principles

    NARCIS (Netherlands)

    Heide, Jolanda Catharina van der

    2005-01-01

    Dysfunctional postural control is one of the key problems in children with CP. Knowledge on the neurophysiological organisation and development of postural adjustments in children with CP is lacking. The aim of this thesis is therefore to increase our insight in postural problems of children with CR

  17. [Anaesthetic management of excision of a cervical intraspinal tumor with intraoperative neurophysiologic monitoring in a pregnant woman at 29 weeks].

    Science.gov (United States)

    Guerrero-Domínguez, R; González-González, G; Rubio-Romero, R; Federero-Martínez, F; Jiménez, I

    2016-05-01

    The intraoperative neurophysiological monitoring is a technique used to test and monitor nervous function. This technique has become essential in some neurosurgery interventions, since it avoids neurological injuries during surgery and reduces morbidity. The experience of intraoperative neurophysiological monitoring is limited in some clinical cases due to the low incidence of pregnant women undergoing a surgical procedure. A case is presented of a 29-weeks pregnant woman suffering from a cervical intraspinal tumour with intense pain, which required surgery. The collaboration of a multidisciplinary team composed of anaesthesiologists, neurosurgeons, neurophysiologists and obstetricians, the continuous monitoring of the foetus, the intraoperative neurophysiological monitoring, and maintaining the neurophysiological and utero-placental variables were crucial for the proper development of the surgery. According to our experience and the limited publications in the literature, no damaging effects of this technique were detected at maternal-foetal level. On the contrary, it brings important benefits during the surgery and for the final result. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Reward Prediction Errors in Drug Addiction and Parkinson's Disease: from Neurophysiology to Neuroimaging.

    Science.gov (United States)

    García-García, Isabel; Zeighami, Yashar; Dagher, Alain

    2017-06-01

    Surprises are important sources of learning. Cognitive scientists often refer to surprises as "reward prediction errors," a parameter that captures discrepancies between expectations and actual outcomes. Here, we integrate neurophysiological and functional magnetic resonance imaging (fMRI) results addressing the processing of reward prediction errors and how they might be altered in drug addiction and Parkinson's disease. By increasing phasic dopamine responses, drugs might accentuate prediction error signals, causing increases in fMRI activity in mesolimbic areas in response to drugs. Chronic substance dependence, by contrast, has been linked with compromised dopaminergic function, which might be associated with blunted fMRI responses to pleasant non-drug stimuli in mesocorticolimbic areas. In Parkinson's disease, dopamine replacement therapies seem to induce impairments in learning from negative outcomes. The present review provides a holistic overview of reward prediction errors across different pathologies and might inform future clinical strategies targeting impulsive/compulsive disorders.

  19. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    Directory of Open Access Journals (Sweden)

    Harminder Singh

    2016-01-01

    Full Text Available Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.

  20. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins.

    Science.gov (United States)

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).

  1. The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects.

    Science.gov (United States)

    Tervaniemi, M; Ilvonen, T; Karma, K; Alho, K; Näätänen, R

    1997-04-18

    To reveal neurophysiological prerequisites of musicality, auditory event-related potentials (ERPs) were recorded from musical and non-musical subjects, musicality being here defined as the ability to temporally structure auditory information. Instructed to read a book and to ignore sounds, subjects were presented with a repetitive sound pattern with occasional changes in its temporal structure. The mismatch negativity (MMN) component of ERPs, indexing the cortical preattentive detection of change in these stimulus patterns, was larger in amplitude in musical than non-musical subjects. This amplitude enhancement, indicating more accurate sensory memory function in musical subjects, suggests that even the cognitive component of musicality, traditionally regarded as depending on attention-related brain processes, in fact, is based on neural mechanisms present already at the preattentive level.

  2. The clinical practice of intraoperative neurophysiological monitoring in Shanghai Huashan Hospital

    Directory of Open Access Journals (Sweden)

    WU Jin-song

    2012-12-01

    Full Text Available Intraoperative neurophysiological monitoring (IONM is the gold standard of the intraoperative functional brain mapping. It employs various electrophysiological methods such as awake craniotomy, intraoperative somatosensory and motor evoked potentials monitoring, intraoperative cortical stimulation and sub-cortical stimulation to accurately map the cortical and sub-cortical nervous pathways so that the continuous assessment and real -time protection of the functional integrity of certain neural structures can be achieved during surgery. Based on decades of clinical practice, the Department of Neurosurgery of Shanghai Huashan Hospital has set up an "IONM clinical practice guideline" used in the institute. The clinical practice guideline covers technical and operation standards of IONM in all kinds of common neurosurgery diseases and does improve the clinical efficacy in neurosurgical procedures.

  3. [Clinical, neurophysiological and psychological characteristics of neurosis in patients with panic disorders].

    Science.gov (United States)

    Tuter, N V

    2008-01-01

    Forty-eight patients with panic disorders (PD), aged 31,5 years, 17 men, 31 women, were studied. The results were analyzed in comparison to a control group which comprised 16 healthy people, 6 men, 10 women, mean age 29,5 years. A traditional clinical approach, including somatic, neurologic and psychiatric examination, was used in the study. Also, a neurophysiological study using compression and spectral analyses, EEG, cognitive evoked potentials, skin evoked potentials, was conducted. A psychological examination included assessment of personality traits (Cattell's test), MMPI personality profile, mechanisms of psychological defense, the "Life style index" and Sondy test. A decrease of - and -rhythms was found that implied the reduction of activation processes. The psychological data mirror as common signs characteristic of all PD, as well as psychological features characteristic of neurotic disorders. The results obtained confirm the heterogeneity of PD in nosological aspect that demands using differential approach to the problems of their diagnostics and treatment.

  4. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.

    Directory of Open Access Journals (Sweden)

    Gergely Márton

    Full Text Available Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.

  5. Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states

    DEFF Research Database (Denmark)

    O'Kelly, Julian; James, L.; Palaniappan, R.

    2013-01-01

    for preferred music (p = 0.029) across the VS cohort. Two VS cases are presented with concurrent changes (p ≤ 0.05) across measures indicative of discriminatory responses to both music therapy procedures. A MCS case study highlights how more sensitive selective attention may distinguish MCS from VS. Further...... of musical stimuli on arousal, attention and emotion, irrespective of verbal or motor deficits, however, an evidence base is lacking. To address this, a neurophysiological and behavioural study was undertaken comparing EEG, heart rate variability, respiration and behavioural responses of 20 healthy subjects...... responses (p ≤ 0.05) across healthy subjects corresponding to arousal and attention in response to preferred music including concurrent increases in respiration rate with globally enhanced EEG power spectra responses across frequency bandwidths. Whilst physiological responses were heterogeneous across...

  6. Metrology for Freeform Optics

    Data.gov (United States)

    National Aeronautics and Space Administration — Science requirements for optical instrumentation are requiring larger fields of view and faster f-numbers to complete their objectives.   Additionally, opportunities...

  7. Data-driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control.

    Science.gov (United States)

    Schmüser, Lena; Sebastian, Alexandra; Mobascher, Arian; Lieb, Klaus; Feige, Bernd; Tüscher, Oliver

    2016-09-01

    Response inhibition is the ability to suppress inadequate but prepotent or ongoing response tendencies. A fronto-striatal network is involved in these processes. Between-subject differences in the intra-individual variability have been suggested to constitute a key to pathological processes underlying impulse control disorders. Single-trial EEG/fMRI analysis allows to increase sensitivity for inter-individual differences by incorporating intra-individual variability. Thirty-eight healthy subjects performed a visual Go/Nogo task during simultaneous EEG/fMRI. Of 38 healthy subjects, 21 subjects reliably showed Nogo-related ICs (Nogo-IC-positive) while 17 subjects (Nogo-IC-negative) did not. Comparing both groups revealed differences on various levels: On trait level, Nogo-IC-negative subjects scored higher on questionnaires regarding attention deficit/hyperactivity disorder; on a behavioral level, they displayed slower response times (RT) and higher intra-individual RT variability while both groups did not differ in their inhibitory performance. On the neurophysiological level, Nogo-IC-negative subjects showed a hyperactivation of left inferior frontal cortex/insula and left putamen as well as significantly reduced P3 amplitudes. Thus, a data-driven approach for IC classification and the resulting presence or absence of early Nogo-specific ICs as criterion for group selection revealed group differences at behavioral and neurophysiological levels. This may indicate electrophysiological phenotypes characterized by inter-individual variations of neural and behavioral correlates of impulse control. We demonstrated that the inter-individual difference in an electrophysiological correlate of response inhibition is correlated with distinct, potentially compensatory neural activity. This may suggest the existence of electrophysiologically dissociable phenotypes of behavioral and neural motor response inhibition with the Nogo-IC-positive phenotype possibly providing

  8. Evidence for the late MMN as a neurophysiological endophenotype for dyslexia.

    Directory of Open Access Journals (Sweden)

    Nina Neuhoff

    Full Text Available Dyslexia affects 5-10% of school-aged children and is therefore one of the most common learning disorders. Research on auditory event related potentials (AERP, particularly the mismatch negativity (MMN component, has revealed anomalies in individuals with dyslexia to speech stimuli. Furthermore, candidate genes for this disorder were found through molecular genetic studies. A current challenge for dyslexia research is to understand the interaction between molecular genetics and brain function, and to promote the identification of relevant endophenotypes for dyslexia. The present study examines MMN, a neurophysiological correlate of speech perception, and its potential as an endophenotype for dyslexia in three groups of children. The first group of children was clinically diagnosed with dyslexia, whereas the second group of children was comprised of their siblings who had average reading and spelling skills and were therefore "unaffected" despite having a genetic risk for dyslexia. The third group consisted of control children who were not related to the other groups and were also unaffected. In total, 225 children were included in the study. All children showed clear MMN activity to/da/-/ba/contrasts that could be separated into three distinct MMN components. Whilst the first two MMN components did not differentiate the groups, the late MMN component (300-700 ms revealed significant group differences. The mean area of the late MMN was attenuated in both the dyslexic children and their unaffected siblings in comparison to the control children. This finding is indicative of analogous alterations of neurophysiological processes in children with dyslexia and those with a genetic risk for dyslexia, without a manifestation of the disorder. The present results therefore further suggest that the late MMN might be a potential endophenotype for dyslexia.

  9. Reading the mind in the touch: Neurophysiological specificity in the communication of emotions by touch.

    Science.gov (United States)

    Kirsch, Louise P; Krahé, Charlotte; Blom, Nadia; Crucianelli, Laura; Moro, Valentina; Jenkinson, Paul M; Fotopoulou, Aikaterini

    2017-05-29

    Touch is central to interpersonal interactions. Touch conveys specific emotions about the touch provider, but it is not clear whether this is a purely socially learned function or whether it has neurophysiological specificity. In two experiments with healthy participants (N = 76 and 61) and one neuropsychological single case study, we investigated whether a type of touch characterised by peripheral and central neurophysiological specificity, namely the C tactile (CT) system, can communicate specific emotions and mental states. We examined the specificity of emotions elicited by touch delivered at CT-optimal (3cm/s) and CT-suboptimal (18cm/s) velocities (Experiment 1) at different body sites which contain (forearm) vs. do not contain (palm of the hand) CT fibres (Experiment 2). Blindfolded participants were touched without any contextual cues, and were asked to identify the touch provider's emotion and intention. Overall, CT-optimal touch (slow, gentle touch on the forearm) was significantly more likely than other types of touch to convey arousal, lust or desire. Affiliative emotions such as love and related intentions such as social support were instead reliably elicited by gentle touch, irrespective of CT-optimality, suggesting that other top-down factors contribute to these aspects of tactile social communication. To explore the neural basis of this communication, we also tested this paradigm in a stroke patient with right perisylvian damage, including the posterior insular cortex, which is considered as the primary cortical target of CT afferents, but excluding temporal cortex involvement that has been linked to more affiliative aspects of CT-optimal touch. His performance suggested an impairment in 'reading' emotions based on CT-optimal touch. Taken together, our results suggest that the CT system can add specificity to emotional and social communication, particularly with regards to feelings of desire and arousal. On the basis of these findings, we speculate

  10. Cross-Level Effects Between Neurophysiology and Communication During Team Training.

    Science.gov (United States)

    Gorman, Jamie C; Martin, Melanie J; Dunbar, Terri A; Stevens, Ronald H; Galloway, Trysha L; Amazeen, Polemnia G; Likens, Aaron D

    2016-02-01

    We investigated cross-level effects, which are concurrent changes across neural and cognitive-behavioral levels of analysis as teams interact, between neurophysiology and team communication variables under variations in team training. When people work together as a team, they develop neural, cognitive, and behavioral patterns that they would not develop individually. It is currently unknown whether these patterns are associated with each other in the form of cross-level effects. Team-level neurophysiology and latent semantic analysis communication data were collected from submarine teams in a training simulation. We analyzed whether (a) both neural and communication variables change together in response to changes in training segments (briefing, scenario, or debriefing), (b) neural and communication variables mutually discriminate teams of different experience levels, and (c) peak cross-correlations between neural and communication variables identify how the levels are linked. Changes in training segment led to changes in both neural and communication variables, neural and communication variables mutually discriminated between teams of different experience levels, and peak cross-correlations indicated that changes in communication precede changes in neural patterns in more experienced teams. Cross-level effects suggest that teamwork is not reducible to a fundamental level of analysis and that training effects are spread out across neural and cognitive-behavioral levels of analysis. Cross-level effects are important to consider for theories of team performance and practical aspects of team training. Cross-level effects suggest that measurements could be taken at one level (e.g., neural) to assess team experience (or skill) on another level (e.g., cognitive-behavioral). © 2015, Human Factors and Ergonomics Society.

  11. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls.

    Science.gov (United States)

    Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J

    2017-06-01

    Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven; Wetzel, Stephan G. [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Luetschg, Juerg [University Children' s Hospital (UKBB), Basel (Switzerland)

    2008-05-15

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  13. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis

    International Nuclear Information System (INIS)

    Haller, Sven; Wetzel, Stephan G.; Luetschg, Juerg

    2008-01-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network. (orig.)

  14. Preventing lower cranial nerve injuries during fourth ventricle tumor resection by utilizing intraoperative neurophysiological monitoring.

    Science.gov (United States)

    Jahangiri, Faisal R; Minhas, Mazhar; Jane, John

    2012-12-01

    We present two cases illustrating the benefit of utilizing intraoperative neurophysiological monitoring (IONM) for prevention of injuries to the lower cranial nerves during fourth ventricle tumor resection surgeries. Multiple cranial nerve nuclei are located on the floor of the fourth ventricle with a high risk of permanent damage. Two male patients (ages 8 and 10 years) presented to the emergency department and had brain magnetic resonance imaging (MRI) scans showing brainstem/fourth ventricle tumors. During surgery, bilateral posterior tibial and median nerve somatosensory evoked potentials (SSEPs); four-limb and cranial nerves transcranial electrical motor evoked potentials (TCeMEPs); brainstem auditory evoked responses (BAERs); and spontaneous electromyography (s-EMG) were recorded. Electromyography (EMG) was monitored bilaterally from cranial nerves V VII, IX, X, XI, and XII. Total intravenous anesthesia was used. Neuromuscular blockade was used only for initial intubation. Pre-incision baselines were obtained with good morphology of waveforms. After exposure the floor of the fourth ventricle was mapped by triggered-EMG (t-EMG) using 0.4 to 1.0 mA. In both patients the tumor was entangled with cranial nerves VII to XII on the floor of the fourth ventricle. The surgeon made the decision not to resect the tumor in one case and limited the resection to 70% of the tumor in the second case on the basis of neurophysiological monitoring. This decision was made to minimize any post-operative neurological deficits due to surgical manipulation of the tumor involving the lower cranial nerves. Intraoperative spontaneous and triggered EMG was effectively utilized in preventing injuries to cranial nerves during surgical procedures. All signals remained stable during the surgical procedure. Postoperatively both patients were well with no additional cranial nerve weakness. At three months follow-up, the patients continued to have no deficits.

  15. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    Directory of Open Access Journals (Sweden)

    Camille Jeunet

    Full Text Available Mental-Imagery based Brain-Computer Interfaces (MI-BCIs allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG, which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  16. Neurophysiological correlates of artistic image creation by representatives of artistic professions

    Directory of Open Access Journals (Sweden)

    Dikaya L. A.

    2016-12-01

    Full Text Available The steadily increasing demand for artistic professions brings to the fore the task of studying the phenomenon of art by researching the unique capacity of the human brain to create works of art in different spheres of creative activity. So far, only a few studies have investigated creativity-related brain activity in representatives of the creative professions. The aim of the empirical research was to study the neurophysiological correlates of artistic image creation by representatives of the artistic professions. The participants were 60 right-handed females aged 23-27, divided into three groups— artists (23 people, actors (17 people, and specialists who do not work in an artistic field (20 people. The mono-typing technique was used to model the creative artistic process. EEG signals were recorded in a resting state, and during four stages of the creation of an artistic image (viewing of monotypes, frustration, image creation, and thinking over the details from 21 electrodes set on the scalp according to the International 10-20 System. We analyzed EEG coherence for each functional trial at theta (4.00–8.00 Hz, alpha1 (8.00–10.5 Hz, alpha2 (10.5–13.00 Hz, and beta (13.00– 35.00 Hz frequency bands. For statistical analysis, we used MANOVA and post hoc analysis. We found that the neurophysiological correlates of creating an artistic image are different at different stages of the creative process, and have different features for artists and actors. The actors primarily show dominance of right hemisphere activity, while close interaction of the hemispheres distinguishes the brains of the artists. The differences revealed in brain cortex functioning when artists or actors create an artistic image reflect different strategies of imaginative creative work by representatives of these professions.

  17. Multiple frequency audio signal communication as a mechanism for neurophysiology and video data synchronization.

    Science.gov (United States)

    Topper, Nicholas C; Burke, Sara N; Maurer, Andrew Porter

    2014-12-30

    Current methods for aligning neurophysiology and video data are either prepackaged, requiring the additional purchase of a software suite, or use a blinking LED with a stationary pulse-width and frequency. These methods lack significant user interface for adaptation, are expensive, or risk a misalignment of the two data streams. A cost-effective means to obtain high-precision alignment of behavioral and neurophysiological data is obtained by generating an audio-pulse embedded with two domains of information, a low-frequency binary-counting signal and a high, randomly changing frequency. This enabled the derivation of temporal information while maintaining enough entropy in the system for algorithmic alignment. The sample to frame index constructed using the audio input correlation method described in this paper enables video and data acquisition to be aligned at a sub-frame level of precision. Traditionally, a synchrony pulse is recorded on-screen via a flashing diode. The higher sampling rate of the audio input of the camcorder enables the timing of an event to be detected with greater precision. While on-line analysis and synchronization using specialized equipment may be the ideal situation in some cases, the method presented in the current paper presents a viable, low cost alternative, and gives the flexibility to interface with custom off-line analysis tools. Moreover, the ease of constructing and implements this set-up presented in the current paper makes it applicable to a wide variety of applications that require video recording. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis.

    Science.gov (United States)

    Haller, Sven; Wetzel, Stephan G; Lütschg, Jürg

    2008-05-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disease due to a mutation in the ROBO3 gene. This rare disease is of particular interest because the absence, or at least reduction, of crossing of the ascending lemniscal and descending corticospinal tracts in the medulla predicts abnormal ipsilateral sensory and motor systems. We evaluated the use of functional magnetic resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. As expected, motor fMRI, somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were dominantly ipsilateral to the stimulation side. DTI tractography revealed ipsilateral ascending and descending connectivity in the brainstem yet normal interhemispheric connections in the corpus callosum. Auditory fMRI revealed bilateral auditory activation to monaural left-sided auditory stimulation. No significant cortical activation was observed after monaural right-sided stimulation, a hearing defect having been excluded. Prosaccades fMRI showed no activations in the eye-movement network. Motor fMRI confirmed the established findings of DTI and neurophysiology in the same patient. In suspected HGPPS, any technique appears appropriate for further investigation. Auditory fMRI suggests that a monaural auditory system with bilateral auditory activations might be a physiological advantage as compared to a binaural yet only unilateral auditory system, in analogy to anisometropic amblyopia. Moving-head fMRI studies in the future might show whether the compensatory head movements instead of normal eye movements activate the eye-movement network.

  19. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  20. Complete pancreas traumatic transsection

    Directory of Open Access Journals (Sweden)

    H. Hodžić

    2005-02-01

    Full Text Available This report presents a case of a twenty-year old male with complete pancreas breakdown in the middle of its corpus, which was caused by a strong abdomen compression, with injuries of the spleen, the firstjejunumcurve,mesocolon transversum, left kidney, and appereance of retroperitoneal haemathoma. Surgical treatment started 70 minutes after the injury. The treatment consisted of left pancreatectomy with previous spleenectomy, haemostasis of ruptured mesocolon transversum blood vessels, left kidney exploration, suturing of the firstjejunumcurvelession and double abdomen drainage. Posttraumatic pancreatitis which appeared on the second postoperative day and prolonged drain secretion were successfully solved by conservative treatment.

  1. Complete rerouting protection

    DEFF Research Database (Denmark)

    Stidsen, Thomas K.; Kjærulff, Peter

    2006-01-01

    Protection of communication against network failures is becoming increasingly important and in this paper we present the most capacity efficient protection method possible, the complete rerouting protection method, when requiring that all communication should be restored in case of a single link...... network failure. We present a linear programming model of the protection method and a column generation algorithm. For 6 real world networks, the minimal restoration overbuild network capacity is between 13% and 78%. We further study the importance of the density of the network, derive analytical bounds...

  2. Completion of treatment planning

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The outline of the lecture included the following topics: entering prescription; plan printout; print and transfer DDR; segment BEV; export to R and V; physician approval; and second check. Considerable attention, analysis and discussion. The summary is as follows: Treatment planning completion is a very responsible process which requires maximum attention; Should be independently checked by the planner, physicist, radiation oncologist and a therapist; Should not be done in a last minute rush; Proper communication between team members; Properly set procedure should prevent propagation of an error by one individual to the treatment: the error should be caught by somebody else. (P.A.)

  3. TestComplete cookbook

    CERN Document Server

    Alpaev, Gennadiy

    2013-01-01

    A practical cookbook, with a perfect package of simple, medium, and advanced recipes targeted at basic programmers as well as expert software testers, who will learn to create, manage, and run automated tests. It is packed with problem-solving recipes that are supported by simple examples.If you are a software tester or a programmer who is involved with testing automation using TestComplete, this book is ideal for you! You will be introduced to the very basics of using the tool, as well as polish any previously gained knowledge in using the tool. If you are already aware of programming basics,

  4. Complete atrioventricular canal.

    Science.gov (United States)

    Calabrò, Raffaele; Limongelli, Giuseppe

    2006-04-05

    Complete atrioventricular canal (CAVC), also referred to as complete atrioventricular septal defect, is characterised by an ostium primum atrial septal defect, a common atrioventricular valve and a variable deficiency of the ventricular septum inflow. CAVC is an uncommon congenital heart disease, accounting for about 3% of cardiac malformations. Atrioventricular canal occurs in two out of every 10,000 live births. Both sexes are equally affected and a striking association with Down syndrome was found. Depending on the morphology of the superior leaflet of the common atrioventricular valve, 3 types of CAVC have been delineated (type A, B and C, according to Rastelli's classification). CAVC results in a significant interatrial and interventricular systemic-to-pulmonary shunt, thus inducing right ventricular pressure and volume overload and pulmonary hypertension. It becomes symptomatic in infancy due to congestive heart failure and failure to thrive. Diagnosis of CAVC might be suspected from electrocardiographic and chest X-ray findings. Echocardiography confirms it and gives anatomical details. Over time, pulmonary hypertension becomes irreversible, thus precluding the surgical therapy. This is the reason why cardiac catheterisation is not mandatory in infants (less than 6 months) but is indicated in older patients if irreversible pulmonary hypertension is suspected. Medical treatment (digitalis, diuretics, vasodilators) plays a role only as a bridge toward surgery, usually performed between the 3rd and 6th month of life.

  5. Complete atrioventricular canal

    Directory of Open Access Journals (Sweden)

    Limongelli Giuseppe

    2006-04-01

    Full Text Available Abstract Complete atrioventricular canal (CAVC, also referred to as complete atrioventricular septal defect, is characterised by an ostium primum atrial septal defect, a common atrioventricular valve and a variable deficiency of the ventricular septum inflow. CAVC is an uncommon congenital heart disease, accounting for about 3% of cardiac malformations. Atrioventricular canal occurs in two out of every 10,000 live births. Both sexes are equally affected and a striking association with Down syndrome was found. Depending on the morphology of the superior leaflet of the common atrioventricular valve, 3 types of CAVC have been delineated (type A, B and C, according to Rastelli's classification. CAVC results in a significant interatrial and interventricular systemic-to-pulmonary shunt, thus inducing right ventricular pressure and volume overload and pulmonary hypertension. It becomes symptomatic in infancy due to congestive heart failure and failure to thrive. Diagnosis of CAVC might be suspected from electrocardiographic and chest X-ray findings. Echocardiography confirms it and gives anatomical details. Over time, pulmonary hypertension becomes irreversible, thus precluding the surgical therapy. This is the reason why cardiac catheterisation is not mandatory in infants (less than 6 months but is indicated in older patients if irreversible pulmonary hypertension is suspected. Medical treatment (digitalis, diuretics, vasodilators plays a role only as a bridge toward surgery, usually performed between the 3rd and 6th month of life.

  6. Barnett shale completions

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services, Dallas, TX (United States)

    2006-07-01

    Fractured shales yield oil and gas in various basins across the United States. A map indicating these fractured shale source-reservoir systems in the United States was presented along with the numerous similarities and differences that exist among these systems. Hydrocarbons in the organic rich black shale come from the bacterial decomposition of organic matter, primary thermogenic decomposition of organic matter or secondary thermogenic cracking of oil. The shale may be the reservoir or other horizons may be the primary or secondary reservoir. The reservoir has induced micro fractures or tectonic fractures. This paper described the well completions in the Barnett Shale in north Texas with reference to major players, reservoir properties, mineralogy, fluid sensitivity, previous treatments, design criteria and production examples. The Barnett Shale is an organic, black shale with thickness ranging from 100 to 1000 feet. The total organic carbon (TOC) averages 4.5 per cent. The unit has undergone high rate frac treatments. A review of the vertical wells in the Barnett Shale was presented along with the fracture treatment schedule and technology changes. A discussion of refracturing opportunities and proppant settling and transport revealed that additional proppant increases fluid recovery and enhances production. Compatible scale inhibitors and biocides can be beneficial. Horizontal completions in the Barnett Shale have shown better results than vertical wells, as demonstrated in a production comparison of 3 major horizontal wells in the basin. tabs., figs.

  7. GOGOL: ACADEMIC AND COMPLETE

    Directory of Open Access Journals (Sweden)

    Yuri V. Mann

    2016-12-01

    Full Text Available The ever-increasing international interest to Gogol explains the necessity of publishing a new edition of his works. The present Complete Collection of Gogol’s Works and Letters is an academic edition prepared and published by the A. M. Gorky Institute of World Literature of the Russian Academy of Sciences. It draws on rich experience of studying and publishing Gogol’s heritage in Russia but at the same time questions and underscores Gogol’s relevance for the modern reader and his place in the world culture of our time. It intends to fill in the gaps left by the previous scholarly tradition that failed to recognize some of Gogol’s texts as part of his heritage. Such are, for example, dedicatory descriptions in books and business notes. The present edition accounts not only for the completeness of texts but also for their place within the body of Gogol’s work, as part of his life-long creative process. By counterpoising different editions, it attempts to trace down the dynamics of Gogol’s creative thought while at the same time underscores the autonomy and relevance of each period in his career. For example, this collection publishes two different versions (editions of the same work: while the most recent version has become canonical at the expense of the preceding one, the latter still preserves its meaning and historical relevance. The present edition has the advantage over its predecessors since it has an actual, physical opportunity to erase the gaps, e.g. to publish the hitherto unpublished texts. However, the editors realize that new, hitherto unknown gaps may appear and the present edition will become, in its turn, outdated. At this point, there will be a necessity in the new edition.

  8. Is quantum theory predictably complete?

    Energy Technology Data Exchange (ETDEWEB)

    Kupczynski, M [Department of Mathematics and Statistics, University of Ottawa, 585 King-Edward Avenue, Ottawa, Ontario K1N 6N5 (Canada); Departement de l' Informatique, UQO, Case postale 1250, succursale Hull, Gatineau, Quebec J8X 3X 7 (Canada)], E-mail: mkupczyn@uottawa.ca

    2009-07-15

    Quantum theory (QT) provides statistical predictions for various physical phenomena. To verify these predictions a considerable amount of data has been accumulated in the 'measurements' performed on the ensembles of identically prepared physical systems or in the repeated 'measurements' on some trapped 'individual physical systems'. The outcomes of these measurements are, in general, some numerical time series registered by some macroscopic instruments. The various empirical probability distributions extracted from these time series were shown to be consistent with the probabilistic predictions of QT. More than 70 years ago the claim was made that QT provided the most complete description of 'individual' physical systems and outcomes of the measurements performed on 'individual' physical systems were obtained in an intrinsically random way. Spin polarization correlation experiments (SPCEs), performed to test the validity of Bell inequalities, clearly demonstrated the existence of strong long-range correlations and confirmed that the beams hitting far away detectors somehow preserve the memory of their common source which would be destroyed if the individual counts of far away detectors were purely random. Since the probabilities describe the random experiments and are not the attributes of the 'individual' physical systems, the claim that QT provides a complete description of 'individual' physical systems seems not only unjustified but also misleading and counter productive. In this paper, we point out that we even do not know whether QT is predictably complete because it has not been tested carefully enough. Namely, it was not proven that the time series of existing experimental data did not contain some stochastic fine structures that could have been averaged out by describing them in terms of the empirical probability distributions. In this paper, we advocate various statistical tests that

  9. Probing the Behavioral and Neurophysiological Effects of Acute Smoking Abstinence on Drug and Nondrug Reinforcement During a Cognitive Task.

    Science.gov (United States)

    Schlienz, Nicolas J; Hawk, Larry W

    2017-06-01

    Smoking abstinence is theorized to increase smoking reinforcement and decrease nondrug reinforcement. A separate literature demonstrates the detrimental effects of abstinence on cognition. The present study integrates these two areas by examining the separate and combined effects of reinforcement and smoking abstinence on behavior and a neurophysiological index of response monitoring (ie, error-related negativity [ERN]) during a cognitive task. After a screening visit, adult smokers attended two laboratory visits, once while smoking and once while abstinent. Participants completed a flanker task under cigarette-, money-, and no-reinforcement conditions. The initial 15 participants had an easier reaction time (RT) requirement; to ensure sufficient error rates for ERN computation, a harder RT deadline was employed for the remaining 21 participants. Smoking abstinence reduced speeded accuracy and ERN amplitude only among participants tested with the harder RT deadline. Cigarette and money reinforcement each increased speeded accuracy and ERN amplitude compared to no reinforcement. The effect of cigarette reinforcement tended to be greater during abstinence for speeded accuracy but not the ERN. The effect of money reinforcement was unaffected by abstinence. The impact of smoking abstinence on reinforcement may depend on task demands. However, the effects of cigarette and money reinforcement generalize well from operant paradigms to cognitive tasks, fostering integration between the two literatures. Results provided modest evidence of abstinence-induced increases in smoking reinforcement; the absence of abstinence-induced reductions in nondrug reinforcement is consistent with recent work in suggesting that such effects are limited to a subset of sensory reinforcers. This study draws attention to the need for greater integration of reinforcement and cognition to better understand the mechanisms that contribute to smoking relapse. Results emphasize thoughtful

  10. Perils of intraoperative neurophysiological monitoring: analysis of "false-negative" results in spine surgeries.

    Science.gov (United States)

    Tamkus, Arvydas A; Rice, Kent S; McCaffrey, Michael T

    2018-02-01

    Although some authors have published case reports describing false negatives in intraoperative neurophysiological monitoring (IONM), a systematic review of causes of false-negative IONM results is lacking. The objective of this study was to analyze false-negative IONM findings in spine surgery. This is a retrospective cohort analysis. A cohort of 109 patients with new postoperative neurologic deficits was analyzed for possible false-negative IONM reporting. The causes of false-negative IONM reporting were determined. From a cohort of 62,038 monitored spine surgeries, 109 consecutive patients with new postoperative neurologic deficits were reviewed for IONM alarms. Intraoperative neurophysiological monitoring alarms occurred in 87 of 109 surgeries. Nineteen patients with new postoperative neurologic deficits did not have an IONM alarm and surgeons were not warned. In addition, three patients had no interpretable IONM baseline data and no alarms were possible for the duration of the surgery. Therefore, 22 patients were included in the study. The absence of IONM alarms during these 22 surgeries had different origins: "true" false negatives where no waveform changes meeting the alarm criteria occurred despite the appropriate IONM (7); a postoperative development of a deficit (6); failure to monitor the pathway, which became injured (5); the absence of interpretable IONM baseline data which precluded any alarm (3); and technical IONM application issues (1). Overall, the rate of IONM method failing to predict the patient's outcome was very low (0.04%, 22/62,038). Minimizing false negatives requires the application of a proper IONM technique with the limitations of each modality considered in their selection and interpretation. Multimodality IONM provides the most inclusive information, and although it might be impractical to monitor every neural structure that can be at risk, a thorough preoperative consideration of available IONM modalities is important. Delayed

  11. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    Science.gov (United States)

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  12. Neurophysiological Effects of Chronic Indoor Environmental Toxic Mold Exposure on Children

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2003-01-01

    Full Text Available The phenomenon of building-related diseases is attracting much research interest in recent years because of the extent to which it affects people with compromised immune systems, especially children. In this study, we reported the neurological findings in children who attended our Center because of chronic exposure to toxic molds. Clinical neurological and neurobehavioral questionnaires were administered with the cooperation of the children�s parents. The children then underwent a series of neurophysiological tests including electroencephalogram (EEG, brainstem evoked potential (BAEP, visual evoked potential (VEP, and somatosensory evoked potential (SSEP. The results showed high levels of abnormalities in the analysis of the subjective responses derived from the questionnaires. The EEG examination was abnormal in seven out of ten of the patients compared to the controls with only one in ten with episodes of bihemispheric sharp activity. In all the patients, there was frontotemporal theta wave ativity that seemed to indicate diffuse changes characteristic of metabolic encephalopathies. Also, there was highly marked 1 to 3 Hz delta activity that was asymmetrical in the right hemisphere of the brain in three out of ten patients. The waveforms of BAEP showed abnormalities in 90% of the patients with both 15’ and 31’ check sizes compared to none in the controls. There were significant delays in waveform V in a majority of the patients representing dysfunctional cognitive process and conductive hearing loss in both ears. VEP showed clear abnormalities in four in ten of the patients with P100 amplitudes and latencies decreased bilaterally. In all the patients, there was slowing of conduction in the right tibial at an average of 36.9 ms and there was significant decrease in amplitude of response at the proximal stimulation site. Sensory latencies obtained in the median, ulnar, and sural nerves bilaterally showed abnormalities in five out of ten

  13. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  14. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  15. Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Cristino, N.A.; Rutten, G.J.; Hamers, F.P.; Erkelens, D.W.

    1999-01-01

    Diabetes mellitus can affect both the peripheral and the central nervous system. However, central deficits are documented less well than peripheral deficits. We therefore compared the course of development of neurophysiological changes in the central and peripheral nervous systems in

  16. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient

  17. Leg Regrowth in Blaberus discoidalis (Discoid Cockroach following Limb Autotomy versus Limb Severance and Relevance to Neurophysiology Experiments.

    Directory of Open Access Journals (Sweden)

    Timothy C Marzullo

    Full Text Available Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1 the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2 the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds.First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (p<0.05 than coxa-cut legs (29% of full size at first appearance. Regenerated legs in both groups grew in size with each subsequent molt; the autotomy-removed legs grew to full size within 18 weeks, whereas coxa-cut legs took longer than 28 weeks to regrow. Removal of the metathoracic leg in both conditions did not have an effect on mortality compared to matched controls with unmolested legs.Autotomy-removed legs had lower spontaneous firing rates, similar marked increased firing rates upon tactile manipulation of tibial barbs, and a 10% higher electrical microstimulation threshold for movement.It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content.

  18. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism

    OpenAIRE

    Mireia Rabella; Eva Grasa; Iluminada Corripio; Sergio Romero; Miquel Àngel Mañanas; Rosa Mª. Antonijoan; Thomas F. Münte; Víctor Pérez; Jordi Riba

    2016-01-01

    BACKGROUND: Schizotypal personality disorder (SPD) is a schizophrenia-spectrum disorder characterized by odd or bizarre behavior, strange speech, magical thinking, unusual perceptual experiences, and social anhedonia. Schizophrenia proper has been associated with anomalies in dopaminergic neurotransmission and deficits in neurophysiological markers of self-monitoring, such as low amplitude in cognitive event-related brain potentials (ERPs) like the error-related negativity (ERN), and the erro...

  19. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments.

    Science.gov (United States)

    Vecchiato, Giovanni; Jelic, Andrea; Tieri, Gaetano; Maglione, Anton Giulio; De Matteis, Federico; Babiloni, Fabio

    2015-09-01

    The recent efforts aimed at providing neuroscientific explanations of how people perceive and experience architectural environments have largely justified the initial belief in the value of neuroscience for architecture. However, a systematic development of a coherent theoretical and experimental framework is missing. To investigate the neurophysiological reactions related to the appreciation of ambiances, we recorded the electroencephalographic (EEG) signals in an immersive virtual reality during the appreciation of interior designs. Such data have been analyzed according to the working hypothesis that appreciated environments involve embodied simulation mechanisms and circuits mediating approaching stimuli. EEG recordings of 12 healthy subjects have been performed during the perception of three-dimensional interiors that have been simulated in a CAVE system and judged according to dimensions of familiarity, novelty, comfort, pleasantness, arousal and presence. A correlation analysis on personal judgments returned that scores of novelty, pleasantness and comfort are positively correlated, while familiarity and novelty are in negative way. Statistical spectral maps reveal that pleasant, novel and comfortable interiors produce a de-synchronization of the mu rhythm over left sensorimotor areas. Interiors judged more pleasant and less familiar generate an activation of left frontal areas (theta and alpha bands), along an involvement of areas devoted to spatial navigation. An increase in comfort returns an enhancement of the theta frontal midline activity. Cerebral activations underlying appreciation of architecture could involve different mechanisms regulating corporeal, emotional and cognitive reactions. Therefore, it might be suggested that people's experience of architectural environments is intrinsically structured by the possibilities for action.

  20. Epileptic negative drop attacks in atypical benign partial epilepsy: a neurophysiological study.

    Science.gov (United States)

    Hirano, Yoshiko; Oguni, Hirokazu; Osawa, Makiko

    2009-03-01

    We conducted a computer-assisted polygraphic analysis of drop attacks in a child with atypical benign partial epilepsy (ABPE) to investigate neurophysiological characteristics. The patient was a six-year two-month-old girl, who had started to have focal motor seizures, later combined with daily epileptic negative myoclonus (ENM) and drop attacks, causing multiple injuries. We studied episodes of ENM and drop attacks using video-polygraphic and computer-assisted back-averaging analysis. A total of 12 ENM episodes, seven involving the left arm (ENMlt) and five involving both arms (ENMbil), and five drop attacks were captured for analysis. All episodes were time-locked to spike-and-wave complexes (SWC) arising from both centro-temporo-parietal (CTP) areas. The latency between the onset of SWC and ENMlt, ENMbil, and drop attacks reached 68 ms, 42 ms, and 8 ms, respectively. The height of the spike as well as the slow-wave component of SWC for drop attacks were significantly larger than that for both ENMlt and ENMbil (p negative myoclonus involving not only upper proximal but also axial muscles, causing the body to fall. Thus, drop attacks in ABPE are considered to be epileptic negative drop attacks arising from bilateral CTP foci and differ from drop attacks of a generalized origin seen in Lennox-Gastaut syndrome and myoclonic-astatic epilepsy.

  1. Neurophysiological traces of interpersonal pain: How emotional autobiographical memories affect event-related potentials.

    Science.gov (United States)

    Rohde, Kristina B; Caspar, Franz; Koenig, Thomas; Pascual-Leone, Antonio; Stein, Maria

    2018-03-01

    The automatic, involuntary reactivation of disturbing emotional memories, for example, of interpersonal pain, causes psychological discomfort and is central to many psychopathologies. This study aimed at elucidating the automatic brain processes underlying emotional autobiographical memories by investigating the neurophysiological dynamics within the first second after memory reactivation. Pictures of different individualized familiar faces served as cues for different specific emotional autobiographical memories, for example, for memories of interpersonal pain and grievances or for memories of appreciation in interpersonal relationships. Nineteen subjects participated in a passive face-viewing task while multichannel electroencephalogram was recorded. Analyses of event-related potentials demonstrated that emotional memories elicited an early posterior negativity and a stronger late positive potential, which tended to be particularly enhanced for painful memories. Source estimations attributed this stronger activation to networks including the posterior cingulate and ventrolateral prefrontal cortices. The findings suggest that the reactivation of emotional autobiographical memories involves privileged automatic attention at perceptual processing stages, and an enhanced recruitment of neural network activity at a postperceptual stage sensitive to emotional-motivational processing. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. HIV-positive females show blunted neurophysiological responses in an emotion-attention dual task paradigm.

    Science.gov (United States)

    Tartar, Jaime L; McIntosh, Roger C; Rosselli, Monica; Widmayer, Susan M; Nash, Allan J

    2014-06-01

    Although HIV is associated with decreased emotional and cognitive functioning, the mechanisms through which affective changes can alter cognitive processes in HIV-infected individuals are unknown. We aimed to clarify this question through testing the extent to which emotionally negative stimuli prime attention to a subsequent infrequently occurring auditory tone in HIV+ compared to HIV- females. Attention to emotional compared to non-emotional pictures was measured via the LPP ERP. Subsequent attention was indexed through the N1 and late processing negativity ERP. We also assessed mood and cognitive functioning in both groups. In HIV- females, emotionally negative pictures, compared to neutral pictures, resulted in an enhanced LPP to the pictures and an enhanced N1 to subsequent tones. The HIV+ group did not show a difference in the LPP measure between picture categories, and accordingly, did not show a priming effect to the subsequent infrequent tones. The ERP findings, combined with neuropsychological deficits, suggest that HIV+ females show impairments in attention to emotionally-laden stimuli and that this impairment might be related to a loss of affective priming. This study is the first to provide physiological evidence that the LPP, a measure of attention to emotionally-charged visual stimuli, is reduced in HIV-infected individuals. These results set the stage for future work aimed at localizing brain activation to emotional stimuli in HIV+ individuals. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    Science.gov (United States)

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  4. Free will: reconciling German civil law with Libet's neurophysiological studies on the readiness potential.

    Science.gov (United States)

    Kawohl, Wolfram; Habermeyer, Elmar

    2007-01-01

    The free will debate widely exceeds the neuroscientific and philosophical fields due to profound implications for legislation, case law and psychiatric expert opinion. Data from Benjamin Libet's experiments on the readiness potential have been used as an argument against personal responsibility and for changes in the law. Due to the explicit use of the term "free will" in German civil law, the psychiatrist as an expert witness is confronted with this debate. In this article we outline the role of this crucial term in German civil law and we describe the neurophysiologic challenge in the form of Libet's experiments, which is led on three levels: the correctness of the data, the impact on the question of whether free will exists and possible consequences for the law. We conclude that the problem of free will cannot be debated on the basis of the data provided by Libet's experiments and that doubts about the existence of a free will must not lead to changes in the law or in psychiatric expert testimony. Therefore, advice for the psychiatrist as an expert witness is offered on the basis of a psychopathological approach that takes into account cognitive and motivational preconditions and the structure of values and personality. Copyright (c) 2007 John Wiley & Sons, Ltd.

  5. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    Directory of Open Access Journals (Sweden)

    Eduardo Camina

    2017-06-01

    Full Text Available This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory or unconsciously (implicit memory.

  6. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology

    Science.gov (United States)

    Marino, Alexandria C.; Mazer, James A.

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  7. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development

    Directory of Open Access Journals (Sweden)

    Jennum P

    2016-04-01

    Full Text Available Poul Jennum, Julie AE Christensen, Marielle Zoetmulder Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark Abstract: Rapid eye movement (REM sleep behavior disorder (RBD is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson’s disease who experience abnormalities in sleep electroencephalographic frequencies, sleep–wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism. Keywords: motor control, brain stem, hypothalamus, hypocretin

  8. Neurophysiological tools to investigate consumer's gender differences during the observation of TV commercials.

    Science.gov (United States)

    Vecchiato, Giovanni; Maglione, Anton Giulio; Cherubino, Patrizia; Wasikowska, Barbara; Wawrzyniak, Agata; Latuszynska, Anna; Latuszynska, Malgorzata; Nermend, Kesra; Graziani, Ilenia; Leucci, Maria Rita; Trettel, Arianna; Babiloni, Fabio

    2014-01-01

    Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender.

  9. Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials

    Directory of Open Access Journals (Sweden)

    Giovanni Vecchiato

    2014-01-01

    Full Text Available Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers’ reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG, galvanic skin response (GSR, and heart rate (HR in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer’s gender.

  10. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    Science.gov (United States)

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  11. Repeated sugammadex reversal of muscle relaxation during lumbar spine surgery with intraoperative neurophysiological multimodal monitoring.

    Science.gov (United States)

    Errando, C L; Blanco, T; Díaz-Cambronero, Ó

    2016-11-01

    Intraoperative neurophysiological monitoring during spine surgery is usually acomplished avoiding muscle relaxants. A case of intraoperative sugammadex partial reversal of the neuromuscular blockade allowing adequate monitoring during spine surgery is presented. A 38 year-old man was scheduled for discectomy and vertebral arthrodesis throughout anterior and posterior approaches. Anesthesia consisted of total intravenous anesthesia plus rocuronium. Intraoperatively monitoring was needed, and the muscle relaxant reverted twice with low dose sugammadex in order to obtain adequate responses. The doses of sugammadex used were conservatively selected (0.1mg/kg boluses increases, total dose needed 0.4mg/kg). Both motor evoqued potentials, and electromyographic responses were deemed adequate by the neurophysiologist. If muscle relaxation was needed in the context described, this approach could be useful to prevent neurological sequelae. This is the first study using very low dose sugammadex to reverse rocuronium intraoperatively and to re-establish the neuromuscular blockade. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    Science.gov (United States)

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory). PMID:28713278

  13. Neurophysiological and clinical responses to rituximab in patients with anti-MAG polyneuropathy.

    Science.gov (United States)

    Zara, Gabriella; Zambello, Renato; Ermani, M

    2011-12-01

    Rituximab treatment has shown clinical improvement in anti-myelin associated glycoprotein (MAG) polyneuropathy. We analyzed scores of clinical scales and the most sensitive electrophysiological parameters before and after immunomodulating treatment with rituximab in a group of patients affected by anti-MAG demyelinating polyneuropathy. Clinical scores, the percentage of CD20 B-lymphocytes, anti-MAG antibody titers and electrophysiological data in 7 patients with anti-MAG polyneuropathy were analyzed. The patients were examined before a cycle with rituximab, 6, 12 and 24 months after the end of the treatment. Two patients were treated with rituximab additional cycles and re-evaluated 48 months after the first treatment. There were no evident correlation between anti-MAG serum antibody titers or clinical scales and electrodiagnostic data. Significant decrease in the proportion of CD20 B-lymphocytes was observed. Significant anti-MAG antibodies titers reduction was detected after re-treatment. At follow-up, pinprik sensation and two point discrimination presented a significant improvement compared with the score before treatment. In our patients, rituximab did not improve any electrophysiological data. No correlation with anti-MAG serum antibodies course was found. With rituximab only pin sensibility improved. Rituximab re-treatment significantly reduces anti-MAG serum antibodies titers but improves only small fibers sensibility. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. An open source 3-d printed modular micro-drive system for acute neurophysiology.

    Directory of Open Access Journals (Sweden)

    Shaun R Patel

    Full Text Available Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED that utilizes rapid prototyping (3-d printing and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use.

  15. Neurophysiological Tools to Investigate Consumer's Gender Differences during the Observation of TV Commercials

    Science.gov (United States)

    Maglione, Anton Giulio; Wasikowska, Barbara; Wawrzyniak, Agata; Graziani, Ilenia; Trettel, Arianna

    2014-01-01

    Neuromarketing is a multidisciplinary field of research whose aim is to investigate the consumers' reaction to advertisements from a neuroscientific perspective. In particular, the neuroscience field is thought to be able to reveal information about consumer preferences which are unobtainable through conventional methods, including submitting questionnaires to large samples of consumers or performing psychological personal or group interviews. In this scenario, we performed an experiment in order to investigate cognitive and emotional changes of cerebral activity evaluated by neurophysiologic indices during the observation of TV commercials. In particular, we recorded the electroencephalographic (EEG), galvanic skin response (GSR), and heart rate (HR) in a group of 28 healthy subjects during the observation of a series of TV advertisements that have been grouped by commercial categories. Comparisons of cerebral indices have been performed to highlight gender differences between commercial categories and scenes of interest of two specific commercials. Findings show how EEG methodologies, along with the measurements of autonomic variables, could be used to obtain hidden information to marketers not obtainable otherwise. Most importantly, it was suggested how these tools could help to analyse the perception of TV advertisements and differentiate their production according to the consumer's gender. PMID:25147579

  16. Preoperative and intraoperative neurophysiological investigations for surgical resections in functional areas.

    Science.gov (United States)

    Huberfeld, G; Trébuchon, A; Capelle, L; Badier, J-M; Chen, S; Lefaucheur, J-P; Gavaret, M

    2017-06-01

    Brain regions are removed to treat lesions, but great care must be taken not to disturb or remove functional areas in the lesion and in surrounding tissue where healthy and diseased cells may be intermingled, especially for infiltrating tumors. Cortical functional areas and fiber tracts can be localized preoperatively by probabilistic anatomical tools, but mapping of functional integrity by neurophysiology is essential. Identification of the primary motor cortex seems to be more effectively performed with transcranial magnetic stimulation (TMS) than functional magnetic resonance imaging (fMRI). Language area localization requires auditory evoked potentials or TMS, as well as fMRI and diffusion tensor imaging for fiber tracts. Somatosensory cortex is most effectively mapped by somatosensory evoked potentials. Crucial eloquent areas, such as the central sulcus, primary somatomotor areas, corticospinal tract must be defined and for some areas that must be removed, potential compensations may be identified. Oncological/functional ratio must be optimized, resecting the tumor maximally but also sparingly, as far as possible, the areas that mediate indispensable functions. In some cases, a transient postoperative deficit may be inevitable. In this article, we review intraoperative exploration of motricity, language, somatosensory, visual and vestibular function, calculation, memory and components of consciousness. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Neurophysiological Studies May Provide a Misleading Picture of How Perceptual-Motor Interactions are Coordinated

    Directory of Open Access Journals (Sweden)

    David Mann

    2013-02-01

    Full Text Available Neurophysiological measurement techniques like fMRI and TMS are increasingly being used to examine the perceptual-motor processes underpinning the ability to anticipate the actions of others. Crucially, these techniques invariably restrict the experimental task that can be used and consequently limit the degree to which the findings can be generalised. These limitations are discussed based on a recent paper by Tomeo et al. (2012 who sought to examine responses to fooling actions by using TMS on participants who passively observed spliced video clips where bodily information was, and was not, linked to the action outcome. We outline two particular concerns with this approach. First, spliced video clips that show physically impossible actions are unlikely to simulate a “fooling” action. Second, it is difficult to make meaningful inferences about perceptual-motor expertise from experiments where participants cannot move. Taken together, we argue that wider generalisations based on these findings may provide a misunderstanding of the phenomenon such a study is designed to explore.

  18. Neurophysiological studies may provide a misleading picture of how perceptual-motor interactions are coordinated.

    Science.gov (United States)

    Mann, David; Dicks, Matt; Cañal-Bruland, Rouwen; van der Kamp, John

    2013-01-01

    Neurophysiological measurement techniques like fMRI and TMS are increasingly being used to examine the perceptual-motor processes underpinning the ability to anticipate the actions of others. Crucially, these techniques invariably restrict the experimental task that can be used and consequently limit the degree to which the findings can be generalised. These limitations are discussed based on a recent paper by Tomeo et al. (2012) who sought to examine responses to fooling actions by using TMS on participants who passively observed spliced video clips where bodily information was, and was not, linked to the action outcome. We outline two particular concerns with this approach. First, spliced video clips that show physically impossible actions are unlikely to simulate a "fooling" action. Second, it is difficult to make meaningful inferences about perceptual-motor expertise from experiments where participants cannot move. Taken together, we argue that wider generalisations based on these findings may provide a misunderstanding of the phenomenon such a study is designed to explore.

  19. Resting-State Neurophysiological Abnormalities in Posttraumatic Stress Disorder: A Magnetoencephalography Study

    Directory of Open Access Journals (Sweden)

    Amy S. Badura-Brack

    2017-04-01

    Full Text Available Posttraumatic stress disorder (PTSD is a debilitating psychiatric condition that is common in veterans returning from combat operations. While the symptoms of PTSD have been extensively characterized, the neural mechanisms that underlie PTSD are only vaguely understood. In this study, we examined the neurophysiology of PTSD using magnetoencephalography (MEG in a sample of veterans with and without PTSD. Our primary hypothesis was that veterans with PTSD would exhibit aberrant activity across multiple brain networks, especially those involving medial temporal and frontal regions. To this end, we examined a total of 51 USA combat veterans with a battery of clinical interviews and tests. Thirty-one of the combat veterans met diagnostic criteria for PTSD and the remaining 20 did not have PTSD. All participants then underwent high-density MEG during an eyes-closed resting-state task, and the resulting data were analyzed using a Bayesian image reconstruction method. Our results indicated that veterans with PTSD had significantly stronger neural activity in prefrontal, sensorimotor and temporal areas compared to those without PTSD. Veterans with PTSD also exhibited significantly stronger activity in the bilateral amygdalae, parahippocampal and hippocampal regions. Conversely, healthy veterans had stronger neural activity in the bilateral occipital cortices relative to veterans with PTSD. In conclusion, these data suggest that veterans with PTSD exhibit aberrant neural activation in multiple cortical areas, as well as medial temporal structures implicated in affective processing.

  20. Bilirubin-Induced Neurological Dysfunction: A Clinico-Radiological-Neurophysiological Correlation in 30 Consecutive Children.

    Science.gov (United States)

    van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan

    2016-12-01

    The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.

  1. Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory.

    Science.gov (United States)

    Moberly, Aaron C; Bhat, Jyoti; Welling, D Bradley; Shahin, Antoine J

    2014-03-01

    Listeners assign different weights to spectral dynamics, such as formant rise time (FRT), and temporal dynamics, such as amplitude rise time (ART), during phonetic judgments. We examined the neurophysiological basis of FRT and ART weighting in the /ba/-/wa/ contrast. Electroencephalography was recorded for thirteen adult English speakers during a mismatch negativity (MMN) design using synthetic stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/(wa) with /ba/-like FRT and /wa/-like ART. We hypothesized that because of stronger reliance on FRT, subjects would encode a stronger memory trace and exhibit larger MMN during the FRT than the ART contrast. Results supported this hypothesis. The effect was most robust in the later portion of MMN. Findings suggest that MMN is generated by multiple sources, differentially reflecting acoustic change detection (earlier MMN, bottom-up process) and perceptual weighting of ART and FRT (later MMN, top-down process). Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Clinical Neurophysiology Training in a Developing Country: Institutional Resources and Profiles.

    Science.gov (United States)

    Sámano, Arturo G; Ochoa Mena, José D; Padilla, Silvana P; Acevedo, Gerardo R; Orenday Barraza, José M; San-Juan, Daniel

    2018-05-01

    The purpose of this study was to describe the characteristics and preferences of clinical neurophysiology (CN) fellows, as well as the resources available for their training, in a developing country such as Mexico. An online survey (25 questions) was given to Mexican CN fellows from May to June 2017, covering their reasons for choosing the CN subspecialty, their activities, future plans, institutional resources, and administrative staff. Descriptive statistics were used. Total respondents: 20/22 (90%), 65% female from 7 CN centers (80% public and 20% private hospitals) in Mexico City. Seventy-five percent chose CN out of personal interest, and all were not unsatisfied with their academic program. Most plan to work in private practice (75%) and are interested in learning EEG (85%) and intraoperative monitoring (75%-85%). The highest-reported training time by CN area allocated by the programs was as follows: EEG (27%), electromyography (22%), and evoked potentials (16%). The average number of fellows per center was 4; 75% of the centers perform epilepsy surgery, of which 60% offer invasive intracranial studies for the evaluation of surgical candidates. Mexican CN fellows are satisfied with their choice and with the academic program. They are increasingly interested in intraoperative monitoring, which is not addressed in current Mexican CN Programs.

  3. Development in the neurophysiology of emotion processing and memory in school-age children

    Directory of Open Access Journals (Sweden)

    Jacqueline S. Leventon

    2014-10-01

    Full Text Available In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral, electrophysiological, and psychophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Five- to 8-year-olds, divided into younger and older groups, viewed emotional scenes as EEG, heart rate, and respiration was recorded, and participated in a memory task 24 hours later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. All measures indicated emotion responses in both groups, and in ERP measures the effects were stronger for older children. Emotion responses were more consistent across measures for negative than positive stimuli. Behavioral memory performance was strong but did not differ by emotion condition. Emotion influenced the ERP index of recognition memory in the older group only (enhanced recognition of negative scenes. The findings an increasing interaction of emotion and memory during the school years. Further, the findings impress the value of combining multiple methods to assess emotion and memory in development. Development in the neurophysiology of emotion processing and memory in school-age children.

  4. Development in the neurophysiology of emotion processing and memory in school-age children.

    Science.gov (United States)

    Leventon, Jacqueline S; Stevens, Jennifer S; Bauer, Patricia J

    2014-10-01

    In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral, electrophysiological, and psychophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Five- to 8-year-olds, divided into younger and older groups, viewed emotional scenes as EEG, heart rate, and respiration was recorded, and participated in a memory task 24 hours later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. All measures indicated emotion responses in both groups, and in ERP measures the effects were stronger for older children. Emotion responses were more consistent across measures for negative than positive stimuli. Behavioral memory performance was strong but did not differ by emotion condition. Emotion influenced the ERP index of recognition memory in the older group only (enhanced recognition of negative scenes). The findings an increasing interaction of emotion and memory during the school years. Further, the findings impress the value of combining multiple methods to assess emotion and memory in development. Development in the neurophysiology of emotion processing and memory in school-age children. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives.

    Science.gov (United States)

    Busan, P; Battaglini, P P; Sommer, M

    2017-06-01

    Developmental stuttering (DS) is a disruption of the rhythm of speech, and affected people may be unable to execute fluent voluntary speech. There are still questions about the exact causes of DS. Evidence suggests there are differences in the structure and functioning of motor systems used for preparing, executing, and controlling motor acts, especially when they are speech related. Much research has been obtained using neuroimaging methods, ranging from functional magnetic resonance to diffusion tensor imaging and electroencephalography/magnetoencephalography. Studies using transcranial magnetic stimulation (TMS) in DS have been uncommon until recently. This is surprising considering the relationship between the functionality of the motor system and DS, and the wide use of TMS in motor-related disturbances such as Parkinson's Disease, Tourette's Syndrome, and dystonia. Consequently, TMS could shed further light on motor aspects of DS. The present work aims to investigate the use of TMS for understanding DS neural mechanisms by reviewing TMS papers in the DS field. Until now, TMS has contributed to the understanding of the excitatory/inhibitory ratio of DS motor functioning, also helping to better understand and critically review evidence about stuttering mechanisms obtained from different techniques, which allowed the investigation of cortico-basal-thalamo-cortical and white matter/connection dysfunctions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. The clinical and neurophysiological characteristics of the deja vu phenomenon in epilepsy

    Directory of Open Access Journals (Sweden)

    P. N. Vlasov

    2012-01-01

    Full Text Available Objective: to study the clinical and neurophysiological characteristics of the deja vu phenomenon in epilepsy. Patients and methods. The manifestations of the dВjЕ vu phenomenon were compared in 154 examinees in two groups: 1 139 healthy individuals and 2 25 patients with epilepsy (mean age 25.17±9.19 years; women, 63.2% The characteristics of the phenomenon were determined, by questioning the examinees; 12—16-hour ambulatory electroencephalogram (EEG monitoring was made. Results. The deja vu phenomenon occurred with cryptogenic and symptomatic focal epilepsy with equal frequency; however, the phenomenon was also seen in the idiopathic generalized form of the latter and could be concurrent virtually with any types of seizures and observed as an individual seizure and in the structure of a partial and secondarily generalized seizure. In epileptic patients, the main clinical characteristics of the deja vu vu phenomenon are its frequency, fear before its onset, and emotional coloring. The most important criterion is a change in the characteristics of deja vu vu: prolongation, more frequencies, and the emergence of negative emotions. On EEG, the phenomenon was characterized by the onset of polyspike activity in the right temporal leads and, in some cases, ended with slow-wave, theta-delta activity in the right hemisphere.

  7. Non-traumatic brachial plexopathies, clinical, radiological and neurophysiological findings from a tertiary centre.

    LENUS (Irish Health Repository)

    Mullins, G M

    2012-02-03

    OBJECTIVE: To establish the clinical characteristics, aetiology, neuro-physiological characteristics, imaging findings and other investigations in a cohort of patients with non-traumatic brachial plexopathy (BP). METHODS: A 3-year retrospective study of patients with non-traumatic BP identified by electromyography (EMG) and nerve conduction studies (NCS). Clinical information was retrieved from patients\\' medical charts. RESULTS: Twenty-five patients were identified. Causes of BP included neuralgic amyotrophy (NA) (48%), neoplastic (16%), radiation (8%), post infectious (12%), obstetric (4%), rucksack injury (4%), thoracic outlet syndrome (4%) and iatrogenic (4%). Patients with NA presented acutely in 50%. The onset was subacute in all others. Outcome was better for patients with NA. All patients with neoplastic disease had a previous history of cancer. MRI was abnormal in 3\\/16 patients (18.8%). PET scanning diagnosed metastatic plexopathy in two cases. CONCLUSIONS: NA was the most common cause of BP in our cohort and was associated with a more favourable outcome. The authors note potentially discriminating clinical characteristics in our population that aid in the assessment of patients with brachial plexopathies. We advise NCS and EMG be performed in all patients with suspected plexopathy. Imaging studies are useful in selected patients.

  8. Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions.

    Science.gov (United States)

    Lithari, C; Frantzidis, C A; Papadelis, C; Vivas, Ana B; Klados, M A; Kourtidou-Papadeli, C; Pappas, C; Ioannides, A A; Bamidis, P D

    2010-03-01

    Men and women seem to process emotions and react to them differently. Yet, few neurophysiological studies have systematically investigated gender differences in emotional processing. Here, we studied gender differences using Event Related Potentials (ERPs) and Skin Conductance Responses (SCR) recorded from participants who passively viewed emotional pictures selected from the International Affective Picture System (IAPS). The arousal and valence dimension of the stimuli were manipulated orthogonally. The peak amplitude and peak latency of ERP components and SCR were analyzed separately, and the scalp topographies of significant ERP differences were documented. Females responded with enhanced negative components (N100 and N200), in comparison to males, especially to the unpleasant visual stimuli, whereas both genders responded faster to high arousing or unpleasant stimuli. Scalp topographies revealed more pronounced gender differences on central and left hemisphere areas. Our results suggest a difference in the way emotional stimuli are processed by genders: unpleasant and high arousing stimuli evoke greater ERP amplitudes in women relatively to men. It also seems that unpleasant or high arousing stimuli are temporally prioritized during visual processing by both genders.

  9. Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.

    Science.gov (United States)

    Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E

    2012-10-01

    The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Neurophysiology and new techniques to assess esophageal sensory function: an update.

    Science.gov (United States)

    Brock, Christina; McCallum, Richard W; Gyawali, C Prakash; Farmer, Adam D; Frøkjaer, Jens Brøndum; McMahon, Barry P; Drewes, Asbjørn Mohr

    2016-09-01

    This review aims to discuss the neurophysiology of the esophagus and new methods to assess esophageal nociception. Pain and other symptoms can be caused by diseases in the mucosa or muscular or sphincter dysfunction, together with abnormal pain processing, either in the peripheral or central nervous systems. Therefore, we present new techniques in the assessment of esophageal function and the potential role of the mucosal barrier in the generation and propagation of pain. We discuss the assessment and role of esophageal sphincters in nociception, as well as imaging and electrophysiological techniques, with examples of their use in understanding the sensory system following noxious stimuli to the esophagus. Additionally, we discuss the mechanisms behind functional diseases of the esophagus. We conclude that the new methods have identified many of the mechanisms behind malfunction of the mucosa, disturbances of muscular and sphincter functions, and the central response to different stimuli. Taken together, this has increased our understanding of esophageal disorders and may lead to new treatment modalities. © 2016 New York Academy of Sciences.

  11. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents.

    Science.gov (United States)

    Manjaly, Zina M; Bruning, Nicole; Neufang, Susanne; Stephan, Klaas E; Brieber, Sarah; Marshall, John C; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Fink, Gereon R

    2007-03-01

    Previous studies found normal or even superior performance of autistic patients on visuospatial tasks requiring local search, like the Embedded Figures Task (EFT). A well-known interpretation of this is "weak central coherence", i.e. autistic patients may show a reduced general ability to process information in its context and may therefore have a tendency to favour local over global aspects of information processing. An alternative view is that the local processing advantage in the EFT may result from a relative amplification of early perceptual processes which boosts processing of local stimulus properties but does not affect processing of global context. This study used functional magnetic resonance imaging (fMRI) in 12 autistic adolescents (9 Asperger and 3 high-functioning autistic patients) and 12 matched controls to help distinguish, on neurophysiological grounds, between these two accounts of EFT performance in autistic patients. Behaviourally, we found autistic individuals to be unimpaired during the EFT while they were significantly worse at performing a closely matched control task with minimal local search requirements. The fMRI results showed that activations specific for the local search aspects of the EFT were left-lateralised in parietal and premotor areas for the control group (as previously demonstrated for adults), whereas for the patients these activations were found in right primary visual cortex and bilateral extrastriate areas. These results suggest that enhanced local processing in early visual areas, as opposed to impaired processing of global context, is characteristic for performance of the EFT by autistic patients.

  12. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    Science.gov (United States)

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. PL-DA-PS: A hardware architecture and software toolbox for neurophysiology requiring complex visual stimuli and online behavioral control

    Directory of Open Access Journals (Sweden)

    Kyler M. Eastman

    2012-01-01

    Full Text Available Neurophysiological studies in awake, behaving primates (both human and nonhuman primates have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed an architecture that integrates several modern pieces of equipment, but still grants experimenters a high degree of flexibility. Our hardware architecture and software tools take advantage of three popular and powerful technologies: the PLexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas TX, a DAtapixx box (Vpixx Technologies, Saint-Bruno, QC, Canada for analog, digital, and video signal input-output control, and the PSychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997. The PL-DA-PS (Platypus system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  14. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control.

    Science.gov (United States)

    Eastman, Kyler M; Huk, Alexander C

    2012-01-01

    Neurophysiological studies in awake, behaving primates (both human and non-human) have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed a MATLAB toolbox that integrates several modern pieces of equipment, but still grants experimenters the flexibility of a high-level programming language. Our toolbox takes advantage of three popular and powerful technologies: the Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Datapixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital, and video input-output signals, and the Psychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS ("Platypus") system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  15. Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, S.Y.; Strutton, P.H. [Imperial College London, The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Hellyer, P.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Sharp, D.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Newbould, R.D. [Imanova, Ltd, London (United Kingdom); Patel, M.C. [Charing Cross Hospital, Imaging Department, Imperial College Healthcare NHS Trust, London (United Kingdom)

    2017-09-15

    Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function. (orig.)

  16. Neurophysiological and Behavioral Differences between Older and Younger Adults When Processing Violations of Tonal Structure in Music

    Science.gov (United States)

    Lagrois, Marie-Élaine; Peretz, Isabelle; Zendel, Benjamin Rich

    2018-01-01

    Aging is associated with decline in both cognitive and auditory abilities. However, evidence suggests that music perception is relatively spared, despite relying on auditory and cognitive abilities that tend to decline with age. It is therefore likely that older adults engage compensatory mechanisms which should be evident in the underlying functional neurophysiology related to processing music. In other words, the perception of musical structure would be similar or enhanced in older compared to younger adults, while the underlying functional neurophysiology would be different. The present study aimed to compare the electrophysiological brain responses of younger and older adults to melodic incongruities during a passive and active listening task. Older and younger adults had a similar ability to detect an out-of-tune incongruity (i.e., non-chromatic), while the amplitudes of the ERAN and P600 were reduced in older adults compared to younger adults. On the other hand, out-of-key incongruities (i.e., non-diatonic), were better detected by older adults compared to younger adults, while the ERAN and P600 were comparable between the two age groups. This pattern of results indicates that perception of tonal structure is preserved in older adults, despite age-related neurophysiological changes in how melodic violations are processed. PMID:29487498

  17. Neurophysiological and Behavioral Differences between Older and Younger Adults When Processing Violations of Tonal Structure in Music

    Directory of Open Access Journals (Sweden)

    Marie-Élaine Lagrois

    2018-02-01

    Full Text Available Aging is associated with decline in both cognitive and auditory abilities. However, evidence suggests that music perception is relatively spared, despite relying on auditory and cognitive abilities that tend to decline with age. It is therefore likely that older adults engage compensatory mechanisms which should be evident in the underlying functional neurophysiology related to processing music. In other words, the perception of musical structure would be similar or enhanced in older compared to younger adults, while the underlying functional neurophysiology would be different. The present study aimed to compare the electrophysiological brain responses of younger and older adults to melodic incongruities during a passive and active listening task. Older and younger adults had a similar ability to detect an out-of-tune incongruity (i.e., non-chromatic, while the amplitudes of the ERAN and P600 were reduced in older adults compared to younger adults. On the other hand, out-of-key incongruities (i.e., non-diatonic, were better detected by older adults compared to younger adults, while the ERAN and P600 were comparable between the two age groups. This pattern of results indicates that perception of tonal structure is preserved in older adults, despite age-related neurophysiological changes in how melodic violations are processed.

  18. Thorough specification of the neurophysiologic processes underlying behavior and of their manifestation in EEG - demonstration with the go/no-go task.

    Science.gov (United States)

    Shahaf, Goded; Pratt, Hillel

    2013-01-01

    In this work we demonstrate the principles of a systematic modeling approach of the neurophysiologic processes underlying a behavioral function. The modeling is based upon a flexible simulation tool, which enables parametric specification of the underlying neurophysiologic characteristics. While the impact of selecting specific parameters is of interest, in this work we focus on the insights, which emerge from rather accepted assumptions regarding neuronal representation. We show that harnessing of even such simple assumptions enables the derivation of significant insights regarding the nature of the neurophysiologic processes underlying behavior. We demonstrate our approach in some detail by modeling the behavioral go/no-go task. We further demonstrate the practical significance of this simplified modeling approach in interpreting experimental data - the manifestation of these processes in the EEG and ERP literature of normal and abnormal (ADHD) function, as well as with comprehensive relevant ERP data analysis. In-fact we show that from the model-based spatiotemporal segregation of the processes, it is possible to derive simple and yet effective and theory-based EEG markers differentiating normal and ADHD subjects. We summarize by claiming that the neurophysiologic processes modeled for the go/no-go task are part of a limited set of neurophysiologic processes which underlie, in a variety of combinations, any behavioral function with measurable operational definition. Such neurophysiologic processes could be sampled directly from EEG on the basis of model-based spatiotemporal segregation.

  19. Optical tweezers principles and applications

    CERN Document Server

    Jones, Philip; Volpe, Giovanni

    2015-01-01

    Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, dig...

  20. Concatenated image completion via tensor augmentation and completion

    OpenAIRE

    Bengua, Johann A.; Tuan, Hoang D.; Phien, Ho N.; Do, Minh N.

    2016-01-01

    This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor,...

  1. Clinical and neurophysiological findings in oligoclonal band negative multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Mesaroš Šarlota

    2003-01-01

    Full Text Available Besides magnetic resonance imaging, the presence of locally produced oligoclonal IgG bands (OCB in the cerebrospinal fluid (CSF is the most consistent laboratory abnormality in patients with multiple sclerosis (MS. The most sensitive method for the detection of CSF OCB is isoelectric focusing (IEF [6]. Occasional patients with clinically definite MS lack evidence for intrathecal IgG synthesis [7, 8]. This study was designed to compare clinical data and evoked potential (EP findings between CSF OCB positive and OCB negative MS patients. The study comprised 22 OCB negative patients with clinically definite MS [11] and 22 OCB positive controls matched for age, disease duration, activity and course of MS. In both groups clinical assessment was performed by using Expanded Disability Status Scale (EDSS score [12] and progression rate (PR. All patients underwent multimodal EP: visual (VEPs, brainstem auditory (BAEPs and median somatosensory (mSEPs. The VEPa were considered abnormal if the P100 latency exceeded 117 ms or inter-ocular difference greater than 8 ms was detected. The BAEPs were considered abnormal if waves III or V were absent or the interpeak latencies I-III, III-V, or I-V were increased. The mSEPs were considerd abnormal when N9, N13 and N20 potentials were absent or when increased interpeak latencies were recorded. The severity of the neurophysiological abnormalities was scored for each modality as follows normal EP score 0; every other EP abnormality except the absence of one of the main waves, score 1; absence of one or more of the main waves, score 2 [13]. Both mean EDSS score (4.0 vs. 3.5 and PR (0.6 vs. 0.5 were similar in OCB positive and OCB negative group, (p>0.05. In the first group males were predominant, but without statistical significance (Table 1. Disease started more often with the brainstem symptoms in the OCB positive than in OCB negative MS group (p=0.028, while there was no differences in other initial symptoms between

  2. Neuropsychological and neurophysiological benefits from white noise in children with and without ADHD.

    Science.gov (United States)

    Baijot, Simon; Slama, Hichem; Söderlund, Göran; Dan, Bernard; Deltenre, Paul; Colin, Cécile; Deconinck, Nicolas

    2016-03-15

    Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity disorder (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD (7-12 years old), both at behavioral and at neurophysiological levels. Thirty children with and without ADHD performed a visual cued Go/Nogo task in two conditions (white noise or no-noise exposure), in which behavioral and P300 (mean amplitudes) data were analyzed. Spontaneous eye-blink rates were also recorded and participants went through neuropsychological assessment. Two separate analyses were conducted with each child separately assigned into two groups (1) ADHD or typically developing children (TDC), and (2) noise beneficiaries or non-beneficiaries according to the observed performance during the experiment. This latest categorization, based on a new index we called "Noise Benefits Index" (NBI), was proposed to determine a neuropsychological profile positively sensitive to noise. Noise exposure reduced omission rate in children with ADHD, who were no longer different from TDC. Eye-blink rate was higher in children with ADHD but was not modulated by white noise. NBI indicated a significant relationship between ADHD and noise benefit. Strong correlations were observed between noise benefit and neuropsychological weaknesses in vigilance and inhibition. Participants who benefited from noise had an increased Go P300 in the noise condition. The improvement of children with ADHD with white noise supports both optimal stimulation theory and MBA model. However, eye-blink rate results question the dopaminergic hypothesis in the latter. The NBI evidenced a profile positively sensitive to noise, related with ADHD, and associated with weaker cognitive control.

  3. Chronic cannabis users show altered neurophysiological functioning on Stroop task conflict resolution.

    Science.gov (United States)

    Battisti, Robert A; Roodenrys, Steven; Johnstone, Stuart J; Pesa, Nicole; Hermens, Daniel F; Solowij, Nadia

    2010-12-01

    Chronic cannabis use has been related to deficits in cognition (particularly memory) and the normal functioning of brain structures sensitive to cannabinoids. There is increasing evidence that conflict monitoring and resolution processes (i.e. the ability to detect and respond to change) may be affected. This study examined the ability to inhibit an automatic reading response in order to activate a more difficult naming response (i.e. conflict resolution) in a variant of the discrete trial Stroop colour-naming task. Event-related brain potentials to neutral, congruent and incongruent trials were compared between 21 cannabis users (mean 16.4 years of near daily use) in the unintoxicated state and 19 non-using controls. Cannabis users showed increased errors on colour-incongruent trials (e.g. "RED" printed in blue ink) but no performance differences from controls on colour congruent (e.g. "RED" printed in red ink) or neutral trials (e.g. "*****" printed in green ink). Poorer incongruent trial performance was predicted by an earlier age of onset of regular cannabis use. Users showed altered expression of a late sustained potential related to conflict resolution, evident by opposite patterns of activity between trial types at midline and central sites, and altered relationships between neurophysiological and behavioural outcome measures not evident in the control group. These findings indicate that chronic use of cannabis may impair the brain's ability to respond optimally in the presence of events that require conflict resolution and hold implications for the ability to refrain from substance misuse and/or maintain substance abstention behaviours.

  4. Using Movement to Regulate Emotion: Neurophysiological Findings and Their Application in Psychotherapy

    Directory of Open Access Journals (Sweden)

    Tal Shafir

    2016-09-01

    Full Text Available Emotion regulation is a person’s active attempt to manage their emotional state by enhancing or decreasing specific feelings. Peripheral theories of emotion argue that the origins of emotions stem from bodily responses. This notion has been reformulated in neurophysiological terms by Damasio, who claimed that emotions are generated by conveying the current state of the body to the brain through interoceptive and proprioceptive afferent input. The resulting brain activation patterns represent unconscious emotions and correlate with conscious feelings. This proposition implies that through deliberate control of motor behavior and its consequent proprioception and interoception, one could regulate his emotions and affect his feelings. This concept is used in dance/movement (psychotherapy where, by guiding to move in a certain way, the therapist helps the client to evoke, process, and regulate specific emotions. Exploration and practice of new and unfamiliar motor patterns can help the client to experience new unaccustomed feelings. The idea that certain motor qualities enhance specific emotions is utilized by the therapist also when she mirrors the client’s movements or motor qualities in order to feel what the client feels, and empathize with them. Because of the mirror neurons, feeling what the client feels is enabled also through observation and imagination of their movements and posture. This principle can be used by verbal therapists as well, who should be aware of its bi-directionality: clients seeing the therapist’s motor behavior are unconsciously affected by the therapist’s bodily expressions. Additional implications for psychotherapy, of findings regarding mirror neurons activation, are discussed.

  5. Neurophysiological and behavioural responses to music therapy in vegetative and minimally conscious states

    Directory of Open Access Journals (Sweden)

    Julian eO'Kelly

    2013-12-01

    Full Text Available Assessment of awareness for those with disorders of consciousness (DOC is a challenging undertaking, due to the complex presentation of the population, where misdiagnosis rates remain high. Music therapy may be effective in the assessment and rehabilitation with this population due to effects of musical stimuli on arousal, attention and emotion, irrespective of verbal or motor deficits, however, an evidence base is lacking. To address this, a neurophysiological and behavioural study was undertaken comparing EEG, heart rate variability, respiration and behavioural responses of 20 healthy subjects with 21 individuals in vegetative or minimally conscious states (VS or MCS. Subjects were presented with live preferred music and improvised music entrained to respiration (i.e., music therapy procedures, recordings of disliked music, white noise and silence. ANOVA tests indicated a range of significant responses (p ≤ 0.05 across healthy subjects corresponding to arousal and attention in response to preferred music including concurrent increases in respiration rate with globally enhanced EEG power spectra responses across frequency bandwidths. Whilst physiological responses were heterogeneous across patients, significant post hoc EEG amplitude increases for stimuli associated with preferred music were found for frontal midline theta in 6 VS and 4 MCS subjects, and frontal alpha in 3 VS and 4 MCS subjects (p = 0.05 - 0.0001. Furthermore, behavioural data showed a significantly increased blink rate for preferred music (p = 0.029 across the VS cohort. Two VS cases are presented with concurrent changes (p ≤ 0.05 across measures indicative of discriminatory responses to both music therapy procedures. A MCS case study highlights how more sensitive selective attention may distinguish MCS from VS. Further investigation is warranted to explore the use of music therapy for prognostic indicators, and its potential to support neuroplasticity in rehabilitation

  6. Spectrum of peripheral neuropathies associated with surgical interventions; A neurophysiological assessment

    LENUS (Irish Health Repository)

    Saidha, Shiv

    2010-04-19

    Abstract Background We hypothesized that a wide range of surgical procedures may be complicated by neuropathies, not just in close proximity but also remote from procedural sites. The aim of this study was to classify post-operative neuropathies and the procedures associated with them. Methods We retrospectively identified 66 patients diagnosed with post-procedure neuropathies between January 2005 and June 2008. We reviewed their referral cards and medical records for patient demographics, information on procedures, symptoms, as well as clinical and neurophysiological findings. Results Thirty patients (45.4%) had neuropathies remote from procedural sites and 36 patients (54.5%) had neuropathies in close proximity to procedural sites. Half of the remote neuropathies (15\\/30) developed following relatively short procedures. In 27% of cases (8\\/30) remote neuropathies were bilateral. Seven patients developed neuropathies remote from operative sites following hip arthroplasties (7\\/30: 23.3%), making hip arthroplasty the most common procedure associated with remote neuropathies. Sciatic neuropathies due to hip arthroplasty (12\\/36, 33.3%) accounted for the majority of neuropathies occurring in close proximity to operative sites. Five medial cutaneous nerve of forearm neuropathies occurred following arterio-venous fistula (AVF) formation. Conclusions An array of surgical procedures may be complicated by neuropathy. Almost half of post-procedure neuropathies occur remote from the site of procedure, emphasizing the need to try to prevent not just local, but also remote neuropathies. Mechanical factors and patient positioning should be considered in the prevention of post-operative neuropathies. There is a possible association between AVF formation and medial cutaneous nerve of forearm neuropathy, which requires further study for validation.

  7. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma.

    Science.gov (United States)

    Grippo, A; Carrai, R; Scarpino, M; Spalletti, M; Lanzo, G; Cossu, C; Peris, A; Valente, S; Amantini, A

    2017-06-01

    Investigation of the utility of association between electroencephalogram (EEG) and somatosensory-evoked potentials (SEPs) for the prediction of neurological outcome in comatose patients resuscitated after cardiac arrest (CA) treated with therapeutic hypothermia, according to different recording times after CA. Glasgow Coma Scale, EEG and SEPs performed at 12, 24 and 48-72 h after CA were assessed in 200 patients. Outcome was evaluated by Cerebral Performance Category 6 months after CA. Within 12 h after CA, grade 1 EEG predicted good outcome and bilaterally absent (BA) SEPs predicted poor outcome. Because grade 1 EEG and BA-SEPs were never found in the same patient, the recording of both EEG and SEPs allows us to correctly prognosticate a greater number of patients with respect to the use of a single test within 12 h after CA. At 48-72 h after CA, both grade 2 EEG and BA-SEPs predicted poor outcome with FPR=0.0%. When these neurophysiological patterns are both present in the same patient, they confirm and strengthen their prognostic value, but because they also occurred independently in eight patients, poor outcome is predictable in a greater number of patients. The combination of EEG/SEP findings allows prediction of good and poor outcome (within 12 h after CA) and of poor outcome (after 48-72 h). Recording of EEG and SEPs in the same patients allows always an increase in the number of cases correctly classified, and an increase of the reliability of prognostication in a single patient due to concordance of patterns. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Neuroradiological, neurophysiological and molecular findings in infantile Krabbe disease: two case reports

    Directory of Open Access Journals (Sweden)

    Vargiami E

    2016-06-01

    Full Text Available Krabbe disease is an autosomal recessive neurodegenerative disorder due to a defect of the lysosomal enzyme β-galactocerebrosidase (β-GALC. Depending on the age of onset, the disease is classified into infantile and later-onset forms. We report neuroradiological, neurophysiological and molecular findings in two Greek patients with the infantile form of Krabbe disease. The index patients presented at the age of 3.5 and 6 months, respectively, due to developmental delay. Magnetic resonance imaging (MRI of the first patient’s brain demonstrated signs of leukodystrophy, while nerve conduction velocities (NCVs were significantly decreased. The second patient’s MRI at the age of 4 months was initially normal, but at 18 months demonstrated leukodystrophic alterations as well, whereas NCVs were also significantly delayed. In both patients, a severe decrease in β-GALC, activity supported the diagnosis of Krabbe disease, while the final diagnosis was confirmed by molecular genetic testing. Two homozygous mutations of the GALC gene, the c.411_413delTAA [p.K139del] mutation in the first patient, and the c.749T>C [p.I250T] mutation in the second patient, were identified. At their last follow-up visit at the age of 4 and 6 years, respectively, both patients were bedridden and quadri-plegic, suffering from frequent respiratory tract infections and fed through a gastrostomy. Both mutations found in homozygosity in these two unrelated patients of Greek ancestry, could pinpoint a common origin. Genotyping of patients with Krabbe disease is important, in order to contribute to the creation of a European mutation database and to further study possible genotype-phenotype correlations of the disease.

  9. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Directory of Open Access Journals (Sweden)

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  10. Changes in neurophysiologic markers of visual processing following beneficial anti-VEGF treatment in macular degeneration

    Directory of Open Access Journals (Sweden)

    Vottonen P

    2013-02-01

    Full Text Available Pasi Vottonen,1 Kai Kaarniranta,1,2 Ari Pääkkönen,3 Ina M Tarkka41Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; 2Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 3Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 4Department of Health Sciences, University of Jyväskylä, Jyväskylä, FinlandPurpose: Antivascular endothelial growth factor (VEGF agents have been shown to improve visual acuity and prevent vision loss in exudative age-related macular degeneration. As the vision improves relatively quickly in response to intravitreal injections, we wanted to know whether this improvement is reflected in electrophysiological markers of visual cortical processing.Patients and methods: Our interventional case series included six elderly patients who underwent injection treatment to the affected eye. Their visual acuity, tomographic images of retinal thickness, and visual evoked potentials (VEP were assessed before treatment and six weeks after the last injection.Results: All patients showed improved visual acuity and reduced retinal fluid after the treatment. All but one patient showed increased VEP P100 component amplitudes and/or shortened latencies in the treated eye. These VEP changes were consistent with improved vision while the untreated eyes showed no changes.Conclusions: Our results indicate that antivascular endothelial growth factor injections improved visual function of the treated eyes both in the level of the retina and in the level of visual cortical processing.Keywords: age-related eye diseases, exudative age-related macular degeneration, visual evoked potentials, scalp-recorded EEG, visual acuity

  11. Selective neurophysiologic responses to music in instrumentalists with different listening biographies.

    Science.gov (United States)

    Margulis, Elizabeth Hellmuth; Mlsna, Lauren M; Uppunda, Ajith K; Parrish, Todd B; Wong, Patrick C M

    2009-01-01

    To appropriately adapt to constant sensory stimulation, neurons in the auditory system are tuned to various acoustic characteristics, such as center frequencies, frequency modulations, and their combinations, particularly those combinations that carry species-specific communicative functions. The present study asks whether such tunings extend beyond acoustic and communicative functions to auditory self-relevance and expertise. More specifically, we examined the role of the listening biography--an individual's long term experience with a particular type of auditory input--on perceptual-neural plasticity. Two groups of expert instrumentalists (violinists and flutists) listened to matched musical excerpts played on the two instruments (J.S. Bach Partitas for solo violin and flute) while their cerebral hemodynamic responses were measured using fMRI. Our experimental design allowed for a comprehensive investigation of the neurophysiology (cerebral hemodynamic responses as measured by fMRI) of auditory expertise (i.e., when violinists listened to violin music and when flutists listened to flute music) and nonexpertise (i.e., when subjects listened to music played on the other instrument). We found an extensive cerebral network of expertise, which implicates increased sensitivity to musical syntax (BA 44), timbre (auditory association cortex), and sound-motor interactions (precentral gyrus) when listening to music played on the instrument of expertise (the instrument for which subjects had a unique listening biography). These findings highlight auditory self-relevance and expertise as a mechanism of perceptual-neural plasticity, and implicate neural tuning that includes and extends beyond acoustic and communication-relevant structures. (c) 2007 Wiley-Liss, Inc.

  12. Mirroring the self: testing neurophysiological correlates of disturbed self-experience in schizophrenia spectrum.

    Science.gov (United States)

    Sestito, Mariateresa; Raballo, Andrea; Umiltà, Maria Alessandra; Leuci, Emanuela; Tonna, Matteo; Fortunati, Renata; De Paola, Giancarlo; Amore, Mario; Maggini, Carlo; Gallese, Vittorio

    2015-01-01

    Self-disorders (SDs) have been described as a core schizophrenia spectrum vulnerability phenotype, both in classic and contemporary psychopathological literature. However, such a core phenotype has not yet been investigated adopting a trans-domain approach that combines the phenomenological and the neurophysiological levels of analysis. The aim of this study is to investigate the relation between SDs and subtle, schizophrenia-specific impairments of emotional resonance that are supposed to reflect abnormalities in the mirror neurons mechanism. Specifically, we tested whether electromyographic response to emotional stimuli (i.e. a proxy for subtle changes in facial mimicry and related motor resonance mechanisms) would predict the occurrence of anomalous subjective experiences (i.e. SDs). Eighteen schizophrenia spectrum (SzSp) patients underwent a comprehensive psychopathological examination and were contextually tested with a multimodal paradigm, recording facial electromyographic activity of muscles in response to positive and negative emotional stimuli. Experiential anomalies were explored with the Bonn Scale for the Assessment of Basic Symptoms (BSABS) and then condensed into rational subscales mapping SzSp anomalous self-experiences. SzSp patients showed an imbalance in emotional motor resonance with a selective bias toward negative stimuli, as well as a multisensory integration impairment. Multiple regression analysis showed that electromyographic facial reactions in response to negative stimuli presented in auditory modality specifically and strongly correlated with SD subscore. The study confirms the potential of SDs as target phenotype for neurobiological research and encourages research into disturbed motor/emotional resonance as possible body-level correlate of disturbed subjective experiences in SzSp.

  13. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  14. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  15. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  16. Basic accelerator optics

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1985-01-01

    A complete derivation, from first principles, of the concepts and methods applied in linear accelerator and beamline optics will be presented. Particle motion and beam motion in systems composed of linear magnets, as well as weak and strong focusing and special insertions are treated in mathematically simple terms, and design examples for magnets and systems are given. This series of five lectures is intended to provide all the basic tools required for the design and operation of beam optical systems.

  17. p-topological Cauchy completions

    Directory of Open Access Journals (Sweden)

    J. Wig

    1999-01-01

    Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.

  18. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  19. Structure completion for facade layouts

    KAUST Repository

    Fan, Lubin; Musialski, Przemyslaw; Liu, Ligang; Wonka, Peter

    2014-01-01

    completion with large missing parts is an ill-posed problem. Therefore, we combine two sources of information to derive our solution: the observed shapes and a database of complete layouts. The problem is also very difficult, because shape positions

  20. The impact of 3D and 2D TV watching on neurophysiological responses and cognitive functioning in adults.

    Science.gov (United States)

    Jeong, Hyun-Ghang; Ko, Young-Hoon; Han, Changsu; Oh, So-Young; Park, Kun Woo; Kim, Taehee; Ko, Deokwon

    2015-12-01

    Watching three-dimensional television (3D TV) may strain the eyes. However, other potential harmful effects of 3D TV watching have been rarely investigated. The current study examined the impact of 3D TV watching on neurophysiological responses and cognitive functioning as compared with two-dimensional TV (2D TV) watching. A total of 72 individuals were randomly assigned to either a 3D TV watching group or a 2D TV watching group. Electroencephalography (EEG) was used to measure neurophysiological responses, and computerized neurocognitive tests were conducted immediately before and after TV watching. The Simulator Sickness Questionnaire (SSQ) was used to assess visual discomfort. There was a significant change in visual discomfort between the two groups (SSQ score at baseline: 2.28 ± 3.05 for the 3D TV group and 3.69 ± 3.49 for the 2D TV group; SSQ score after watching TV: 4.6 ± 3.35 for the 3D TV group and 4.03 ± 3.47 for the 2D TV group), and this change was greater for the 3D TV watching group (P = 0.025). However, 3D TV watching did not have a differential impact on EEG responses. Furthermore, there were no significant differences between the groups in terms of changes in cognitive performance, except for a subtle difference in backward digit span performance. Our findings suggest that 3D TV watching is as safe as 2D TV watching in terms of neurophysiological responses and cognitive functioning. Potential harmful effects of TV viewing might be similar regardless of whether 3D or 2D TV is viewed. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  1. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model.

    Science.gov (United States)

    Althaus, A L; Sagher, O; Parent, J M; Murphy, G G

    2015-02-15

    Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model. Copyright © 2015 the American Physiological Society.

  2. Neurophysiological Pain-education for Patients with Chronic Low Back Pain - A Systematic Review and Meta-analysis

    DEFF Research Database (Denmark)

    Tegner, Heidi; Frederiksen, Pernille; Esbensen, Bente Appel

    2018-01-01

    OBJECTIVE: To evaluate the effect of Neurophysiological Pain-Education (NPE) for patients with Chronic Low Back Pain (CLBP). METHODS: A systematic search was performed in six electronic databases. Eligible RCTs were those with at least 50 % of patients with CLBP and in which NPE was compared...... with no intervention or usual care. Methodological quality was assessed independently by two of the authors using the Cochrane Collaboration Risk of Bias Tool. The effect of NPE was summarized in a random effect meta-analysis for pain, disability and behavioral attitudes. Effect was estimated as weighted mean...

  3. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus.

    Science.gov (United States)

    Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I

    2005-05-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.

  4. Neurophysiologic effects of spinal manipulation in patients with chronic low back pain

    Directory of Open Access Journals (Sweden)

    Walkowski Stevan

    2011-07-01

    Full Text Available Abstract Background While there is growing evidence for the efficacy of SM to treat LBP, little is known on the mechanisms and physiologic effects of these treatments. Accordingly, the purpose of this study was to determine whether SM alters the amplitude of the motor evoked potential (MEP or the short-latency stretch reflex of the erector spinae muscles, and whether these physiologic responses depend on whether SM causes an audible joint sound. Methods We used transcranial magnetic stimulation to elicit MEPs and electromechanical tapping to elicit short-latency stretch reflexes in 10 patients with chronic LBP and 10 asymptomatic controls. Neurophysiologic outcomes were measured before and after SM. Changes in MEP and stretch reflex amplitude were examined based on patient grouping (LBP vs. controls, and whether SM caused an audible joint sound. Results SM did not alter the erector spinae MEP amplitude in patients with LBP (0.80 ± 0.33 vs. 0.80 ± 0.30 μV or in asymptomatic controls (0.56 ± 0.09 vs. 0.57 ± 0.06 μV. Similarly, SM did not alter the erector spinae stretch reflex amplitude in patients with LBP (0.66 ± 0.12 vs. 0.66 ± 0.15 μV or in asymptomatic controls (0.60 ± 0.09 vs. 0.55 ± 0.08 μV. Interestingly, study participants exhibiting an audible response exhibited a 20% decrease in the stretch reflex (p Conclusions These findings suggest that a single SM treatment does not systematically alter corticospinal or stretch reflex excitability of the erector spinae muscles (when assessed ~ 10-minutes following SM; however, they do indicate that the stretch reflex is attenuated when SM causes an audible response. This finding provides insight into the mechanisms of SM, and suggests that SM that produces an audible response may mechanistically act to decrease the sensitivity of the muscle spindles and/or the various segmental sites of the Ia reflex pathway.

  5. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures

    Directory of Open Access Journals (Sweden)

    Yan H. Yu

    2018-03-01

    Full Text Available Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level. The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1 Mandarin and L1 American English participants under short and long interstimulus interval (ISI conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms. Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017, however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN, P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates.Highlights:We examined the interaction between auditory sensory memory decay and language experience.We compared MMN

  6. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures.

    Science.gov (United States)

    Yu, Yan H; Shafer, Valerie L; Sussman, Elyse S

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP) responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1) Mandarin and L1 American English participants under short and long interstimulus interval (ISI) conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms). Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017), however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN), P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates. Highlights : We examined the interaction between auditory sensory memory decay and language experience. We compared MMN, P3a, LN

  7. The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias.

    Science.gov (United States)

    Popa, Traian; Milani, Paolo; Richard, Aliénor; Hubsch, Cécile; Brochard, Vanessa; Tranchant, Christine; Sadnicka, Anna; Rothwell, John; Vidailhet, Marie; Meunier, Sabine; Roze, Emmanuel

    2014-05-01

    Myoclonus-dystonia (M-D) is a clinical syndrome characterized by a combination of myoclonic jerks and mild to moderate dystonia. The syndrome is related to ε-sarcoglycan (SGCE) gene mutations in about half the typical cases. Whether the M-D phenotype reflects a primary dysfunction of the cerebellothalamocortical pathway or of the striatopallidothalamocortical pathway is unclear. The exact role of an additional cortical dysfunction in the pathogenesis of M-D is also unknown. To clarify the neurophysiological features of M-D and discuss whether M-D due to SGCE deficiency differs from other primary dystonias. We studied a referred sample of 12 patients with M-D (mean [SD] age, 28.8 [6.2] years; age range, 19-38 years; 5 women) belonging to 11 unrelated families with a proven mutation or deletion of the SGCE gene and a group of 12 age- and sex-matched healthy control individuals. Every participant underwent 3 sessions exploring the excitability of the primary motor cortex, the response of the primary motor cortex to a plasticity-inducing protocol, and the cerebellar-dependent eye-blink classic conditioning (EBCC). The clinical evaluation of patients included the Unified Myoclonus Rating Scale and Burke-Fahn-Marsden Dystonia Rating Scale. Myoclonus-dystonia with a proven SGCE mutation. We measured resting and active motor thresholds, and short-interval intracortical inhibition and facilitation. The plasticity of the motor cortex was evaluated before and for 30 minutes after 600 pulses of rapid paired associative stimulation. The cerebellar functioning was evaluated with the number of conditioned responses during the 6 blocks of EBCC and 1 extinction block. All data were compared between the 2 groups. For patients, correlations were explored between electrophysiological data and clinical scores. We found lower membrane excitability of the corticocortical axons and normal intracortical γ-aminobutyric acid inhibition in contrast with what has been described in other

  8. Neurological and neurophysiological examinations of workers exposed to arsenic levels exceeding hygiene standards

    Directory of Open Access Journals (Sweden)

    Halina Sińczuk-Walczak

    2014-12-01

    Full Text Available Objectives: The assessment of the neurotoxic effect of arsenic (As and its inorganic compounds is still the subject of interest due to a growing As application in a large array of technologies and the need to constantly verify the principles of prevention and technological parameters. The aim of this study was to determine the status of the nervous system (NS in workers exposed to As at concentrations exceeding hygiene standards (Threshold Limit Values (TLV – 10 μg/m3, Biological Exposure Index (BEI – 35 μg/l and to analyze the relationship between the NS functional state, species of As in urine and As levels in the workplace air. Material and Methods: The study group comprised 21 men (mean age: 47.43±7.59 employed in a copper smelting factory (mean duration of employment: 22.29±11.09. The control group comprised 16 men, matched by age and work shifts. Arsenic levels in the workplace air (As-A ranged from 0.7 to 92.3 μg/m3; (M = 25.18±28.83. The concentration of total arsenic in urine (Astot-U ranged from 17.35 to 434.68 μg/l (M = 86.82±86.6. Results: Syndrome of peripheral nervous system (PNS was manifested by extremity fatigue (28.6%, extremity pain (33.3% and paresthesia in the lower extremities (33.3%, as well as by neuropathy-type mini-symptoms (23.8%. Electroneurographic (ENeG tests of peroneal nerves showed significantly decreased response amplitude with normal values of motor conduction velocity (MCV. Stimulation of sural nerves revealed a significantly slowed sensory conduction velocity (SCV and decreased sensory potential amplitude. Neurophysiological parameters and the results of biological and environmental monitoring showed a relationship between Astot, AsIII (trivalent arsenic, the sum of iAs (AsIII+AsV (pentavalent arsenic+MMA (monomethylarsonic acid concentration in urine and As levels in the air. Conclusions: The results of the study demonstrate that occupational exposure to inorganic arsenic levels exceeding hygiene

  9. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution

    Directory of Open Access Journals (Sweden)

    Raphaël Millière

    2017-05-01

    Full Text Available There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR. While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves

  10. A reaction time experiment on adult attachment: The development of a measure for neurophysiological settings

    Directory of Open Access Journals (Sweden)

    Theresia Wichmann

    2016-11-01

    potential attachment conflicts.The introduced paradigm is able to contribute to an experimental approach in attachment research. The Reaction Time analysis with the narrative procedure might be of interest for a broader variety of questions in experimental and neurophysiological settings to capture unconscious processes in association to internal working models of attachment. An electrophysiological model based on preliminary research is proposed for assessing the preconscious neuronal network related to secure or insecure attachment representations.

  11. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution

    Science.gov (United States)

    Millière, Raphaël

    2017-01-01

    There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED)”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR). While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves self-awareness. On

  12. Optical Computing

    OpenAIRE

    Woods, Damien; Naughton, Thomas J.

    2008-01-01

    We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, re...

  13. Suprasegmental neurophysiological monitoring with H reflex and TcMEP in spinal surgery. Transient loss due to hypotension. A case report

    Directory of Open Access Journals (Sweden)

    Ángel Saponaro-González

    Full Text Available Objective: H-reflex is a well known neurophysiological test used to evaluate sensory afferent and motor efferent impulses of S1 root. Despite its simplicity and feasibility, it is not used very often in the operating room. Methods: We report the case of a 16-year-old male patient who undergoes a surgical correction for a severe paralytic scoliosis (160°. On account of previous deficits, intraoperative neurophysiological monitoring was achieved through TcMEP and H-reflex. Results: Intraoperative neurophysiological monitoring (IONM showed a transient and simultaneous loss of bilateral TcMEP and H-reflex, coinciding with an abrupt hypotension during pedicle screw placement. After having dismissed mechanical injury and after increasing blood pressure, TcMEP and H-reflex were equivalent to those at baseline. Conclusions: The H-reflex is a classic neurophysiological test not used very frequently in the operating room. It is a feasible and reliable technique that can be helpful during spine surgery IONM, especially in patients with preexisting neurological deficits. Although simultaneous TcMEP and H-reflex monitoring has been previously described, to our knowledge, this is the first recorded case of a decline in both associated with abrupt hypotension. Keywords: Intraoperative neurophysiological monitoring, TcMEP, H-reflex, Scoliosis, Hypotension

  14. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review.

    Science.gov (United States)

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Completeness theorems in transport theory

    International Nuclear Information System (INIS)

    Zweifel, P.F.

    1984-01-01

    Ever since K. M.; Case's famous 1960 paper, transport theorists have been studying the questions of full- and half-range completeness for various transport type equations. The purpose of this note is to try to define exactly what is meant by completeness as it is needed, and used, in solving transport equations and to discuss some of the various techniques which have been, or might be, used to verify completeness. Attention is restricted to the question of full-range completeness. As a paradigm the generalized form of the transport equation first introduced by Beals is adopted

  16. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  17. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    Boris Petrovitch Zakharchenya (1928-2005) This issue is dedicated to the memory of Boris Petrovich Zakharchenya, who died at the age of 77 in April 2005. He was an eminent scientist and a remarkable man. After studying physics at Leningrad University he joined the Physico-Technical Institute (now the A F Ioffe Institute) in 1952 and became the co-worker of Evgeny Feodorovich Gross, shortly after the exciton was discovered in his laboratory. The experiments on cuprous oxide crystals in the visible spectral range showed a hydrogen-like spectrum, which was interpreted as excitonic absorption. The concept of the exciton had been conceived some years earlier by Jacov Frenkel at the Physico-Technical Institute. Immediately after joining Gross, Zakharchenya succeeded in producing spectra of unprecedented quality. Subsequently the heavy and the light hole series were found. Also, Landau splitting was discovered when a magnetic field was applied. The interpretation of the discovery was thrown into doubt by Russian colleagues and it took some time, before the correct interpretation prevailed. Shortly before his death, Boris wrote the history of the discovery of the exciton, which has recently been published in Russian in a book celebrating the 80th anniversary of his birth [1]. The book also contains essays by Boris on various themes, not only on physics, but also on literature. Boris was a man of unusually wide interests, he was not only fascinated by physics, but also loved literature, art and music. This can be seen in the first article of this issue The Play of Light in Crystals which is an abbreviated version of his more complete history of the discovery of the exciton. It also gives a good impression of the personality of Boris. One of us (GL) had the privilege to become closely acquainted with him, while he was a guest professor at the University of Würzburg. During that time we had many discussions, and I recall his continuing rage on the wrong attribution of the

  18. Latino College Completion: New York

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  19. Latino College Completion: United States

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  20. Latino College Completion: South Dakota

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  1. Latino College Completion: North Dakota

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  2. Latino College Completion: New Mexico

    Science.gov (United States)

    Excelencia in Education (NJ1), 2012

    2012-01-01

    In 2009, Excelencia in Education launched the Ensuring America's Future initiative to inform, organize, and engage leaders in a tactical plan to increase Latino college completion. An executive summary of Latino College Completion in 50 states synthesizes information on 50 state factsheets and builds on the national benchmarking guide. Each…

  3. Acute motor, neurocognitive and neurophysiological change following concussion injury in Australian amateur football. A prospective multimodal investigation.

    Science.gov (United States)

    Pearce, Alan J; Hoy, Kate; Rogers, Mark A; Corp, Daniel T; Davies, Charlotte B; Maller, Jerome J; Fitzgerald, Paul B

    2015-09-01

    This multimodal study investigated the motor, neurocognitive and neurophysiological responses following a sports related concussion injury in the acute-phase (up to 10 days) in sub-elite Australian football players. Between-group, repeated measures. Over the course of one season (six months), 43 male players from one football club (25.1 ± 4.5 years) were assessed for fine motor dexterity, visuomotor reaction time, implicit learning and attention. Motor cortex excitability and inhibition were assessed using transcranial magnetic stimulation. Of the 43 players, eight suffered concussion injuries, and were compared to 15 non-concussed players (active control) who returned for follow up testing. Post-concussion assessments using the aforementioned tests were carried out at 48 and 96 h, and 10 days. Compared to the non-concussed players, those who suffered concussion showed slowed fine dexterity (P = 0.02), response (P = 0.02) and movement times (P = 0.01) 48 h post-concussion. Similarly, attentional performance was reduced in the concussed group at all time points (48 h: P football players show abnormalities in motor, cognitive and neurophysiological measures with variable rates of recovery. These findings suggest that measuring the recovery of concussed athletes should incorporate a range of testing modalities rather than relying on one area of measurement in determining return to play. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Structure completion for facade layouts

    KAUST Repository

    Fan, Lubin

    2014-11-18

    (Figure Presented) We present a method to complete missing structures in facade layouts. Starting from an abstraction of the partially observed layout as a set of shapes, we can propose one or multiple possible completed layouts. Structure completion with large missing parts is an ill-posed problem. Therefore, we combine two sources of information to derive our solution: the observed shapes and a database of complete layouts. The problem is also very difficult, because shape positions and attributes have to be estimated jointly. Our proposed solution is to break the problem into two components: a statistical model to evaluate layouts and a planning algorithm to generate candidate layouts. This ensures that the completed result is consistent with the observation and the layouts in the database.

  5. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  6. Complexity of Products of Some Complete and Complete Bipartite Graphs

    Directory of Open Access Journals (Sweden)

    S. N. Daoud

    2013-01-01

    Full Text Available The number of spanning trees in graphs (networks is an important invariant; it is also an important measure of reliability of a network. In this paper, we derive simple formulas of the complexity, number of spanning trees, of products of some complete and complete bipartite graphs such as cartesian product, normal product, composition product, tensor product, and symmetric product, using linear algebra and matrix analysis techniques.

  7. Digital optical computer II

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.

    1991-12-01

    OptiComp is currently completing a 32-bit, fully programmable digital optical computer (DOC II) that is designed to operate in a UNIX environment running RISC microcode. OptiComp's DOC II architecture is focused toward parallel microcode implementation where data is input in a dual rail format. By exploiting the physical principals inherent to optics (speed and low power consumption), an architectural balance of optical interconnects and software code efficiency can be achieved including high fan-in and fan-out. OptiComp's DOC II program is jointly sponsored by the Office of Naval Research (ONR), the Strategic Defense Initiative Office (SDIO), NASA space station group and Rome Laboratory (USAF). This paper not only describes the motivational basis behind DOC II but also provides an optical overview and architectural summary of the device that allows the emulation of any digital instruction set.

  8. Trend of Complete Hydatidiform Mole

    Directory of Open Access Journals (Sweden)

    K Thapa

    2010-03-01

    Full Text Available INTRODUCTION: Complete Hydatidiform mole is one of the most frequent abnormal pregnancies. This review studies the trend of complete mole in Paropakar Maternity and Women's hospital and clinical ability to detect it. METHODS: This is a retrospective study of 504 cases of complete hydatidiform mole recorded at Paropakar maternity and women's hospital, Kathmandu, during 2058-2065 B.S. Medical records were reviewed and incidence, clinical presentation and method of diagnosis were studied. RESULTS: During the study period, there were 13,9117 births and 504 complete moles, 12 partial moles, 48 persistent gestational tumours, six choriocarcinoma and four invasive moles recorded in the hospital. The incidence of complete mole was one per 276 births. It was prevalent among women younger than 29 years (80% and among the primigravidae (36.7%. More than 90% women presented in the first half of their pregnancy and vaginal bleeding was the main complaint (68.3%. Suction evacuation, dilation and evacuation followed by sharp curettage and abdominal hysterectomy were performed in 80.6%, 17.6% and 1.2% of the women respectively. Persistent mole and choriocarcinoma developed in 9.5% and 0.4% respectively. CONCLUSIONS: Complete mole has the highest incidence. It affects mostly younger women and presents with vaginal bleeding most of the time, usually in the first half of their pregnancy. Keywords: complete hydatidiform mole, gestational trophoblastic disease, persistent gestational tumours.

  9. sleep disorders due to neuroinfections: clinical symptoms, neurochemistry and neurophysiology V.B. Voitenkov1, N.V. Skripchenko1, Y.E. Zueva 2

    Directory of Open Access Journals (Sweden)

    V. B. Voitenkov

    2015-01-01

    Full Text Available In our review we present data on sleep disturbances in neuroinfections (encephalitis and meningitis, their clinical signs, neurochemistry and neurophysiology. These signs include lethargy, narcolepsy, sleep apnoe, sleep structure disruptions and may appear in acute period and as a sequelae of the disease. Reticular formation involvement seems to be the main reason for such sleep disorders. GABA and orexin systems disruption may play the key role in them. Neurophysiology evaluation of such disorders includes polysomnography, EEG-monitoring, brainstem acoustic evoked potentials and H-reflex investigation. 

  10. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  11. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  12. Complete Blood Count (For Parents)

    Science.gov (United States)

    ... Kids Deal With Injections and Blood Tests Blood Culture Anemia Blood Test: Basic Metabolic Panel (BMP) Blood Test: Hemoglobin Basic Blood Chemistry Tests Word! Complete Blood Count (CBC) Medical Tests and Procedures ( ...

  13. Monitoring Completed Navigation Projects Program

    National Research Council Canada - National Science Library

    Bottin, Jr., Robert R

    2001-01-01

    ... (MCNP) Program. The program was formerly known as the Monitoring Completed Coastal Projects Program, but was modified in the late 1990s to include all navigation projects, inland as well as coastal...

  14. Complete colonic duplication in children.

    Science.gov (United States)

    Khaleghnejad Tabari, Ahmad; Mirshemirani, Alireza; Khaleghnejad Tabari, Nasibeh

    2012-01-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in 15% of gastrointestinal duplication. We report two cases of complete colonic duplications, and their characteristics. We present two patients with complete colonic duplication with different types and presentations. Case 1: A 2- year old boy presented to the clinic with abdominal protrusion, difficulty to defecate, chronic constipation and mucosal prolaps covered bulging (rectocele) since he was 6 months old. The patient had palpable pelvic mass with doughy consistency. Rectal exam confirmed perirectal mass with soft consistency. The patient underwent a surgical operation that had total tubular colorectal duplication with one blind end and was treated with simple fenestration of distal end, and was discharged without complication. After two years follow up, he had normal defecation and good weight gain. Case 2: A 2 -day old infant was referred with imperforate anus and complete duplication of recto-sigmoid colon, diphallus, double bladder, and hypospadiasis. After clinical and paraclinical investigations, he underwent operations in several stages in different periods, and was discharged without complications. After four years follow up, he led a normal life. The patients with complete duplication have to be examined carefully because of the high incidence of other systemic anomalies. Treatment includes simple resection of distal common wall, fenestration, and repair other associated anomalies.

  15. Field guide to geometrical optics

    CERN Document Server

    Greivenkamp, John E

    2004-01-01

    This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

  16. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  17. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  18. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  19. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  20. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  1. The role of the neurophysiological intraoperative monitoring to prevention of postoperative neurological complication in the surgical treatment of scoliosis

    Directory of Open Access Journals (Sweden)

    M. A. Khit

    2014-01-01

    Full Text Available Bearing in mind that the technique of surgical treatment of scoliosis and skills are high enough, iatrogenic spinal cord injury is still one of the most feared complication of scoliosis surgery. It is well known that the function of the spinal cord may be estimated by combining somatosensory evoked potentials (SSEP and motor evoked potentials (MEP. We have retrospectively evaluated the results of intraoperative neurophysiological monitoring (IOM in a large population of patients underwent surgical treatment of spinal deformity. Intraoperative neuromonitoring SSEP and transcranial electrostimulation (TES – MEP in conjunction with the assessment of the correct position of the screws was performed in 142 consecutive cases, i. e. all patients who had undergone surgical treatment of idiopathic (127 pts, congenital (10 pts or neurogenic (5 pts scoliosis. A neurophysiological “alarm” was defined as a decrease in amplitude (uni- or bilateral of at least 50 % for SEPs and of 70 % for TES-MEP compared with baseline. Total intravenous anesthesia (TIVA in 138 cases was achieved by infusion of propofol (8–16 mg / kg / h and in 4 cases by halogenate anesthesia – sevoflurane (0.4–1.8 MAC. Seven patients (4.9 % were reported intraoperative neurophysiological parameters significant changes that require action by the surgeons and anesthetists, with deterioration of ostoperative neurologic status in one case. Of these three cases, the amplitude drop SSEPs and TESMEPs-was due, to the pharmacological aspects of anesthetic management, in the other four cases – with surgical procedures (response halo-traction – 1 case, mechanical damage of sheath of the spinal cord by pliers Kerrison – 1case, overcorrection – 2 cases. In five cases (3.5 % required reposting of pedicle screws (1–2 levels. Only one patient (0.7 % had a persistent postoperative neurological disorder (neuropathic pain, respectively from a level of re-reposition of

  2. The fate of completed intentions.

    Science.gov (United States)

    Anderson, Francis T; Einstein, Gilles O

    2017-04-01

    The goal of this research was to determine whether and how people deactivate prospective memory (PM) intentions after they have been completed. One view proposes that PM intentions can be deactivated after completion, such that they no longer come to mind and interfere with current tasks. Another view is that now irrelevant completed PM intentions exhibit persisting activation, and continue to be retrieved. In Experiment 1, participants were given a PM intention embedded within the ongoing task during Phase 1, after which participants were told either that the PM task had been completed or suspended until later. During Phase 2, participants were instructed to perform only the ongoing task and were periodically prompted to report their thoughts. Critically, the PM targets from Phase 1 reappeared in Phase 2. All of our measures, including thoughts reported about the PM task, supported the existence of persisting activation. In Experiment 2, we varied conditions that were expected to mitigate persisting activation. Despite our best attempts to promote deactivation, we found evidence for the persistence of spontaneous retrieval in all groups after intentions were completed. The theoretical and practical implications of this potential dark side to spontaneous retrieval are discussed.

  3. Complete Normal Ordering 1: Foundations

    CERN Document Server

    Ellis, John; Skliros, Dimitri P.

    2016-01-01

    We introduce a new prescription for quantising scalar field theories perturbatively around a true minimum of the full quantum effective action, which is to `complete normal order' the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all `cephalopod' Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of `complete normal ordering' (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative i...

  4. Disorder-specific and shared neurophysiological impairments of attention and inhibition in women with attention-deficit/hyperactivity disorder and women with bipolar disorder.

    Science.gov (United States)

    Michelini, G; Kitsune, G L; Hosang, G M; Asherson, P; McLoughlin, G; Kuntsi, J

    2016-02-01

    In adults, attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) have certain overlapping symptoms, which can lead to uncertainty regarding the boundaries of the two disorders. Despite evidence of cognitive impairments in both disorders separately, such as in attentional and inhibitory processes, data on direct comparisons across ADHD and BD on cognitive-neurophysiological measures are as yet limited. We directly compared cognitive performance and event-related potential measures from a cued continuous performance test in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. The NoGo-N2 was attenuated in women with BD, reflecting reduced conflict monitoring, compared with women with ADHD and controls (both p < 0.05). Both ADHD and BD groups showed a reduced NoGo-P3, reflecting inhibitory control, compared with controls (both p < 0.05). In addition, the contingent negative variation was significantly reduced in the ADHD group (p = 0.05), with a trend in the BD group (p = 0.07), compared with controls. These findings indicate potential disorder-specific (conflict monitoring) and overlapping (inhibitory control, and potentially response preparation) neurophysiological impairments in women with ADHD and women with BD. The identified neurophysiological parameters further our understanding of neurophysiological impairments in women with ADHD and BD, and are candidate biomarkers that may aid in the identification of the diagnostic boundaries of the two disorders.

  5. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    Science.gov (United States)

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  6. Clinical and neurophysiologic characterization of an European family with hereditary sensory neuropathy, paroxysmal cough and gastroesophageal reflux

    Directory of Open Access Journals (Sweden)

    Pedro Barros

    2014-04-01

    Full Text Available In 2002, Spring et al reported a family with an autosomal dominant form of hereditary sensory neuropathy; patients also presented adult onset of gastroesophageal reflux and cough. Since then, no further families have been described. Objective: To study a new Portuguese family with these characteristics. Method: To describe the clinical and neurophysiologic characteristics of one family with features of sensory neuropathy associated with cough and gastroesophageal erflux. Results: Three of five siblings presented a similar history of paroxysmal cough (5th decade. About a decade later they experienced numbness and paraesthesia in the feets and in all cases there was evidence of an axonal sensory neuropathy. A history of gastroesophageal reflux of variable severity and age of onset was also present. Discussion: Molecular genetic studies have demonstrated genetic heterogeneity between the hereditary sensory neuropathy type 1 subtypes. The identification of these families is of major importance because further work is required to identify the underlying genetic defect.

  7. Clinical and neurophysiologic characterization of an European family with hereditary sensory neuropathy, paroxysmal cough and gastroesophageal reflux.

    Science.gov (United States)

    Barros, Pedro; Morais, Hugo; Santos, Catarina; Roriz, José; Coutinho, Paula

    2014-04-01

    In 2002, Spring et al reported a family with an autosomal dominant form of hereditary sensory neuropathy; patients also presented adult onset of gastroesophageal reflux and cough. Since then, no further families have been described. To study a new Portuguese family with these characteristics. To describe the clinical and neurophysiologic characteristics of one family with features of sensory neuropathy associated with cough and gastroesophageal erflux. Three of five siblings presented a similar history of paroxysmal cough (5th decade). About a decade later they experienced numbness and paraesthesia in the feet and in all cases there was evidence of an axonal sensory neuropathy. A history of gastroesophageal reflux of variable severity and age of onset was also present. Molecular genetic studies have demonstrated genetic heterogeneity between the hereditary sensory neuropathy type 1 subtypes. The identification of these families is of major importance because further work is required to identify the underlying genetic defect.

  8. Correction and transformation of normative neurophysiological data: is there added value in the diagnosis of distal symmetrical peripheral neuropathy?

    LENUS (Irish Health Repository)

    Mchugh, John C

    2012-02-01

    INTRODUCTION: Despite theoretical advantages, the practical impact of mathematical correction of normative electrodiagnostic data is poorly quantified. METHODS: One hundred five healthy volunteers had clinical and neurophysiological assessment. The effects of age, height, gender, weight, and body mass index were explored using stepwise regression modeling. Reference values were derived from raw and adjusted data, which were transformed to allow appropriate use of parametric statistics. The diagnostic accuracy of derived limits was tested in patients at risk of distal symmetric peripheral neuropathy (DSPN) from chemotherapy. RESULTS: The variability of our normative data was reduced by up to 69% through the use of regression modeling, but the overall benefits of mathematical correction were marginal. The most accurate reference limits were established using the 2.5th and 97.5th percentiles of the raw data. CONCLUSIONS: Stepwise statistical regression and mathematical transformation improve the distribution of normative data, but their practical impact for diagnosis of distal symmetrical polyneuropathy is small.

  9. [Feasibility and limits of clinical neurophysiology with regard to the objective evaluation of neurological consequences following accidents].

    Science.gov (United States)

    Zipper, Stephan G

    2014-09-01

    It is not unusual for a neurological expert to have problems defining the precise anatomical location and the required objective proof of damage, especially if the medical history and the neurological report released by the clinic prove inadequate in terms of providing a reliable assessment. This may well result from somatoform disorders, dissociation, aggravation and simulation, as well as dissimulation and complex organic diagnostic findings. A range of standardised neurophysiologic procedures is available for the objective measuring of motor, vegetative and sensory systems; a brief summary of the most frequent occurrences is given here, along with their significance for appraising damage resulting from an accident. Target groups primarily include surgeons, orthopaedists, lawyers and insurance specialists. Structural improvements and measures to integrate immigrant doctors is essential.

  10. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures

    Directory of Open Access Journals (Sweden)

    Bogna Stawarczyk

    2017-12-01

    Full Text Available The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x-, y- and z-axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the

  11. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism.

    Science.gov (United States)

    Rabella, Mireia; Grasa, Eva; Corripio, Iluminada; Romero, Sergio; Mañanas, Miquel Àngel; Antonijoan, Rosa M; Münte, Thomas F; Pérez, Víctor; Riba, Jordi

    2016-01-01

    Schizotypal personality disorder (SPD) is a schizophrenia-spectrum disorder characterized by odd or bizarre behavior, strange speech, magical thinking, unusual perceptual experiences, and social anhedonia. Schizophrenia proper has been associated with anomalies in dopaminergic neurotransmission and deficits in neurophysiological markers of self-monitoring, such as low amplitude in cognitive event-related brain potentials (ERPs) like the error-related negativity (ERN), and the error positivity (Pe). These components occur after performance errors, rely on adequate fronto-striatal function, and are sensitive to dopaminergic modulation. Here we postulated that analogous to observations in schizophrenia, SPD individuals would show deficits in self-monitoring, as measured by the ERN and the Pe. We also assessed the capacity of dopaminergic antagonists to reverse these postulated deficits. We recorded the electroencephalogram (EEG) from 9 SPD individuals and 12 healthy controls in two separate experimental sessions while they performed the Eriksen Flanker Task, a classical task recruiting behavioral monitoring. Participants received a placebo or 1 mg risperidone according to a double-blind randomized design. After placebo, SPD individuals showed slower reaction times to hits, longer correction times following errors and reduced ERN and Pe amplitudes. While risperidone impaired performance and decreased ERN and Pe in the control group, it led to behavioral improvements and ERN amplitude increases in the SPD individuals. These results indicate that SPD individuals show deficits in self-monitoring analogous to those in schizophrenia. These deficits can be evidenced by neurophysiological measures, suggest a dopaminergic imbalance, and can be reverted by dopaminergic antagonists.

  12. Arousal vs. Relaxation: A Comparison of the Neurophysiological and Cognitive Correlates of Vajrayana and Theravada Meditative Practices

    Science.gov (United States)

    Amihai, Ido; Kozhevnikov, Maria

    2014-01-01

    Based on evidence of parasympathetic activation, early studies defined meditation as a relaxation response. Later research attempted to categorize meditation as either involving focused or distributed attentional systems. Neither of these hypotheses received strong empirical support, and most of the studies investigated Theravada style meditative practices. In this study, we compared neurophysiological (EEG, EKG) and cognitive correlates of meditative practices that are thought to utilize either focused or distributed attention, from both Theravada and Vajrayana traditions. The results of Study 1 show that both focused (Shamatha) and distributed (Vipassana) attention meditations of the Theravada tradition produced enhanced parasympathetic activation indicative of a relaxation response. In contrast, both focused (Deity) and distributed (Rig-pa) meditations of the Vajrayana tradition produced sympathetic activation, indicative of arousal. Additionally, the results of Study 2 demonstrated an immediate dramatic increase in performance on cognitive tasks following only Vajrayana styles of meditation, indicating enhanced phasic alertness due to arousal. Furthermore, our EEG results showed qualitatively different patterns of activation between Theravada and Vajrayana meditations, albeit highly similar activity between meditations within the same tradition. In conclusion, consistent with Tibetan scriptures that described Shamatha and Vipassana techniques as those that calm and relax the mind, and Vajrayana techniques as those that require ‘an awake quality’ of the mind, we show that Theravada and Vajrayana meditations are based on different neurophysiological mechanisms, which give rise to either a relaxation or arousal response. Hence, it may be more appropriate to categorize meditations in terms of relaxation vs. arousal, whereas classification methods that rely on the focused vs. distributed attention dichotomy may need to be reexamined. PMID:25051268

  13. Arousal vs. relaxation: a comparison of the neurophysiological and cognitive correlates of Vajrayana and Theravada meditative practices.

    Directory of Open Access Journals (Sweden)

    Ido Amihai

    Full Text Available Based on evidence of parasympathetic activation, early studies defined meditation as a relaxation response. Later research attempted to categorize meditation as either involving focused or distributed attentional systems. Neither of these hypotheses received strong empirical support, and most of the studies investigated Theravada style meditative practices. In this study, we compared neurophysiological (EEG, EKG and cognitive correlates of meditative practices that are thought to utilize either focused or distributed attention, from both Theravada and Vajrayana traditions. The results of Study 1 show that both focused (Shamatha and distributed (Vipassana attention meditations of the Theravada tradition produced enhanced parasympathetic activation indicative of a relaxation response. In contrast, both focused (Deity and distributed (Rig-pa meditations of the Vajrayana tradition produced sympathetic activation, indicative of arousal. Additionally, the results of Study 2 demonstrated an immediate dramatic increase in performance on cognitive tasks following only Vajrayana styles of meditation, indicating enhanced phasic alertness due to arousal. Furthermore, our EEG results showed qualitatively different patterns of activation between Theravada and Vajrayana meditations, albeit highly similar activity between meditations within the same tradition. In conclusion, consistent with Tibetan scriptures that described Shamatha and Vipassana techniques as those that calm and relax the mind, and Vajrayana techniques as those that require 'an awake quality' of the mind, we show that Theravada and Vajrayana meditations are based on different neurophysiological mechanisms, which give rise to either a relaxation or arousal response. Hence, it may be more appropriate to categorize meditations in terms of relaxation vs. arousal, whereas classification methods that rely on the focused vs. distributed attention dichotomy may need to be reexamined.

  14. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks.

    Science.gov (United States)

    Rosenberg, David M; Horn, Charles C

    2016-08-01

    Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus-a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software-an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research. Copyright © 2016 the American Physiological Society.

  15. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2018-03-01

    Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.

  16. Structural Completeness in Fuzzy Logics

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Metcalfe, G.

    2009-01-01

    Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics

  17. Quantum space and quantum completeness

    Science.gov (United States)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  18. Program Costs and Student Completion

    Science.gov (United States)

    Manning, Terri M.; Crosta, Peter M.

    2014-01-01

    Community colleges are under pressure to increase completion rates, prepare students for the workplace, and contain costs. Colleges need to know the financial implications of what are often perceived as routine decisions: course scheduling, program offerings, and the provision of support services. This chapter presents a methodology for estimating…

  19. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  20. Globals of Completely Regular Monoids

    Institute of Scientific and Technical Information of China (English)

    Wu Qian-qian; Gan Ai-ping; Du Xian-kun

    2015-01-01

    An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.

  1. Complete nitrification by Nitrospira bacteria

    DEFF Research Database (Denmark)

    Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra

    2015-01-01

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetic...

  2. The Completeness Theorem of Godel

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. The Completeness Theorem of Godel. 2. Henkin's Proof for First Order Logic. S M Srivastava is with the. Indian Statistical,. Institute, Calcutta. He received his PhD from the Indian Statistical. Institute in 1980. His research interests are in descriptive set theory. I Part 1. An Introduction to Math- ematical ...

  3. Spring valve for well completion

    Energy Technology Data Exchange (ETDEWEB)

    Gorbatov, P T

    1966-07-22

    A spring-loaded valve for well completion consists of a housing with a spring-loaded closing element. In order to protect the closing element from corrosion which might lower the pressure drop, the closing element is made in the form of a piston. It is tightly connected with sealing elements. The housing has orifices, overlapping the piston in the initial position.

  4. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  5. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  6. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  7. Optical computing.

    Science.gov (United States)

    Stroke, G. W.

    1972-01-01

    Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.

  8. Progress In Optical Memory Technology

    Science.gov (United States)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  9. Placebo Response is Driven by UCS Revaluation: Evidence, Neurophysiological Consequences and a Quantitative Model

    OpenAIRE

    Luca Puviani; Sidita Rama

    2016-01-01

    Despite growing scientific interest in the placebo effect and increasing understanding of neurobiological mechanisms, theoretical modeling of the placebo response remains poorly developed. The most extensively accepted theories are expectation and conditioning, involving both conscious and unconscious information processing. However, it is not completely understood how these mechanisms can shape the placebo response. We focus here on neural processes which can account for key properties of th...

  10. Complete spacelike immersions with topology

    International Nuclear Information System (INIS)

    Harris, S.G.

    1988-01-01

    A fairly large class of Lorentz manifolds is defined, called WH normal manifolds, which are approximately those for which timelike infinity is a single point. It is shown that, in such a space, an immersed spacelike hypersurface which is complete must, if it is self-intersecting, not achronal or proper, satisfy strong topological conditions; in particular, if the immersion is injective in the fundamental group, then the hypersurface must be closed, embedded and achronal (i.e. a partial Cauchy surface). WH normal spaces include products of any Riemannian manifold with Minkowski 1-space; in such space, a complete immersed spacelike hypersurface must be immersed as a covering space for the Riemannian factor. (author)

  11. Completeness in Hybrid Type Theory

    DEFF Research Database (Denmark)

    Areces, Carlos; Blackburn, Patrick Rowan; Huertas, Antonia

    2014-01-01

    We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types th......-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic...

  12. [Anterior guidance in complete dentures].

    Science.gov (United States)

    Dubreuil, J; Trevelo, A

    1990-01-01

    Although the anterior guidance in complete dentures is not really a guide, the arrangement of the anterior maxillary and mandibular prosthetic teeth, defines a propulsive line called the virtual anterior guidance, a part from the cinematic criterias. The influence of this guide on cuspal movement is superior, in all mandibular points, to the influence of the condylar pathway. If this line is not respected, the practitioner may have to do excessive grindings during occlusal adjustments.

  13. Efficient Completion of Weighted Automata

    Directory of Open Access Journals (Sweden)

    Johannes Waldmann

    2016-09-01

    Full Text Available We consider directed graphs with edge labels from a semiring. We present an algorithm that allows efficient execution of queries for existence and weights of paths, and allows updates of the graph: adding nodes and edges, and changing weights of existing edges. We apply this method in the construction of matchbound certificates for automatically proving termination of string rewriting. We re-implement the decomposition/completion algorithm of Endrullis et al. (2006 in our framework, and achieve comparable performance.

  14. Complete normal ordering 1: Foundations

    Directory of Open Access Journals (Sweden)

    John Ellis

    2016-08-01

    Full Text Available We introduce a new prescription for quantising scalar field theories (in generic spacetime dimension and background perturbatively around a true minimum of the full quantum effective action, which is to ‘complete normal order’ the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all ‘cephalopod’ Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of ‘complete normal ordering’ (which is an extension of the standard field theory definition of normal ordering reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative interactions, and by using a point splitting ‘trick’ we extend this result to theories with derivative interactions, such as those appearing as non-linear σ-models in the world-sheet formulation of string theory. We focus here on theories with trivial vacua, generalising the discussion to non-trivial vacua in a follow-up paper.

  15. Optics fabrication technical challenges

    International Nuclear Information System (INIS)

    Chabassier, G.; Ferriou, N.; Lavastre, E.; Maunier, C.; Neauport, J.; Taroux, D.; Balla, D.; Fornerod, J.C.

    2004-01-01

    Before the production of all the LMJ (MEGAJOULE laser) optics, the CEA had to proceed with the fabrication of about 300 large optics for the LIL (laser integration line) laser. Thanks to a fruitful collaboration with high-tech optics companies in Europe, this challenge has been successfully hit. In order to achieve the very tight requirements for cleanliness, laser damage threshold and all the other high demanding fabrication specifications, it has been necessary to develop and to set completely new fabrication process going and to build special outsize fabrication equipment. Through a couple of examples, this paper gives an overview of the work which has been done and shows some of the results which have been obtained: continuous laser glass melting, fabrication of the laser slabs, rapid-growth KDP (potassium dihydrogen phosphate) technology, large diffractive transmission gratings engraving and characterization. (authors)

  16. Recycling microcavity optical biosensors.

    Science.gov (United States)

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  17. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  18. Optical Computing

    Indian Academy of Sciences (India)

    Other advantages of optics include low manufacturing costs, immunity to ... It is now possible to control atoms by trapping single photons in small, .... cement, and optical spectrum analyzers. ... risk of noise is further reduced, as light is immune to electro- ..... mode of operation including management of large multimedia.

  19. Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer: Clinical, Neurophysiological, Functional, and Patient-Reported Outcomes.

    Science.gov (United States)

    Kandula, Tejaswi; Farrar, Michelle Anne; Cohn, Richard J; Mizrahi, David; Carey, Kate; Johnston, Karen; Kiernan, Matthew C; Krishnan, Arun V; Park, Susanna B

    2018-05-14

    In light of the excellent long-term survival of childhood cancer patients, it is imperative to screen for factors affecting health, function, and quality of life in long-term survivors. To comprehensively assess chemotherapy-induced peripheral neuropathy in childhood cancer survivors to define disease burden and functional effect and to inform screening recommendations. In this cross-sectional observational study, cancer survivors who were treated with chemotherapy for extracranial malignancy before age 17 years were recruited consecutively between April 2015 and December 2016 from a single tertiary hospital-based comprehensive cancer survivorship clinic and compared with healthy age-matched controls. Investigators were blinded to the type of chemotherapy. A total of 169 patients met inclusion criteria, of whom 48 (28.4%) were unable to be contacted or declined participation. Chemotherapy agents known to be toxic to peripheral nerves. The clinical peripheral neurological assessment using the Total Neuropathy Score was compared between recipients of different neurotoxic chemotherapy agents and control participants and was correlated with neurophysiological, functional, and patient-reported outcome measures. Of the 121 childhood cancer survivors included in this study, 65 (53.7%) were male, and the cohort underwent neurotoxicity assessments at a median (range) age of 16 (7-47) years, a median (range) 8.5 (1.5-29) years after treatment completion. Vinca alkaloids and platinum compounds were the main neurotoxic agents. Clinical abnormalities consistent with peripheral neuropathy were common, seen in 54 of 107 participants (50.5%) treated with neurotoxic chemotherapy (mean Total Neuropathy Score increase, 2.1; 95% CI, 1.4-2.9; P neuropathy (mean amplitude reduction, 5.8 μV; 95% CI, 2.8-8.8; P Neuropathy Score. Cisplatin produced long-term neurotoxicity more frequently than vinca alkaloids. Clinical abnormalities attributable to peripheral neuropathy were common in

  20. Quantum Optics

    CERN Document Server

    Walls, D F

    2007-01-01

    Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.

  1. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  3. A neurophysiological method of rapid detection and analysis of marine algal toxins

    DEFF Research Database (Denmark)

    Kerr, DS; Bødtkjer, Donna Briggs; Saba, HI

    1999-01-01

    a robust, reversible increase in amplitude mic spikes, and the appearance of multiple spikes (i.e., epileptiform activity) within minutes of toxin wash-in. Other notable features of the domoic acid signature included a significant decrease in amplitude of the field EPSPs, and a complete absence of effect...... responsive fashion at toxin concentrations of 25-200 nM, and tests of naturally contaminated shellfish confirmed the utility of this assay as a screening method for PSP. Our findings suggest that the in vitro hippocampal slice preparation has potential in the detection and analysis of three marine algal...

  4. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    Science.gov (United States)

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  5. Juvenile eye growth, when completed?

    DEFF Research Database (Denmark)

    Fledelius, Hans C; Christensen, Anders S; Fledelius, Christian

    2014-01-01

    PURPOSE: To test Sorsby's classical statement of axial eye growth as completed at the age of 13 years, with a view also to differentiating between basic eye growth and juvenile elongation associated with eventual refractive change towards myopia. METHODS: (i) A total of 160 healthy eyes close...... about age 13 as general limit found support from the cross-sectional data, which suggested stable emmetropic eye size from about 11-12 years, with an average apparently outgrown male emmetropic value of 23.5 mm versus females' 22.9 mm. The longitudinal data, however, showed emmetropic growth also beyond...

  6. Projective modules and complete intersections

    CERN Document Server

    Mandal, Satya

    1997-01-01

    In these notes on "Projective Modules and Complete Intersections" an account on the recent developments in research on this subject is presented. The author's preference for the technique of Patching isotopic isomorphisms due to Quillen, formalized by Plumsted, over the techniques of elementary matrices is evident here. The treatment of Basic Element theory here incorporates Plumstead's idea of the "generalized dimension functions". These notes are highly selfcontained and should be accessible to any graduate student in commutative algebra or algebraic geometry. They include fully self-contained presentations of the theorems of Ferrand-Szpiro, Cowsik-Nori and the techniques of Lindel.

  7. Completion of the TRT Barrel

    CERN Multimedia

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  8. LHCf completes its first run

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    LHCf, one of the three smaller experiments at the LHC, has completed its first run. The detectors were removed last week and the analysis of data is continuing. The first results will be ready by the end of the year.   One of the two LHCf detectors during the removal operations inside the LHC tunnel. LHCf is made up of two independent detectors located in the tunnel 140 m either side of the ATLAS collision point. The experiment studies the secondary particles created during the head-on collisions in the LHC because they are similar to those created in a cosmic ray shower produced when a cosmic particle hits the Earth’s atmosphere. The focus of the experiment is to compare the various shower models used to estimate the primary energy of ultra-high-energy cosmic rays. The energy of proton-proton collisions at the LHC will be equivalent to a cosmic ray of 1017eV hitting the atmosphere, very close to the highest energies observed in the sky. “We have now completed the fir...

  9. Complete family of separability criteria

    International Nuclear Information System (INIS)

    Doherty, Andrew C.; Spedalieri, Federico M.; Parrilo, Pablo A.

    2004-01-01

    We introduce a family of separability criteria that are based on the existence of extensions of a bipartite quantum state ρ to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the nonexistence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program. Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known positive partial transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that, in turn, allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states

  10. SPS completes LS1 activities

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 27 June, the SPS closed its doors to the LS1 engineers, bringing to an end almost 17 months of activities. The machine now enters the hardware-testing phase in preparation for an October restart.   Photo 1: The SPS transfer tunnel, TT10, reinforced with steal beams. Having completed their LS1 activities right on schedule (to the day!), the SPS team is now preparing the machine for its restart. Over the next eight weeks, hardware tests of the SPS dipole and quadrupole power converters will be underway, led by the TE-EPC (Electrical Power Converters) team. "OP start-up test activities will also be running in parallel, utilising the off hours when EPC is not using the machine," says David McFarlane, the SPS technical coordinator from the Engineering Department. "The primary beam testing phase will start at the beginning of September, once hardware tests and DSO safety tests have been completed." It has been a long journey to this point, with several major...

  11. AEgIS installation completed

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Gravity. Despite first being described over three centuries ago, it remains one of the least understood of the fundamental forces explored by physicists. At CERN’s recently completed AEgIS experiment, a team has set out to examine the effect of gravity on an as-yet-uncharted realm: antimatter.   The complete AEgIS set-up. Located in the AD hall, the AEgIS experiment plans to  make the first direct measurement of Earth’s gravitation effect on antimatter. By sending a beam of antihydrogen atoms through very thin gratings, the experiment will be able to measure how far the antihydrogen atoms fall and in how much time – giving the AEgIS team a measurement of the gravitational coupling. “By the end of 2012, we had finished by putting all the elements of the experiment together,” explains Michael Doser, AEgIS Spokesperson. “Now we have to show that they can all work together and, unfortunately, we will have no antiproton beams fo...

  12. [Neurophysiological Foundations and Practical Realizations of the Brain-Machine Interfaces the Technology in Neurological Rehabilitation].

    Science.gov (United States)

    Kaplan, A Ya

    2016-01-01

    Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.

  13. Optical hiding with visual cryptography

    Science.gov (United States)

    Shi, Yishi; Yang, Xiubo

    2017-11-01

    We propose an optical hiding method based on visual cryptography. In the hiding process, we convert the secret information into a set of fabricated phase-keys, which are completely independent of each other, intensity-detected-proof and image-covered, leading to the high security. During the extraction process, the covered phase-keys are illuminated with laser beams and then incoherently superimposed to extract the hidden information directly by human vision, without complicated optical implementations and any additional computation, resulting in the convenience of extraction. Also, the phase-keys are manufactured as the diffractive optical elements that are robust to the attacks, such as the blocking and the phase-noise. Optical experiments verify that the high security, the easy extraction and the strong robustness are all obtainable in the visual-cryptography-based optical hiding.

  14. Quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department

    1999-07-01

    Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.

  15. Optical holography

    CERN Document Server

    Collier, Robert J; Lin, Lawrence H

    1971-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  16. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  17. DAQ INSTALLATION IN USC COMPLETED

    CERN Multimedia

    A. Racz

    After one year of work at P5 in the underground control rooms (USC55-S1&S2), the DAQ installation in USC55 is completed. The first half of 2006 was dedicated to the DAQ infrastructures installation (private cable trays, rack equipment for a very dense cabling, connection to services i.e. water, power, network). The second half has been spent to install the custom made electronics (FRLs and FMMs) and place all the inter-rack cables/fibers connecting all sub-systems to central DAQ (more details are given in the internal pages). The installation has been carried out by DAQ group members, coming from the hardware and software side as well. The pictures show the very nice team spirit !

  18. Propofol (2,6-diisopropylphenol) is an applicable immersion anesthetic in the axolotl with potential uses in hemodynamic and neurophysiological experiments

    DEFF Research Database (Denmark)

    Thygesen, Mathias; Rasmussen, Mikkel Mylius; Madsen, Jesper Guldsmed

    2017-01-01

    The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some neurophysiologi......The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some...... neurophysiological experiments this is not desirable; therefore we tested propofol as an alternative anesthetic in the axolotl. We evaluated benzocaine, MS-222, and propofol's cardiovascular effects, effects on action potential propagation in the spinal cord, and gross limb regenerative effects. We found...

  19. Propofol (2,6-diisopropylphenol) is an applicable immersion anesthetic in the axolotl with potential uses in hemodynamic and neurophysiological experiments

    DEFF Research Database (Denmark)

    Thygesen, Mathias; Rasmussen, Mikkel Mylius; Madsen, Jesper Guldsmed

    2017-01-01

    The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some...... neurophysiological experiments this is not desirable; therefore we tested propofol as an alternative anesthetic in the axolotl. We evaluated benzocaine, MS-222, and propofol's cardiovascular effects, effects on action potential propagation in the spinal cord, and gross limb regenerative effects. We found...... that propofol is applicable as a general anesthetic in the axolotl allowing for neurophysiological experiments and yielding a stable anesthesia with significantly less cardiovascular effect than both benzocaine and MS-222. Additionally, propofol did not affect gross limb regeneration. In conclusion we suggest...

  20. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  1. Optical probe

    International Nuclear Information System (INIS)

    Denis, J.; Decaudin, J.M.

    1984-01-01

    The probe includes optical means of refractive index n, refracting an incident light beam from a medium with a refractive index n1>n and reflecting an incident light beam from a medium with a refractive index n2 [fr

  2. Magnetic resonance imaging of optic nerve

    International Nuclear Information System (INIS)

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies

  3. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    OpenAIRE

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O−2) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS pa...

  4. How the nerves reached the muscle: Bernard Katz, Stephen W. Kuffler, and John C. Eccles-Certain implications of exile for the development of twentieth-century neurophysiology.

    Science.gov (United States)

    Stahnisch, Frank W

    2017-01-01

    This article explores the work by Bernard Katz (1911-2003), Stephen W. Kuffler (1913-1980), and John C. Eccles (1903-1997) on the nerve-muscle junction as a milestone in twentieth-century neurophysiology with wider scientific implications. The historical question is approached from two perspectives: (a) an investigation of twentieth-century solutions to a longer physiological dispute and (b) an examination of a new kind of laboratory and academic cooperation. From this vantage point, the work pursued in Sydney by Sir John Carew Eccles' team on the neuromuscular junction is particularly valuable, since it contributed a central functional element to modern physiological understanding regarding the function and structure of the human and animal nervous system. The reflex model of neuromuscular action had already been advanced by neuroanatomists such as Georg Prochaska (1749-1820) in Bohemia since the eighteenth century. It became a major component of neurophysiological theories during the nineteenth century, based on the law associated with the names of François Magendie (1783-1855) in France and Charles Bell (1774-1842) in Britain regarding the functional differences of the sensory and motor spinal nerves. Yet, it was not until the beginning of the twentieth century that both the histological and the neurophysiological understanding of the nerve-muscle connection became entirely understood and the chemical versus electrical transmission further elicited as the mechanisms of inhibition. John C. Eccles, Bernard Katz, and Stephen W. Kuffler helped to provide some of the missing links for modern neurophysiology. The current article explores several of their scientific contributions and investigates how the context of forced migration contributed to these interactions in contingently new ways.

  5. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  6. Capgras syndrome: a review of the neurophysiological correlates and presenting clinical features in cases involving physical violence.

    Science.gov (United States)

    Bourget, Dominique; Whitehurst, Laurie

    2004-11-01

    Acts of violence have been frequently reported in cases of Capgras syndrome (CS), a misidentification syndrome characterized by the delusional belief that imposters have replaced people familiar to the individual. CS has been observed in many neuropsychiatric and organic disorders, and neuroimaging studies indicate an association between CS and right hemisphere abnormalities. However, CS has received limited attention from a forensic psychiatric perspective. We propose that elucidating demographic and clinical features noted in cases of violence secondary to CS may highlight important factors in the progression of CS to violence. We review the neurophysiological correlates and clinical factors observed in CS and present characteristics of a series of cases that demonstrate the potential of CS patients for severe physical violence toward the misidentified person. For patients with CS involving assault, we present and discuss commonly reported demographic and clinical features that may contribute to an increased risk for violence. An understanding of the presenting clinical features of CS resulting in aggressive acts may assist clinicians to assess the potential for violence in these patients.

  7. New insights into insight: Neurophysiological correlates of the difference between the intrinsic "aha" and the extrinsic "oh yes" moment.

    Science.gov (United States)

    Rothmaler, Katrin; Nigbur, Roland; Ivanova, Galina

    2017-01-27

    Insight refers to a situation in which a problem solver immediately changes his understanding of a problem situation. This representational change can either be triggered by external stimuli, like a hint or the solution itself, or by internal solution attempts. In the present paper, the differences and similarities between these two phenomena, namely "extrinsic" and "intrinsic" insight, are examined. To this end, electroencephalogram (EEG) is recorded while subjects either recognize or generate solutions to German verbal compound remote associate problems (CRA). Based on previous studies, we compare the alpha power prior to insightful solution recognition with the alpha power prior to insightful solution generation. Results show that intrinsic insights are preceded by an increase in alpha power at right parietal electrodes, while extrinsic insights are preceded by a respective decrease. These results can be interpreted in two ways. In consistency with other studies, the increase in alpha power before intrinsic insights can be interpreted as an increased internal focus of attention. Accordingly, the decrease in alpha power before extrinsic insights may be associated with a more externally oriented focus of attention. Alternatively, the increase in alpha power prior to intrinsic insights can be interpreted as an active inhibition of solution-related information, while the alpha power decrease prior to extrinsic insights may reflect its activation. Regardless of the interpretation, the results provide strong evidence that extrinsic and intrinsic insight differ on the behavioral as well as the neurophysiological level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Schoenberg, Poppy L A; Hepark, Sevket; Kan, Cornelis C; Barendregt, Henk P; Buitelaar, Jan K; Speckens, Anne E M

    2014-07-01

    To examine whether mindfulness-based cognitive therapy (MBCT) would enhance attenuated amplitudes of event-related potentials (ERPs) indexing performance monitoring biomarkers of attention-deficit/hyperactivity disorder (ADHD). Fifty adult ADHD patients took part in a randomised controlled study investigating ERP and clinical measures pre-to-post MBCT. Twenty-six patients were randomly allocated to MBCT, 24 to a wait-list control. Main outcome measures included error processing (ERN, Pe), conflict monitoring (NoGo-N2), and inhibitory control (NoGo-P3) ERPs concomitant to a continuous performance task (CPT-X). Inattention and hyperactivity-impulsivity ADHD symptoms, psychological distress and social functioning, and mindfulness skills were also assessed. MBCT was associated with increased Pe and NoGo-P3 amplitudes, coinciding with reduced 'hyperactivity/impulsivity' and 'inattention' symptomatology. Specific to the MBCT; enhanced Pe amplitudes correlated with a decrease in hyperactivity/impulsivity symptoms and increased 'act-with-awareness' mindfulness skill, whereas, enhanced P3 correlated with amelioration in inattention symptoms. MBCT enhanced ERP amplitudes associated with motivational saliency and error awareness, leading to improved inhibitory regulation. MBCT suggests having comparable modulation on performance monitoring ERP amplitudes as pharmacological treatments. Further study and development of MBCT as a treatment for ADHD is warranted, in addition to its potential scope for clinical applicability to broader defined externalising disorders and clinical problems associated with impairments of the prefrontal cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Amyotrophic lateral sclerosis in Slovenia – analysis of patient population at the Ljubljana Institute of Clinical Neurophysiology

    Directory of Open Access Journals (Sweden)

    Mojca Kirbiš

    2015-09-01

    Full Text Available Backgorund: Data on epidemiology and disease characteristics of amyotrophic lateral sclerosis (ALS are geographically limited and no systematically collected data exist for slovenian patients. We performed a retrospective descriptive study on clinical attributes and disease course of patients with ALS treated at the Institute of clinical neurophysiology (ICN, University Medical Centre Ljubljana since the foundation of a specialised ALS group.Methods:  All 271 patients treated at ICN in the 10-year period between 2003 and 2012 were analysed. Data on basic demographic characteristics, phenotype of disease onset, diagnostic delay, survival, family history, use of percutaneous gastrostomy (PEG, of non-invasive ventilation and of riluzole were obtained.Results:  Mean age at symptoms onset was 62.7 ± 11.4 years, median diagnostic delay 11 (IQ range  7–19 months and mean survival from time of enrolment 16.4 ± 15.1 months.  179 (66.1%patients had spinal onset disease and 71 (26.2% bulbar onset disease. Factors associated with longer survival were lower age at enrolment, longer diagnostic delay and use of PEG. The proportion of patients using non-invasive ventilatory support was rising through the analysed years.Conclusions: Disease characteristics and survival in our series are similar to data from other tertiary care centres. The need for non-invasive ventilatory support in ALS patients is increasing.

  10. Neurophysiological Correlates of Central Fatigue in Healthy Subjects and Multiple Sclerosis Patients before and after Treatment with Amantadine

    Directory of Open Access Journals (Sweden)

    Emiliano Santarnecchi

    2015-01-01

    Full Text Available In ten healthy subjects and in ten patients suffering from Multiple Sclerosis (MS, we investigated the cortical functional changes induced by a standard fatiguing repetitive tapping task. The Cortical Silent Period (CSP, an intracortical, mainly GABAB-mediated inhibitory phenomenon, was recorded by two different hand muscles, one acting as prime mover of the fatiguing index-thumb tapping task (First Dorsal Interosseous, FDI and the other one not involved in the task but sharing largely overlapping central, spinal, and peripheral innervation (Abductor Digiti Minimi, ADM. At baseline, the CSP was shorter in patients than in controls. As fatigue developed, CSP changes involved both the “fatigued” FDI and the “unfatigued” ADM muscles, suggesting a cortical spread of central fatigue mechanisms. Chronic therapy with amantadine annulled differences in CSP duration between controls and patients, possibly through restoration of more physiological levels of intracortical inhibition in the motor cortex. These inhibitory changes correlated with the improvement of fatigue scales. The CSP may represent a suitable marker of neurophysiological mechanisms accounting for central fatigue generation either in controls or in MS patients, involving corticospinal neural pools supplying not only the fatigued muscle but also adjacent muscles sharing an overlapping cortical representation.

  11. Effects of deep brain stimulation on balance and gait in patients with Parkinson's disease: A systematic neurophysiological review.

    Science.gov (United States)

    Collomb-Clerc, A; Welter, M-L

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal globus pallidus (GPi) deep brain stimulation (DBS) provides an efficient treatment for the alleviation of motor signs in patients with Parkinson's disease. The effects of DBS on gait and balance disorders are less successful and may even lead to an aggravation of freezing of gait and imbalance. The identification of a substantia nigra pars reticulata (SNr)-mesencephalic locomotor region (MLR) network in the control of locomotion and postural control and of its dysfunction/lesion in PD patients with gait and balance disorders led to suggestion that DBS should be targeting the SNr and the pedunculopontine nucleus (part of the MLR) for PD patients with these disabling axial motor signs. However, the clinical results to date have been disappointing. In this review, we discuss the effects of DBS of these basal ganglia and brainstem structures on the neurophysiological parameters of gait and balance control in PD patients. Overall, the data suggest that both STN and GPi-DBS improve gait parameters and quiet standing postural control in PD patients, but have no effect or may even aggravate dynamic postural control, in particular with STN-DBS. Conversely, DBS of the SNr and PPN has no effect on gait parameters but improves anticipatory postural adjustments and gait postural control. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysiological research.

    Science.gov (United States)

    Hage, Steffen R; Ott, Torben; Eiselt, Anne-Kathrin; Jacob, Simon N; Nieder, Andreas

    2014-01-01

    Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks in exchange for rewards. Over the past years, monkeys' psychological well-being during experimentation has become an increasingly important concern. We suggest objective criteria to explore whether training sessions during which the monkeys work under controlled water intake over many days might affect their behavior. With that aim, we analyzed a broad range of species-specific behaviors over several months ('ethogram') and used these ethograms as a proxy for the monkeys' well-being. Our results show that monkeys' behavior during training sessions is unaffected by the duration of training-free days in-between. Independently of the number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were equally active and alert in their home group cages during training phases. This indicates that the monkeys were well habituated to prolonged working schedules and that their well-being was stably ensured during the training sessions.

  13. Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping during novel word learning.

    Science.gov (United States)

    François, Clément; Cunillera, Toni; Garcia, Enara; Laine, Matti; Rodriguez-Fornells, Antoni

    2017-04-01

    Learning a new language requires the identification of word units from continuous speech (the speech segmentation problem) and mapping them onto conceptual representation (the word to world mapping problem). Recent behavioral studies have revealed that the statistical properties found within and across modalities can serve as cues for both processes. However, segmentation and mapping have been largely studied separately, and thus it remains unclear whether both processes can be accomplished at the same time and if they share common neurophysiological features. To address this question, we recorded EEG of 20 adult participants during both an audio alone speech segmentation task and an audiovisual word-to-picture association task. The participants were tested for both the implicit detection of online mismatches (structural auditory and visual semantic violations) as well as for the explicit recognition of words and word-to-picture associations. The ERP results from the learning phase revealed a delayed learning-related fronto-central negativity (FN400) in the audiovisual condition compared to the audio alone condition. Interestingly, while online structural auditory violations elicited clear MMN/N200 components in the audio alone condition, visual-semantic violations induced meaning-related N400 modulations in the audiovisual condition. The present results support the idea that speech segmentation and meaning mapping can take place in parallel and act in synergy to enhance novel word learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype.

    Science.gov (United States)

    Bluschke, A; Roessner, V; Beste, C

    2016-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders in childhood. Besides inattention and hyperactivity, impulsivity is the third core symptom leading to diverse and serious problems. However, the neuronal mechanisms underlying impulsivity in ADHD are still not fully understood. This is all the more the case when patients with the ADHD combined subtype (ADHD-C) are considered who are characterized by both symptoms of inattention and hyperactivity/impulsivity. Combining high-density electroencephalography (EEG) recordings with source localization analyses, we examined what information processing stages are dysfunctional in ADHD-C (n = 20) compared with controls (n = 18). Patients with ADHD-C made more impulsive errors in a Go/No-go task than healthy controls. Neurophysiologically, different subprocesses from perceptual gating to attentional selection, resource allocation and response selection processes are altered in this patient group. Perceptual gating, stimulus-driven attention selection and resource allocation processes were more pronounced in ADHD-C, are related to activation differences in parieto-occipital networks and suggest attentional filtering deficits. However, only response selection processes, associated with medial prefrontal networks, predicted impulsive errors in ADHD-C. Although the clinical picture of ADHD-C is complex and a multitude of processing steps are altered, only a subset of processes seems to directly modulate impulsive behaviour. The present findings improve the understanding of mechanisms underlying impulsivity in patients with ADHD-C and might help to refine treatment algorithms focusing on impulsivity.

  15. Developmental sequelae and neurophysiologic substrates of sensory seeking in infant siblings of children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Cara R. Damiano-Goodwin

    2018-01-01

    Full Text Available It has been proposed that early differences in sensory responsiveness arise from atypical neural function and produce cascading effects on development across domains. This longitudinal study prospectively followed infants at heightened risk for autism spectrum disorder (ASD based on their status as younger siblings of children diagnosed with ASD (Sibs-ASD and infants at relatively lower risk for ASD (siblings of typically developing children; Sibs-TD to examine the developmental sequelae and possible neurophysiological substrates of a specific sensory response pattern: unusually intense interest in nonsocial sensory stimuli or “sensory seeking.” At 18 months, sensory seeking and social orienting were measured with the Sensory Processing Assessment, and a potential neural signature for sensory seeking (i.e., frontal alpha asymmetry was measured via resting state electroencephalography. At 36 months, infants’ social symptomatology was assessed in a comprehensive diagnostic evaluation. Sibs-ASD showed elevated sensory seeking relative to Sibs-TD, and increased sensory seeking was concurrently associated with reduced social orienting across groups and resting frontal asymmetry in Sibs-ASD. Sensory seeking also predicted later social symptomatology. Findings suggest that sensory seeking may produce cascading effects on social development in infants at risk for ASD and that atypical frontal asymmetry may underlie this atypical pattern of sensory responsiveness. Keywords: Sensory, Autism, Infant siblings, Longitudinal, Frontal asymmetry, EEG

  16. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models.

    Science.gov (United States)

    Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab

    2014-11-01

    Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.

  17. The time course of syntactic activation during language processing: a model based on neuropsychological and neurophysiological data.

    Science.gov (United States)

    Friederici, A D

    1995-09-01

    This paper presents a model describing the temporal and neurotopological structure of syntactic processes during comprehension. It postulates three distinct phases of language comprehension, two of which are primarily syntactic in nature. During the first phase the parser assigns the initial syntactic structure on the basis of word category information. These early structural processes are assumed to be subserved by the anterior parts of the left hemisphere, as event-related brain potentials show this area to be maximally activated when phrase structure violations are processed and as circumscribed lesions in this area lead to an impairment of the on-line structural assignment. During the second phase lexical-semantic and verb-argument structure information is processed. This phase is neurophysiologically manifest in a negative component in the event-related brain potential around 400 ms after stimulus onset which is distributed over the left and right temporo-parietal areas when lexical-semantic information is processed and over left anterior areas when verb-argument structure information is processed. During the third phase the parser tries to map the initial syntactic structure onto the available lexical-semantic and verb-argument structure information. In case of an unsuccessful match between the two types of information reanalyses may become necessary. These processes of structural reanalysis are correlated with a centroparietally distributed late positive component in the event-related brain potential.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A case series study of the neurophysiological effects of altered states of mind during intense Islamic prayer.

    Science.gov (United States)

    Newberg, Andrew B; Wintering, Nancy A; Yaden, David B; Waldman, Mark R; Reddin, Janet; Alavi, Abass

    2015-12-01

    This paper presents a case series with preliminary data regarding the neurophysiological effects of specific prayer practices associated with the Islamic religion. Such practices, like other prayer practices, are likely associated with several coordinated cognitive activities and a complex pattern of brain physiology. However, there may also be changes specific to the goals of Islamic prayer which has, as its most fundamental concept, the surrendering of one's self to God. To evaluate Islamic prayer practices, we measured changes in cerebral blood flow (CBF) using single photon emission computed tomography (SPECT) in three Islamic individuals while practicing two different types of Islamic prayer. In this case series, intense Islamic prayer practices generally showed decreased CBF in the prefrontal cortex and related frontal lobe structures, and the parietal lobes. However, there were also several regions that differed between the two types of prayer practices including increased CBF in the caudate nucleus, insula, thalamus, and globus pallidus. These patterns also appear distinct from concentrative techniques in which an individual focuses on a particular idea or object. It is hypothesized that the changes in brain activity may be associated with feelings of "surrender" and "connectedness with God" described to be experienced during these intense Islamic prayer practices. Overall, these results suggest that several coordinated cognitive processes occur during intense Islamic prayer. Methodological issues and implications of the results are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition

    Science.gov (United States)

    Bandelow, Borwin; Baldwin, David; Abelli, Marianna; Bolea-Alamanac, Blanca; Bourin, Michel; Chamberlain, Samuel R.; Cinosi, Eduardo; Davies, Simon; Domschke, Katharina; Fineberg, Naomi; Grünblatt, Edna; Jarema, Marek; Kim, Yong-Ku; Maron, Eduard; Masdrakis, Vasileios; Mikova, Olya; Nutt, David; Pallanti, Stefano; Pini, Stefano; Ströhle, Andreas; Thibaut, Florence; Vaghix, Matilde M.; Won, Eunsoo; Wedekind, Dirk; Wichniak, Adam; Woolley, Jade; Zwanzger, Peter; Riederer, Peter

    2017-01-01

    Objective Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Methods Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. Results The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. Conclusions Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD. PMID:27419272

  20. Freeform Optics: current challenges for future serial production

    Science.gov (United States)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  1. Placebo Response is Driven by UCS Revaluation: Evidence, Neurophysiological Consequences and a Quantitative Model.

    Science.gov (United States)

    Puviani, Luca; Rama, Sidita

    2016-07-20

    Despite growing scientific interest in the placebo effect and increasing understanding of neurobiological mechanisms, theoretical modeling of the placebo response remains poorly developed. The most extensively accepted theories are expectation and conditioning, involving both conscious and unconscious information processing. However, it is not completely understood how these mechanisms can shape the placebo response. We focus here on neural processes which can account for key properties of the response to substance intake. It is shown that placebo response can be conceptualized as a reaction of a distributed neural system within the central nervous system. Such a reaction represents an integrated component of the response to open substance administration (or to substance intake) and is updated through "unconditioned stimulus (UCS) revaluation learning". The analysis leads to a theorem, which proves the existence of two distinct quantities coded within the brain, these are the expected or prediction outcome and the reactive response. We show that the reactive response is updated automatically by implicit revaluation learning, while the expected outcome can also be modulated through conscious information processing. Conceptualizing the response to substance intake in terms of UCS revaluation learning leads to the theoretical formulation of a potential neuropharmacological treatment for increasing unlimitedly the effectiveness of a given drug.

  2. [Neurophysiological identification of the cranial nerves in endoscopic endonasal surgery of skull base tumors].

    Science.gov (United States)

    Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V

    2016-01-01

    Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.

  3. Affective touch awareness in mental health and disease relates to autistic traits - An explorative neurophysiological investigation.

    Science.gov (United States)

    Croy, Ilona; Geide, Helen; Paulus, Martin; Weidner, Kerstin; Olausson, Håkan

    2016-11-30

    Affective touch is important for social interaction within families and groups and there is evidence that unmyelinated C tactile fibers are involved in this process. Individuals with autism spectrum disorders show alterations in the perception and processing of affective touch. sThus, we hypothesized that affective touch awareness based on C tactile fiber activation is impaired in individuals with high levels of autistic trait. The pleasantness perception of optimal and suboptimal C tactile stimuli was tested in an explorative study in 70 patients recruited from an outpatient psychotherapy clinic and 69 healthy comparison subjects. All participants completed questionnaires about autistic traits, depressive symptomatology, childhood maltreatment, and about the daily amount of touch. Relative to comparison subjects, patients reported engaging in touch less frequently in daily life and rated touch less pleasant. Reduced valence ratings of touch were explained by childhood maltreatment but not by any particular disorder or depression severity. Among all tested variables, the affective touch awareness correlated with autistic traits only - in patients as well as in comparison subjects. Taken together, individuals with mental health issues have a lower baseline of expression and reception of affective touch. Autistic traits and childhood maltreatment modulate the experience of affective touch. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of pain neurophysiology education on physiotherapy students' understanding of chronic pain, clinical recommendations and attitudes towards people with chronic pain: a randomised controlled trial.

    Science.gov (United States)

    Colleary, G; O'Sullivan, K; Griffin, D; Ryan, C G; Martin, D J

    2017-12-01

    To investigate the effect of pain neurophysiology education (PNE) on student physiotherapists': (1) knowledge of chronic pain; (2) attitudes towards patients with chronic pain; and (3) clinical recommendations for patients with chronic pain. Multicentre single-blind randomised controlled trial. One UK and one Irish university. Seventy-two student physiotherapists. Participants received either PNE (intervention) or a control education. Both were delivered in a 70-minute group lecture. (1) The Revised Pain Neurophysiology Quiz to assess knowledge; (2) the Health Care Pain Attitudes and Impairment Relationship Scale (HC-PAIRS) to assess attitudes; and (3) a case vignette to assess the appropriateness of clinical recommendations. Post education, the PNE group had a greater increase in pain neurophysiology knowledge [mean difference 4.0 (95% confidence interval 3.2 to 4.7), Pstudents in the PNE group were more likely to make appropriate recommendations regarding work (94% vs 56%), exercise (92% vs 56%), activity (94% vs 67%) and bed rest (69% vs 33%) compared with those in the control group (Pphysiotherapy students, and could be used on a more widespread basis. There is a need to investigate whether these findings can be replicated in other healthcare professions, and how well these reported changes lead to changes in actual clinical behaviour and the clinical outcomes of patients. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  5. Is appreciation of written education about pain neurophysiology related to changes in illness perceptions and health status in patients with fibromyalgia?

    Science.gov (United States)

    van Ittersum, M W; van Wilgen, C P; Groothoff, J W; van der Schans, C P

    2011-11-01

    To investigate the appreciation of written education about pain neurophysiology in patients with fibromyalgia (FM) and its effects on illness perceptions and perceived health status. A booklet explaining pain neurophysiology was sent to participants with FM. Appreciation was assessed with 10 questions addressing relevance (0-30) and reassurance (0-30). Illness perceptions, catastrophizing and health status were measured with the Revised Illness Perception Questionnaire (IPQ-R), the Pain Catastrophizing Scale (PCS) and the Fibromyalgia Impact Questionnaire (FIQ) at baseline (T0), after a 2-week control period (T1) and 6 weeks after the intervention (T2). Forty-one patients participated. Mean (SD) scores for relevance and reassurance were 21.6 (5.6) and 18.7 (5.7), respectively. Only illness coherence, emotional representations, pain and fatigue changed significantly between T0 and T2. Correlations between appreciation and changes in outcomes ranged between r=0.00 and r=0.34. Although a majority of subjects appreciated the written information, it did not have clinically relevant effects on illness perceptions, catastrophizing or impact of FM on daily life. Written education about pain neurophysiology is inadequate toward changing illness perceptions, catastrophizing or perceived health status of participants with FM; education should be incorporated into a broader multidisciplinary self-management program. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. ATLAS Magnet System Nearing Completion

    CERN Document Server

    ten Kate, H H J

    2008-01-01

    The ATLAS Detector at the Large Hadron Collider at CERN is equipped with a superconducting magnet system that consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The four magnets generate the magnetic field for the muon- and inner tracking detectors, respectively. After 10 years of construction in industry, integration and on-surface tests at CERN, the magnets are now in the underground cavern where they undergo the ultimate test before data taking in the detector can start during the course of next year. The system with outer dimensions of 25 m length and 22 m diameter is based on using conduction cooled aluminum stabilized NbTi conductors operating at 4.6 K and 20.5 kA maximum coil current with peak magnetic fields in the windings of 4.1 T and a system stored magnetic energy of 1.6 GJ. The Barrel Toroid and Central Solenoid were already successfully charged after installation to full current in autumn 2006. This year the system is completed with two End Cap Toroids. The ultimate test of...

  7. A complete history of everything

    Science.gov (United States)

    Lanclos, Kyle; Deich, William T. S.

    2012-09-01

    This paper discusses Lick Observatory's local solution for retaining a complete history of everything. Leveraging our existing deployment of a publish/subscribe communications model that is used to broadcast the state of all systems at Lick Observatory, a monitoring daemon runs on a dedicated server that subscribes to and records all published messages. Our success with this system is a testament to the power of simple, straightforward approaches to complex problems. The solution itself is written in Python, and the initial version required about a week of development time; the data are stored in PostgreSQL database tables using a distinctly simple schema. Over time, we addressed scaling issues as the data set grew, which involved reworking the PostgreSQL database schema on the back-end. We also duplicate the data in flat files to enable recovery or migration of the data from one server to another. This paper will cover both the initial design as well as the solutions to the subsequent deployment issues, the trade-offs that motivated those choices, and the integration of this history database with existing client applications.

  8. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  9. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  10. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  11. Chinese Islam: A Complete Concert

    Directory of Open Access Journals (Sweden)

    Zvi Ben-Dor Benite

    2017-06-01

    Full Text Available Matthew S. Erie, China and Islam: The Prophet, the Party, and Law. Cambridge University Press, 2016. 472 pp. $140 (cloth/e-book. Jonathan Lipman, ed., Islamic Thought in China: Sino-Muslim Intellectual Evolution from the 17th to the 20th Century. Edinburgh University Press, 2016. 288 pp. £70 (cloth; e-book. Roberta Tontini, Muslim Sanzijing: Shifts and Continuities in the Definition of Islam in China. Brill, 2016. 238 pp. $125 (cloth. Why study a Chinese “minority” and its history? The task of scholars of Chinese Islam since the 1990s has been twofold: on the one hand, we have wanted to study Islam in China in its Chinese social and cultural context, as opposed to imagining it as a single separate entity, and to show that its history is relevant and meaningful for Chinese history in general. One could almost say that this goal was achieved a while ago. The next task has been to make the study of Chinese Islam and its history meaningful and useful for the greater community of scholars of Islam in general. It seems to me that with the books reviewed here, and with others in the making, we are getting close to reaching this target. In 1910, Marshall Broomhall’s Islam in China declared that Chinese Islam was a “neglected problem.” These books show that it is no longer neglected, and no longer a “problem”; rather, it is an exciting topic. Indeed, a complete, even if not harmonious, concert.

  12. Aurora laser optical system

    International Nuclear Information System (INIS)

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  13. Completely quantized collapse and consequences

    International Nuclear Information System (INIS)

    Pearle, Philip

    2005-01-01

    Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL

  14. Statistical optics

    Science.gov (United States)

    Goodman, J. W.

    This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.

  15. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  16. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  17. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  18. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    Science.gov (United States)

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  19. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  20. Microstructured Optical Fibres

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to a new class of optical waveguides, in which waveguiding along one or more core regions is obtained through the application of the Photonic Bandgap (PBG) effect. The invention further relates to optimised two-dimensional lattice structures capable of providing......, which are easy to manufacture. Finally, the present invention relates to a new fabrication technique, which allows easy manufacturing of preforms for photonic crystal fibers with large void filling fractions, as well as it allows a high flexibility in the design of the cladding and core structures....... complete PBGs, which reflects light incident from air or vacuum. Such structures may be used as cladding structures in optical fibres, where light is confined and thereby guided in a hollow core region. In addition, the present invention relates to designs for ultra low-loss PBG waveguiding structures...